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1. Introduction

For human-human or human-computer interaction, the talker’s direction and location are
important cues that determine who is talking. This information can be helpful, especially in
multi-user conversation scenarios such as a meeting system, robotic communication, and so
on. There have been studies for understanding of a conversation scene based on the talker
localization approach (e.g., [1, 2]). An approach using the turn-taking information obtained
from DOA (Direction-of-Arrival) estimation results for the discrimination of system requests
or users’ conversations has also been proposed [3].

Many systems using microphone arrays have been tried in order to localize sound sources.
Conventional techniques, such as MUSIC (MUltiple SIgnal Classification), CSP (Cross-power
Spectrum Phase), and so on (e.g., [4–9]), use simultaneous phase information from
microphone arrays to estimate the direction of the arriving signal. There have also been
studies on binaural source localization based on interaural differences, such as interaural
level difference and interaural time difference (e.g., [10, 11]). Sound source localization
techniques focusing on the auditory system have also been described in [12, 13].

Single-microphone source separation is one of the most challenging scenarios in the field of
signal processing, and some techniques have been described (e.g., [14–17]). In our previous
work [18], we discussed a sound source localization method using only a single microphone.
In that report, the acoustic transfer function was estimated from observed (reverberant)
speech using the statistics of clean speech signals without using texts of the user’s utterance,
where a GMM (Gaussian Mixture Model) was used to model the features of the clean speech.
This estimation is performed in the cepstral domain employing a maximum-likelihood-based
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approach. This is possible because the cepstral parameters are an effective representation for
retaining useful clean speech information. The experiment results of our talker-localization
showed its effectiveness. However, the previous method required the measurement of speech
for each room environment in advance. Therefore, this chapter presents a new method that
uses parabolic reflection that is able to estimate the sound source direction without any need
for such prior measurements.

In this chapter, we introduce the concept of an active microphone that achieves a good
combination of active-operation and signal processing. The active microphone has a
parabolic reflection board, which is extremely simple in construction. The reflector and
its associated microphone rotate together, perform signal processing, and seek to locate the
direction of the sound source. We call this microphone with the function of the rotation an
active microphone.

A simple signal-power-based method using a parabolic antenna has been proposed in the
radar field. But the signal-power-based method is not effective for finding the direction of a
person talking in a room environment. One of the reasons is that the power of the speech
signal varies for all directions of the parabolic antenna, since a person does not utter the
same power (word) for all directions of the parabolic antenna. Therefore, in this chapter,
our new sound-source-direction estimation method focuses on the acoustic transfer function
instead of the signal power. The use of the parabolic reflection board results in a difference in
the acoustic transfer functions of the target direction and the non-target directions, where the
active microphone with the parabolic reflection board rotates and observes the speech at each
angle. The sound source direction is detected by comparing the acoustic transfer functions
observed at each angle, which are estimated from the observed speech using the statistics
of clean speech signals. We compared our proposed method with the signal-power-based
method, and as the methods for obtaining the directivity of the microphone, we compared the
use of the parabolic reflection board with the use of a shotgun microphone. Its effectiveness
is confirmed by sound-source-direction estimation experiments in a room environment.

2. Active microphone

2.1. Parabolic reflection board

In this chapter, an active microphone with a parabolic reflection board is introduced for
estimation of sound source direction, where the reflection board has the shape of a parabolic
surface. The parabolic reflector has been used for estimation of the direction of arrival in
the radar field [19]. As shown in Figure 1, under the assumptions associated with plane
waves, any line (wave) parallel to the axis of the parabolic surface is reflected toward the
focal point. On the other hand, if the sound source is not located at 90 degrees (in front of
the parabolic surface), no reflection wave will travel toward the focal point. Therefore, the
use of the parabolic reflection board will be able to give us the difference in the acoustic
transfer function between the target direction and the non-target directions.

2.2. Signal-power-based estimation of sound source direction

In [20], a simple signal-power-based method using a parabolic reflection board has been
described. The use of parabolic reflection can increase the power gain of the signal arriving
from directly in front of the parabolic board. In that method, the microphone with a parabolic
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Parabolic surface

When the sound source is located in front of the parabolic surface, any wave is reflected toward the focal point.

When the sound source is notlocated in front of the parabolic surface, no reflection waves will travel toward the focal point.

Focal point

Figure 1. Concept of parabolic reflection

reflection board rotates, and calculates the power of the observed signal for each angle of the
parabolic reflection board. Then, the direction having maximum power was selected as the
sound source direction:

î = argmax
i

∑
n

∑
ω

log |Oi(ω; n)|2. (1)

Here, O(ω; n) is the ω-th frequency bins of short-term linear spectrum at the frame n. i is
the angle of the parabolic reflection board (microphone).
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Figure 2. Power of a clean speech segment and the speech segment observed by the microphone with a parabolic reflection

board for each angle. The power was normalized so that the mean values of all directions was 0 dB.
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Its effectiveness has been confirmed on white noise signals. However, the signal-power-based
method was not effective for finding the direction of a talking person. This is because the
power of the uttered speech signals varies for all directions of the parabolic reflection board.
Figure 2 shows the power of a clean speech segment and the observed speech segment for
each angle of the parabolic reflection board. The size of the recording room was about 6.3 m
× 7.2 m (width × depth). The target sound source was located at 90 degrees and 2 m from
the microphone. The diameter of the parabolic reflection board was 24 cm, and the distance
to the focal point was 9 cm. The speech signal was sampled at 12 kHz, and windowed
with a 32-msec Hamming window every 8 msec. The power was normalized so that the
mean values of all directions were 0 dB. In the left portion of Figure 2, the text utterance is
the same for each angle of the parabolic reflection board, and in the right portion, the text
utterance is different for each angle. As shown in this figure, the power of the observed
speech was most enhanced by the parabolic reflection board at 90 degrees (target direction).
However, when the utterance text differs at each angle of the parabolic reflection board, the
power of observed speech at 90 degrees did not have the maximum power since the power
of input speech for another direction had a higher power than that for 90 degrees. For this
case, the signal-power-based fails to estimate the direction of the sound source correctly.

In this chapter, in order to estimate the direction of the sound source correctly when the
power of the uttered speech signals varies for all direction of the parabolic reflection board,
the acoustic transfer function is used instead of the power. Since the acoustic transfer function
does not depend on the uttered clean speech, the use of the acoustic transfer function can
estimate the direction of the sound source without the influence of the varying power of the
uttered speech signals.

(Direct wave)
(Reflection wave)

O
Parabolic surface

P Q
(Focal point)

( )txm( )tx0

Figure 3. Observed signal at the focal point, where the input signal is coming from directly in front of the parabolic surface

2.3. Signal observed using parabolic reflection

Next, we consider the signal observed using parabolic reflection [20]. As shown in Figure 3,
when the sound source is located directly in front of the parabolic surface and there are no
background noise and no directivity of the sound source, the observed signal at the focal
point at discrete time t can be expressed by the addition of the waves arriving at the focal
point directly (direct wave) and those arriving at the focal point after being reflected by the
parabolic surface (reflection waves):
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O: Focal point
Parabolic surface

P
Tangential line

δ
(Input signal)

(Reflected signal)
degrees

Figure 4. Observed signal at the focal point, where the input signal is coming from δ degrees

o(t) = xp(t) +
M

∑
m=1

xm(t) (2)

where o(t), xp and xm (m = 1, · · · , M) are observed sound, direct sound and reflection
sound, respectively. Based on the properties of a parabola, the time difference to the focal
point between the direct and reflection waves is constant without depending on m. Therefore,
(2) can be written as

o(t) = s(t) ∗ hp(t) +
M

∑
m=1

s(t − τ) ∗ hm(t) (3)

where s(t) and τ are clean speech and the time difference, respectively. hp is the acoustic
transfer function of a direct wave and hm is that of a reflection wave. By applying the
short-term Fourier transform, the observed spectrum at frame n is given by

O(ω; n)

≈ S(ω; n) · (Hp(ω; n) + e−j2πωτ
·

M

∑
m=1

Hm(ω; n))

= S(ω; n) · (Hp(ω; n) + Hr(ω; n)). (4)

Here Hp is the acoustic transfer function of the direct sound that is not influenced by
parabolic reflection. Hr is the acoustic transfer function resulting from parabolic reflection.

On the other hand, as shown in Figure 4, when the input signal is coming from δ degrees (not
coming from directly in front of the parabolic surface), the direction of the reflected signal
at the parabolic surface is off δ degrees from PO. Therefore, when the sound source is not
located in front of the parabolic surface, parabolic reflection does not influence the acoustic
transfer function since no reflection waves will travel toward the focal point:

O(ω; n) ≈ S(ω; n) · Hp(ω; n). (5)
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Parabolic reflector
Microphone(Focal point)Rotationmanually Signal

Figure 5. Active microphone with parabolic reflection

θ
θ

(a) (b): Acoustic transfer function: Distance

Figure 6. Acoustic transfer function in a feature space for each angle of the active microphone. (a) The case that the direction

θ has the acoustic transfer function which is the farthest from those of other directions. (b) The case that the acoustic transfer

function of θ is similar to most of the acoustic transfer functions of other directions.

2.4. Estimation of sound source direction

As shown in Figure 5, new active microphone with a parabolic reflection board was
constructed with the microphone located at the focal point. In order to obtain the signal
observed at each angle, the angle of the microphone was changed manually in research
carried out for this chapter. Then, from equations (4) and (5), the spectrum of the signal
observed at a microphone angle θ can be expressed as

Oθ(ω; n) ≈ Sθ(ω; n) · Hθ(ω; n)

Hθ(ω; n) =

{

Hp(ω; n) + Hr(ω; n) (θ = θ̂)
Hp(ω; n) (θ 6= θ̂)

(6)

where Sθ and Hθ are spectra of clean speech and acoustic transfer function at the angle θ,
and θ̂ is the sound source direction. Assuming Hp is nearly constant for each angle, when the
active microphone does not face the sound source, the value of Hθ will be almost the same
for every non-target direction. On the other hand, the only condition under which Hθ will
have a different value from that obtained at the other angles is when the active microphone
faces the sound source.

Therefore, the acoustic transfer function is estimated at each discrete direction θ, and the
sound source direction can be estimated by selecting the direction whose the acoustic transfer
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function is the farthest from the acoustic transfer functions of other directions. The sum of
the mutual distances is used to find such a direction. For each discrete direction θ, the
Euclidean distances from the acoustic transfer function of θ to those of other directions are
measured. As shown in Figure 6, when the direction θ has the acoustic transfer function
which is the farthest from those of other directions, the sum of the distances becomes larger
than those of other directions. Hence, the sound source direction is estimated by selecting
the direction having the maximum sum of the distances from the acoustic transfer function
of the direction to those of other directions:

θ̂ = argmax
θ

∑
θ′

(H̄θ − H̄θ′ )
2 (7)

where θ
′ is all directions of the microphone except θ, and H̄ is the expectation of H in regard

to the time frame. Actually, in this research, the cepstrum of acoustic transfer function is
used to calculate this equation. In the next section, we will describe how to estimate Hθ from
observed speech signals.

3. Estimation of the acoustic transfer function

In our previous work [18], we proposed a method to estimate the acoustic transfer function
from the reverberant speech (any utterance) using the clean-speech acoustic model, where
a GMM is used to model the feature of the clean speech. The clean speech GMM enables
us to estimate the acoustic transfer function from the observed speech without needing to
have texts of the user’s utterance (text-independent estimation). However, because an active
microphone with parabolic reflection board was not used, the previous method required
the measurement of speech for each room environment in advance in order to be able to
determine the direction of a talking person. In this chapter, we can estimate the sound
source direction without any need for prior measurements by information fusion of an active
microphone and an estimation of an acoustic transfer function.

3.1. Cepstrum representation of reverberant speech

The reverberant speech signal, o(t), in a room environment is generally considered to be

the convolution of clean speech and the acoustic transfer function o(t) = ∑
L−1
l=0 s(t − l)h(l),

where s(t), h(l) and L are a clean speech signal, an acoustic transfer function (room impulse
response) from the sound source to the microphone, and the length of the acoustic transfer
function, respectively.

In recent studies for robust speech recognition and speech dereverberation, the reverberant
speech in the STFT (Short-Term Fourier Transform) domain is often modeled so that each
frequency bin of the reverberant speech is represented by the convolution of the frame
sequences of clean speech and the acoustic transfer function [21, 22].

O(ω; n) =
L′
−1

∑
l′=0

S(ω; n − l
′) · H(ω; l

′) (8)
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Here O(ω; n), S(ω; n), and H(ω; n) are the ω-th frequency bins of short-term linear spectra of
the frame n. L′ is the length of the acoustic transfer function in the STFT domain. However,
that modeling is complex for estimating the frame sequence of the acoustic transfer function,
and it is difficult to deal with the estimated components of the acoustic transfer function for
this talker localization task. Therefore, in this chapter, we employ a simpler modeling of the
reverberant speech, which is approximately represented as the product of clean speech and
the acoustic transfer function.

O(ω; n) ≈ S(ω; n) · H(ω; n) (9)

Cepstral parameters are an effective representation for retaining useful speech information
in speech recognition. Therefore, we use the cepstrum for acoustic modeling necessary to
estimate the acoustic transfer function. The cepstrum of the observed signal is given by the
inverse Fourier transform of the log spectrum:

Ocep(d; n) ≈ Scep(d; n) + Hcep(d; n) (10)

where d is the cepstral index. Ocep, Scep, and Hcep are cepstra for the observed signal, clean
speech signal, and acoustic transfer function, respectively. As shown in equation (10), if O
and S are observed, H can be obtained by

Hcep(d; n) ≈ Ocep(d; n)− Scep(d; n). (11)

However S cannot be observed actually. Therefore H is estimated by maximizing the
likelihood (ML) of observed speech using clean-speech GMM.

3.2. Maximum-likelihood-based parameter estimation

The sequence of the acoustic transfer function in (11) is estimated in an ML manner [23] by
using the expectation maximization (EM) algorithm, which maximizes the likelihood of the
observed speech:

Ĥ = argmax
H

Pr(O|H, λS). (12)

Here, λ denotes the set of GMM parameters of the clean speech, while the suffix S represents
the clean speech in the cepstral domain. The GMM of clean speech consists of a mixture of
Gaussian distributions.

λS = {wk, N(µ
(S)
k , σ

(S)2

k )}, ∑
k

wk = 1 (13)

where wk, µk and σ2
k are the weight coefficient, mean vector and variance vector (diagonal

covariance matrix) of the k-th mixture component, respectively. These parameters are
estimated using the EM algorithm using a clean speech database.
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The estimation of the acoustic transfer function in each frame is performed in a maximum
likelihood fashion by using the EM algorithm. The EM algorithm is a two-step iterative
procedure. In the first step, called the expectation step, the following auxiliary function Q is
computed.

Q(Ĥ|H) = E[log Pr(O, c|Ĥ, λS)|H, λS]

= ∑
c

Pr(O, c|H, λS)

Pr(O|H, λS)
· log Pr(O, c|Ĥ, λS) (14)

Here c represents the unobserved mixture component labels corresponding to the
observation sequence O.

The joint probability of observing sequences O and c can be calculated as

Pr(O, c|Ĥ, λS) = ∏
n

wc(n) Pr(O(n)|c(n), Ĥ, λS) (15)

where w is the mixture weight and On is the cepstrum at the n-th frame. Since we consider
the acoustic transfer function as additive noise in the cepstral domain, the mean to mixture k

in the model λO is derived by adding the acoustic transfer function. Therefore, equation (15)
can be written as

Pr(O, c|Ĥ, λS) = ∏
n

wc(n) · N(O(n); µ
(S)
k

+ Ĥ(n), Σ
(S)
k

) (16)

where N(O; µ, Σ) denotes the multivariate Gaussian distribution. It is straightforward to
derive that

Q(Ĥ|H) = ∑
k

∑
n

Pr(O(n), c(n) = k|H, λS) log wk

+∑
k

∑
n

Pr(O(n), c(n) = k|H, λS)

· log N(O(n); µ
(S)
k

+ Ĥ(n), Σ
(S)
k

). (17)

Here µ
(S)
k

and Σ
(S)
k

are the k-th mean vector and the (diagonal) covariance matrix in the clean
speech GMM, respectively. It is possible to train those parameters by using a clean speech
database. Next, we focus only on the term involving H.

Q(Ĥ|H) = −∑
k

∑
n

γk(n)
D

∑
d=1

{

1

2
log(2π)Dσ

(S)2

k,d

+
(O(d; n)− µ

(S)
k,d − Ĥ(d; n))2

2σ
(S)2

k,d







(18)
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γk(n) = Pr(O(n), k|H, λS) (19)

Here O(n) is the cepstrum at the n-th frame for observed speech data. D is the dimension of

the O(n), and µ
(S)
k,d and σ

(S)2

k,d are the d-th mean value and the d-th diagonal variance value of

the k-th component in the clean speech GMM, respectively.

The maximization step (M-step) in the EM algorithm becomes “max Q(Ĥ|H)”. The
re-estimation formula can, therefore, be derived, knowing that ∂Q(Ĥ|H)/∂Ĥ = 0 as

Ĥ(d; n) =

∑k γk(n)
O(d;n)−µ

(S)
k,d

σ
(S)2

k,d

∑k
γk(n)

σ
(S)2

k,d

. (20)

Therefore, the frame sequence of the acoustic transfer function Ĥθ(d; n) is estimated from the
signal Oθ(d; n) observed at direction θ in the cepstral domain using equation (20).

We obtain Ĥθ(d; n) at a discrete direction. Next, the d-th dimension of the mean vector H̄θ(d)
is obtained by averaging Ĥθ(d; n) per frame n.

H̄θ(d) = ∑
n

Ĥθ(d; n) (21)

In a similar way, we obtain the mean vector H̄θ(d) at all discrete directions, and the sound
source direction is estimated using equation (7) using the cepstral vector H̄θ . In this chapter,
the angle of the parabolic reflection microphone was changed manually from 30 degrees to
150 degrees in increments of 20 degrees.

4. Experiment

4.1. Experiment conditions

The direction estimation experiment was carried out in a real room environment. The
parabolic reflection microphone shown in Figure 5 was used for the experiments. The
diameter was 24 cm, and the distance to the focal point was 9 cm. The microphone located at
the focal point was an omnidirectional type (SONY ECM-77B). The target sound source was
located at 90 degrees and 2 m from the microphone. The angle of the parabolic reflection
microphone was changed manually from 30 degrees to 150 degrees in increments of 20
degrees. Then the acoustic transfer function of the target signal at each angle was estimated
for the following speech lengths: 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 seconds. The size of the
recording room was about 6.3 m × 7.2 m (width × depth). Figure 7 shows the environment
of the experiment.

The speech signal was sampled at 12 kHz, and windowed with a 32-msec Hamming window
every 8 msec. The clean speech GMM was trained by using 50 sentences (spoken by a
female) in the ASJ Japanese speech database. The trained GMM has 64 Gaussian mixture
components. For estimation of the acoustic transfer function from the observed speech
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Figure 7. Experimental conditions
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Figure 8. Performance of an active microphone with a parabolic reflection board

signal, 16-order MFCCs (Mel-Frequency Cepstral Coefficients) were used as feature vectors
of the clean speech and estimated acoustic transfer function. Then, the 1st and 2nd orders of
MFCCs of the estimated acoustic transfer function were used for estimating the sound source
direction using equation (7). The test data was spoken by the same female who recorded the
training data. The text utterances, however, were different.

4.2. Experiment results

Figure 8 shows the direction accuracy performance using the acoustic transfer function
estimated at various speech lengths. The performance is compared to the power-based
technique. The left figure shows the accuracy for the same text utterance at each angle of
the active microphone, and the right figure shows the accuracy for a different text utterance
at each angle of the active microphone. The test data for the same text utterance consisted
of 100 segments. The test data for the different utterance consisted of 600, 300, 200, 150,
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Figure 9. Performance of a shotgun microphone without a parabolic reflection board
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Figure 10. Mean values of the acoustic transfer functions for the microphone with a parabolic reflection board (left) and the

shotgun microphone (right)

120, and 100 segments, where one segment has a time length of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0
seconds, respectively. The test for the same text utterance was conducted 100 times, and that
for the different text utterance was conducted 600 times by changing the combination of the
text utterances for each direction.

As shown in the left figure, the performance for both the techniques based on the power and
the acoustic transfer function is high. However, the possibility of there being an identical text
utterance at each angle of the active microphone will be very small in a real environment. In
the right portion of Figure 8, we can see that the performance of the power-based technique
degrades drastically when the utterance text differs at each angle of the active microphone,
because the power of the speech signal varies for all directions of the active microphone.

On the other hand, the performance of the new method based on the acoustic transfer
function is high, even for different text utterances. This is because the new method uses
the information of the acoustic transfer function, which depends on the direction of the
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Acoustic transfer function computed by using true clean speech data Acoustic transfer function estimated by using the clean speech GMM( )subH ( )estH
Figure 11. Acoustic transfer function computed by using true clean speech data (left) and that estimated by the proposed

method using only the statistics of clean speech GMM (right) at each angle in the cepstral domain

active microphone only and does not depend on the utterance text. Also, we can see that the
shorter the speech length for each angle is, the more the direction accuracy decreases. One
reason for this is that the statistics for the observed speech are not readily available if there
are not enough samples are used to estimate the acoustic transfer function.

Figure 9 shows the performance of a shotgun microphone (SONY ECM-674) without a
parabolic reflection board. The power-based method can provide good performance for
the same text utterance at each angle of the shotgun microphone due to the directivity of
the shotgun microphone, but the performance degrades when the utterance text differs
at each angle of the shotgun microphone. On the other hand, the performance of the
new method based on the acoustic transfer function is even lower. The directivity of the
shotgun microphone changes drastically as the sound-source direction changes from the
front direction to the side directions of the shotgun microphone, and, as a result, the acoustic
transfer function that is farthest from all the other acoustic transfer functions comes to be
that at 30 or 150 degrees in equation (7). The mean values of all acoustic transfer functions
for a parabolic reflection board and the shotgun microphone are plotted in Figure 10, where
the acoustic transfer function is computed by (11) using true clean speech signal Scep(d; n)
and the total number of frames is 36,600. Then the mean values are computed. As shown
in the right potion of Figure 10, we can see that the acoustic transfer function that is farthest
from all the other acoustic transfer functions is that at 30 or 150 degrees. As shown in the
left potion of Figure 10, on the other hand, the acoustic transfer function that is farthest from
all the other acoustic transfer functions is that at 90 degrees to the target direction.

Figure 11 shows the plot of acoustic transfer function for 300 segments of observed speech
for the case of the active microphone. In the left potion of Figure 11, the acoustic transfer
function Hsub was computed by (11) using true clean speech signal Scep(d; n). On the other
hand, in the right potion of Figure 11, the acoustic transfer function Hest was estimated by
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Figure 12. Comparison of true clean speech data and clean speech model

(20) using only the statistics of clean speech GMM. As shown in the left potion of Figure 11,
when the active microphone does not face the sound source, Hsub is distributed in almost
the same place, and Hsub of the sound source direction is distributed away from the Hsub of
other directions. In the right potion of Figure 11, though the distribution of the estimated
Hest may have some slight variations, it can be said that the distribution of Hest is similar that
of Hsub.

Figure 12 shows the difference in the direction accuracy between the use of Hsub (the true
clean speech data) and Hest (the statistics of clean speech model: GMM). As shown in this
figure, when the utterances for each angle consist of the same text, the direction accuracy
was 100%. However, when the texts of utterances for each angle are different, the direction
accuracy obtained using Hest decreased. This is because the value of Hest was influenced to
some extent by the phoneme sequence of clean speech.

5. Conclusions

This chapter has introduced the concept of an active microphone that achieves
a good combination of active-operation and signal processing, and described a
sound-source-direction estimation method using a single microphone with a parabolic
reflection board. The experiment results in a room environment confirmed that the acoustic
transfer function influenced by parabolic reflection can clarify the difference between the
target direction and the non-target direction. In future work, more research will be needed
in regard to different utterances and direction estimation in short intervals.

It is difficult for this method to estimate the directions of multiple sound sources because it
is difficult to estimate the acoustic transfer functions of multiple sound sources. Also, the
background noise and the reverberation may cause the measurement error of the acoustic
transfer function. We will evaluate the performance of the proposed system in noisy
environments and various room environments. In addition, we intend to investigate the
performance of the proposed system when the directivity and the orientation of the sound
source changes, and to test the performance of the system in a speaker-independent speech
model.
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