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1. Introduction

The Husimi distribution, introduced by Kôdi Husimi in 1940 [1], is a quasi-probability distribution

commonly used to study the correspondence between quantum and classical dynamics [2]. Also, it

is employed to describe systems in different areas of physics such as Quantum Mechanics, Quantum

Optics, Information Theory [3–8]. Additionally, in nanotechnology it is possible to obtain a clear

description of localization –which corresponds to classicality– and is crucial to determine correctly

the size of systems when the particle dynamics takes into account mobility boundaries [9]. Among

its properties, it is always positive definite and unique, conversely it cannot be considered as a true

probability distribution over the quantum-mechanical phase space, reason why it is often considered as

a quasi probability distribution. Although it possesses no correct marginal properties, its usefulness is

to allow the assessment of the expectation values in quantum mechanics in a way similar to the classical

case [10]. The semiclassical Husimi probability distribution refers to a special type of probability, this

is for simultaneous but approximate location of position and momentum in phase space.

The Husimi distribution may be obtained in several ways; the strategy that we choose here is to derive

it as the expectation value of the density operator in a basis of coherent states [11]. Therefore, the line

of working in this chapter is illustrated in the following sequence:

Coherent states
︸ ︷︷ ︸

⇓

︷ ︸︸ ︷

Husimi Distribution
︸ ︷︷ ︸

⇓

︷ ︸︸ ︷

Information measures,
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where the transcendence of defining correctly a set of coherent states and the Husimi distribution is

evident, being the calculation of measures as Wehrl entropy and/or Fisher information a consequence

of this procedure.

Coherent states provide a close connection between classical and quantum formulations of a given

system. They were introduced early by Erwin Schrödinger in 1926 [12], but the name coherent state

appeared for first time in Glauber’s papers [13, 14]– see a detailed study about this in Ref. [15]. It is

known that is difficult to construct coherent states for arbitrary quantum mechanical systems. Klauder

shows an elegant method for construct it in Ref. [16]. Furthermore, in Ref. [11] Gazeau and Klauder

consider essential, among other things, to discuss what an appropriate formulation of coherent states

needs [11]. For instance, they suggest a suitable set of requirements. Then, the main interest in this

chapter is to discuss, starting from a well defined set of coherent states, some interesting problems

related to the Husimi distribution applied to important systems in physics, such as, the harmonics

oscillator [5], the Landau diamagnetism model [17, 18] and, the rigid rotator [6, 18]. Also, we will

discuss some properties related to systems with continuous spectrum [19]. In each case, the Wehrl

entropy is calculated as a possible application.

This chapter is organized as follows. In section 2 we start presenting the background material and

methodology that will be employed in the following chapters. In section 3 we revise the Husimi

distribution and the Wehrl entropy for the problem of a particle in a magnetic field. In section 4 we

discuss phase space delocalization for the rigid rotator within a semiclassical context by recourse to the

Husimi distributions of both the linear and the 3D−anisotropic instances. In section 5 we propose

a procedure to generalize the Husimi distribution to systems with continuous spectrum. We start

examining a pioneering work, by Gazeau and Klauder, where the concept of coherent states for systems

with discrete spectrum was extended to systems with continuous one. Finally, some concluding remarks

and open problems are commented in section 6 .

2. Background material and methodology

In this section we center our attention in 3 topics that we consider relevant to understand the problems

that will be discussed in the following sections. These are i) the Husimi distribution and the most direct

application, i.e., Wehrl entropy, ii) a special basis to formulate a suitable set of coherent states and iii) a

generalization of this concepts to systems with continuous spectrum.

2.1. Husimi distribution and Wehrl entropy

The standard statistical mechanics starts conventionally using the Gibbs’s canonical distribution, whose

thermal density matrix is represented by

ρ̂ = Z−1e−βĤ , (1)

where Z = Tr(e−βĤ ) is the partition function, Ĥ is the Hamiltonian of the system, β = 1/kBT the

inverse temperature T , and kB the Boltzmann constant [20].

The Husimi distribution is obtained as the expectation value of the density operator in a basis of coherent

states as follows [1]

µ(z) = 〈z|ρ̂|z〉, (2)
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where {|z〉} denotes the set of coherent states, which are the eigenstates of the annihilation operator â,

i.e., â|z〉= z|z〉 defined for all z ∈ C [11]. This distribution is normalized to unity according to

1

π

∫
d2zµ(z) = 1, (3)

where the integration is carried out over the complex z plane and the differential is a real element of

area proportional to phase space element given by d2z = dxdp/2h̄.

For an arbitrary Hamiltonian Ĥ, with the discrete spectra {En}, being n a positive integer, the Husimi

distribution takes the form

µ(z) =
1

Z
∑
n

e−βEn |〈z|n〉|2, (4)

where {|n〉|} is the set of energy eigenstates with eigenvalues En [4, 5].

The Wehrl entropy is a direct application that we introduce here, which is a useful measure of

localization in phase-space [21, 22], whose pertinent definition reads

W = − 1

π

∫
d2zµ(z) lnµ(z), (5)

The uncertainty principle manifests itself through the inequality W ≥ 1 which was first conjectured by

Wehrl [21] and later proved by Lieb (see, for instance Ref. [4]).

In the special case of the Harmonic Oscillator –whose Hamiltonian is Ĥ = h̄ω[â†â+ 1/2]– its set of

Glauber’s coherent states is defined in the form [14]

|z〉= e−|z|2/2
∞

∑
n=0

zn

√
n!

|n〉, (6)

where {|n〉} are a complete orthonormal set of phonon-eigenstates, that is,

〈n|n′〉= δn,n′ (7)

where δn,n′ is the Kronecker delta function, and the energy-spectrum is given by En = h̄ω(n+ 1/2),
with n = 0,1, . . . By definition, Hermitian operator Ĥ is an observable if this orthonormal system of

vectors forms a basis in the state space. This can be expressed by the closure relation

∞

∑
n=0

|n′〉〈n|= 1̂, (8)

where 1̂ stands for the identity operator in the space formed by eigenvectors.
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In this situation one conveniently resorts to

µHO(z) = (1̂− e−βh̄ω)e−(1−e−βh̄ω)|z|2 , (9)

WHO = 1− ln(1− e−βh̄ω). (10)

which respectively are the useful analytical expressions for Husimi distribution and Wehrl entropy [4].

2.2. Gazeau and Klauder’s coherent states

Now, we go back to the set of coherent states defined in Eq. (6). Certainly, it is known that coherent

states can be constructed in several ways by recourse to different techniques being its formulation of

a not unique character. Nevertheless, contrary to this idea and in order to get a unifying perspective,

Gazeau and Klauder have suggested that a suitable formalism for coherent states should satisfy at least

the following requirements [11]:

1. Continuity of labeling refers to the map from the label space L into Hilbert space. This condition

means that the expression ‖|z′〉− |z〉‖ → 0 whenever z′ → z.

2. Resolution of Unity: a positive measure τ(z) on L exists such that the unity operator admits the

representation

∫
L

|z〉〈z|dτ(z) = 1, (11)

where |z〉〈z| denotes a projector, which takes a state vector into a multiple of the vector |z〉.

3. Temporal Stability: the evolution of any coherent state |z〉 always remains a coherent state, which

leads to a relation of the form

|z(t)〉= e−iĤt/h̄|z〉, (12)

where z(0) = z, for all z ∈ L and t.

4. Action Identity: this property requires that

〈z|Ĥ|z〉= h̄ω|z|2. (13)

At this point, we remark that requirements (3) and (4) are directly satisfied when the spectrum of the

Hamiltonian Ĥ of the system, has the form En ∼ nh̄ω, where n is the quantum number and ω is the

frequency of the oscillator [11]. In addition, there are some shortcomings about these requirements;

for instance, Gazeau and Klauder states cannot be used for degenerate systems. Furthermore, it is

questionable that action identity leads to the classical action-angle variable interpretation [23].

2.3. Continuous spectrum

Gazeau and Klauder proposed in Ref. [11] a formulation of coherent states for systems with continuous

spectrum. They introduced a Hamiltonian Ĥ > 0, with a non-degenerate continuous spectrum, thus

Ĥ|ε〉= ωε|ε〉, 0 < ε < εM (14)
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where {|ε〉} stands for a basis of eigenstates, which we can generalize replacing suitably discrete

parameters by continuous ones, sums by integrals and Kronecker by Dirac delta function [46]. In

such a case, we can always chose a normalized basis of eigenvectors to rephrase Eqs. (7) and (8) in the

following manner [46]

〈ε|ε′〉= δ(ε− ε′), (15)

and

∫ εM

0
|ε′〉〈ε|= 1̂, (16)

where εM ≤ ∞ [11]. In the section 5 and here we use units in which h̄ = 1.

If we set M(s) = e|z|
2/2 and z = se−iγε into coherent states (6), we find

|s,γ〉= M(s)−1
∫ εM

0
dε

sεe−iγε

√

ρ(ε)
|ε〉, (17)

where s > 0. Since {|s,γ〉} are orthonormals, the normalization factor M(s) is given by

M(s)2 =
∫ εM

0
dε

s2ε

ρ(ε)
, (18)

for M(s)2
< ∞.

Coherent states (17) must satisfy resolution of identity. In this case, it was introduced in Ref. [11] the

following relation

ρ(ε) =
∫ s

0
ds′ s′2εσ(s′), (19)

where s′ is a variable of integration with 0 ≤ s′ < s ≤ ∞. In addition, a non-negative weight function

σ(s′) ≥ 0 was introduced in order to satisfy the second requirement. Then, the measure of integration

takes the form [11]

dτ(s,γ) = σ(s)M(s)2 ds
dγ

2π
. (20)

Gazeau and Klauder shown that resolution of unity is satisfied for systems with continuous spectrum

in the present formulation of coherent states [11]. In Ref. [19] the authors have proposed a continuous

appearance of Eq. (4), replacing the discrete form by the continuous version of variables, functions and

operators involved in the formalism. Hence, we are ready to define the Husimi distribution for systems

with continuous spectrum in the following manner:

µQ(s,γ) =
1

Z

∫ εM

0
dε e−βωε |〈s,γ|ε〉|2, (21)
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where ε stands for a continuous parameter. The Husimi distribution is normalized according to

∫ ∞

0

∫ ∞

−∞
dτ(s,γ)µQ(s,γ) = 1, (22)

where the measure dτ(s,γ) is given by Eq. (20).

We see easily from Eq. (17) that, the projection of eingensatates of the Hamiltonian over coherent states,

is given by

〈s,γ|ε〉= M(s)−1 sεe−iγε

√

ρ(ε)
, (23)

where we have considered from Eq. (15) the orthogonality of the continuous states {|ε〉}. Introducing

the above expression into Eq. (21) we finally arrive to [19]

µQ(s) =
M(s)−2

Z

∫ εM

0
dε

e−βωεs2ε

ρ(ε)
, (24)

where we have dropped out the dependence on γ. The continuous partition function obviously is [20]

Z =
∫ εM

0
dε e−βωε. (25)

It is important to note that Eq. (24) is consistently normalized in accordance with

∫ ∞

0
dτ(s)µQ(s) = 1, (26)

and in this case, the measure is dτ(s) = σ(s)M(s)2 ds.

3. Landau diamagnetism: Charged particle in a uniform magnetic field

Diamagnetism was a problem firstly appointed by Landau who showed the discreteness of energy levels

for a charged particle in a magnetic field [24]. By the observation of the diverse scenarios in the

framework provided by the Landau diamagnetism we can study some relevant physical properties [25–

27] as thermodynamic limit, role of boundaries, decoherence induced by the environment. The main

motivation for several specialists work even today it is to make an accurate description of its theoretical

and practical consequences.

In the past the appropriate partition function for this problem was calculated by Feldman and Kahn

appealing to the concept of Glauber’s coherent states as a set of basis states [28]. This formulation

allows the use of classical concepts to describe electron orbits, even containing all quantum effects [28].

In a previous effort, this approach was used to obtain the Wehrl entropy [21, 22] and Fisher

information [29] with the purpose of studying the thermodynamics of the Landau diamagnetism

problem, namely, a free spinless charged particle in a uniform magnetic field [7]. In such contribution
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the authors focussed only in the transverse motion of a particle. For this reason, it was necessary to

normalize the Husimi distribution in order to arrive to a consistent expression for semiclassical measures

[7, 8, 32].

Certainly, because the relevant effects seem to come only from the transverse motion, several efforts are

made to describe this problem in two dimensions [7, 8, 27, 28, 32-34]. Furthermore, since the discovery

of interesting phenomena, as the quantum Hall effect, there has been much interest in understanding

the dynamics of electrons confined to move in two dimensions in the presence of a magnetic field

perpendicular to the motion plane [31]. The confinement is possible at the interface between two

materials, typically a semiconductor and an insulator, where a quantum well that traps the particles is

formed, forbidding their motion in the direction perpendicular to the interface plane at low energies.

However, we propose here to discuss this problem in the most complete form (three dimensions), some

results related to the behavior of the Wehrl entropy. From the present line of reasoning, it is concluded

that the two-dimensional formulation is sufficient unto itself to explain the problem whenever the length

of the cylindrical geometry of the system is large enough. Nevertheless, as suggested before, electronic

devices are based in interfaces. Thus, this fact theoretically imposes a natural lower temperature bound

that emerges from the analysis when three dimensions are considered [18].

3.1. The model of one charged particle in a magnetic field

We enter the present application by revisiting the complete set of coherent states of a spinless charged

particle in a uniform magnetic field. Consider the classical kinetic momentum

−→
π = −→p +

q

c

−→
A , (27)

of a particle of charge q, mass mq, and linear momentum −→p , subject to the action of a vector potential
−→
A . These are the essential ingredients of the well-known Landau model for diamagnetism: a spinless

charged particle in a magnetic field B (we follow the presentation of Feldman et al. [28]). The

Hamiltonian reads [28]

H =
−→
π ·

−→
π

2mq
, (28)

and the magnetic field is
−→
B =

−→
∇ ×

−→
A . The vector potential is chosen in the symmetric gauge as

−→
A = (−By/2,Bx/2,0), which corresponds to a uniform magnetic field along the z−direction.

By using the quantum formulation of the step-ladder operators [28], one needs to define the step

operators as follows [28]

π̂± = p̂x ± ip̂y ±
ih̄

2ℓ2
B

(x̂± iŷ), (29)

where the length

ℓB = (h̄c/qB)1/2 (30)
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is the classical radius of the ground-state Landau orbit [28]. Motion along the z−axis is free [28]. For

the transverse motion, the Hamiltonian specializes to [28]

Ĥt =
π̂+π̂−

2mq
+

1

2
h̄Ω1̂, (31)

where an important quantity characterizes the problem, namely,

Ω = qB/mqc, (32)

the cyclotron frequency [33]. The eigenstates |N,m〉 are determined by two quantum numbers: N

(associated to the energy) and m (to the z− projection of the angular momentum). As a consequence,

they are simultaneously eigenstates of both Ĥt and the angular momentum operator L̂z [28], so that

Ĥt |N,m〉=

(

N +
1

2

)

h̄Ω |N,m〉= EN |N,m〉 (33)

and

L̂z|N,m〉= mh̄|N,m〉. (34)

We note that the eigenvalues of L̂z are not bounded by below (m takes the values −∞, . . . ,−1,0,1, . . . ,N)

[28]. This agrees with the fact that the energies (N + 1/2)h̄Ω are infinitely degenerate [33]. Such a

fact diminishes the physical relevance of phase-space localization for estimation purposes, as we shall

see below. Moreover, Lz is not an independent constant of the motion [33].

There exists a analogous formulation of an charged particle in a magnetic field by Kowalski that takes

into account the geometry of a circle [30] (and for a comparison with the Feldman formulation see

Ref.[8]), but at this point, we choose the Feldman formulation to work because the measure is easily

defined and the normalization condition and other semiclassical measures are well described.

3.2. Husimi distribution and Wehrl entropy

We will start our present endeavor defining the Hamiltonian Ĥ = Ĥt + Ĥl for a particle of mass mq and

charge q in a magnetic field B, where Ĥt = h̄Ω(N̂ +1/2) describes the transverse motion, being Ω the

cyclotron frequency as defined by the Eq. (32) and N̂ the number operator. In addition, the Hamiltonian

Ĥl = p̂2
z /2mq represents a longitudinal one-dimensional free motion. After constructing a coherent

state basis, a possible way to define the Husimi function η, for the complete motion, is given by

η(x, px;y, py; pz) = 〈α,ξ,kz|ρ̂|α,ξ,kz〉, (35)

where ρ̂ is the thermal density operator and the set {|α,ξ,kz〉} represents the coherent states for

the motion in three dimensions. Taking the direct product |α,ξ,kz〉 ≡ |α,ξ〉
⊗

|kz〉, the set {|α,ξ〉}
corresponds to the coherent states of the transverse motion and {|kz〉} to the longitudinal motion.

Therefore, the thermal density operator is given by

ρ̂ =
1

Z
e−β(Ĥl+Ĥt ), (36)
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where β= 1/kBT , kB the Boltzmann constant and T the temperature. Besides, Z is the partition function

for the particle total motion. If Z is separated in a similar way as other physical properties are separated,

it is possible to assure that Z = ZlZt , where Zt is the contribution for the transverse motion and Zl the

contribution for the one-dimensional free motion. Thus, the Husimi function [1] is written as

η =
e−βp2

z /2mq

ZlZt
∑
n,m

e−βh̄Ω(n+1/2)|〈n,m|α,ξ〉|2. (37)

where

Zl = (L/h)(2πmqkBT )1/2 and (38)

Zt = AmqΩ/(4πh̄sinh(βh̄Ω/2)), (39)

being L the length of the cylinder, A = πR2 the area for cylindrical geometry [28]. In addition, the

matrix element |〈n,m|α,ξ〉|2 represents the probability of finding the charged particle in the coherent

state |α,ξ〉 and we can find its expression as defined previously [34].

It should be noticed that the distribution η can be written as follows

η = ηl(pz)ηt(x, px;y, py), (40)

where η has been separated as a function of two distributions, namely, ηl = ηl(pz) and ηt =
ηt(x, px;y, py). The dependence on the variable z has been missed due to the explicit form of the

hamiltonian Ĥl . Accordingly, after summing in Eq. (37) we find

ηl =
e−βp2

z /2mq

Zl

, (41)

ηt =
2πh̄

AmqΩ
(1− e−βh̄Ω)e−(1−e−βh̄Ω)|α|2/2ℓ2

B , (42)

where the length ℓB is defined by the Eq. (30). From expressions (41) and (42), we emphasize again

that ηl(pz) describes the free motion of the particle in the magnetic field direction and ηt(x, px;y, py)
the Landau levels due to the circular motion in a transverse plane to the magnetic field, similar to the

harmonic oscillator of Eq. (9) since |z|2 → |α|2/2ℓ2
B. Consequently Eqs. (40), (41) and (42) together

contain the complete description of the system. We noticed both distributions are naturally normalized

in a standard form, i.e.,

∫
dzdpz

h
ηl(pz) = 1, (43)

and

∫
d2αd2ξ

4π2ℓ4
B

ηt(x, px;y, py) = 1. (44)
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In consequence, both Eqs. (41) and (42), under conditions (43) and (44), bring a promising way to get

the exact form of the Wehrl entropy. Furthermore, using the additivity as the most basic property of the

entropy, we can state Wtotal =Wl +Wt . Hence,

Wl=−

∫
dzdpz

h
ηl(pz) lnηl(pz), (45)

Wt=−

∫
d2αd2ξ

4π2ℓ4
B

ηt(x,px;y,py) lnηt(x,px;y,py), (46)

where, as before, the subindex l stands for the longitudinal motion and t the transverse.

After evaluating the respective integrals in Eqs. (45) and (46), it is feasible to identify the two particular

entropies

Wl =
1

2
+ ln

(

L

λ

)

, (47)

Wt = 1− ln
(

1− e−βh̄Ω

)

+ ln (g) , (48)

where λ = h/(2πmqkBT )1/2 is the mean thermal wavelength of the particle and g = A/2πℓ2
B stands

for the degeneracy of a Landau level [35]. Indeed, Eq. (47) coincides with the classical entropy for a

free particle in one dimension. Eq. (48) is the Wehrl entropy for the transverse motion and possesses a

form for the one close to the harmonic oscillator entropy given by the Eq. (10), with the exception of a

term associated with the degeneracy.

3.3. Semiclassical behavior and consequences

Although the total Wehrl entropy is expressed simply as follows

Wtotal =
3

2
− ln(1− e−βh̄Ω)+ ln (g)+ ln

(

L

λ

)

, (49)

we notice that some of its properties are directly derived from Eqs. (47) and (48). First, as we

commented before, Wl coincides with the classical entropy for the free motion in one dimension. From

this glance, we can add that Wl has to be nonnegative, Wl ≥ 0 at all temperatures. This last condition

imposes a minimum temperature, given by

T0 =
h2

2πmqekBL2
, (50)

where e = 2.718281828. The standard behavior of Wl obligates the system to take high values of

temperature, wherever the temperature T ought to be greater than T0, in such case the conduct of the

system is classical. This is equivalent to assert that, if T /T0 ≥ 1, the length of a thermal wave λ lower

than the average of the spacing among particles and quantum considerations are not relevant [36].

In addition, T0 only depends on the size of the system and does not depend on other external or
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internal physical parameters such as transverse area, external magnetic field, charge of the particle,

etc. If the system is large then the minimum temperature is low. However, modern electronic systems

has junctions where L is practically zero. In such case the required minimum temperature to make

applicable our description is numerically high enough [39].

Nevertheless, the entropy associated with transverse motion satisfies Wt ≥ 1+ ln(g) for all temperatures

in the system of a particle in a magnetic field where the symmetry is polar, which is almost the Lieb

condition for systems in one dimension [37] with an additional term associated with the degeneracy g.

Roughly speaking, the transverse motion is bi-dimensional, but in the Landau approach the quantum

motion of the particle in a magnetic field is reduced to a degenerate spectrum in one dimension. This

degeneracy essentially recovers the physics of the missing dimension. Resuming the discussion of the

behavior of the Wehrl entropy, it is not plausible to adventure any conclusion about the applicability of

the present treatment because the Lieb condition is always satisfied. This is the main problem stems

from the restricted vision presented in other contributions over this topic which only put its emphasis on

the transverse motion [8, 28, 30] and represent the main difference from the vision obtained in that other

contributions that discuss this topic. From the combined reasoning of both motions we conclude that

the present description, this is the calculation of Wt , has sense when the imposition over the temperature

is satisfied. Under T0 the behavior is intrinsically anomalous and the present proposal is not applicable.

If we consider kBT ≫ h̄Ω, we can apply the first order of approximation as ln(g/(1− e−βh̄Ω)) ≈
ln(AT /T0L2). Indeed, taking into account that the thermal wave length can be rewritten in terms of

the temperature T0 this way λ = L(eT0/T )1/2, the expression (49) after a bit of algebra reduces to

W
(1)
total ≈

3

2
ln

(

T

T0

)

+ ln

(

A

L2

)

. (51)

Considering that V = AL in Eq. (51), the total Wehrl entropy can be expressed as follows

W
(1)
total =

3

2
+ ln

(

V

λ3

)

. (52)

This is a particular expression for the entropy of a free particle in three dimensions related to the motion

of a charged particle into a region of the magnetic field making mention of some geometrical properties

of the system.

In second order of approximation for high temperatures, considering the special condition A ∼ L2,

Wehrl entropy is expressed as follows

W
(2)
total ≈

T0

T
g+

3

2
+

3

2
ln

(

T

T0

)

=
T0

T
g+W

(1)
total. (53)

As explained before, the Wehrl entropy takes values that are permitted by the Lieb condition, namely,

W ≥ 1. According to Eq. (53) the slope decreases as temperature increases. This fact illustrates why

the disorder slowly increases as the magnetic field increases too. Consequently, at extremely high

temperatures as expected, the slope of the present linear dependence tends to zero apparently taking a

constant value close to the corresponding classical entropy of the free particle in three dimensions.
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The lower bound of temperature is related to T /T0 → 1+, because this approach does not consider

temperature values under T0. The total Wehrl entropy is reduced to logarithm behavior of the magnetic

field.

To study what occurs close to zero temperature, in accordance with Eq. (50), we need to take systems

with L → ∞ and after this consideration the transverse entropy of Eq. (48) can be seen as follows

W T→0+

t = 1+ ln (g) . (54)

As we discussed before, this Wehrl entropy is also a kind of harmonic oscillator entropy and the lower

bound complies with being greater than a bound limiting value of the temperature, which has been

suggested by Wehrl and shown by Lieb, W ≥ 1 [37]. Starting from this condition it must arrive to the

following inequality for the magnetic field

g ≥ 1, (55)

where g = qAB/hc also accounts for the ratio between the flux of the magnetic field AB and the

quantum of the magnetic flux given by hc/q = 4.14×10−7[gauss/cm2] [17]. Then the inequality (55)

adopts the form

B ≥
1

A

hc

q
= B0. (56)

Therefore, the quantity B0 = hc/Aq becomes a bound limiting field that represents the minimum value

for the external magnetic field. To study what occurs close to zero magnetic field we need to take

systems with A → ∞.

For finite values of A and B lower than B0 is manifested the Haas-van Alphen effect, which describes

oscillations in the magnetization because at temperatures low enough the particles will tend to occupy

the lowest energy states. Whereas if the value of the magnetic field decreases a less number of particles

can be in the lowest state due to degeneracy is directly proportional to B [35]. Then, the transverse

Wehrl entropy Wt is well defined for values of the magnetic field over B0, this is B/B0 ≥ 1 and/or

g → 1+.

We can assert that this description of the system is not quantum, we say that it is semiclassical; for

instance, it does not contain the Haas-van Alphen effect, the same condition marks the beginning of one

description and the ending of the other.

Other relevant effect that emerges from the Landau quantization [38] is the quantum Hall effect [39]

which is a quantum-mechanical version of the Hall effect [31], observed in two-dimensional electron

systems subjected to low temperatures and strong magnetic fields. The degeneracy is given by [17]

φ = νφ0, (57)

where φ0 = hc/q is the quantum of the magnetic flux. The factor ν is related to the “filling factor" that

takes integer values (ν = 1, 2, 3, . . . ). The discovery of the fractional quantum Hall effect [32] extend

these values to rational fractions (ν = 1/3, 1/5, 5/2, 12/5, . . . ). The integer quantum Hall effect is simply

explained in terms of the conductivity quantization σ = νq2/h. However, the fractional quantum Hall

effect relies on other phenomena related to interactions. Consistently, we see that the degeneracy is
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equal to ν, which must be greater than 1 due to the inequality (55) obtaining an infinite family of Wehrl

entropies

Wt = 1− ln(1− e−βh̄Ω)+ lnν. (58)

Again, Eq. (55) provides the limiting value of ν and, as before, the transverse entropy always

satisfies the Lieb bound for all temperatures and large enough systems when the quantum Hall effect is

manifested at least for the integer quantum Hall effect. Conversely, fractional values of ν less than 1 are

left out the present approach.

4. Description of the molecular rotation: Rigid rotator

The rigid rotator is a system of a single particle whose quantum spectrum of energy is exactly known.

Therefore, the study of typical thermodynamic properties can be analytically derived [40]. Applications

lead to the treatment of important aspects of molecular systems [41] and several applications to

materials [42].

4.1. Linear rigid rotator

We start the present study by exploring a simple model, the linear rigid rotator, based on the excellent

discussion concerning the coherent states for angular momenta given in Ref. [43]. The Hamiltonian of

the linear rigid rotator is [20]

Ĥ =
L̂2

2Ixy
, (59)

where L̂2 = L̂2
x + L̂2

y is the angular momentum operator and Ix and Iy are the associated moments of

inertia. We have assumed that Ixy ≡ Ix = Iy. Calling |IK〉 the set of H-eigenstates, we recall that they

verify the relations

L̂2|IK〉 = I(I + 1)h̄2|IK〉
L̂z|IK〉 = Kh̄|IK〉, (60)

with I = 0,1,2 . . . , for −I ≤ K ≤ I, the eigenstates’ energy spectrum being given by

εI =
I(I + 1)h̄2

2Ixy
. (61)

Coherent states are constructed in Ref. [44, 45] for the lineal rigid rotator, using Schwinger’s oscillator

model of angular momentum, in the fashion

|IK〉=
(â†

+)
I+K(â†

−)
I−K

√

(I +K)!(I −K)!
|0〉, (62)
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with â+, â− the pertinent creation and annihilation operators, respectively, and |0〉 ≡ |0,0〉 the vacuum

state. The states |IK〉 are orthogonal and satisfy the closure relation, i.e.,

〈I ′K ′ |IK〉= δ
I
′
,IδK

′
,K , (63)

∞

∑
I=0

I

∑
K=−I

|IK〉〈IK|= 1̂. (64)

Since we deal with two degrees of freedom the ensuing coherent states are of the tensor product form

(involving |z1〉 and |z2〉) [43, 46]

|z1z2〉= |z1〉⊗ |z2〉, (65)

where

â+|z1z2〉= z1|z1z2〉, (66)

â−|z1z2〉= z2|z1z2〉. (67)

Therefore, the coherent state |z1z2〉 writes [43]

|z1z2〉= e
− |z|2

2 e
z1â

†
+e

z2â
†
− |0〉, (68)

with

|z1〉 = e
− |z1 |2

2 e
z1â

†
+ |0〉, (69)

|z2〉 = e
− |z2 |2

2 e
z2â

†
− |0〉. (70)

We have introduced the convenient notation

|z|2 = |z1|2 + |z2|2. (71)

Using Eqs. (62) and (68) we easily calculate |z1z2〉 and, after a bit of algebra, find

|z1z2〉= e
− |z|2

2 ∑
n+ ,n−

z
n+

1√
n+!

z
n−
2√
n−!

|IK〉 (72)
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where n+ = I+K and n− = I−K. Therefore, the probability of observing the state |IK〉 in the coherent

state |z1z2〉 is of the form

|〈IK|z1z2〉|
2 = e−|z|2 |z1|

2n+

n+!

|z2|
2n−

n−!
. (73)

The present coherent states satisfy resolution of unity

∫
d2z1

π

d2z2

π
|z1z2〉〈z1z2|= 1. (74)

Furthermore, z1 and z2 are continuous variables.

Following the procedure developed by Anderson et al. [4], we can readily calculate the pertinent Husimi

distribution [1]. For our system this is defined, from Eq. (4), as

µ(z1,z2) = 〈z1,z2|ρ̂|z1,z2〉, (75)

where the density operator is

ρ̂ = Z−1
2D exp (−βĤ). (76)

The concomitant rotational partition function Z2D is given in Ref. [20]

Z2D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T , (77)

with Θ = h̄2/(2IxykB). Remark that in the present context, speaking of the “trace operation" entails

performing the sum Tr ≡ ∑∞
I=0 ∑I

K=−I . Inserting now the closure relation into Eq. (75), and using

Eq. (73), we finally get our Husimi distribution in the fashion

µ(z1,z2) = e−|z|2
∑∞

I=0
|z|4I

(2I)!
e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)e−I(I+1) Θ

T

. (78)

It is easy to show that this distribution is normalized to unity

∫
d2z1

π

d2z2

π
µ(z1,z2) = 1, (79)

where z1 and z2 are given by Eqs. (66), (67), and (71). Note that we must deal with the binomial

expression (|z1|
2 + |z2|

2)4I firstly and then integrate over the whole complex plane (in two dimensions)

in order to verify the normalization condition (79). The differential element of area in the z1(z2) plane

is d2z1 = dxdpx/2h̄ (d2z2 = dydpy/2h̄) [13]. Moreover, we have the phase-space relationships
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|z1|2 =
1

4

(

x2

σ2
x

+
p2

x

σ2
px

)

, (80)

|z2|2 =
1

4

(

y2

σ2
y

+
p2

y

σ2
py

)

, (81)

where σx ≡ σy =
√

h̄/2mω and σpx
≡ σpy

=
√

mωh̄/2.

The profile of the Husimi function is similar to that of a Gaussian distribution.

The Wehrl entropy is a semiclassical measure of localization [21] (so is Fisher’s one [5] as well). Indeed,

Wehrl’s measure is simply a logarithmic Shannon measure built up with Husimi distributions. For the

present bi-dimensional model this entropy reads

W = −
∫

d2z1

π

d2z2

π
µ(z1,z2) lnµ(z1,z2), (82)

where µ(z1,z2) is given by Eq. (78).

4.2. Rigid rotator in three dimensions

In the present section we consider a more general problem, the model of the rigid rotator in three

dimensions, whose Hamiltonian writes [47]

Ĥ =
L̂2

x

2Ix
+

L̂2
y

2Iy
+

L̂2
z

2Iz
, (83)

where Ix, Iy, and Iz are the associated moments of inertia. A complete set of rotator eigenstates is

{|IMK〉}. The following relations apply

L̂2|IMK〉 = I(I + 1)h̄2|IMK〉
L̂z|IMK〉 = Kh̄|IMK〉 (84)

Ĵz|IMK〉 = Mh̄|IMK〉,

where I = 0, . . . ,∞,−I ≤ K ≤ I, and −I ≤ M ≤ I. The states |IMK〉 satisfy orthogonality and closure

relations [47]

〈I ′M′
K

′ |IMK〉= δI
′
,IδM

′
,MδK

′
,K (85)
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∞

∑
I=0

I

∑
M=−I

I

∑
K=−I

|IMK〉〈IMK|= 1̂. (86)

If we take L̂2 = L̂2
x + L̂2

y + L̂2
z and assume axial symmetry, i.e., Ixy ≡ Ix = Iy, we can recast the

Hamiltonian as

Ĥ =
1

2Ixy

[

L̂2 +

(

Ixy

Iz
−1

)

L̂2
z

]

, (87)

where L̂2 is the angular momentum operator and L̂z is its projection on the rotation axis z. The

concomitant spectrum of energy becomes

εI,K =
h̄2

2Ixy

[

I(I + 1)+

(

Ixy

Iz
−1

)

K2

]

, (88)

where I = 0,1,2, · · · and it represents the eigenvalue of the angular momentum operator L̂2, the numbers

m =−I, · · ·,−1,0,1, · · ·, I stand for the projections on the intrinsic rotation axis of the rotator. All states

exhibit a (2I + 1)−degeneracy. The parameters Ix = Iy ≡ Ixy and Iz are the inertia momenta. Different

“geometrical" instances are characterized through the Ixy/Iz−ratio. For example, the value Ixy/Iz = 1

corresponds to the spherical rotator. Limiting cases can also be considered. This is, Ixy/Iz = 1/2 and

Ixy/Iz → ∞, that correspond to the extremely oblate- and prolate cases, respectively.

4.2.1. Coherent states for the rigid rotator in three dimensions

In order to obtain the Husimi distribution for this problem we need first of all to have the associated

coherent states. Morales et al. have constructed them in Ref. [47] and discussed their mathematical

foundations. First, they introduced the auxiliary quantity

XI,M,K =
√

I!(I +M)!(I −M)!(I +K)!(I −K)!, (89)

and then write [47]

|z1z2z3〉= e−
|u|2

2 ∑
IMK

[(2I)!]2z
(I+M)
1 zI

2z
(I+K)
3

XI,M,K
|IMK〉, (90)

where the following supplementary variable were introduced by Morales et al. in Ref. [47]

|u|2 = |z2|
2(1+ |z1|

2)2(1+ |z3|
2)2. (91)

All coherent states share at least two requirements. Continuity of labeling and resolution of unity. In

relation to the last property we add

∫
dΓ|z1z2z3〉〈z1z2z3|= 1 (92)
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where dΓ is the measure of integration given by [47]

dΓ = dτ

{

4[(1+ |z1|
2)(1+ |z3|

2)]4|z2|
4 −8[(1+ |z1|

2)(1+ |z3|
2)]2|z2|

2 + 1

}

(93)

with

dτ =
d2z1

π

d2z2

π

d2z3

π
, (94)

and, of course, in this case we have three degrees of freedom. The present formulation satisfy the

weaker version of the second requirement, because the measure is defined non positive [47].

4.2.2. Husimi function, Wehrl entropy

Using now Eq. (90) we find

|〈IMK|z1z2z3〉|
2 =

e−|u|2

X2
I,M,K

[(2I)!]2|z1|
2(I+M)|z2|

2I |z3|
2(I+K) (95)

and determine that, in this case, the rotational partition function reads

Z3D =
∞

∑
I=0

I

∑
K=−I

I

∑
M=−I

e−βεI,K , (96)

i.e.,

Z3D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T

I

∑
K=−I

e
−
(

Ixy

Iz
−1

)

K2 Θ

T . (97)

Remark that if we take the “extremely prolate" limiting case Ixy/Iz → ∞ just one term that survives in

the right sum of the right side in Eq. (97), that for K = 0, while all terms for K 6= 0 vanish. In this

special instance case Z2D is recovered from Z3D. The pertinent Husimi distribution becomes

µ(z1,z2,z3) =
e−|u|2

Z3D

∞

∑
I=0

(2I)!

I!
|v|2I e−I(I+1) Θ

T ×g(I), (98)

where

g(I) =
I

∑
K=−I

|z3|
2(I+K)

(I +K)!(I −K)!
e
−
(

Ixy

Iz
−1

)

K2 Θ

T , (99)

with

|v|2 = (1+ |z1|
2)2|z2|

2, (100)
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|u|2 = |v|2(1+ |z3|
2)2. (101)

We can easily verify that µ(z1,z2,z3) is normalized in the fashion

∫
dΓµ(z1,z2,z3) = 1, (102)

We compute now (i) the Wehrl entropy in the form

W =
∫

dΓµ(z1,z2,z3) lnµ(z1,z2,z3). (103)

In the special instance Ixy/Iz = 1, that corresponds to the spherical rotator, we explicitly obtain

µ(z1,z2,z3) = e−|u|2 ∑∞
I=0

|u|2I

I!
e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)2 e−I(I+1) Θ

T

. (104)

Having the Husimi functions the Wehrl entropy is straightforwardly computed.

In order to emphasize some special cases associated to possible applications we consider several

possibilities.

1. The spherical rotator Ixy = Ix = Iy = Iz, thus Ixy/Iz = 1 (e.g. CH4).

2. The oblate rotator Ixy = Ix = Iy < Iz, specifically 1/2 ≤ Ixy/Iz < 1 (e.g. C6H6).

3. The prolate rotator Ixy = Ix = Iy > Iz, which corresponds to Ixy/Iz > 1 (e.g. PCl5).

4. The extremely prolate rotator is equivalent to the linear case (all diatomic molecules, Iz = 0, this is

Ixy/Iz → ∞ (e.g. CO2, C2H2).

5. Husimi distribution for systems with continuous spectrum

In this section we propose a procedure to generalize the Husimi distribution to systems with continuous

spectrum. We start extending the concept of coherent states for systems with discrete spectrum to

systems with continuous one. In the present section, we see the Husimi distribution as a representation

of the density operator in terms of a basis of coherent states. We specially discuss the problem of the

continuous harmonic oscillator [20].

5.1. The exponential weight function: Harmonic oscillator

From the ρ(ε) definition expressed in Eq. (19), we can take a non-negative weight function like σ(s′) =
exp(−s′). However, this choice is not fully arbitrary, because it relies on , at least, two reasons: 1) it is

related to the harmonic oscillator and, 2) it is a useful function that permits exactly to solve the integral

(19). The latter reason allows to express such integral in the following way
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ρ(ε) =
∫ s

0
ds′s′2ε exp(−s′),

= e−s/2 sε

2ε+ 1
M (ε,ε+ 1/2,s) (105)

where M (a,b,x) is the Whittaker function [48]. Besides, in relation to the first reason, when we

consider ε = n, where n is integer, in the limit s → ∞; the Eq. (105) drops into the known quantum

result for the harmonic oscillator, ρ(n) = n! [11].

Moreover, the measure in phase space can be explicitly expressed from Eq. (20) as follows

dτ(s) = dse−s/2
∫ εF

0
dε

(2ε+ 1)sε

M (ε,ε+ 1/2,s)
. (106)

Although obtaining this explicit form of the measure, a most general expression for the integral of

Eq. (106) strongly depends on the particular spectrum of the system. In the present case, a spectrum

like ε ∝ ω, the harmonic oscillator in the continuous limit, is considered.

5.2. s → 0 approximation for the Husimi distribution

In order to know the shape of the Husimi distribution in s = 0, we need to calculate some important

quantities. First, we evaluate ρ(ε) given by Eq. (105) expanding the exponential which appears inside

the integral, as follows

ρ(ε) ≈ lim
s→0

∫ s

0
ds′s′2ε(1− s′+ · · · ), (107)

≈
s2ε+1

2ε+ 1

(

1−
2ε+ 1

2ε+ 2
s+ · · ·

)

. (108)

But, we are interested in evaluating the inverse of ρ(ε), therefore

1

ρ(ε)
≈

2ε+ 1

s2ε+1

(

1+
2ε+ 1

2ε+ 2
s+ · · ·

)

. (109)

Second, we show easily that, in the limit s → 0, the Husimi distribution is given by

µQ(0) =
1

Z

∫ εM

0 dε (2ε+ 1)e−βωε

∫ εM

0 dε (2ε+ 1)
. (110)

Now, after integrating Eq. (25) the partition function is expressed as follows

Z =
1− exp(−βωεM)

βω
. (111)
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Then, the substitution of the Eq. (111) into (110) leads us to the appearance

µQ(0) =
(2e−βωεM βωεM + 2e−βωεM + e−βωεM βω−2−βω)

βωεM(e−βωεM −1)(εM + 1)
. (112)

In the high temperature limit, this becomes

µQ(0) ≈
1

εM
−

βωεM

6(εM + 1)
. (113)

If we take into account a kind of particles filling a band in the lowest continuous levels of energy (for

instance, εM → 1), we find µQ(0) = 1−βω/12.

5.3. Asymptotic behavior of the Husimi function

In this part of the work, we are considering a particular range for ε; i.e., 0 ≤ ε ≤ εM = 1 and we study

the asymptotic behavior of the Husimi distribution. This trend might be obtained from the limiting case

of the Whittaker function [48] defined for s → ∞, as follows:

lim
s→∞

e−s/2sεM (ε,ε+ 1/2,s)

2ε+ 1
= Γ(2ε+ 1). (114)

If we replace this result into Eq. (124) we obtain

M(s)2 = es/2
∫ εM

0
dε

s2ε

Γ(2ε+ 1)
, (115)

and, from Eq. (24) we write

µQ(s) =
M(s)−2

Z
es/2

∫ εM

0
dε

e−ωβεs2ε

Γ(2ε+ 1)
. (116)

Now, we follow expanding to third order the inverse of the gamma function, 1/Γ(2ε+ 1), around its

maximum [48]

1

Γ(2ε+ 1)
≈

3

∑
n=0

Anεn, (117)

where A0 = .9963530195, A1 = 1.221909147, A2 = −3.108524622, and A3 = 1.333217620.

From Eq. (115), we derive a approximate result for M(s)2, which is given by

M(s)2 = es/2 s

2

3

∑
n=0

An

M
(

n
2 , n

2 +
1
2 ,−2ln(s)

)

(n+ 1)(−2ln(s))1+n/2
, (118)
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and combining all above expressions, we have finally found an expression to third order of

approximation for Husimi distribution given by

µQ(s) =
M(s)−2

Z
es/2−βω/2 s

2

3

∑
n=0

An

M
(

n
2 , n

2 +
1
2 ,βω−2ln(s)

)

(n+ 1)(βω−2ln(s))1+n/2
, (119)

where M (a,b,c) is again the Whittaker function [48].

In the high temperature approximation, Eq. (119) is given by

µQ(s) ≈ βω
exp(−βω/2)

1− exp(−βω)
≈ exp(−βω/2). (120)

The present result does not depend on the values of the parameter s. Furthermore, this approximation

is valid whenever 0 ≤ ε ≤ 1. We notice that the asymptotic trend of the Husimi distribution approaches

to the Boltzmann weight in the ground state of the harmonic oscillator.

5.4. Some applications and consequences

In Ref. [11], the mean value of energy is obtained from the expectation value of the classical

Hamiltonian H in a coherent state as follows H (s) = 〈s,γ|H |s,γ〉, therefore they arrive to the relation

H (s) = s∂ lnM(s)/∂s.

However, it is our interest here to calculate the mean value of energy in a different way, integrating in

the variable s with µQ(s) as a weigh function. Hence, we have

〈H 〉=
∫

dτ(s)µQ(s)H (s), (121)

where H , expressed in terms of the variable s, denotes the classical Hamiltonian of the system. Inserting

the Husimi distribution (24) into Eq. (121) and making use the relation (19) we finally get

〈H 〉=
1

Z

∫ εM

0
dεe−βε

H (ε), (122)

that is the classical mean energy [20]. We emphasize that the Husimi distribution, for a system with

continuous spectrum, conduces in a natural way to the classical mean value of energy. Obviously, this

is not true when the spectrum is discrete.

An extra motivation consists in extending the formulation of coherent states to systems with continuum

spectrum considering its explicit form; for instance, we can take a spectrum whose appearance is E =
Aεν, where A and ν are constant. The values ν = ±1 and ν = 2 might define the continuous limit of

three remarkable cases in physics. Certainly, in a general study other values of the parameter ν may

be conveniently considered as an interesting analytical extension. Thus, for ν = 1 and A = ω we have

the continuous limit of a particle in a harmonic potential; this case is being in detail discussed in the

present work. For ν = 2 we have the continuous limit of a particle in a box. For ν = −1 we have the
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continuous limit of a particle in a Coulomb potential. Therefore, it is necessary to introduce a density

of states g(E) in the formulation of continuous coherent states (17) and immediately get the following

modification

|s,γ〉= M(s)−1
∫ EM

0
dE g(E)

sE/Ae−iγE/A

√

ρ(E)
|ε〉, (123)

where the function M(s)

M(s)2 =
∫ EM

0
dE g(E)2 s2E/A

ρ(E)
(124)

represents the normalization factor.

6. Final remarks

We have included in the current work some motivational elements to develop possible future

applications to information theory and condensed matter. We have focused attention primarily

upon Husimi distribution and its analytical results, beyond the numerical, graphical, or approximate

calculations. A semiclassical description undertaking can be tackled, (i) trying to estimate phase-space

location via measures as Fisher information and (ii) evaluating the semiclassical Wehrl entropy. A

crucial point, in such an estimation, is to define the Husimi distribution in a convenient set of coherent

states. Hence, we introduce a formal view of general requirements for formulations of coherent states in

the context of the Gazeau and Klauder formalism for the harmonic oscillator – we have included some

mathematical details in order to make it easy to follow and instructive in courses of quantum mechanics

for graduates– we show some practical elements to apply the present formalisms to specific calculations

of semi-classical measures.

By using a suitable formulation of coherent states in every case, we show explicitly the form

of the Husimi distribution for i) a spinless charged particle in a uniform magnetic field (Landau

diamagnetism), (ii) the linear and the three dimensional rotator (molecular rotation) and (iii) a case

of the limiting harmonic oscillator (continuous spectrum).

In addition, we can calculate the probability by projecting the states over the coherent states as a function

of a variable related to the coherent states. We see that the localization of probability, in the phase space

decreases as temperature increases. Also, as always, the localization of the Husimi distribution in the

phase space decreases as temperature increases. The present derivation of Husimi distributions is based

on the evaluation of the mean value of the density operator in the basis of a single-particle coherent

state. While the Husimi function takes into account collective and environmental effects, the coherent

states are independent-particle states. Thus, if the Husimi distribution is delocalized, we need many

wave packets (independent-particle states) to represent the state. Furthermore, the thermodynamics

of particles in systems, which come from environmentally induced effects, does not depend on the

formulation of the coherent states. In this manner, we expect this behavior to become general.

In conclusion, quantal distributions in the phase space, such as the Husimi distribution, have long been

recognized as powerful tools for studying the quantum-classical correspondence and semi-classical

aspects of quantum mechanics, since they provide a phase-space picture of the density matrix. We
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