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1. Introduction 

The electricity supply industry is undergoing a profound transformation worldwide. 

Market forces, scarcer natural resources, and an ever-increasing demand for electricity are 

some of the drivers responsible for such unprecedented change. Against this background of 

rapid evolution, the expansion programs of many utilities are being thwarted by a variety of 

well-founded, environment, land-use, and regulatory pressures that prevent the licensing 

and building of new transmission lines and electricity generating plants. 

The ability of the transmission system to transmit power becomes impaired by one or more 

of the following steady state and dynamic limitations:  

- Angular stability,  

- Voltage magnitude,  

- Thermal limits,  

- Transient stability, 

- Dynamic stability.  

These limits define the maximum electrical power to be transmitted without causing 

damage to transmission lines and electrical equipment. In principle, limitations on power 

transfer can always be relieved by the addition of new transmission lines and generation 

facilities.  

Alternatively, Flexible Alternating Current Transmission System (FACTS) controllers can 

enable the same objectives to be met with no major alterations to power system layout. 

FACTS are alternating current transmission systems incorporating power electronic-based 

and other static controllers to enhance controllability and increase power transfer capability. 
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The FACTS concept is based on the substantial incorporation of power electronic devices 

and methods into the high-voltage side of the network, to make it electronically controllable.  

FACTS controllers aim at increasing the control of power flows in the high-voltage side of 

the network during both steady state and transient conditions. Owing to many economical 

and technical benefits it promised, FACTS received the support of electrical equipment 

manufacturers, utilities, and research organizations around the world. This interest has led 

to significant technological developments of FACTS controllers (Sen, K.K.; Sen, M.L., 2009), 

(Zhang, X.P. et al., 2006). Several kinds of FACTS controllers have been commissioned in 

various parts of the world.  

Popular are: load tap changers, phase-angle regulators, static VAR compensators, thyristors 

controlled series compensators, interphase power controllers, static compensators, and 

unified power flow controllers. 

The main objectives of FACTS controllers are the following (Mathur, R.M.; Basati, R.S., 2002): 

- Regulation of power flows in prescribed transmission routes, 

- Secure loading of transmission lines nearer to their thermal limits, 

- Prevention of cascading outages by contributing to emergency control, 

- Damping of oscillations that can threaten security or limit the usable line capacity. 

The most Utility engineers and consultants use relay models to select the relay types suited 

for a particular application, and to analyze the performance of relays that appear to either 

operate incorrectly or fail to operate on the occurrence of a fault. Instead of using actual 

prototypes, manufacturers use relay model designing to expedite and economize the 

process of developing new relays. Electric power utilities use computer-based relay models 

to confirm how the relay would perform during systems disturbances and normal operating 

conditions and to make the necessary corrective adjustment on the relay settings. The 

software models could be used for training young and inexperienced engineers and 

technicians. Researchers use relay model to investigate and improve protection design and 

algorithms. However, simulating numerical relays to choose appropriate settings for the 

steady state operation of over current relays and distance relays is presently the most 

familiar use of relay models (McLaren et al., 2001). 

1.1. Problem statement  

In the presence of series compensators the system FACTS devices i.e. GTO Controlled Series 

Capacitor (GCSC), Thyristor Controlled Series Capacitor (TCSC) and Thyristor Controlled 

Series Reactor (TCSR) connected in high voltage (HV) transmission line protected by distance 

relay, the total impedance and the measured impedance at the relaying point depend on the 

injected reactance by compensators. So there is a reel impact on the relay settings zones. 

1.2. Objectives  

This chapter presents a comparative study of the performance of MHO (admittance) 

distance relays for transmission line 400 kV in Eastern Algerian transmission networks 
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compensated by three different series FACTS i.e. GCSC, TCSC and TCSR connected at 

midpoint of a single electrical transmission line. The facts are used for controlling 

transmission voltage in the range of ±40kV as well as reactive power injected between -50 

MVar/+15 MVar on the power system. This chapter studies the effects of GCSC, TCSC and 

TCSR insertion on the total impedance of a transmission line protected by MHO 

(admittance) distance relay.  

The modified setting zone protection in capacitive and inductive boost mode for three 

forward zones (Z1, Z2 and Z3) and reverse zone (Z4) have been investigated in order to 

prevent circuit breaker nuisance tripping to improve the performances of distance relay 

protection. The simulation results are performed in MATLAB software. 

2. Apparent reactance injected by series FACTS devices 

In general, FACTS compensator can be divided into three categories (Acha, E. al., 2004): 

Series compensator, Shunt compensator, and combined series-series compensator. In this 

chapter, we study the series FACTS devices.  

2.1. GCSC 

The compensator GCSC mounted on figure 1.a is the first that appears in the family of series 

compensators. It consists of a capacitance (C) connected in series with the transmission line 

and controlled by a valve-type GTO thyristors mounted in anti-parallel and controlled by an 

angle of extinction (γ) varied between 0° and 180°. If the GTOs are kept turned-on all the 

time, the capacitor C is bypassed and it does not realize any compensation effect. On the 

other hand, if the positive-GTO (GTO1) and the negative-GTO (GTO2) turn off once per 

cycle, at a given angle γ counted from the zero-crossing of the line current, the main 

capacitor C charges and discharges with alternate polarity (Zhang, X.P. et al., 2006), (De 

Jesus F. D. et al., 2007). 

 

Figure 1. Transmission line in presence of GCSC 

Hence, a voltage VC appears in series with the transmission line, which has a controllable 

fundamental component that is orthogonal (lagging) to the line current. 
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The compensator GCSC injects in the transmission line a variable capacitive reactance 

(XGCSC). From figure 1.b the expression of XGCSC is directly related to the controlled GTO 

angle (γ) which is varied between 0° and 180° as expressed by following equation (De 

Souza, L. F. W. et al., 2008), (Ray, S. et al., 2008) : 

  max

2 1
( ) 1 sin(2 )GCSC CX X  

 
 

   
 

      (1) 

Where,  
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1
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C  (2) 

2.2. TCSC 

The compensator TCSC mounted on Figure 2.a is a type of series FACTS compensators. It 

consists of a capacitance (C) connected in parallel with an inductance (L) controlled by a 

valve mounted in anti-parallel conventional thyristors (T1 and T2) and controlled by an angle 

of extinction (α) varied between 90° and 180°.  

 

Figure 2. Transmission line in presence of TCSC 

From figure 2.b, the compensator TCSC injected in the transmission line a variable 

capacitive reactance (XTCSC). The expression of XTCSC is directly related to the controlled 

thyristors, angle (α) which is varied between 90° and 180° and expressed by following 

equation (Acha, E. al., 2004), (Sen, K.K.; Sen, M.L., 2009): 
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And,  

 1
. .CX

j C
       (6) 

From the equations (4), (5) and (6), the equation (3) becomes: 
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2.3. TCSR 

The compensator TCSR is an inductive reactance compensator at which its inductive 

reactance is continually adjusted through the firing delay angle (α) of the thyristors as 

shown in figure 3.a. It consists of a series reactor shunted by a thyristors controlled reactor 

(TCR).  

If the firing delay angle is 180°, the TCSR operates as an uncontrolled reactor (L1). When the 

angle decreases below 180°, the inductive reactance of TCSR decreases and at 90° it is given 

by the parallel connection of the reactors (L1//L2). 

 

Figure 3. Transmission line in presence of TCSR. 

From figure 3.b, the compensator TCSR injected in the transmission line a variable 

capacitive reactance (XTCSR). The expression of XTCSR is directly related to the controlled 

thyristors angle (α) expressed by the following equation (Acha, E. al., 2004), (Zhang, X.P. et 

al., 2006): 
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Where, 

 1 max 1.LX L        (9) 

And,  

 2 2. .LX j L       (10) 

3. Power system protection 

Fault current is the expression given to the current that flow in the circuit when load is 

shorted i.e. flow in a path other than the load. This current is usually very high and may 

exceed ten times the rated current of a piece of plant. Faults on power system are 

inevitable due to external or internal causes, lightning may struck the overhead lines 

causes insulation damage. Internal overvoltage due to switching or other power system 

phenomenon may also cause an over voltage which leads to deterioration of the insulation 

and faults. Power networks are usually protected by means of two main components, 

relays that sense the abnormal current or voltage and a circuit breaker that put a piece of 

plant out of tension.  

Power system protection is the art and science of the application of devices that monitor the 

power line currents and voltages (relays) and generate signals to deenergize faulted sections 

of the power network by circuit breakers. Goal is to minimize damage to equipment that 

would be caused by system faults, if residues, and maintain the delivery of electrical energy 

to the consumers (Horowitz, S.H.; Phadke A.G. 2008), (Blackburn, J.L.; Domin, T.J. 2006).  

Many types of protective relays are used to protect power system equipments. They are 

classified according to their operating principles; over current relay senses the extra (more 

than set) current considered dangerous to a given equipment, differential relays compare in 

and out currents of a protected equipment, while impedance relays measure the impedance 

of the protected piece of plant.  

3.1. Principal characteristics of protection system  

For system protection to be effective, the following characteristics must be met (Blackburn 

J.L.; Domin. T.J., 2006), (Zellagui. M, Chaghi. A., 2012): 

 Reliability: assurance that the protection will perform correctly in presence of faults on 

electrical transmission and distribution line, 

 Selectivity: maximum continuity of service with minimum system disconnection, 

 Speed of operation: minimum fault duration and consequent equipment damage and 

system instability, 

 Simplicity: minimum protective equipment and associated circuitry to achieve the 

protection objectives, 

 Economics: maximum protection at minimal total cost. 
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3.2. Principles of relay application 

The power system is divided into protection zones defined by the equipment and the available 

circuit breakers. Six categories of protection zones are possible in each power system:  

 Generators and generator-transformer units,  

 Transformers,  

 Bus bars,  

 Lines (transmission and distribution),  

 Utilization equipment (motors, static loads, or other),  

 Capacitor or reactor banks (when separately protected). 

3.3. Protection zones 

Most of these zones are illustrated in figure 4. Although the fundamentals of protection are 

quite similar, each of these six categories has protective relays, specifically designed for 

primary protection, that are based on the characteristics of the equipment being protected. 

The protect ion of each zone normally include s relays that can provide backup for the relays 

protecting the adjacent equipment (Zellagui.M; Chaghi.A. 2012.a ). The protection in each 

zone should overlap that in the adjacent zone; otherwise, a primary protection void would 

occur between the protection zones. This overlap is accomplished by the location of the CTs 

the key sources of power system information for the relays.  

 

Figure 4. Protection zone on power system 
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4. Setting zones for MHO distance relays 

4.1. Principal  

Distance protection is so called because it is based on an electrical measure of distance along 

a transmission line to a fault. The distance along the transmission line is directly 

proportional to the series electrical impedance of the transmission line.  

Impedance is defined as the ratio of voltage to current. Therefore, distance protection 

measures distance to a fault by means of a measured voltage to measured current ratio 

computation (Zigler, G., 2008), (Zellagui, M.; Chaghi, A., 2012.b). The philosophy of setting 

relay at Sonelgaz Group is three forward zones and one reverse zone to protect EHV 

transmission line between busbar A and B with total impedance ZAB as shown in figure 5.  

 

Figure 5. Principal operation of distance relay 

4.2. Setting zones  

4.2.1. First zone  

In practice it is normal to adjust the first zone relays (Z1) at A to protect only up to 80% of 

the protective line AB. This is a high speed unit and is used for the primary protection of the 

protected line. Its operation is instantaneous (Dechphung, S.; Saengsuwan, T., 2008).  

This unit is not set to protect the entire line to avoid undesired tripping due to over reach. 

Over reach may occur due to transients during the fault condition. 

4.2.2. Second zone 

It is set to cover about 20% of the second line (BC). The main object of the second zone unit 

is to provide protection to the end zone of the first section which is beyond the reach of the 

first unit. The setting of the second unit is so adjusted that it operates the relay even for 

arcing faults at the end of the line. To achieve this, the unit must take care beyond the end of 

the line. In other words its setting must take care of under reach caused by arc resistance 

(Dechphung, S; Saengsuwan, T., 2008), (Zellagui, M.; Chaghi, A., 2012.b). 
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Under reach is also caused by intermediate current sources, errors in CT, and VT and 

measurement performed by the relay. To take into account the under reaching tendency 

caused by these factors, the normal practice is to set the second zone reach up to 20% of the 

shortest adjoining line section. The protective zone of the second unit is known as the 

second zone of protection. The second zone unit operates after a certain time delay. Its 

operating time is 0,3 sec. 

4.2.3. Third zone 

It is provided for back-up protection of the adjoining line. Its reach should extend beyond 

the end of the adjoining line under the maximum under reach, which may be caused by 

arcs, intermediate current sources and errors in CT, VT and measuring unit (Zellagui. M.; 

Chaghi. A., 2012.b). The protective zone of the third stage is known as the third zone of 

protection. 

The characteristic curve on MHO (admittance) relay for setting zones is shown in figure 6. 

 

Figure 6. Characteristic curve X (R) for setting zones for distance protection. 

Figure 7 represents the tripping time T1, T2 and T3 correspond to these three zones of 

operation for circuit breaker installed at busbar A and MHO distance relay (RA). 

The fourth setting zones for protected transmission line (forward and reverse) without 

series FACTS are given by (Zellagui, M.; Chaghi, A. 2012.c), (Gérin-Lajoie, L. 2009):  

  1 1 1 80% 0,8.( )AB AB ABZ R jX Z R jX      (11) 
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   2 2 2 0,2.( )AB AB BC BCZ R jX R jX R jX          (12) 

  3 3 3 0,4.( )AB AB BC BCZ R jX R jX R jX          (13) 

  4 4 4 60% 0,6.( )AB AB ABZ R jX Z R jX                 (14) 

The total impedance of transmission line AB measured by MHO distance relay is:  

 . , VT
AB Z L Z

CT

K
Z K Z K

K
     (15) 

Where, ZAB is real total impedance of line AB, and KVT and KCT is ratio of voltage to 

current respectively.  

The presence of series FACTS systems in a reactor (XFACTS) has a direct influence on the total 

impedance of the protected line (ZAB), especially on the reactance XAB and no influence on 

the resistance RAB. 

 

Figure 7. Selectivity of distance relay 

4.3. Measured impedance by relay in presence fault  

Distance relaying belongs to the principle of ratio comparison. The ratio is between voltage 

and current, which in turn produces impedance. The impedance is proportional to the 

distance in transmission lines, hence the distance relaying designation for the principle.  

This principle is primarily used for protection of high voltage transmission lines. In this case 

the over current principle cannot easily cope with the change in the direction of the current 

flow, which is common in the transmission but no so common in radial distribution lines. 

Computing the impedance in the three-phase system is a bit involved in each type of the 

fault produces a different impedance expression. Because of these differences the settings of 

the distance relay are needed to be selected to distinguish between the ground and phase 

faults.  
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In addition fault resistance may create problem for distance measurement because of the 

fault resistance may be difficult for predict. It is particularly challenging for distance relays 

to measure correct fault impedance when the current in feed from the other end of the line 

create an unknown voltage drop on the fault resistance (Kazemi, A. et al., 2009), (Kulkami, 

P.A. et al., 2010). 

This may contribute to erroneous computation of the impedance, called apparent 

impedance ‘seen’ by the relay located at the end of the line and using the current and 

voltage measurement just from the end.  Once the impedance is computed, it is compared to 

the settings that define the operating characteristics of the relay. Based on the comparison, a 

decision is made if a fault has occurred, if so in what zone. 

The principle behind the standard distance protection function is based on measured 

apparent impedance (Zseen) at the transmission line terminals. The apparent impedance is 

computed from fundamental power frequency components of measured instantaneous 

voltage and current signals (Liu, Q.; Wang, Z., 2008), (Khederzadeh, M.; Sidhu, T. S., 2006), 

(Jamali, S.; Shateri, H. 2011), the apparent impedance is given by: 

 .seen
seen Z

seen

V
Z K

I
   
 

     (16) 

5. Case study and simulation results  

The power system studied in this paper is the 400 kV, 50 Hz eastern Algerian electrical 

transmission networks at group SONELGAZ (Algerian Company of Electricity and Gas) 

which is shows in figure 8 (Sonelgaz Group/GRTE, 2011). The MHO distance relay is located 

in the bus bar at Ramdane Djamel substation in Skikda to protect transmission line between 

busbar A and busbar B at Oued El Athmania substation in Mila, the bus bar C at Salah Bay 

substation in Sétif.   

The figure below represents a 400 kV transmission line in the presence of a series FACTS 

type GCSC, TCSC and TCSR installed in the midpoint of the transmission line protected by 

a MHO distance relay between busbar A and B. 

5.1. Characteristic curve of installed series FACTS devices  

Figure 9 shows the characteristic curves of the different compensators used GCSC, TCSC 

and TCSR installed on transmission line in this case study.  

5.2. Impact on the impedance of a protected transmission line. 

The impact of the angle variation γ and injected reactance XGCSC by compensator GCSC on 

reactance and resistance of the total impedance for transmission line (XAB and RAB) and on 

the  parameters of measured impedance by MHO distance relay (XRelay and RRelay) in the 

inductive and capacitive mode is summarized in table 1. 
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Figure 8. Electrical networks 400 kV study in Algeria 
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Figure 9. Characteristic curve for series FACTS devices installed 
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Mode Inductive Capacitive

γ (°) 0 20 40 80 100 120 140 180 

XGCSC  (Ω) 32,000 18,3415 7,7466 0,0718 -0,0718 -1,8454 -7,7466 -32,000 

XAB (Ω) 143,44 129,78 119,19 111,51 111,37 109,59 103,69 79,440 

RAB (Ω) 11,526 11,526 11,526 11,526 11,526 11,526 11,526 11,526 

XRelay (Ω) 7,1720 6,4891 5,9593 5,5756 5,5684 5,4797 5,1847 3,9720 

RRelay (Ω) 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 

Table 1. Variation of reactance and resistance as a  function of γ and XGCSC 

The impact of the angle variation α and XTCSC injected reactance by compensator TCSC on 

reactance and resistance of the total impedance for transmission line (XAB and RAB) and on 

the parameters of measured impedance by MHO distance relay (XRelay and RRelay) in the 

inductive and capacitive mode is summarized in table 2. 

 

Mode Inductive Capacitive

α (°) 90 91 92 100 140 180 

XTCSC  (Ω) 3,159.106 3,385.106 6,7825.106 -4828,0 -440.684 -106.670 

XAB (Ω) 3,158 106 3,384.106 6,7826.106 -48177,0 -329,24 4,7697 

RAB (Ω) 11,526 11,526 11,526 11,526 11,526 11,526 

XRelay (Ω) 1,579.105 1,692.105 3,3913.105 -2408,9 -16.4622 0.2385 

RRelay (Ω) 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 

Table 2. Variation of reactance and resistance on function α and XTCSC 

The impact of the angle variation α and injected reactance XTCSR by compensator TCSR on 

reactance and resistance of the total impedance for transmission line (XAB and RAB) and on 

the parameters of measured impedance by MHO distance relay (XRelay and RRelay)in the 

inductive and capacitive mode is summarized in table 3. 

 

Mode Inductive

α (°) 90 100 110 120 130 140 160 180 

XTCSR (Ω) 32,000 32,021 32,170 32,563 33,308 34,506 38,645 45,714 

XAB (Ω) 143,44 143,46 143,61 144,00 144,75 145,95 150,09 157,15 

RAB (Ω) 11,526 11,526 11,526 11,526 11,526 11,526 11,526 11,526 

XRelay (Ω) 7,1720 7,1731 7,1805 7.2002 7,2374 7,2973 7,5043 7,8577 

RRelay (Ω) 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 0,5763 

Table 3. Variation of reactance and resistance on function α and XTCSR 
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5.3. Impact on setting zones  

5.3.1. Impact of GCSC Insertion  

Figures 10 and 11 show the impact of the variation extinction angle γ and reactance XGCSC on 

the value of setting zones reactance and setting zones resistance respectively in presence of 

GCSC on transmission line.  

 

Figure 10. Impact of insertion GCSC on reactance of setting zones 
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Figure 11. Impact of insertion GCSC on resistance of setting zones 

5.3.2. Impact of TCSC Insertion  

Figures 12 and 13 is show the impact of the variation extinction angle of α and reactance 

XTCSC on the value of setting zones reactance and setting zones resistance respectively in 

presence of a TCSC on transmission line.  
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Figure 12. Impact of insertion TCSC on reactance of setting zones 
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Figure 13. Impact of insertion TCSC on resistance of setting zones 

5.3.3. Impact of TCSR Insertion  

Figures 14 and 15 is show the impact of the variation extinction angle α and reactance XTCSR 

on the value of setting zones reactance and setting zones resistance respectively in presence 

of TCSC on transmission line.  
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Figure 14. Impact of insertion TCSR on reactance of setting zones 
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Figure 15. Impact of insertion TCSR on resistance of setting zones 

6. Conclusions 

The results are presented in relation to a typical 400 kV transmission system employing 

GCSC, TCSC and TCSR series FACTS devices. The effects of the extinction angle γ for 

controlled GTO installed on GCSC as well as extinction angle α for controlled thyristors on 

TCSC and TCSR are investigated. These devices are connected at the midpoint of a 

transmission line protected by distance relay. However as demonstrated these angles 

injected variable reactance (XGCSC, XTCSC or XTCSR) in the protected line which lead to direct 

impact on the total impedance of the protected line and setting zones.  
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Therefore settings zones of the total system protection must be adjusted in order to avoid 

unwanted circuit breaker tripping in the presence of series FACTS compensator. 
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