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1. Introduction

The Anopheles genus is probably one of the best studied genera among insects of medical
importance. Of more than 500 species currently listed in the world about sixty species are
vectors of malaria agents and about thirty species are responsible for most of the transmission
[1-3]. The important epidemiological role of anopheline species has motivated many studies
of taxonomy and systematics with traditional tools. With the advent of molecular tools, the
development of informatics databases and new mathematical concepts on shape, characteriz‐
ing insects has become more and more accurate. Molecular tools based on the nucleotide
polymorphism of DNA have allowed the identification of cryptic diversity, confirming and
refining previous findings suggesting the existence of many species groups or complexes of
sibling species. The development of international genetic sequence database collabora‐
tionshttp://www.insdc.org, http://www.barcodinglife.com/ allowed the use of reference
sequences for species identification. Although not well developed, the same need for infor‐
matic databases arose for traditional taxonomy.

Despite the general acknowledge that traditional taxonomy is important, the decline in
taxonomy and skills basis for identifying and describing biodiversity is a striking reality.
Retiring taxonomists are leaving orphan reference collections - most often not digitalized - and
associated catalogues or literature. Taxonomy being not considered as “big science”, few
students are entering the field. This has particularly negative effects when dealing with
arthropod pests, nuisances or vector species because the corollary is that taxonomic expertise
is lost and would drastically be missing if the sanitary situation requires it. Meanwhile the
development of molecular identification tools, recent mathematical developments motivated
by the need for quantifying morphological characters [4], a new field has progressively
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emerged, called "modern" or "geometric" morphometrics, allowing to quantify and to visualize
morphological differences between taxa.

Both these new tools reinforcing the taxonomic research are not only welcome, they are also
highly needed. Entomological investigations for surveillance activities or research purposes
collect usually large numbers of individuals (sometimes in bad shape) which means time-
consuming identification process. The problem may become intractable when species diversity
is high and, as in the Anopheles genus, when cryptic diversity occurs (sibling species, isomor‐
phic species, cryptic species, etc.). In case of emerging vector-borne diseases or newly invasive
species, the first question asked by health managers, scientists and public authorities to
evaluate the risk for animal and public health, and to implement vector control measures, is:
“what is this species?”. To answer such question implies quick and rapid identification of the
species responsible for the nuisance or the pathogen transmission. Therefore, under these
circumstances, it does not come as a surprise if entomologists and epidemiologists have looked
for new techniques that can speed up the process of reliably identifying specimens and
sometimes of delimiting taxa. In the present chapter, we describe two independent approaches
which can be used alternatively or in complement to each other: the molecular and the
morphometric approaches.

2. Molecular identification of Anopheline species

Before the development and use of molecular assays for the identification of individual
specimens, cytogenetics technique was widely used for Anopheline species. This method has
proved to be extremely informative, not only for species identification but also in the analysis
of population structure and determining the existence of sibling species. However, the
required expertise for cytogenetics has limited its large scale application. Allozymes have also
widely been used but the need for individuals to be stored in liquid nitrogen constrained the
collection. Since the 1990s, the development of techniques for DNA amplification primarily by
Polymerase Chain Reaction (PCR) in research laboratories together with the analysis of DNA
polymorphism has taken precedence over all other techniques of identification to the species
level. The huge expansion of molecular identification assays is related to their sensitivity,
reliability and speed to generate high number of identifications. Moreover, these assays can
be applied to all stages of development, sex, and on whole specimen or parts (e.g. legs). The
first complex for which biologists have designed and validate species specific probes is for the
An. gambiae Complex1, because of its obvious epidemiological importance in the Afrotropical
region. Over time, a host of techniques have been developed with as common a species-specific
amplification for determining an individual’s membership in a taxon (Table 1). We do not
intend to make an exhaustive presentation of all the molecular identification assays developed
to date for Anopheles species and complexes, but rather to provide guidance on those most
employed, with their advantages and disadvantages, as well as detail and review the relative
merits of three different tools for species identification.

1 We follow the recommendations as stated in references (1, 2) for the naming of sibling species complex and species
group.
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Biogeographic

region

Complex or Group Assays References

Afrotropical An. gambiae, An. arabiensis, An. quadriannulatus,

An. melas

multiplex AS PCR [5]

An. bwambae, An. gambiae multiplex AS PCR [6]

An. gambiae, An. arabiensis RFLP PCR [7]

An. funestus, An. vaneedeni RFLP PCR [8]

An. funestus, An. vaneedeni, An. rivulorum, An.

leesoni

SSCP PCR [9]

An. funestus, An. leesoni, An. parensis, An.

vaneedeni, An. rivulorum

multiplex AS PCR [10]

An. gambiae Complex RFLP PCR [11]

An. quadriannulatus sp. B, An. gambiae Complex multiplex AS PCR [12, 13]

An. funestus, An. leesoni, An. parensis, An.

vaneedeni, An. rivulorum-like, An. rivulorum

multiplex AS PCR [14]

An. nili typical form, An. ovengensis, An. carnevalei multiplex AS PCR [15]

An. nili, An. carnevalei, An. somalicus, An.

ovengensis

multiplex AS PCR [15]

An. bwambae AS PCR [16]

An. gambiae /An. arabiensis as one group and An.

quadriannulatus/An. melas/An. merus as a

second group

quantitative [17]

An. moucheti Complex (An. bervoetsi, An.

moucheti, An. nigeriensis)

AS PCR [18]

An. gambiae, An. arabiensis quantitative [19]

An. gambiae, An. arabiensis, An.

quadriannulatus/An. melas/An. merus as one

group

quantitative [20]

An. funestus, An. funestus-like, An. parensis, An.

rivulorum, An. vaneedeni, An. leesoni, An.

longipalpis

multiplexe AS PCR [21]

An. parensis, An. leesoni, An. vaneedeni, An.

rivulorum, An. funestus

quantitative [22]

An. gambiae, An. arabiensis LAMP [23]

An. funestus, An funestus-like, An. parensis, An.

rivulorum, An. vaneedeni, An. leesoni

RFLP PCR [24]

Genetic and Phenetic Approaches to Anopheles Systematics
http://dx.doi.org/10.5772/56090

83



Biogeographic

region

Complex or Group Assays References

Palearctic An. atroparvus, An. sacharovi, An. melanoon, An.

messeae, An. labranchiae, An. maculipennis s.s.

multiplex AS PCR [25]

An. atroparvus, An. labranchiae, An. maculipennis,

An. martinius, An melanoon, An. messeae, An.

sacharovi

heteroduplex PCR [26]

An. claviger, An. petragnani multiplex AS PCR [27]

An. maculipennis Group (An. maculipennis, An.

labranchiae, An. atroparvus, An. sacharovi, An.

melanoon, An. messeae, An. beklemishevi)

multiplex AS PCR [28, 29]

Oriental An. lesteri (Syn. An. anthropophagus), An. sinensis RFLP PCR [30]

An. dirus Complex (An. dirus s.s, An. cracens, An.

scanloni, An. baimaii)

multiplex AS PCR [31]

An. aconitus, An. varuna, An. minimus, An.

harrisoni, An. jeyporiensis

RFLP PCR [32]

An. dispar, An. greeni RFLP PCR [33]

An. minimus and An. harrisoni, hybrids AC, An.

aconitus, An. pampanai, An. varuna

multiplex AS PCR [34]

An. minimus and An. harrisoni, hybrids AC, An.

aconitus, An. pampanai, An. varuna

Multiplex AS and SSCP PCR [35]

An. dirus Complex (former species A, B, C and D ) multiplex AS PCR [36]

An. dirus Complex (former species A, B, C/D) multiplex AS PCR [37]

An. aconitus, An. varuna, An. minimus, An.

harrisoni, An. jeyporiensis

multiplex AS PCR [38]

An. culicifacies Complex (An. culicifacies species A

and D/species B, C and E)

multiplex AS PCR [39, 40]

An. culicifacies Complex (An. culicifacies species A,

B, C, D, E)

RFLP PCR [41, 42]

An. maculatus, An. dravidicus, An. pseudowillmori,

An. sawadwongporni, An. rampae

multiplex AS PCR [43]

An. sundaicus Complex (An. sundaicus, An.

epiroticus, An. sundaicus E)

AS PCR [44]

An. annularis Complex (An. annularis, An. nivipes,

An. philippinensis, An. pallidus, An. schueffneri)

multiplex AS PCR [45]
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Biogeographic

region

Complex or Group Assays References

An. annularis Complex (species A and B) and An.

annularis Group (An. nivipes, An. philippinensis,

An. annularis and An. pallidus)

RFLP PCR [46, 47]

An. annularis Group

(An. annularis, An. nivipes, An. pallidus, An.

philippinensis, An. schueffneri)

AS PCR [48]

An. fluviatilis, An. culicifacies, An. varuna and An.

aconitus, An. annularis, An. pallidus, An.

philippinensis

multiplex AS PCR [49]

Afrotropical

and Oriental

An. funestus, An. parensis, An. rivulorum, An.

vaneedeni, An. leesoni, An. aconitus, An. minimus,

An. harrisoni, An. pampanai, An. varuna

multiplex AS PCR [50]

An. funestus, An. parensis, An. rivulorum, An.

vaneedeni, An. leesoni, An. aconitus, An. minimus,

An. harrisoni, An. pampanai, An. varuna

RFLP PCR [51]

Neotropical An. benarrochi, An. oswaldoi RFLP PCR [52]

An. fluminensis multiplex AS PCR [53]

An. albitarsis, An. nuneztovari, An. rangeli, An.

albimanus, An. triannulatus, An. punctimacula, An.

darlingi

RFLP PCR [54]

An. benarrochi, An. darlingi, An. nuneztovari, An.

konderi, An. rangeli, An. triannulatus sensu lato,

An. forattinii, An. mattogrossensis, An. peryassui

RFLP PCR [55]

Australasian Punctulatus Group (An. farauti no. 1-7, An.

punctulatus, An. sp. near punctulatus, An.

koliensis)

RFLP PCR [56]

Punctulatus Group (An. punctulatus s.s.,

Anopheles koliensis, and An. farauti species

complex [eight cryptic species])

multiplex AS PCR [57, 58]

Table 1. List of references of developed molecular identification assays for different anopheline species.

2.1. RFLP-PCR assays

RFLP-PCR (Restriction Fragment Length Polymorphism) assay is based on the amplifica‐

tion of a known locus of the genome and its subsequent digestion by a restriction enzyme

(Fig. 1A).
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Figure 1. Comparison of RFLP PCR (A) and AS PCR (B) methods and outputs.

The identification of different taxa is made through the polymorphism of the region targeted

DNA, revealed by the endonuclease, and resulting in different digestion profiles. Each species
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is characterized by a digestion profile with bands of different sizes. The need for two steps
(amplification and digestion) is time-consuming (digestion can take between 1-3 hours) and
expensive. However, an identification assay based on this method is particularly appropriate
in the case of entomological survey where anopheline fauna of a region is not known. Indeed,
such assay is a priori non-selective and all species encountered give a digestion profile.
Examples of RFLP-PCR assays include work on the M and S molecular forms of An. gambiae,
An. funestus Group, An. punctulatus Group, An. minimus Complex, An. oswaldoi Group and
Arribalzagia Series (Table 1).

2.2. SSCP-PCR assays

PCR (SSCP PCR) is based on the nucleotide mutations in PCR products [59].  The SSCP-
PCR (Single Strand Conformation Polymorphism) requires after the PCR amplification a
step of heat denaturation of the PCR products,  which are cooled very quickly to gener‐
ate  the  formation  of  secondary  structures  of  single  stranded  DNA.  These  formations
migrate differentially based on their size and conformation, linked to polymorphism of the
targeted  region.  Migration  profile  is  species-specific  and  thus  allows  species  identifica‐
tion. However, this method is also time-consuming (in particular with electrophoresis of
several hours), and can pose problems of reproducibility. It requires special equipment and
the use of polyacrylamide gel, more expensive than agarose gels. This kind of assay is not
recommended for  the  identification of  a  large  number  of  specimens.  Some examples  of
SSCP-PCR tests include work on the An.  funestus  Group, including Asian species of  the
An. minimus and An. aconitus Subgroups (Table 1).

2.3. AS-PCR or PASA assays

The generalization of partial or complete sequencing of many genomes allowed the develop‐
ment of identification assays based on a single step easier to implement and above all faster.
These assays have been named allele-specific (AS-PCR) or PCR amplification of specific alleles
(PASA) (Fig. 1B). This kind of assay is very specific and robust. It allows to quickly screen a
large number of specimens, it is the most common technique currently being developed (Table
1). The basis of these assays is the identification of target amplification of a region of size known
and specific to the different taxa studied. This assay therefore requires prior development of
primers specific to each taxa and appropriate evaluation of the intraspecific variation of the
targeted DNA region. Most recently developed identification tests are AS-PCR based focusing
on the ITS2 differences [10, 15, 18, 25, 27-29, 31, 34, 38-40, 53, 58, 60, 61]; older assays targeted
the IGS region (An. gambiae Complex) [5, 6, 12, 13].

Usually assays are developed to identify several species in a single PCR. When the primers
are combined in a single amplification reaction, it is called "multiplex PCR". When developing
a molecular identification assay, primers must first be checked for specificity. Moreover, an
internal positive control is highly recommended; outcomes must be "amplification" rather than
"no-amplification". Indeed, non-amplifications are indistinguishable from a technical problem
such as false negative.
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The choice of the locus of hybridization primers can be done either from a systematic sequenc‐
ing of the regions of interest in the species studied, or from a random screening of regions not
localized on the genome. In the first case, a prior sequencing of DNA regions studied is
necessary. The choice of primers is then made on the basis of nucleotide differences observed
between taxa on the target area in order to obtain fragments of specific sizes of each species
(more than 25 bp difference). Thus, the identification is based on the length polymorphism
amplified DNA fragments. In the second case, the selection of specific primers is made from
screening random non-localized regions of the genome. Screening can highlight size of the
amplified fragments specific taxa, and in this case be used for identification. Once bands of
specific species are being recognized, they are cloned and sequenced. The fragment generated
is called SCAR (Sequence Characterized Amplified Region). Of these nucleotide sequences are
defined pairs of primers specific for the species to be identified. The combination of different
primers may vary: 1) two pairs of primers for two different amplifications [62], 2) a pair of
universal external primers and internal specific primers [63], 3) an universal primer and several
species specific primers [10, 13, 15, 31], or 4) several amplifications with species specific pair
of primers [37] (Fig. 2).

Figure 2. Different types of AS PCR.
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2.4. Molecular identification using quantitative assays

The methods described above are qualitative and determine to which species a given individ‐
ual belongs. However, despite their usefulness for species identification, they are not suitable
for quantifying samples with large numbers of mixed species. Moreover, disadvantages of the
conventional PCR approaches include the requirement for post-PCR processing (gel electro‐
phoresis of PCR products) and manual scoring of test samples which can be prone to error due
to the similar amplicon sizes generated by certain species. For Anopheles species, different high-
throughput methods based on real-time PCR have been described. These recent assays are
based on TaqMan single nucleotide polymorphism (SNP) genotyping and are “closed tube”
approaches that require only a single step to characterize a mosquito DNA sample. Unlike
conventional AS-PCR, these assays do not require processing of samples by agarose gel
electrophoresis, which is time consuming, restricts throughput and requires the use of the
safety hazard ethidium bromide (Table 1, An. funestus Group and An. gambiae Complex). One
should expect the development of such assays in the future.

2.5. Species identification and barcode database

The initiative to barcode living forms was set out by [64] and since then the debate on “DNA
taxonomy” has not ended with serious concerns about empirical approaches associated with
DNA barcode data and their potential to impede rather than enhance the practice of taxonomy
and the dissemination of reliable taxonomic information [65]. DNA barcoding is a new techni‐
que that uses the variations in short, standardized gene regions (Folmer region of the Cyto‐
chrome oxidase I, COI) can be used to identify known species and to discover new ones. This is
possible because the variation within each species is low relative to the differences among species.
Since its development in 2003, the application of this technology has grown from straightfor‐
ward  taxonomic  identification  to  such  fields  as  biodiversity  monitoring  and  ecosystem
reconstruction, with new uses emerging in public health, agriculture, economics and trade, and
law enforcement. If a specimen is damaged or fragmented, at an immature stage of develop‐
ment, or part of an undiscovered cryptic species, even specialists may be unable to make
identification. Barcoding solves these problems because non-specialists can obtain barcodes
from tiny amounts of tissue, in many cases even when it has been digested. The principle relies
on specimen identification using a partial sequence for COI. Investigators will identify speci‐
men by first extracting its DNA, then amplifying and sequencing COI before comparing the
sequence from the query with COI sequences for all known species. The use of DNA sequen‐
ces in Diptera predates the formal proposal of DNA barcoding. Particularly extensive is the use
of DNA sequences for Anopheles genus DNA barcoding aims at providing a new identification
tool for unidentified specimens or cryptic diversity (see also http://www.barcodinglife.com/
index.php/Taxbrowser_Taxonpage?taxid=7809). DNA barcoding is now pursued today by the
Consortium for  the  Barcode  of  Life  (CBOL)  (see  also  http://www.barcodeoflife.org/).  To
maximize adherence of barcoding projects to the global barcoding landscape, guideline for DNA
extraction, amplification and sequencing (for high through put studies especially) have been
released on the CBOL website. Moreover, the consortium created a reserved keyword namely
BARCODE when new sequences submissions into International Nucleotide Sequence Data‐
base meet the standards established by the consortium.
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3. Modern morphometrics applied to mosquitoes with emphasis on the
Anopheles genus

In modern morphometrics, size and shape are derived from a configuration of landmarks
collected on a non-articulated part, often a single organ. Mosquito species diagnostic using
geometric morphometrics generally makes use of the wings because these structures are
almost bidimensional and relatively rigid, reducing digitizing error. The most common
technique is the landmark-based approach. A few anatomical landmarks available on a wing
(or any measurable part of the body) are submitted to specialized analyses to provide size and
shape information, with the further possibility to visualize shape changes. A few landmarks
do not completely describe the wing, nor do they describe the complete body. However,
provided there is anatomical correspondence among individual landmarks, only a partial
capture of shape is needed to allow valid comparisons among populations and species. There
are also other technical approaches, in particular for those cases where landmarks are not
conspicuous. The reader should refer to the following references for detailed information on
morphometrics such as mathematical approaches and statistical procedures [4, 66-75].

3.1. Why morphometrics?

Various arguments, not only related to cost/effectiveness, should convince most laboratories
to apply modern morphometrics. The method is inexpensive. Modern morphometric techni‐
ques (at least 2D techniques) do not require more equipment than the one already present in
any laboratory of entomology: optical devices (binocular microscope), computers and internet
connection. They do not require from entomologists any new practice other than the usual
dissecting and mounting, thus new personal is not necessary. The method is fast. While the
dissection and sample preparation step might be time consuming, something which itself
depends on the group of insects or the organ under study, the morphometric analysis is fast.
Various hundreds of specimens can be measured (digitized) in one week, and the analytical
steps can be performed in a few days or less. In spite of being fast, the method cannot pretend
to quickly identify thousands of specimens. This could be improved with the progress of some
specialized software aiming at the automatic digitization of mosquito wings [76]. Although
some entomological knowledge is required, there is no need to be an expert in the insect group
under study, a skill which is disappearing anyway since a few decades as stated above [77,
78]. The required skill in morphometrics is the same whatever the taxonomic group under
study: it is mainly the ability to use specialized software. Morphometric study is a non-
traumatic approach, in the sense that it does not impede the application on the same specimens
of most other characterizing techniques, including molecular techniques. Actually, the
technique could be applied in complement to almost any other kind of study. There are indeed
many circumstances in which morphologically distinct species cannot be identified anymore
because diagnostic characters were destroyed by the technique of capture or lost in the
transport from field to laboratory. Some diagnostic morphologic characters are just a few scales
on a given place of the body, and these precious scales are not visible any more on damaged
specimens. As an example, the Asian anopheline species An. dirus and An. cracens, or the
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Neotropical An. marajoara (An. marajoensis) and An. braziliensis, are distinguished on the basis
of a labile tuft of scales [79-82].

In our experience, obstacles to adopt the strategy to use modern morphometrics in complement
of other identification techniques - or as a main approach - are relatively easy to overcome.
Modern morphometrics relies on sophisticated mathematical developments. They only
require an intuitive understanding to allow a biological interpretation of the data. In the same
way as molecular biologists have learned to use different specialized software, morphometri‐
cians have to assimilate the use of one or more dedicated software.

Unexpectedly, the picture step may be a problematic one. It is often the only financial invest‐
ment needed in some laboratories to start applying modern morphometrics. No need however
for a sophisticated optico-informatic device to capture the images. Current digital cameras
applied to the binocular provide enough resolution and simpler use, even a simple scanner
can provide reliable pictures [83]. The resolution, or size, of the picture, must be identical for
each image. It should be as high as possible, but there is no rigid rule: the picture has to be
taken with the idea to see the anatomical landmarks of interest. An important point is to keep
an accurate information of size: size scale should be associated with the pictures. Unless a clear
scale could be associated with each picture (Fig. 3), optical zooms should be avoided. And
finally, there is no need for a complex imaging software: specialized and free software exists
which only need the picture file as input.

 
B.  

C.  

A.  

Figure 3. A. Landmarks (LM) type I are the centers of the circles or squares. Circles indicate easily recognized LM,
squares may be difficult to localize from one individual to another and are not often used. Landmark type II is the top
of the curve making the transition between alula and posterior margin of the wing. The scales of the wing have been
removed. B. Figure presented in [84]. Landmarks 8, 9, 10, 11 and 12 are homologous landmarks. The remaining land‐
marks (from 1 to 7) are defined by the transition between black and white scales. Courtesy of Nicolas Jaramillo (Uni‐
versity of Antioquia, Medellin, Colombia). C. The centroid size is computed from the distances (in pixels) between the
centroid of the configuration (black square) and each one of the landmarks. The coordinates (x,y) of the centroid posi‐
tion are the arithmetic average of all the x and y coordinates. Modified from [84].
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3.2. Shape and size in modern morphometrics

Numerical data of shape are x,y coordinates of anatomical landmarks. Depending on the kind
of landmarks, homologous landmarks or pseudo-landmarks, shape is the relative position of
anatomical points (Fig. 3) or it is a sequence of points describing the contour of an organ (Fig.
4). Accordingly, different statistics apply, involving the Procrustes superimposition to the
consensus configuration [72], or the elliptic Fourier analysis [85], respectively. In both ap‐
proaches, shape changes can be visualized (Fig. 4).

Figure 4. Estimated contours of the male genital leaflet of Culex from the Univittatus Subgroup (Pipiens Group) in
Madagascar, Senegal and La Reunion. Inverse elliptic Fourier analysis disclosed two shapes allowing non-overlapping
separation between Madagascar and other countries. The shape difference, corresponded to genetically differentiat‐
ed populations, commensurate with speciation (Boussés et al., unpublished data)

Size estimator in modern morphometrics is a single variable which is separate from the set of
shape variables. It is thus possible to test for statistical relationship between size and shape
(allometry). The landmark-based approach provides a global estimator of size using the totality
of wing landmarks, which is called “centroid size” (Fig. 3). It provides information about size
changes in as many directions as from the centroid to each landmarks. The centroid size of the
wing is highly correlated to the traditional length and width of the wing [86], but not well
correlated to smaller inter-landmark distances of the wing [66]. The size of an outline can be
estimated in various ways, as for instance the perimeter of the outline or, better, the square
root of its area.

In spite of providing many Type I landmarks, the mosquito wing is not easy to digitize because
of the presence of scales on the veins. Scales can hide the area where two veins are crossing,
so that the user has to guess the likely anatomical point of interest. One strategy is to make an
estimation of the digitizing error and consider that with good scores the results can be
submitted for publication. The digitizing error can be reduced by using the mean value of
repeated measurements [87]; this can be performed also by taking the mean of left and right
wings [88]. Phase contrast microscope can improve the relative transparency of the scales
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helping to localize the junction of two veins [89, 90]. Scales can be tentatively removed before
digitizing the wings. Different techniques are used, from mechanical (Fig. 5) to chemical
treatment [87, 91-93].

 

Figure 5. Mechanical scales removal on a Culex wing, as processed at the ©EID Méditerranée, Montpellier, France.
Courtesy of Guillaume Lacour and Lucie Marquereau.

There is maybe a fourth response to that problem, which is to consider that the scale color
could define landmarks. Indeed, especially in some groups of the Anopheles genus, scales have
marked different colors at specific locations, producing a black and white pattern having an
upmost importance as taxonomic characters. As long as the transition between black and white
scales could be considered as the junction of different tissues, these landmarks could be
assimilated to Type I landmarks. Calle et al [84] obtained remarquable results making use of
these scale-defined landmarks together with the more classical landmarks (see landmarks 1 to
7 of Fig. 3B).

3.3. Distinguishing groups: size or shape?

Taxonomists know of many species being consistently larger or smaller than others, giving
size character an undisputed importance for species recognition. Moreover, the size of the wing
acquired a renewed importance because of its likely association with wing beat frequencies
mediating assortative matings [94, 95]: Stanford et al [96] found an agreement between size
differences between incipient species of An. gambiae and their known level of assortative
mating. In species recognition or distinction, a good discrimination between groups means not
only to reveal statistically significant differences, but also to allow little overlapping between
them, and this is generally best achieved through the comparison of shapes (instead of sizes).
In addition to be more discriminant, shape is generally a more stable feature than size with
regards to environmental variation. For these reasons, less overlapping and more stability,
interspecific differences revealed by shape are generally of more taxonomic utility than size
differences between species. As long as shape variation is not the passive consequence of size
variation, i.e. an allometric effect of size differences, shape should be the main source of
taxonomic information. However, the observed shape differences between groups after
Procrustes analysis are not exchangeable to other groups [73], making it difficult to export the
results. Even if not independent, size and shape can also be combined to improve species
delimitation [97]
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3.4. The need for morphometrics database

For taxonomic use, it is not only necessary to adopt powerful tools exploring morphological
similarities, it is also important to share the results. Whenever a piece of DNA is distinguishing
two taxa, it can be published, stored as a sequence in the Gene Bank and shared with other
biologists or taxonomists. When a morphological, qualitative character is discovered allowing
to distinguish two taxa, it can be published and shared with other people. Unfortunately, shape
variables are sample dependent and cannot be shared in the same way as genetic or morpho‐
logic characters [73]. As shape variables are derived from raw coordinates of landmarks, the
temptation would be to use the raw coordinates as reference data. However, when the objective
is to distinguish very similar or cryptic species, the measurement error (ME) may represent a
significant obstacle. ME is always higher between two users than between two measurements
from the same user, so that in any circumstance a one-user data set is the most reliable set of
data [73]. Two solutions are presently developed to adapt modern morphometrics to a more
acceptable taxonomic use: (i) to share machine-computed coordinates [76], or (ii) to share
images instead of coordinates. The latter initiative is already running for bees (http://
apiclass.mnhn.fr). It is in development for mosquitoes as a bank of reference images at http://
mom-clic.com/clic-bank under the name CLIC (Collection of Landmarks for Identification and
Characterization). The need for such a database is underestimated because, as it can be
deduced from the low number of works on Anopheles, the power of morphometrics to identify
taxa is itself probably underestimated. The chances of successful identification would then
depend on the relevance of reference images, on their level of shape divergence and on the
classification techniques.

3.5. Applications to Anopheles sp.

While there have been sporadically traditional morphometric studies to help species diagnos‐
tic in the Anopheles genus [98-104], there have been very few studies adopting the modern
approach.

Apparently, mosquito wings show very similar venation patterns among different species and
higher taxa, including different tribes. However, Dujardin [66] showed that Anopheles sp. could
be distinguished from other genera of mosquitoes, based on their venation pattern using 13
landmarks. Regarding species complex, some attempts were made to separate the species of
the An. dirus Complex (former An. dirus species A from Thailand, An. dirus species B from
Malaysia) using traditional morphometric techniques applied to pupae and larvae [100].
However it may become impossible to identify slightly damaged specimens. In spite of similar
size, the separation based on the wing venation pattern was satisfactory in both sexes, even
when using rough mounting of wings on scotch tape. Latter study used old laboratory strains,
so that an additional effect of morphological divergence could have enhanced the results.
Similar studies are required on field specimens.

Vincente et al [87] studied the intraspecific variation of An. atroparvus in various countries of
Europe at 21 landmarks, adding one Portuguese population of An. maculipennis. Authors
showed an overlapping on the first principal component of shape between allopatric An.
maculipennis and An. atroparvus. The objective of the study was not to examine the discrimi‐
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nating power of landmark-based morphometrics to separate both species, a task for which the
discriminant analysis was more indicated. Notably, size could show drastic differences among
populations, interfering with interspecific shape variation.

Five members of the Nyssorhynchus Subgenus were compared for wing and leg dimensions
with promising results [98]. A few years later, Calle et al [84] used the landmark-based
approach to compare 11 members of the same subgenus, some of them were cryptic species
living in sympatry. A notable specificity of this study was the combined use of standard wing
landmarks with some landmarks at the transition between black and white scales. The
technique was able to correctly assign 97% of individuals to their respective species in the
Argyritarsis Section (An. braziliensis, An. darlingi and An. marajoara) and 86% of individuals in
the Albimanus Section (An. albimanus, An. aquasalis, An. benarrochi, An. nuneztovari, An.
oswaldoi, An. rangeli, An. strodei, and An. triannulatus). These results are noticeable since some
of these species are cryptic species, or species with overlapping variability of diagnostic
characters, a few of them living in sympatry. In the Argyritarsis Section, shape-based reclas‐
sification scores were very high (97% for An. darlingi and An. braziliensis, and 100% for An.
marajoara). An. braziliensis and An. marajoara differ by the presence or absence of tuft of scales
in the abdominal segment II as well as by the color of scales of the abdominal segment VIII,
with some other characters presenting overlapping variation. As for many morphologically
close species of mosquitoes, the identification can be made very difficult on damaged speci‐
mens. The three species were collected from different geographic areas, which could also
explain their significant size differences. In the Albimanus Section, An. triannulatus and An.
rangeli did not show any overlapping in the morphospace described by shape, but they also
strongly differed by size, with An. triannulatus being the smallest species and An. rangeli the
largest one. To distinguish An. rangeli from An. nuneztovari may be much more difficult and
need the examination of immature stages. The wing venation pattern could recognize 84% of
An. rangeli and 90% of An. nuneztovari. High reclassification scores were also obtained when
comparing An. aquasalis and An. nuneztovari. An. aquasalis is an important vector in Venezuela,
while not in Colombia, and, without a very detailed morphological examination, it could be
morphologically confounded with the Venezuelian vector An. nuneztovari. The wing venation
pattern could distinguish these two species with scores as high as 90% [84]. In some parts of
its distribution in Brazil, An. (Kerteszia) cruzii are sympatric with secondary vectors like An.
homunculus and An. bellator. Identification of these species based on female specimens is often
jeopardised by polymorphisms, overlapping morphological characteristics and damage
caused to specimens during collection. Pairwise cross-validated reclassification showed that
geometric morphometrics could distinguish between the three species with a reliability rate
varying from 78 to 88% [105].

4. Conclusions

The taxonomy of the Anopheles greatly benefits from the powerful information provided by
DNA sequences. The identification and detection of Anopheles species, especially cryptic and
sibling species, are readily achieved using molecular identification assays. The DNA sequences
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are an invaluable source of phylogenetic information, which is not to say that for species
recognition, DNA sequences should be the only alternative to traditional morphological
approaches.

We presented here the interest to take into account the modern morphometric alternative for
its ability to separate morphologically indistinguishable species, as well as for its unbeatable
speed and low cost. Despite promising outcomes, the recent morphometric techniques were
not often applied to distinguish anopheline species, and other possibilities, for instance the
ones making use of artificial intelligence, were even not considered.

As long as a phenetic approach provides satisfactory scores of species classification, and when
the objective is to identify species, its combination with molecular methods could help
reducing costs. An integrative approach would not only be less expensive, it would preserve
the interest of biologists for the morphological interaction with environmental changes and
speciation events.

Acknowledgements

To Nicolas Jaramillo (Antioqui University, Medellin, Colombia), Lincoln Suesdek (Sao Paulo
University, Brazil), and Sylvie Manguin (IRD, Montpellier, France) for critical reading.

Author details

Claire Garros1* and Jean-Pierre Dujardin2

*Address all correspondence to: claire.garros@cirad.fr

1 Cirad, UMR 15 Contrôle des Maladies Animales Exotiques et Emergentes, Montpellier,
France

2 MIVEGEC, UMR 224 IRD, UMR 5290 CNRS-IRD-UMI-UMII, IRD, Montpellier, France

References

[1] Harbach RE. Review of the internal classification of the genus Anopheles (Diptera: Cu‐
licidae): the foundation for comparative systematics and phylogenetic research. Bul‐
letin of Entomological Research. 1994;84:331-42.

[2] Harbach RE. The classification of genus Anopheles (Diptera: Culicidae): a working hy‐
pothesis of phylogenetic relationships. Bulletin of Entomological Research.
2004;94:537-53.

Anopheles mosquitoes - New insights into malaria vectors96



[3] Harbach RE. Mosquito Taxonomic Inventory http://mosquito-taxonomic-inventor‐
yinfo/. 2012.

[4] Sneath P, Sokal R. The principles of numerical taxonomy W.H Freeman; 1963. Avail‐
able from: http://books.google.fr/books?id=HP-6AAAAIAAJ&dq=numerical
%20taxonomy&hl=fr&source=gbs_book_other_versions.

[5] Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles
gambiae complex by the polymerase chain reaction. American Journal of Tropical
Medicine and Hygiene. 1993 Oct;49(4):520-9.

[6] Townson H, Onapa AW. Identification by rDNA-PCR of Anopheles bwambae, a geo‐
thermal spring species of the An. gambiae complex. Insect Molecular Biology. 1994
Nov;3(4):279-82.

[7] Favia G, della Torre A, Bagayoko M, Lanfrancotti A, Sagnon N, Toure YT, et al. Mo‐
lecular identification of sympatric chromosomal forms of Anopheles gambiae and fur‐
ther evidence of their reproductive isolation. Insect Molecular Biology. 1997 Nov;
6(4):377-83.

[8] Koekemoer LL, Coetzee M, Hunt RH. Hpall endonuclease distinguishes between two
species in the Anopheles funestus group. Insect Molecular Biology. 1998 Aug;7(3):
273-7.

[9] Koekemoer LL, Lochouarn L, Hunt RH, Coetzee M. Single-strand conformation poly‐
morphism analysis for identification of four members of the Anopheles funestus (Dip‐
tera: Culicidae) group. Journal of Medical Entomology. 1999 Mar;36(2):125-30.

[10] Koekemoer LL, Kamau L, Hunt RH, Coetzee M. A cocktail polymerase chain reaction
assay to identify members of the Anopheles funestus (Diptera: Culicidae) group.
American Journal of Tropical Medicine and Hygiene. 2002 Jun;66(6):804-11.

[11] Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and
molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medical Veterinary
Entomology. 2002 Dec;16(4):461-4.

[12] Fettene M, Koekemoer LL, Hunt RH, Coetzee M. PCR assay for identification of
Anopheles quadriannulatus species B from Ethiopia and other sibling species of the
Anopheles gambiae complex. Medical Veterinary Entomology. 2002 Jun;16(2):214-7.

[13] Fettene M, Temu EA. Species-specific primer for identification of Anopheles quadrian‐
nulatus sp. B (Diptera: Culicidae) from Ethiopia using a multiplex polymerase chain
reaction assay. Journal of Medical Entomology. 2003;40(1):112-5.

[14] Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identifica‐
tion within the Anopheles funestus group of malaria vectors in Cameroon and evi‐
dence for a new species. American Journal of Tropical Medicine and Hygiene. 2003
Aug;69(2):200-5.

Genetic and Phenetic Approaches to Anopheles Systematics
http://dx.doi.org/10.5772/56090

97



[15] Kengne P, Awono-Ambene P, Antonio-Nkondjio C, Simard F, Fontenille D. Molecu‐
lar identification of the Anopheles nili group of African malaria vectors. Medical Vet‐
erinary Entomology. 2003;17:67-74.

[16] Besansky NJ, Collins FH, Townson H. A species-specific PCR for the identification of
the malaria vector Anopheles bwambae. Annals of Tropical Medicine and Parasitology.
2006 Apr;100(3):277-80.

[17] Bass C, Williamson MS, Wilding CS, Donnelly MJ, Field LM. Identification of the
main malaria vectors in the Anopheles gambiae species complex using a TaqMan real-
time PCR assay. Malaria Journal. 2007;6:155.

[18] Kengne P, Antonio-Nkondjio C, Awono-Ambene HP, Simard F, Awolola TS, Fonte‐
nille D. Molecular differentiation of three closely related members of the mosquito
species complex, Anopheles moucheti, by mitochondrial and ribosomal DNA polymor‐
phism. Medical Veterinary Entomology. 2007 Jun;21(2):177-82.

[19] Walker ED, Thibault AR, Thelen AP, Bullard BA, Huang J, Odiere MR, et al. Identifi‐
cation of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single
nucleotide polymorphism genotyping. Malaria Journal. 2007;6:23.

[20] Bass C, Williamson MS, Field LM. Development of a multiplex real-time PCR assay
for identification of members of the Anopheles gambiae species complex. Acta Tropica.
2008 Jul;107(1):50-3.

[21] Koekemoer LL, Misiani EA, Hunt RH, Kent RJ, Norris DE, Coetzee M. Cryptic spe‐
cies within Anopheles longipalpis from southern Africa and phylogenetic comparison
with members of the An. funestus group. Bulletin of Entomological Research. 2009
Feb;99(1):41-9.

[22] Vezenegho SB, Bass C, Puinean M, Williamson MS, Field LM, Coetzee M, et al. De‐
velopment of multiplex real-time PCR assays for identification of members of the
Anopheles funestus species group. Malaria Journal. 2009;8:282.

[23] Bonizzoni M, Afrane Y, Yan G. Loop-mediated isothermal amplification (LAMP) for
rapid identification of Anopheles gambiae and Anopheles arabiensis mosquitoes. Ameri‐
can Journal of Tropical Medicine and Hygiene. 2009 Dec;81(6):1030-4.

[24] Choi KS, Coetzee M, Koekemoer LL. Simultaneous identification of the Anopheles fu‐
nestus group and Anopheles longipalpis type C by PCR-RFLP. Malaria Journal.
2010;9:316.

[25] Proft J, Maier WA, Kampen H. Identification of six sibling species of the Anopheles
maculipennis complex (Diptera: Culicidae) by a polymerase chain reaction assay. Par‐
asitology Research. 1999 Oct;85(10):837-43.

[26] Romi R, Boccolini D, Di Luca M, La Rosa G, Marinucci M. Identification of the sibling
species of the Anopheles maculipennis complex by heteroduplex analysis. Insect Molec‐
ular Biology. 2000 Oct;9(5):509-13.

Anopheles mosquitoes - New insights into malaria vectors98



[27] Kampen H, Sternberg A, Proft J, Bastian S, Schaffner F, Maier WA, et al. Polymerase
chain reaction-based differentiation of the mosquito sibling species Anopheles claviger
s.s. and Anopheles petragnani (Diptera: Culicidae). American Journal of Tropical Medi‐
cine and Hygiene. 2003 Aug;69(2):195-9.

[28] Kampen H. Integration of Anopheles beklemishevi (Diptera: Culicidae) in a PCR assay
diagnostic for palaearctic Anopheles maculipennis sibling species. Parasitology Re‐
search. 2005 Sep;97(2):113-7.

[29] Kampen H. The ITS2 ribosomal DNA of Anopheles beklemishevi and further remarks
on the phylogenetic relationships within the Anopheles maculipennis group of species
(Diptera: Culicidae). Parasitology Research. 2005 Sep;97(2):118-28.

[30] Gao Q, Beebe NW, Cooper RD. Molecular identification of the malaria vectors Anoph‐
eles anthropophagus and Anopheles sinensis (Diptera: Culicidae) in central China using
polymerase chain reaction and appraisal of their position within the Hyrcanus
group. Journal of Medical Entomology. 2004 Jan;41(1):5-11.

[31] Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, et al.
Identification of five species of the Anopheles dirus complex from Thailand, using al‐
lele-specific polymerase chain reaction. Medical Veterinary Entomology. 1999 Feb;
13(1):24-32.

[32] Van Bortel W, Trung HD, Roelants P, Harbach RE, Backeljau T, Coosemans M. Mo‐
lecular identification of Anopheles minimus s.l. beyond distinguishing the members of
the species complex. Insect Molecular Biology. 2000 Jun;9(3):335-40.

[33] Torres EP, Foley DH, Saul A. Ribosomal DNA sequence markers differentiate two
species of the Anopheles maculatus (Diptera: Culicidae) complex in the Philippines.
Journal of Medical Entomology. 2000 Nov;37(6):933-7.

[34] Kengne P, Trung HD, Baimai V, Coosemans M, Manguin S. A multiplex PCR-based
method derived from random amplified polymorphic DNA (RAPD) markers for the
identification of species of the Anopheles minimus group in Southeast Asia. Insect Mo‐
lecular Biology. 2001 Oct;10(5):427-35.

[35] Sharpe RG, Hims MM, Harbach RE, Butlin RK. PCR-based methods for identification
of species of the Anopheles minimus group: allele-specific amplification and single-
strand conformation polymorphism. Med Vet Entomol. 1999 Jul;13(3):265-73.

[36] Huong NT, Sonthayanon P, Ketterman AJ, Panyim S. A rapid polymerase chain reac‐
tion based method for identification of the Anopheles dirus sibling species. Southeast
Asian Journal of Tropical Medicine and Public Health. 2001 Sep;32(3):615-20.

[37] Manguin S, Kengne P, Sonnier L, Harbach RE, Baimai V, Trung HD, et al. SCAR
markers and multiplex PCR-based identification of isomorphic species in the Anophe‐
les dirus complex in Southeast Asia. Medical Veterinary Entomology. 2002 Mar;16(1):
46-54.

Genetic and Phenetic Approaches to Anopheles Systematics
http://dx.doi.org/10.5772/56090

99



[38] Phuc HK, Ball AJ, Son L, Hanh NV, Tu ND, Lien NG, et al. Multiplex PCR assay for
malaria vector Anopheles minimus and four related species in the Myzomyia Series
from Southeast Asia. Medical Veterinary Entomology. 2003 Dec;17(4):423-8.

[39] Singh OP, Dinesh Chandra, Nutan Nanda, Raghavendra K, Sujatha Sunil, Sharma
SK, et al. Differentiation of members of the Anopheles fluviatilis species complex by an
allele-specific polymerase chain reaction based on 28S ribosomal DNA sequences.
American Journal of Tropical Medicine and Hygiene. 2004;70(1):27-32.

[40] Singh OP, Goswami G, Nanda N, Raghavendra K, Chandra D, Subbarao SK. An al‐
lele-specific polymerase chain reaction assay for the differentiation of members of
Anopheles culicifacies complex. Journal of Biosciences. 2004;29(3):101-6.

[41] Goswami G, Singh OP, Nanda N, Raghavendra K, Gakhar SK, Subbarao SK. Identifi‐
cation of all members of the Anopheles culicifacies complex using allele-specific poly‐
merase chain reaction assays. American Journal of Tropical Medicine and Hygiene.
2006 Sep;75(3):454-60.

[42] Goswami G, Raghavendra K, Nanda N, Gakhar SK, Subbarao SK. PCR-RFLP of mi‐
tochondrial cytochrome oxidase subunit II and ITS2 of ribosomal DNA: markers for
the identificationof members of the Anopheles culicifacies complex (Diptera: Culici‐
dae). Acta Tropica. 2005;95:92-9.

[43] Walton C, Somboon P, O'Loughlin SM, Zhang S, Harbach RE, Linton YM, et al. Ge‐
netic diversity and molecular identification of mosquito species in the Anopheles mac‐
ulatus group using the ITS2 region of rDNA. Infection, Genetics and Evolution. 2007
Jan;7(1):93-102.

[44] Dusfour I, Blondeau J, Harbach RE, Vythilingham I, Baimai V, Trung HD, et al. Poly‐
merase chain reaction identification of three members of the Anopheles sundaicus
(Diptera: Culicidae) complex, malaria vectors in Southeast Asia. Journal of Medical
Entomology. 2007 Sep;44(5):723-31.

[45] Walton C, Somboon P, Harbach RE, Zhang S, Weerasinghe I, O'Loughlin SM, et al.
Molecular identification of mosquito species in the Anopheles annularis group in
southern Asia. Medical Veterinary Entomology. 2007 Mar;21(1):30-5.

[46] Alam MT, Das MK, Dev V, Ansari MA, Sharma YD. Identification of two cryptic spe‐
cies in the Anopheles (Cellia) annularis complex using ribosomal DNA PCR-RFLP. Par‐
asitology Research. 2007 Apr;100(5):943-8.

[47] Alam MT, Das MK, Dev V, Ansari MA, Sharma YD. PCR-RFLP method for the iden‐
tification of four members of the Anopheles annularis group of mosquitoes (Diptera:
Culicidae). Transactions of the Royal Society of Tropical Medicine and Hygiene. 2007
Mar;101(3):239-44.

[48] Swain S, Mohanty A, Mahapatra N, Parida SK, Marai NS, Tripathy HK, et al. The de‐
velopment and evaluation of a single step multiplex PCR for simultaneous detection
of Anopheles annularis group mosquitoes, human host preference and Plasmodium fal‐

Anopheles mosquitoes - New insights into malaria vectors100



ciparum sporozoite presence. Transactions of the Royal Society of Tropical Medicine
and Hygiene. 2009 Nov;103(11):1146-52.

[49] Swain S, Mohanty A, Tripathy HK, Mahapatra N, Kar SK, Hazra RK. Molecular iden‐
tification and phylogeny of Myzomyia and Neocellia series of Anopheles subgenus
Cellia (Diptera: Culicidae). Infection, Genetics and Evolution. 2010 Oct;10(7):931-9.

[50] Garros C, Koekemoer LL, Coetzee M, Coosemans M, Manguin S. A single multiplex
assay to identify major malaria vectors within the African Anopheles funestus and the
Oriental An. minimus Groups. American Journal of Tropical Medicine and Hygiene.
2004;70(6):583-90.

[51] Garros C, Koekemoer LL, Kamau L, Awolola TS, Van Bortel W, Coetzee M, et al. Re‐
striction fragment length polymorphism method for the identification of major Afri‐
can and Asian malaria vectors within the Anopheles funestus and An. minimus groups.
American Journal of Tropical Medicine and Hygiene. 2004 Mar;70(3):260-5.

[52] Ruiz F, Quinones ML, Erazo HF, Calle DA, Alzate JF, Linton YM. Molecular differen‐
tiation of Anopheles (Nyssorhynchus) benarrochi and An. (N.) oswaldoi from southern
Colombia. Memorias do Instituto Oswaldo Cruz. 2005 Apr;100(2):155-60.

[53] Brelsfoard CL, Fritz GN, Rodriguez R. Sequence analysis of the rDNA internal tran‐
scribed spacer 2 and polymerase chain reaction identification of Anopheles fluminensis
(Diptera: Culicidae: Anopheles) in Bolivia. Journal of Medical Entomology. 2006
May;43(3):460-6.

[54] Zapata MA, Cienfuegos AV, Quiros OI, Quinones ML, Luckhart S, Correa MM. Dis‐
crimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colom‐
bia, by polymerase chain reaction-restriction fragment length polymorphism analysis
of its sequences. American Journal of Tropical Medicine and Hygiene. 2007 Jul;77(1):
67-72.

[55] Matson R, Rios CT, Chavez CB, Gilman RH, Florin D, Sifuentes VL, et al. Improved
molecular technique for the differentiation of neotropical anopheline species. Ameri‐
can Journal of Tropical Medicine and Hygiene. 2008 Mar;78(3):492-8.

[56] Beebe NW, Saul A. Discrimination of all members of the Anopheles punctulatus com‐
plex by polymerase chain reaction--restriction fragment length polymorphism analy‐
sis. American Journal of Tropical Medicine and Hygiene. 1995 Nov;53(5):478-81.

[57] Henry-Halldin CN, Nadesakumaran K, Keven JB, Zimmerman AM, Siba P, Mueller
I, et al. Multiplex assay for species identification and monitoring of insecticide resist‐
ance in Anopheles punctulatus group populations of Papua New Guinea. American
Journal of Tropical Medicine and Hygiene. 2012 Jan;86(1):140-51.

[58] Henry-Halldin CN, Reimer L, Thomsen E, Koimbu G, Zimmerman A, Keven JB, et al.
High throughput multiplex assay for species identification of Papua New Guinea

Genetic and Phenetic Approaches to Anopheles Systematics
http://dx.doi.org/10.5772/56090

101



malaria vectors: members of the Anopheles punctulatus (Diptera: Culicidae) species
group. American Journal of Tropical Medicine and Hygiene. 2011 Jan;84(1):166-73.

[59] Orita M, Suzuki Y, Sekiya T, Hayashi K. A rapid and sensitive detection of point mu‐
tations and genetic polymorphisms using polymeras chain reaction. Genomics.
1989;5:874-9.

[60] Koekemoer LL, Hargreaves K, Hunt RH, Coetzee M. Identification of Anopheles pa‐
rensis (Diptera: Culicidae) using ribosomal DNA internal transcribed spacer (ITS2)
sequence variation. African Entomology. 2002;10:235-9.

[61] Thanaphum S, Green CA, Baimai V, Gass RF, Gingrich JB. Genetic linkage relation‐
ships of eight enzyme/electromorph loci in Anopheles minimus. Genetica.
1990;82:63-72.

[62] Paskewitz SM, Collins FH. Use of the polymerase chain reaction to identify mosquito
species of the Anopheles gambiae complex. Medical Veterinary Entomology. 1990 Oct;
4(4):367-73.

[63] Porter CH, Collins FH. Species-diagnostic differences in a ribosomal DNA internal
transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi
(Diptera : Culicidae). American Journal of Tropical Medicine and Hygiene. 1991 Aug;
45(2):271-9.

[64] Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxi‐
dase subunit 1 divergences among closely related species. Proceedings of the Biologi‐
cal Sciences. 2003 Aug 7;270 Suppl 1:S96-9.

[65] Meier R. DNA sequences in taxonomy : opportunities and challenges. In: Wheele
QD, editor. The new taxonomy. Tempe, USA: Arizona State University; 2008.

[66] Dujardin JP. Modern morphometrics of medically important insects. In: M. Tibayrenc
E, editor. Genetics and evolution of infectious diseases. 2011. p. 473-501.

[67] Kendall D. Shape-manifolds, procrustean metrics and complex projective spaces.
Bulletin of the London Mathematical Society. 1984;16:81-121.

[68] Kendall D. A survey of the statistical theory of shape. Statistical Science.
1989;4:87-120.

[69] Adams DC. Methods for shape analysis of landmark data from articulated structures.
Evolutionary Ecology Research. 1999;1(8):959-70.

[70] Rohlf FJ, Archie J. A comparison of Fournier methods for the description of wing
shape in mosquitoes (Diptera : Culicidae). Systematic Zoology. 1984;33:302-17.

[71] Rohlf FJ, Marcus LF. A revolution in morphometrics. TREE. 1993;8(4):129-32.

[72] Bookstein FL. Morphometric tools for landmark data. Geometry and Biology. New
York: Cambridge University Press; 1991.

Anopheles mosquitoes - New insights into malaria vectors102



[73] Dujardin JP, Kaba D, Henry A. The exchangeability of shape. BMC Research Notes.
2010;3:266.

[74] Dujardin JP, Slice DE. Contributions of morphometrics to medical entomology: John
Wiley and sons Inc.; 2006.

[75] Lestrel PE. Morphometrics for life science: World Scientific Publishing; 2000.

[76] Houle D, Mezey J, Galpern P, Carter A. Automated measurement of Drosophila
wings. BMC Evolutionary Biology. 2003;3:25.

[77] Reeves WC. Concerns about the future of medical entomology in tropical medicine
research. American Journal of Tropical Medicine and Hygiene. 1989 Jun;40(6):569-70.

[78] Scoble MJ, Clark BR, Godfray HCJ, Kitching IJ, Mayo SJ. Revisionary taxonomy in a
changing e-landscape. Tijdschrif voor Entomologie. 2007;150:305-17.

[79] Sallum MAM, Peyton EL, Harrison BA, Wilkerson RC. Revision of the Leucosphyrus
group of Anopheles (Cellia) (Diptera, Culicidae). Revista Brasileira de Entomologia.
2005;49:1-152.

[80] Sallum MAM, Peyton EL, Wilkerson RC. Six new species of the Anopheles leucosphy‐
rus Group, with reinterpretation of An. elegans and vector implications. Medical Vet‐
erinary Entomology. 2005;19(158-199).

[81] Rattanarithikul R, Harrison BA, Harbach RE, Panthusiri P, Coleman R. Illustrated
keys to the mosquitoes of Thailand iv. Anopheles. Southeast Asian J Trop Med Public
Health. 2006;37(2):1-128.

[82] Gonzales R, Carrejo N. Introduccion al estudio taxonomico de Anopheles de Colom‐
bia. Calves y notas de distribucion: Cali : Editorial Litocencoa; 2007.

[83] Kaba D, Ravel S, Acapovi-Yao G, Solano P, Allou K, Bosson-Vanga H, et al. Phenetic
and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern
Ivory Coast. Parasit Vectors. 2012 5:153.

[84] Calle DA, Quinones ML, Erazo HF, Jaramillo N. Differentiation by geometric mor‐
phometrics among 11 Anopheles (Nyssorhynchus) in Colombia. Biomedica.
2008;28:371-85.

[85] Kuhl FP, Giardinia C. Elliptic Fournier features of a closed contour. Computer
Graphics and Image Processing. 1982;18(236-258).

[86] Morales Vargas ER, Ya-umphan P, Phumala-Morales N, Komalamisra N, Dujardin
JP. Climate associated size and shape changes in Aedes aegypti populations from Thai‐
land. Infection, Genetics and Evolution. 2010;10(4):580-5.

[87] Vicente JL, Sousa CA, Alten B, Caglar SS, Falcuta E, Latorre JM, et al. Genetic and
phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe.
Malaria Journal. 2011;10:5.

Genetic and Phenetic Approaches to Anopheles Systematics
http://dx.doi.org/10.5772/56090

103



[88] Henry A, Thongsripong P, Fonseca-Gonzelez I, Jamarillo-Ocampo N, Dujardin JP.
Wing shape of dengue vectors from around the world. Infection, Genetics and Evolu‐
tion. 2010; 10(2):207-14.

[89] Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom
S, Bellec C, et al. Influence of larval density or food variation on the geometry of the
wing of Aedes (Stegomyia) aegypti. Tropical Medicine and International Health. 2007
Nov;12(11):1354-60.

[90] Jirakanjanakit N, Leemingsawat S, Dujardin JP. The geometry of the wing of Aedes
(Stegomyia) aegypti in isofemale lines through successive generations. Infection, Ge‐
netics and Evolution. 2008 Jul;8(4):414-21.

[91] Aytekin AM, Alten B, Caglar SS, Ozbel Y, Kaynas S, Simsek FM, et al. Phenotypic
variation among local populations of phlebotomine sand flies in southern Turkey.
Journal of Vector Ecology. 2007;32(2):226-34.

[92] Prudhomme J, Gunay F, Rahola N, Ouanaimi F, Guernaoui S, Boumezzough A, et al.
Wing size and shape variation of Phlebotomus papatasi (Diptera : Psychosidae) popu‐
lations from the south and north slopes of the Atlas Mountains in Morroco. Journal
of Vector Ecology. 2012;37(1):137-47.

[93] Motoki MT, Suesdek L, Sallum MAM. Wing geometry of Anopheles darlingi Root
(Diptera : Culicidae) in five major Brazilian ecoregions. Infection, Genetics and Evo‐
lution. 2012;12(6):1246-52.

[94] Cator LJ, Arthur BJ, Harrington LC, Hoy RR. Harmonic convergence in the love
songs of the dengue vector mosquito. Science. 2009;323(5917):1077-9.

[95] Cator LJ, Ng'habi K, Hoy RR, Harrington LC. Sizing up a mate : variation in produc‐
tion and response to acoustic signals in Anopheles gambiae. Behavioural Ecology.
2010;21:1033-9.

[96] Sanford MR, Demirci B, Marsden CD, Lee Y, Cornel AJ, Lanzaro GC. Morphological
differentiation may mediate mate-choice between incipient species of Anopheles gam‐
biae s.s. PLoS One. 2011;6(11): e27920.

[97] Mutanen M, Pretorius E. Subjective visual evaluation versus traditional and geomet‐
ric morphometrics in species delimitation : a comparison of moth genitalia. Systemat‐
ic Entomology. 2007;32:371-86.

[98] Calle DA, Quinones ML, Erazo HF, Jaramillo N. Morphometric discrimination of fe‐
males of five species of Anopheles of the subgenus Nyssorhynchus from Southern and
northwest Colombia. Memorias do Instituto Oswaldo Cruz. 2002;97(8):1191-5.

[99] Petrarca V, Sabatinelli G, Touré Y, Di Deco MA. Morphometrics multivariate analysis
of field samples of adult Anopheles arabiensis and An. gambiae s.s. (Diptera : Culicidae).
Journal of Medical Entomology. 1998;35:16-25.

Anopheles mosquitoes - New insights into malaria vectors104



[100] Hii JL. Multivariate morphometrics for the immature stages of the Anopheles balaba‐
censis complex (Diptera : Culicidae). Mosquito Systematics. 1986;18(2):125-33.

[101] Linley JR, Lounibos LP, Conn J. A description and morphometrics analysis of the egg
of four south American populations of Anopheles (Nyssorhynchus) aquasalis (Diptera :
Culicidae). Mosquito Systematics. 1993;25(3):198-214.

[102] Linley JR, Kaiser PE. The egg of Anopheles punctipennis and Anopheles perplexens (Dip‐
tera : Culicidae). Mosquito Systematics. 1994;26(2):43-56.

[103] Rodriguez MH, Chavez B, Hernandez-Avila JE, Orozco A, Arredondo-Jimenez JI.
Description and morphometric analysis of the eggs of Anopheles vestitipennis (Dip‐
tera : Culicidae) from southern Mexico. Journal of Medical Entomology. 1999;36(1):
78-87.

[104] Lounibos LP, Coetzee L, Duzak D, Nishimura N, Linley JR, Service MW, et al. A de‐
scription and morphometric analysis of eggs of species of the Anopheles gambiae com‐
plex. Journal of the American Mosquito Control Association. 1999;15(2):157-85.

[105] Lorenz C, Suesdek L, editors. Rapid microevolution and altitudinal preference in
populations of Anopheles cruzii in the Atlantic forest of Sao Paulo/Brazil. eSOVE
meeting; 2012; Montpellier.

Genetic and Phenetic Approaches to Anopheles Systematics
http://dx.doi.org/10.5772/56090

105




