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1. Introduction

Inductive game theory (IGT) aims to explore sources of beliefs of a person in his individual
experiences from behaving in a social situation. It has various steps, each of which already
involves a lot of different aspects. A scenario for IGT was spelled out in Kaneko-Kline [15].
So far, IGT has been studied chiefly in theoretical manners, while some other papers targeted
applications and conducted an experimental study. In this chapter, we undertake a simulation
study of a player’s learning about some details of a social situation. First, we give a brief
overview of IGT, and its differences from the extant game theories. Then, we explain several
points pertinent to our simulation model.

1.1. Developments of inductive game theory

The scenario for IGT given in [15] consists of three main stages:

(1) Experimental Stage: making trials-errors and accumulating experiences;

(2) Inductive Derivation Stage: construction of an individual view from accumulated
experiences;

(3) Analysis/Use Stage: uses of the derived view for behavioral revision.

Fig.1 describes the relationships among the three stages'. The process starts with the
experimental stage, where a player makes trials-errors, and accumulates memories from
experiences. In the second stage, each player constructs an individual view from accumulated
experiences, which is based on induction; this is the reason for the title “inductive” game

*The authors are partially supported by Grant-in-Aids for Scientific Research No.21243016 and No.2312002, Ministry of
Education, Science and Culture.
! We may regard (1) and (2)-(3), respectively, as corresponding to the experiencing self and the remembering self in
Kahneman [11, p.381]. Kahneman talks about various examples and aspects relevant to this distinction.
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Figure 1. Three Stages of IGT

theory. In the third stage, once a player has built his view, he uses it for his decision making or
behavioral revision. After the third stage, the process goes to the first stage, and those stages
may cycle.

Each stage already includes a lot of new problems. To study those problems, we borrow
concepts from the extant game theories, but often we need to think about whether some can
or cannot be used for IGT and whether to modify them for IGT, since they often rely upon the
presumptions of the extant game theories.

In Kaneko-Matsui [19] and Kaneko-Kline [15], [16], [17], we have focused on the second and
third stages. The first stage of making trials-errors and accumulating memories was discussed,
but described in the form of informal postulates. Taking the resulting sets of accumulated
memories from trials and errors as given, the second and third stages are formulated in a
theoretical manner. However, the first stage is of a very different nature from the other two,
and each player’s bounded cognitive ability is crucial. For this, we may take two approaches:
experimental and simulation. Takeuchi et al. [22] conducted an experimental study, and here,
we take a simulation method.

It would be helpful to discuss, before giving a description of our simulation study of IGT,
how IGT differs from two main stream approaches in the recent game theory literature: the
classical ex ante decision approach and the evolutionary/learning approach. The contrasts
between them will motivate our use of a simulation study.

The focus of the classical ex ante decision approach is on the relationship between
beliefs/knowledge and decision making (cf., Harsanyi [8] for the incomplete information
game and Kaneko [13] for the epistemic logic approach to decision making in a game). In
this approach, the beliefs/knowledge is given a priori without asking their sources. Thus, IGT
is relevant for exploring sources of beliefs and knowledge in experiences.

Contrary to this, the evolutionary/learning approach (cf., Weibull [24], Fudenberg-Levine [6],
and Kalai-Lehrer [12]) targets “learning”. However, this approach does not ask the question
of the emergence of beliefs/knowledge; instead, their concern is typically the convergence of
the distribution of actions to some equilibrium. The term “evolutionary/learning” means that
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some effects from past experiences remain in the distribution of genes/actions. It is not about
an individual’s learning of the structure or details of the game; typically it is not specified who
the learner is and what is learned. When we work on an individual’s learning, we should
make these questions explicit.

If the learner is an ordinary person, the convergence of behavior in the limit is not very
relevant to his learning. Finiteness of life and learning must be crucial. Here, “finite” is
“shallowly finite”, rather than the negation of infinity in mathematics. Consequently, we
conduct simulations over finite spans of time corresponding to the learning span of a single
human player. Our simulation indicates various specific components affecting one’s finite
learning, while they are not relevant in the limiting behavior.

1.2. Simulation study of a social situation

Now, we discuss several important points of our simulation model.

(1): An ordinary person and an every-day situation in a social world: We target the learning of an
ordinary human person in a repeated every-day situation, which we regard only as a small
part of the social world for that person. We choose a simple and casual example called “Mike’s
Bike Commuting”. In this example, the learner is Mike, and he learns the various routes to
his work. Using this example, the time span and the number of reasonable repetitions for the
experiment become explicit.

We study a one-person problem, but it should not be regarded as isolated from society. It is a
small part of Mike’s social world.

(2): Ignorance of the situation: At the beginning, Mike has no prior beliefs /knowledge about the
town. His colleague gave a coarse map of possible alternative routes without precise details,
and suggested one specific route from his apartment to the office. Mike can learn the details
of these routes only if he experiences them. We question how many routes Mike is expected
to learn after specific lengths of time.

(3): Regular route and occasional deviations: Mike usually follows the suggested route, which
we call the regular route. Occasionally, when the mood hits him, he takes a different route.
This is based on the basic assumption that his energy/time to explore other routes is scarce.
Commuting is only a small part of his social world, and he cannot spend his energy/time
exclusively for exploring those routes.

(4): Short-term and long-term memories: We distinguish two types of memories for Mike:
short-term and long-term. Short-term memories form a finite time series consisting of past
experiences, and they will be kept only for some finite length of time, perhaps a few days
or weeks; after then they will vanish. However, when an experience occurs with a certain
frequency, it becomes a long-term memory. Long-term memories are lasting.

In our theory, the transition from a short-term to a long-term memory requires some repetition
of the same experience within a given period of time. This is based on the general idea that
memory is reinforced by repetition. Our formulation can be regarded as a simplified version
of Ebbinghous’ [5] retention function.

(5): Finiteness and complexity: Our learning process is formulated as a stochastic process.
Unlike other learning models, we are not interested in the convergence or limiting argument.
As stated above, the time structure and span are finite and short. In our example, we discuss
how many times Mike has experienced a particular route after a half year, one year, or ten
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years. We will find many details, which are highly complex even in this simple example. We
analyze those details and find the lasting features in Mike’s mind.

(6): Marking salient choices as important: Although the situation is extremely simple, it is
difficult for Mike to fully learn the details of the entire town even after several years. We
consider the positive effect on learning by “marking”, introduced in Kaneko-Kline [14]. If
Mike marks some “salient” choice as “important”, and restricts his trial-deviations to the
marked choices, then we find that his learning is drastically improved. Imperfections in
a player’s memory make marking important for learning. Without marking, experiences
are infrequent and lapse with time. Consequently, his view obtained from his long-term
experiences could be poor and small. By marking, he focuses his attention on fewer choices,
and successfully retains more as long-term memories.

Up to here, we study how many times Mike needs to commute in order to learn some routes.
Precise objects Mike possibly learns are not targeted. There are two directions of departure
from this study. One possibility is to study Mike’s learning of internal components of routes,
and the other is about relationships between routes. Of course, to study both in an interactive
way is possible. In this paper, however, we consider a problem of the latter sort, namely,
Mike’s learning of his own preferences from experiences.

(7): Learning preferences: Here, we face new conceptual problems. We should make a
distinction between having preferences and knowing them. We assume that Mike has
well-defined complete preferences, but his knowledge is constrained to only some part by
his experiences. Also, it is important to notice that learning one’s preferences differs from
keeping a piece of information. Since the feeling of satisfaction is relative and likely to be more
transient than the perception of a piece of information, we hypothesize that learning one’s
preferences needs comparisons of outcomes close in time. Consequently, marking alternatives
becomes even more important for obtaining a better understanding of his own preferences.

In our simulation study up to Section 4, we will get some understanding of relevant
“shallowly finite” time spans for ordinary life learning. Our study on learning preferences
in Section 5 is more substantive than the studies up to Section 4. However, we will not go
to the direction to a study of learning of internal structures of routes. This will be briefly
discussed in Section 7.

The chapter is organized as follows: In Section 2, we specify our model and simulation frame.
In Section 3, we give simulation results and discuss them to see how much Mike can learn
for given time spans. In Section 4, we introduce the concept of “marking”, and observe its
positive effects on learning. In Section 5, we consider the problem of learning his preferences.
In Section 6, we carry out a sensitivity analysis of changing various parameters describing
Mike’s learning and memory characteristics. Section 7 is devoted to a discussion our results
and their implications for IGT as well as suggesting some future directions for simulations
studies.

2. Mike’s bike commuting

Mike moves to a new town and starts commuting to his office everyday by a bike. At the
beginning, his colleague gives him a simple map depicted as Fig.2 and indicates one route
shown by the dotted line. Mike starts commuting every morning and evening, five days a
week, that is, 10 times a week. From the beginning, he wants to know the details of those
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Figure 2. A Map of the Town

routes, but the map is simple and coarse. He decides to explore some alternative routes
when the mood hits him, but typically he is too busy or tired and resorts to the regular route
suggested by the colleague?.

The town has a lattice structure: His apartment and office are located at the south-west and
north-east corners. To have a route of the shortest distance from his apartment to the office,
he should choose “North” or “East” at each lattice point; such a route is called a direct route.
There are 35 direct routes. He enumerates these routes as ag, a1, ..., 434, where ay denotes the
regular route.

In our simulation, we assume that Mike follows ag with probability 4/5 = 1 — p and he
makes a deviation to some other route with p = 1/5. This probability p is called the deviation
probability. When he makes a deviation, he chooses one route from the remaining 34 routes
with the same probability 1/34. His behavior each morning or evening can be depicted by the
tree in Fig.3. He himself may not be conscious of these probabilities or of this tree. In sum, on
average, he makes a deviation twice a week to any of the other routes with equal probability.

After following route a;, he gets some impressions and understanding of 4;. In this paper we
do not study the details of 4; that he learns; instead, we study conditions for an experience to
remain in his mind as a long term memory.

As mentioned in Section 1, he has two types of memories: short-term and long-term. A
short-term memory is a time series of experiences of the past m trips. An experience
disappears after m trips of commuting. If the same experience, say a;, occurs at least k times

in m trips, experience a; becomes a long-term memory. Long-term memories form a set of

experiences without time-structure or frequency®.

2 We may start with only the assumption that he is given the regular route, without having a map. This case is more
faithful to IGT given in Kaneko-Kline [15]. However, this makes our simulation study much more complicated. We
will keep our study as simple as possible.

3 This lack of time structure and frequency is motivated by bounded rationality of the player. Limitations on his
memory and computation abilities lead him to ignore some aspects like the time structure and frequency of long
term memories.
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In our simulation, we specify the parameters (m, k) as (10, 2), meaning that Mike’s short-term
memory has length 10, and if a specific experience occurs at least two times in his short-term
memory, it becomes a long-term memory. This situation is depicted in Fig.4, where at time
t — 1, the routes ag, a, are already long-term memories, and at time ¢, route 41 becomes a new
long-term memory.

We consider another parameter T, denoting the total number of trips (time span). For example:

after a half year, T = 2 x 5 (days) x 25 (weeks) = 250;
after 1 year, T = 2 x 5 (days) x 50 (weeks) = 500;
after 10 years, T = 2 x 5 (days) x 500 (weeks) = 5000.

Our simulation will be done by focusing on the half year and 10 year time spans. In Mike’s
Bike Commuting, the number of available routes is 35, but later, this will also be changed, and
the number of routes will be denoted as a parameter s. Listing all the parameters, we have
our simulation frame F:

F=ls,p; (m,k)). M
We always assume that in the case of a deviation, a route other than ag is chosen with equal
probability 1/ (s — 1).

regular route a,

Figure 3. Decision Tree of each Trip of Commuting

Short-term memory at time #

—— | dy |y | dy |y |y | Ay |y | Ay | Ay | Ay |——

Long-term 4
Memories at time ¢

Figure 4. Short-Term and Long-Term Memories
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The stochastic process is determined by the simulation frame F and a given T, which
consists of T component stochastic trees depicted in Fig.3. This process is denoted by
F[T] = [s,p; (m,k) : T]. Our concern is the probability of some event of long-term memories
at time T. For example, what is the probability of the event that a particular route 4; is a
long-term memory at T? Or, what is the probability that all routes are long-term memories?
We calculate those probabilities by simulation. In Section 3, we give our simulation results for
F = s, p;(m, k)] = [35,1/5;(10,2)] and T = 250, 5000.

Before going to these results, we mention one analytic result: For the stochastic process F[T| =
[35,1/5;(10,2) : T],

the probability that all routes become long-term memories (2)
tends to 1 as T tends to infinity.

This can be proved easily because the same experience occurs twice in a short-term memory
at some point of time almost surely if T is unbounded. This result does not depend on the
specification of parameters of F. Our interest, however, is in finite learning. Our findings by
simulation for the finite learning periods of T = 250 and T = 5000 differ significantly from
the convergence result. This suggests that focusing on convergence results does not inform us
about finite learning.

3. Preliminary simulations and the method of simulations

We start in Section 3.1 by giving simulation results for the case of s = 35. The results show
that it would be difficult for Mike to learn all the routes after a half year. After ten years, he
learns more routes, but we cannot say much about which specific routes he learns other than
the regular one. In Section 3.2, we give a brief explanation of our simulation method and the
meaning of “probability”.

3.1. Simulation results for s = 35

Consider the stochastic process determined by F = [s,p : (m, k)] = [35,1/5; (10,2)] for up to
T = 250 (a half year) and T = 5000 (10 years). Table 1 provides the probabilities of the event
that a specific route a; is a long-term memory at T = 250,5000, and also at a large T.

The row for ag shows that the probability of the regular route 2y being a long-term memory is
already 1 at T = 250 (a half year). This “1” is still an approximation result meaning it is very
close to 1.

The row for a; (I # 0) is more interesting. The probability that a specific a; is a long-term
memory at T' = 250 and 5000 is 0.069 and 0.765, respectively. Our main concern is to evaluate
these probabilities from the viewpoint of Mike’s learning.

T [ 250 5000 |28252 (> 56 years)
a 1] 1 1
a; (1 £ 0)]0.069]0.765 0.99

Table 1
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0.089(0.223|0.272(0.213|0.121 |- - -

Table 2

-10.109{0.159|0.153|0.153|0.124|- - -

Table 3

Some reader may have expected that the probability for T = 250 would be much smaller
than 0.069, because in each trip, the probability of route a; (I # 0) being chosen is only 1/5 X
1/34 = 1/170 = 0.00588. However, it is enough for a; to occur in a consecutive sequence of
length 10 (short-term memory) at some t < 250, and there are 240 such consecutive sequences.
Hence, the probability turns out not to be negligible*. The accuracy of this calculation will be
discussed in Section 3.2.

The rightmost column is prepared for a purpose of reference. The number of trips 28252
(> 56 years) is obtained from asking the time span needed to obtain the probability 0.99 of
a; (I # 0) being a long-term memory. The length of 56 years would typically exceed an
individual career®, and thus we regard the limiting convergence result (2) as only a reference.

The cases of T = 250 and 5000 are relevant to our analysis. Nevertheless, a single probability
0.069 or 0.765 tells us little about what Mike might be expected to learn in those time spans.
We next look more closely at the distribution of routes he learns for each of those time spans.

For T = 250, we give Table 2, which describes the probability of exactly r routes (the regular
route and r — 1 alternative routes) being long-term memories in 35 routes:

After r = 5 routes, the probability is diminishing quickly, so we exclude those numbers from
the table. According to our results, Mike typically learns a few routes (the average is about
3.33) after half a year. For r = 3, one route must be regular, but the other two are arbitrary. We
have (324) = 561 cases, so the probability of a particular 3 routes being long-term memories is
only 0.272/561 = 0.000485 which is very small. This means that although Mike learns about
2 alternative routes, it is hard to predict with much accuracy which pair would be learned.

At T = 5000, i.e., ten years later, Mike’s learning is described by Table 3.

Again, we show only the values of » having high probabilities. The average of the number of
routes as long-term memories is about 27. Because most of the distribution lies between 25
and 29 routes, we find that there are many more cases to consider than after half a year. For
example, consider 0.109 for r = 25, which is the probability that exactly 25 routes are learned.
This probability can be obtained from the probability 0.765 in Table 1 by the equation:

34
<24> x (0.765)%* x (1 —0.765)° = 0.109.

4 A famous example called the birthday attack may be indicative for this fact: In a class consisting 50 students, what is the
probability of finding at least one pair of students having the same birthday? Since each student has the probability
1/365 of an arbitrary given day of a year being his birthday, it might be expected not to have a pair of students of the
same birthday. However, the exact calculation tells that the probability is about 0.97.

5 Our model without decay of long-term memories is likely to be inappropriate for 56 years.
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Figure 5. A Simulation up to T = 250

Looking at this equation, we obtain the probability that a specific set of 25 routes are long-term
memories is only 0.109/ (gi) = 831 x 10719, In sum, Mike learns about 27 alternative routes
after 10 years. However, the number of combinations of 24 routes from 34 is enormous at
about 1.3 x 10® and much larger than the (324) = 561 cases we need to consider after only half
a year.

Finally, we report the average time for Mike to learn all the 35 routes as long-term memories,
which is 28.4 years (14, 224.3 trips). If he is very lucky, he will learn all routes in a short length
of time, say, 10 years, which is an unlikely event of probability 9 x 10~2. The probability of
having learned all routes in 35 years is much higher at 0.806.

After all, the above calculations indicate that “finiteness” involved in our ordinary life is far
from “large finiteness” appearing in the convergence argument in mathematics. In this sense,
we are facing shallowly finite problems, which was emphasized in Section 1. In Sections 4 and
5, we will discuss related problems to this issue from different perspectives.

3.2. Simulation method

We now explain the concept of “probability” we are using, and discuss the accuracy of this
concept. First we mention why this is not calculated in an analytic manner. The analytic
computation is feasible up to about T = 30, but beyond T = 40, it is practically impossible
in the sense that for T = 50, it takes decades to calculate with current (year 2007) computers
using our analytical method. This is caused by the limited length of short-term memory and
multiple occurrences needed for a long-term memory.

We take the relative frequency of a given event over many simulation runs instead of
computing probabilities analytically. We use the Monte Carlo method to simulate the
stochastic process up to a specific T for the simulation frame F = [s,p : (m, k)] = [35,1/5 :
(10,2)]. The frame has only two random mechanisms depicted in Fig.3, but they are reduced
into one random mechanism. This mechanism is simulated by a random number generator.
Then, we simulate the stochastic process determined by F up to T = 250 or T = 5000 or some
other time span. A simulation is depicted in Fig.5. One simulation run gives a set of long-term
memories: In Fig.5, routes a, a3, a3, a5 are long-term memories at some time before T = 250.
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We run this simulation 100,000 times. The “probability” of a; is calculated as the relative
frequency:
#{simulation runs with g; as a long-term memory} 3
100, 000 G)
In the case of T = 250, this frequency is about 0.069 for I # 0, and it is already 1 for [ = 0 in
our simulation study.

We compare some results from simulation with the results obtained by the analytical method.
For T = 20 and s = 35, the probability of 2; being a long-term memory can be calculated in
an analytic manner using a computer. The result coincides with the frequency obtained using
simulation to an accuracy of 1074

The robustness of the frequency (probability) 0.069 in Table 1 is evaluated further by looking at
1,000, 000, 000 simulation runs. In these runs, we have 68, 594, 265 runs where 41 is a long-term
memory. Counting also simulation runs where a; (= ay,...,a34) is a long-term memory,
we find that the smallest (and largest) number of runs where 74; is a long-term memory is
68,569,941 (respectively, 68,596,187), both of which translate to the frequency 0.069 when
rounding off to three decimal places.

In sum, we calculate the “probability” of an event as the relative frequency over numerous
simulation runs since the analytic calculation is difficult for the large finite time spans and
simulation frames under consideration.

4. Learning with marking: Simulation fors =5

We now show how “marking”, introduced in Kaneko-Kline [14], can improve Mike’s learning.
By concentrating his efforts on a few “marked” routes, he is able to learn and retain more
experiences. This is because the likelihood of repeating an experience rises by reducing the
number of alternative routes. In Section 4.1, we consider the case where Mike marks only four
alternative routes in addition to the regular one. We see a dramatic increase in his learning
of alternative routes. In Section 4.2, we show how a more planned approach can improve the
effect of “marking” on his learning.

4.1. Marking five salient routes and simulation results

Suppose that Mike decides to mark some routes from his map for his exploration. He uses
two criteria:

(i) He chooses routes having a scenic hill or flowers;

(ii) He avoids construction sites.

Then, he marks only four alternative routes, which are depicted in Fig.6. Adding the regular

route a9, we denote the five marked routes by ag, a1, a5, a3, as.

The above situation is described by changing the simulation frame to F = [s,p : (m, k)] =
[5,1/5 : (10,2)] for T = 250 or 5000. The probability of 4; (I # 0) being a long-term memory
is calculated by our simulation method and is given in Table 4:
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Figure 6. Five Marked Routes

T | 250 | 5000
s =50.970( 1.00
s = 35| 0.069 |0.765

Table 4

Table 5 lists the length of time needed to obtain the probability 0.99 that an alternative route
a; (I # 0) is a long-term memory. With marking he needs only 425 trips (10.2 months), as
opposed to the 28,253 trips (more than 56 years) without marking.

T | 425 |28253
s = 510.990(1.000
s = 35|0.114|0.990

Table 5

We also have calculated, and presented in Table 6, the probability that exactly r (= 1,2,3,4,5)
routes are long-term memories at T = 250. The average number of routes learned is 4.9. Table
7 states that the average time for Mike to learn all 35 routes is about 100 times the average
time to learn 5 routes by marking. This suggests that Mike might be able to use marking in a
more sophisticated manner to learn all 35 routes in a shorter period of time than the 28.4 years
required without marking. We will look more closely at this idea in Section 4.2.

r 1 2 3 4 5
8.00 x 10~7|1.04 x 10~#{5.05 x 10—°]0.109(0.886

Table 6

s=5 s =35
the average number of trips 151.8 14,224.3
to learn all 3.6 months | 28.4 years

Table 7
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4.2. Learning by marking and filtering

Suppose that Mike has learned all four marked alternative routes in addition to the regular
route after a half year. He may then want to explore some other routes. He might plan to
explore the other 30 routes by dividing them into 6 bundles of 5 routes, trying to learn each
bundle one by one. We suppose that he explores one bundle for a half year, and he moves to
the next bundle storing any long-term memories in the process. Thus, Mike has discovered a
method of filtering to improve his learning.

According to the result of Section 4.1, Mike most likely learns all five routes within a half
year. By his filtering he reduces the expected time to learn all 35 routes from 28.4 years to only
250 x 7 = 1750 (3.5 years).

The probability of that he finishes his entire exploration in 3.5 years is (0.886)” = 0.427, and
with the remaining probability 0.573, at least one route is not learned after 3.5 years. If some
routes still remain unlearned, then we assume that he rebundles the remaining routes into
bundles of 5. However, we expect a rather small number of unlearned routes to remain; the
event of 3 remaining is rare event occurring with only probability 0.03. With high probability,
Mike’s learning finishes within 4 years.

If we treat the above filtering method alone, forgetting the original constraint such as the
energy-scarcity mentioned in Section 1.2, the extreme case would be that he chooses and fixes
one route for two trips and goes to another route. In this way, he could learn all routes with
certainty in precisely 35 days. However, this type of short-sighted optimal programming goes
against our original intention of exploration being rather rare and unplanned. Commuting is
one of many everyday activities for Mike, and he cannot spend his energy /time exclusively on
planning and undertaking this activities. Though our example is very simplified, we should
not forget that many unwritten constraints lie behind it, which are still significant to Mike’s
learning.

5. Learning preferences

Here, we consider Mike’s learning of his own preferences. Mike finds his own preferences
based on comparisons between experienced routes. First, we specify the bases for our analysis,
and then we formulate the process by which Mike learns his own preferences. We simulate
this learning process in Section 5.1, and show that learning of his preferences is typically
much slower than learning routes. Consequently, notions like “marking” become even more
important. In Section 5.2, we consider the change of the process when he adopts a more
satisfying route based on his past experiences.

5.1. Preferences

Since Mike has no idea of details along each route at the beginning, one might wonder if he
has well-defined preferences over the routes or what form they would take. By recalling the
original meaning of “preferences”, however, we can connect them with experiences. Since an
experience of each route gives some level of satisfaction, comparisons between satisfaction
levels can be regarded as his preferences. Here, preferences are assumed to be inherent, but
they are only revealed to Mike himself when he experiences and compares different outcomes.
In this way, Mike may come to know some of his own preferences.
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Prob. of comparison | Prob. of comparison
trips ag vs. a; ap vs. ay
250 (a half year) 0.981 0.053
5000 (10 years) 1.000 0.671
10000 (20 years) 1.000 0.892

Table 8

We assume that Mike’s inherent preference relation over the routes is complete and transitive.
A preference between two routes is experienced only by comparing the two satisfaction levels
from those routes® 7. A feeling of satisfaction typically emerges in the mind (brain) without
tangible pieces of information. Such a feeling may often be transient and only remain after
being expressed by some language such as “this wine is better than yesterday’s”. We assume,
firstly, that satisfaction is of a transient nature, and secondly, that the satisfaction from one

route can be compared with that of another only if these have happened closely in time.

We formulate a preference comparison between two routes as an experience. This experience
has a quite different nature from a sole experience of a route. The former needs the comparison
of two experienced satisfaction levels. To distinguish between these different types of
experiences, we call a sole experience of a route a first-order experience, while a pairwise
comparison of two routes is a second-order experience. Our present target is second-order
experiences.

Consider Mike’s learning of such second-order experiences in the simulation frame F = [s, p :
(m,s)] = [5,1/5 : (10,2)] with T = 250 or 5000. A short-term memory is now treated as a
sequence of length 10. Consecutive routes can be compared to form preferences over pairs. For
example, in Fig.7, the short-term memory is the sequence of 10 pairs (ay, ag), (a9, 49), ..., (a3 a0)-
We treat them as unordered pairs, e.g., the pairs (a1,40) and (ag,a1) in t —9 and t — 5 are
treated as the same. These second-order experiences may become long-term memories.

For a second-order experience to become a long-term memory, however, it must occur at
least twice in a short-term memory. In Fig.7, (ag,a1) occurred twice, and hence it becomes
a long-term memory. We require these consecutive unordered pairs be disjoint; for example,
(ag,a3) and (as,ap) occurred twice having the intersection a3, so these occurrences are not
counted as two.

ﬂ]_| a ﬂ() | lloﬂo | HOHO | tloao | Ilonl | 5] ﬂz | (Zzao | (70[10 | "0[73 | (73[10 |

- t—-9 t-8 t-7 t—6 t—-5 t—4 t-3 t-—-2 t-—1 o —

Figure 7

6 This should be distinguished from the notion of “revealed preferences” (cf. Malinvoud [20]) where a preference is
defined by a (revealed) choice from hypothetically given two alternatives. It is our point that this hypothetical choice
is highly problematic from the experiential point of view.

7 Our problem is how a person learns his own preferences from experiences, but not how his preferences emerge. In
this sense, our problem is not “endogenous preferences". Nevertheless, our problem includes partial and/or false
understanding of one’s own preferences; thus, it is potentially related to the field of endogenous preferences. See
Bowles [2] and Ostrom [21] for the literature on endogenous preferences, and see also Kahneman [11] for other aspects
related to this literature as well as our problem.
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r 4 5 6 7 8 9 10
10 years later| 1.07 x 1073 | 0.0155 | 0.079 | 0.215 [0.329{0.269[0.0913
20 years later|1.59 x 10~ 1°[7.86 x 107°[0.0016{0.0179(0.111]0.366| 0.504

Table 9. Probabilities of preference learning after 10 and 20 years

The computation result is given in Table 8 with /, ! "=1,2,3,4and [ # ' . In the column of ag
vs. a;, the probability of the preference between ag and 4; being a long-term memory is given
as 0.981 for T = 250. After only about 2 years, the probability is already 18.

We find in the right column of Table 8 that Mike’s learning is very slow. After a half year, Mike
hardly learns any of his preferences between alternative routes. An experience of comparison
between a; vs. ay happens with such a small probability, because both deviations a; and aj
from the regular route ag are required consecutively and also twice disjointedly. This means
that his learned preferences are very incomplete even after quite some time.

For example, suppose that Mike’s original preference relation is the strict order, a3, a4, a9, a1, a»
with a3 at the top, which is depicted as the left diagram of Fig.8. After half a year, he likely
learns his preferences between ag (regular) and each alternative a;,I = 1,2,3,4, which is
illustrated in the middle diagram of Fig.8. It is unlikely that he learns which of a3 or a4 (or, a;
or ap) is better. Even if he believes transitivity in his preferences, he would only infer from his
learned preferences that both a3 and a4 are better than a1 and a,.

Ten years later, Mike’s knowledge will be much improved. By this time, with probability
1, he will have learned his preferences between ag and each alternative a;,I = 1,2,3,4. He
will also likely have learned his preferences between some of the alternatives. Table 9 lists
the probabilities that exactly r of his preferences are learned. Recall that there are (g) =10
comparisons. Even after 10 years, Mike is still learning his own preferences over alternative
routes. After 20 years, however, he learns much more about his preferences. As it happens,
by the time Mike is able to get to taste the rough with the smooth, he is already old.

a3 (reg)
a3 a3  ay(reg.) T
a4 NS a4
ag (reg.) = ag — T
ay 7N ag
ap ap  ap 7N
a1 an

Figure 8

8 One might wonder why the value of 0.981 for a comparison between ag and a; is higher 0.970 for just learning a route
a; in Table 4. This can be explained by the counting of pairs at the boundary. For example, the comparison between
ag and a; appearing in Table 8 becomes a long-term memory from the short-term memory at time t. However, in our
previous treatment of memory of routes, 2; would not be a long-term memory.
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5.2. Maximizing preferences

The results of the previous subsection tell us that it is difficult for Mike to learn his complete
preferences. However, completeness should not be his concern. For him, it would be
important to find a better route than the regular one, and to change his regular behavior to the
best route he knows. This idea is formulated as follows:

(1) He continues to learn his preferences until he can compare each marked alternative to the
regular one;

(2) If he finds a better route a; than ag in those comparisons, then he chooses 4; (arbitrarily, if
there are multiple) as the new regular route;

(3) He stores ap and the alternative routes less preferred than ay;

(4) He makes an exploration of his preferences over the remaining marked alternatives with
the new regular route a;;

(5) He repeats the process determined similarly by (1) — (4) until he does not find a better
route than the regular one.

The final result of this process gives a highest preference. Our concern is the length of time for
this process to finish, and his knowledge about his preferences upon finishing.

Suppose that Mike’s original (hidden) preferences are described by the left column of Fig.8;
he has a strict preference ordering as > a4 > ag > a; > ap, where ay is the regular route. After
some time, he learns his preferences described in the middle diagram. In this case, it is very
likely that only his preferences between ag vs. 4; (I # 0) are learned. The arrow — indicates
the learned preferences.

Here, let us see the average time to finish his learning for preference maximization, under
the assumption that as soon as he finishes his learning of the preferences between the regular
route and alternative ones, he moves to learning the unlearned part. The transition from the
left column to the middle one in Fig.8 needs the average time 136.2 (3.3 months). When he
reaches the middle diagram, he stores the preferences over ag, a; and a;.

In the middle diagram of Fig.8, he starts comparing between a3 and a4. Here, a4 is taken as
the new regular route. Once he obtains the preference between a3 and a4, he goes to the right
diagram and he plays the most preferred route a3. The average time for this second transition
is 11.0 trips (1.1 week). Hence, the transition from the left diagram of knowing no preferences,
to the rightmost diagram takes the average time of 136.2 + 11.0 = 147.2 trips (3.5 months).

We have 5! = 120 possible preference orderings over ag, a1, ap, a3, a4 and as. We classify them
into 5 classes by the position of 9. Here we consider only the other two cases: 4y is the top or
the bottom. When gy is the top, only one round of comparing ag to other a; is enough to learn
that ag is his most preferred route. This takes the average time 136.2 (3.3 months), which is the
same as the time for the transition to the middle of Fig.8. In the case with the top a4y, however,
Mike learns no other preferences.

Consider the case where gy is the bottom. There are several cases depending upon his choice
of new regular routes. But now there are four possibilities for the choice of the next regular
route. Depending upon this choice, he may finish quickly or needs more rounds. The more
quickly he finishes, the more incomplete are his preferences. Alternatively, the slowest case
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Figure 9. Transitions with learning preferences

for finding the top needs 4 transitions. Fig.9 depicts the slowest case: The total average time
is 136.2 4+ 78.0 + 36.4 + 11.0 = 261.6 (6.3 months); the bold letter means the regular route. By
this process he finds his complete preferences, still, with the help of transitivity.

In Sum, if Mike learns the top quickly, he learns virtually nothing about his preferences
between the other alternatives. On the other hand, if he finds the top slowly, he would have a

much richer knowledge of his own preferences’.

6. Sensitivities with parameter changes

We have seen the effects of changes of s and T on Mike’s learning determined by the
simulation frame F = [s, p; (m,k)]. In this section, we briefly consider the sensitivity of the
simulation results to the other parameters p (deviation probability), m (length of a short-term
memory), k (threshold number).

The deviation probability p and the other two parameters (m, k) are of a different nature. First,
we keep in mind that our intention is to capture casual everyday learning. While p is regarded
as externally given, it may be controlled by Mike in an effort to learn more about alternative
routes. The parameters m and k may also be within Mike’s control, but because they describe
his memory ability, changing them may require greater effort on his part than increasing p.
Whether or not these are in Mike’s control, it is still interesting to find out how sensitive his
learning is to these parameters.

We start with a sensitivity analysis of learning to changes in m and k. Let p = 1/5and s = 5.
Table 10 gives the probability of a specific route a; (I # 0) being a long-term memory for the
cases of k = 1,2,3 with m = 10. Focusing on T = 250, the drop in probability from 0.970 for
k =2 to 0.488 for k = 3 suggests that Mike’s learning is quite sensitive to changes in k.

On the other hand, Table 11 suggests that his learning is less sensitive to the change in the
length m of each short-term memory.

When m and k change simultaneously for s = 5,35, we have the results listed in Tables 12 and
13.

° Some reader may wonder what implications this argument has on the discounted sum of future utilities. Even under
the stationarity assumption that preferences are time independent, this problem of time preferences requires the
3rd-order experiences, i.e., a preference between a present outcome and a next outcome should be compared with
another preference. Without the stationary assumption, experiences of any orders are required. In this sense, from the
experiential point view, the discounted sum of future utilities are out of the scope.
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T =250|T = 5000
k=1 1.000 1.000
k=2 0.970 1.000
k=3| 0.488 1.000

Table 10. s =5and m = 10

T =250{T = 5000
m=7| 0930 1.000
m = 10| 0.970 1.000
m = 20| 0.995 1.000

Table11.s =5and k=2

m, k) |T = 250]T = 5000
)| 0.970 | 1.000
20,3)] 0.840 | 1.000

Table 12.5s =5

m, k) |T = 250 T = 5000
)| 0.069 | 0.765
20,3)] 0.007 | 0.140

Table 13.5 =35

p\ T| 250 |5000 |Av.no
0.05 [{0.259]0.998| 1720
0.1 |0.655|1.000|488.6
0.2 ]0.970{1.000| 151.7
0.3 10.999|1.000| 80.24

Table 14.5s =5

Table 13 shows that increasing both k and m implies that Mike’s learning can also be affected
a lot. In the case of s = 35, his learning of a single alternative becomes much worse. However,
from Table 12, we find the implication that “marking” still helps Mike a lot.

Finally, we consider how sensitive Mike’s learning is with respect to the probability of
deviations p. We look at how his learning changes when p changes from 1/5 to 0.05, 0.1
and 0.3. We focus on the probability that a specific 4; (I # 0) becomes a long-term memory
for the cases of s = 5,35 and T = 250, 5000. The results are given in Tables 14 and 15:

We find that the probability of a; (I # 0) being a long-term memory is quite sensitive to a
change in p. In the case of s = 5, when p = 0.1 = 1/10 or 0.05 = 1/20, the probability of
an alternative route becoming a long-term memory after a half year is much smaller than at
p = 1/5. In the case of s = 35, the decrease in this probability is even more dramatic. On
the other hand, increasing p to 0.3 has quite a large effect of raising the probability to almost 1
even for half a year. The rightmost columns of Tables 14 and 15 also list the average number
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p\ T| 250 |5000 | Av.no
0.05 [0.005{0.091|215707
0.1 |0.018]0.312| 54893
0.2 |0.069]0.765| 14223
0.3 |0.143]0.957|6548.5

Table 15. s = 35

of trips needed to have all routes being long-term memories. These numbers are seen to also
be highly sensitive to changes in p.

The changes of deviation probability p should be interpreted while taking (1) of Section 1.2
into account. That is, if commuting is a small part of his entire social world, then p should
be a relatively small value such as 0.2 or 0.05. If Mike is not busy with other work, and he
keeps enough energy and curiosity about details of the routes, it may be as high as 0.3. On the
other hand, 0.3 means that he uses his energy three times in a week, and his behavior may be
interpreted as shirking by his boss.

7. Concluding discussions

The example of Mike’s bike commuting is a small everyday situation and provides insights
to our everyday behavior. It is designed to capture several aspects of a human behavior in
a social world. One important aspect is that the life span of a human being has a definite
upper bound. Mike’s bike commuting is used to compute what learning is possible within
his life span. Also, our target situation is partial relative one person’s entire social world.
In this respect, the regular behavior is a consequence of time/energy saving and infrequent
deviations are exploration behavior. We conducted various simulations to see effects of those
aspects.

Consider some implications of our simulation study to related literatures.  Our
original motivation was, from the viewpoint of IGT, to study the origin/emergence of
beliefs /knowledge of the structure of the game. Long-term memories are the source for such
beliefs /knowledge. Our results have the implication that it would be difficult for a person to
learn the full structure of a game, unless it is very simple. Even with marking, the learning
will typically be limited. A focus on limiting cases is no longer appropriate. This leads us to
deviate entirely from the literature of evolutionary/learning approach mentioned in Section
1.1.

Our research is more related to everyday memory in the psychology literature (Linton [9],
[10] and Cohen [3]). Yet, there is a large distance between our study and experimental
psychology. To build a bridge between those fields, we need to develop our theory as well
as experimental and simulation studies. Kaneko-Kline [14] had a theoretical study in this
direction by introducing a measure of the size of an inductively derived view and considering
the effects of marking. This is one direction among many other possible extensions.

In the following, we mention several other possible extensions.

Aspect 1: Long-term memories and decaying: We assume that once an experience becomes a
long-term memory, it will last forever. However, it would be more natural to assume that even
long-term memories are subject to decay unless they are kept experienced once in a while. In
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Figure 10. Ebbinghous’ Retention Function

particular, when the regular behavior changes as in Section 5, decay or forgetfulness about
past regular behavior might become important. This is relevant to the problem of Section 4.2.

The above problem is related to Ebbinghous’ [5] retention function which was used to describe
experimental results of memory of a list of meaningless syllables. There, no distinction is made
between a short-term memory and a long-term memory. The retention function is typically
considered as taking the shape of a curved line depicted in Fig.10, where the height denotes

the probability of retaining a memory and it is diminishing with time!?.

It is more relevant to our research that repetitive learning makes the probability of retention
diminish more slowly. In Fig.10, the second solid curve is obtained when the second
experience occurs while the first experience still remains as a memory. On the other hand,
the dotted curve is obtained if the first experience disappeared from his memory before the
second experience. Thus, the shape of the dotted curve is the same as the first solid one. The
second solid curve is flatter than the first one because of repetitive reinforcement. If the third
experience occurs soon enough, we move to the third solid curve which is even flatter.

Our treatment of memory can be expressed similarly. For this, consider (m, k) = (10,2). Once
the subject has an experience at t;, he keeps it as a memory for 10 periods. In Fig.11, the
second experience does not come to him within 10 periods, but it comes later at t,. Then the
third experience comes within 10 periods after t;, and the memory remains forever.

In Ebbinghous’ case, the retention function becomes flatter with more experiences, meaning
that the memory has a longer expected life. A longer lived memory is more likely to be
repetitively reinforced, and so the memory may persist. Our treatment can be seen as a
simplification of Ebbinghous’ retention function, where we distinguish between a short-term
and a long-term memory without decay.

This direction may become even more fruitful with an experimental study.

Aspect 2: Intensities of experiences and preferences: We also ignored intensities of stimuli from

10 His experiments are interpreted as implying that the retention function may be expressed as an exponential function.
By careful evaluations of Ebbinghous’ data, Anderson-Schooler [1] reached the conclusion that the retention function
can be better approximated as a power function, i.e., the probability of retaining a memory after time ¢ is expressed as
P = At7t.
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Figure 11. Our Retention Function

experiences. This aspect could be important in the treatment of preferences in Section 5. For
example, only preference intensities that are beyond some threshold remain in short-term
memories. The use of thresholds is similar to the need for repetition. The concept of
“marking” (saliency) is closely related to this problem. It is a topic for future work.

Aspect 3: Two or more learners: We have concentrated our focus on the example of Mike’s
bike commuting. Our original interests are in learning in game situations with two or more
learners (persons)ll. This has other new features: For example, how does his learning affect
the other’s learning? In particular, when we consider the other person’s understanding,
possibly by switching social roles, it affects the persons’ behaviors drastically, e.g. emergence
of cooperation may be observed. These possibilities are studied in Kaneko-Kline [18]. In that
setting, the domain of experiences plays essential roles, for which a simulation study must be

informativelZ.

These extensions may generate a lot of implications for IGT. We can even introduce more
probabilistic factors related to decaying of long-term as well as short-term memories.
However, more essential extensions are related to the consideration of internal structures of
routes and inductive derivations of individual views from experiences.

Aspect 4: Internal Structures and subattributes: We ignored the internal structure and
subattributes of each route in the town by treating it as one entity. Nevertheless, IGT is
about the formation of a person’s beliefs about the structure of a game situation. The internal
structure and subattributes are relevant to this type of analysis. In fact, the introduction of
such internal structures will be a key for essential developments of our simulation study as
well as IGT itself.

When this is taken into account, an inductive derivation may be regarded as drawing a picture
by connecting one subattribute with another. This is originally motivated in Kaneko-Kline

1 Hanaki et al. [7] studied the convergence of behaviors in a 2-person game, where each player’s learning of payoffs is
formulated in the way of the present paper but his behavior is formulated as a mechanical statistical process following
the learning literature. Then, they studied behavior of outcomes in life spans of middle range. Their approach did
not take purely the viewpoint of IGT in that a player consciously makes a behavior revision once he has a better
understanding of a game situation. Nevertheless, it would give some hint to our further research on IGT.

12 These aspects are considered in an experimental context in Takeuchi, et al. [22], but are not connected to a simulation
study.
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[15]. Such a process is partially discussed in a theoretical manner in Kaneko-Kline [17].
However, a simulation study will give more detailed information. One immediate question
from this to Mike’s bike commuting: When Mike is told only one route from the colleague
without a map of the town, what kind of a map can Mike construct? After given periods of
time, how correct and complete is it?

In sum, simulation studies of those new aspects provide implications for IGT and a lot of new
directions for research.
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