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1. Introduction

Supersymmetric quantum mechanics (SUSYQM) has turned out to be surprisingly fertile
field which is also able to successfully address challenges in traditional quantum mechanics
and beyond. It has its roots in the works of Schrödinger, Infeld and Hull [1] on factorization
methods of the Schrödinger equation. The term supersymmetric is due to a work by Witten
[2] which brought these methods in contact with contemporary ideas in high energy physics.
He showed in particular that the a factorized one-dimensional Schrödinger equation can
accompany a super-Lie algebra thus providing a rich toy-model where features and concepts
in supersymmetric quantum field theories can be studied in a greatly simplified context.
A key ingredient in supersymmetric theories is that every bosonic state has a fermionic
superpartner with all properties equal except the spin. In SUSYQM these states emerge
as bosonic doublet states. The bosonic and the fermionic states are described in terms
of the Schrödinger equation, but they interact with different physical potentials. These
potentials are called partner potentials. Not completely surprising, knowing in advance the
energy-eigenvalues and functions of the bosonic (fermionic) states the theory provides a map
to the fermionic (bosonic) states with exactly the same energy-eigenvalues. Of key interest to
us is that the physical partner potentials are expressed in terms of the same superpotential.
These expressions are in general not unique. Different superpotentials can give rise to a
particular physical potential in the fermionic (bosonic) sector. This does not imply that when
the superpotential is changed (deformed) in such a way that the physical potential in the
fermionic (bosonic) sector stays unchanged that the physical potential stays invariant in the
bosonic (fermionic) sector. Whenever we deform a superpotential in the fermionic (bosonic)
sector such that the fermionic (bosonic) potential is invariant the bosonic (fermionic) potential
will generally change, but the theory nevertheless assures that the energy-eigenvalues in
the bosonic (fermionic) sector stays the same. Such deformations are called isospectral
deformations. They are the subject of this chapter.
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Isospectral transformations in the context of SUSYQM has a long history exhibiting methods
dating all the way back to Darboux [3]. The dominating approach is to study isospectral
Hamilton operators. Different operator methods exist, but the main ones was brought under
a single unifying principle by Pursey [4] with the use of isometric operators. A second
approach to the study of isospectral transformations is what has been called deformation
theory (see [5], e.g.). This is a more direct approach compared with the operator approach
in that one studies deformations of the superpotential as described briefly above. It is
rather surprising to note that this second approach has not been given much attention in the
literature. To the knowledge of this author only one of the simplest deformations possible
has been discussed to some extend. In a previous work [6] we initiated a work with the aim
to remedy this situation. In [6] we showed that the isospectral deformation which has been
considered in previous works is part of a more general deformation scheme. In this work we
extend our results in [6]. We explicitly construct an in principle infinite recursively defined
isospectral deformation chain where the deformation scheme in [6] emerges as the root of
the chain.

This chapter is organized as follows. In the next section we very briefly review some of
the basics of SUSYQM, mainly in order to fix notation. We define the notions of partner
potentials, superpotential, isospectrality and supersymmetry. In section 2 we briefly remain
ourselves about the results in [6]. In section 3 we define the recursive deformation scheme.
We also discuss other various deformation schemes but show that a number of other
canonical deformation schemes defined along the lines of our recursive scheme either do
not allow a recursive structure or either reduces to our scheme. We apply our apparently
rather unique recursive deformation scheme to the Coulomb potential and calculate several
novel potentials. We summarize our findings and conclude in the last section. No attempt
has been made to give an in depth review of the relevant literature due to its immense size.
The works which have been acknowledged in the list of references have been so only because
of their utility to this author.

2. SUSYQM - A very brief introduction

SUSYQM can in its most basic formulation be thought of as the following two factorizations
of the Hamiltonian in the stationary Schrödinger equation in appropriate units

{

(−∂ + W(x))(∂ + W(x)) ≡ A
+

A
−
≡ H− ,

(∂ + W(x))(−∂ + W(x)) ≡ A
−

A
+
≡ H+ .

(1)

Here ∂ is short hand for differentiation with respect to the single spatial coordinate x, and
W(x) is the so called superpotential. Both of these factorizations give rise to a Schrödinger
equation, but with different potentials V−(x) and V+(x) (the so called superpotentials) given
by

V±(x) = W
2(x)± ∂W(x) . (2)

Let us denote the energy-eigenvalues and eigenstates associated with H± by E
±
n and ψ±

n (x),
respectively. Let n = 0 denote the ground state. We note that

A
±ψ±

0 (x) = 0 ⇒ H±ψ±

0 (x) = 0 . (3)
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The ground state eigenfunction is thus simply given by

ψ±
0 (x) ∼ e±

∫ x
W(x)dx ∼

1

ψ∓
0 (x)

. (4)

The factorization in Eq.(1) carries a symmetry which is not manifestly present in the usual
form of the Schrödinger equation. This symmetry is made manifest when Eq.(1) is brought
to a matrix form. Defining

Q− ≡

(

0 0
A− 0

)

, Q+ ≡

(

0 A+

0 0

)

(5)

we find that we naturally can construct a matrix-valued Hamiltonian H given by

H ≡

(

H− 0
0 H+

)

=

(

A+A− 0
0 A−A+

)

. (6)

It is straightforward to verify that

H = Q−Q+ + Q+Q− ≡ {Q−, Q+} , [Q±, H] = 0 , (Q±)2 = 0 . (7)

This constitutes what is called a super-Lie algebra in contrast to an ordinary Lie algebra
which only contains commutators. The commutator in Eq.(7) shows that Q± are generators
of a symmetry which is left intact under time-translations generated by H. We call this
symmetry the supersymmetry of the system.

The matrices above naturally act on a two-dimensional vector space with the natural
representation

(

ψ−
n (x)

ψ+
n−1(x)

)

. (8)

It is clear that

Q−
(

ψ−
n (x)
0

)

=

(

0
ψ+

n−1(x)

)

, (9)

Q+
(

0
ψ+

n (x)

)

=

(

ψ−
n+1(x)

0

)

. (10)

Hence, Q± relate states with the same eigenvalue of H; the energy states are in other words
degenerate. An orthogonal basis can naturally be taken to be states on the form

(

α(x)
0

)

,

(

0
β(x)

)

. (11)
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It is customary, due to the intimate relation to supersymmetric quantum field theory, to say
that the first vector belongs to the bosonic sector and the other to the fermionic sector, even
though no fermions appear in this theory. That Q± relate states corresponding to the same
energy eigenvalue of the H-operator can also be seen on the level of the H± operators by
noting that

H+(A−ψ−
n ) = E−

n (A−ψ−
n ) . (12)

Hence, given an eigenstate ψ−
n of H− with energy eigenvalue E−

n , the state A−ψ−
n is an

eigenstate of H+ with energy eigenvalue E−
n . There is thus a one-to-one correspondence

between bosonic and fermionic states with the same energy eigenvalue (Eq.(9-10) above). We
call this property the isospectrality of SUSYQM. Much more can be said about SUSYQM, such
as the role played by the vacuum in connection with isospectrality. However, for the purpose
of this chapter this very brief exposition of some of the basics of SUSYQM is sufficient to fix
notation and certain concepts.

3. A novel isospectral deformation chain

In [6] we introduced within the framework of SUSYQM an isospectral deformation on the
form

W(x) → Ŵ0(x) = F0(x)W(x) , (13)

where W(x) is some known superpotential and F0(x) some function to be determined by the
isospectrality condition

V̂+(x) ≡ Ŵ2
0 (x) + Ŵ ′

0(x) = W2(x) + W ′(x) ≡ V+(x) . (14)

It was shown that Eq.(13) includes the only previously explored deformation of this kind,
which has the form [5]

W(x) → Ŵ0(x) = W(x) + f (x) . (15)

f (x) is some function which is determined by Eq.(14). In this work we expand the
deformation Eq.(13) in various directions and study the implications drawn from the
isospectrality condition. We show in particular that the deformation Eq.(13) is the root of an
infinitely long and recursively generated chain of deformations. Let us next briefly review
some of the findings in [6].

3.1. Base deformations

The deformation Eq.(1) implies the following differential equation for F0(x) [6]1

d

dx
F0(x) + (

d

dx
ln W(x))F0(x) + W(x)F2

0 (x) = W(x) +
d

dx
ln W(x) . (16)

1 We will often rewrite fractions on the form W ′(x)/W(x) as the logarithmic derivative of W(x) as a formal tool.
Caution must of course be exercised when using the corresponding expressions in actual computations.

Advances in Quantum Mechanics710



This is the generalized Riccati equation [7] . If one particular solution F00(x) of Eq.(16) is
known another solution is given by [8]

F0(x) = F00(x) +
1

X0(x)
, (17)

where X0(x) solves the equation

d

dx
X0(x)− (

d

dx
ln W(x) + 2F00(x)W(x))X0(x) = W(x) . (18)

Eq.(18) can be solved by elementary means. The resulting superpotential Ŵ0(x) is given by
[6]

Ŵ0(x) = (F00(x) +
1

X0(x)
)W(x) ≡ Ŵ00(x) +

1

X0(x)
W(x) =

= F00(x)W(x) +
e−2

∫ x
F00(t)W(t)dt

C01 +
∫ x

e−2
∫ u

F00(t)W(t)dtdu
. (19)

C01 is an integration constant, which we will assume to be real. We have explicitly introduced
upper integration limits in Eq.(19) in order to avoid sign ambiguities. This explains the
difference in the sign in the denominator in Eq.(19) compared with Eq.(2.5) in [6] where the
reverse order of integration in one of the integrals was implicitly assumed. We do not specify
the lower integration limits in Eq.(19). These are not important, of course, since the values of
the integrals there can essentially be absorbed into C01. We can by simple inspection see that
the particular solution F0(x) = 1, the identity deformation, solves Eq.(16). With F00(x) = 1 we
identically rederive Eq.(15) and the corresponding expression discussed in [5]. The identity
deformation corresponds to the limit C01 → ∞ in Eq.(19) with F00(x) = 1. In the limit
C01 → ∞ we generally get Ŵ0(x) = Ŵ00(x). This deformation will play a pivotal role in
this work; it will represent the base of a recursive scheme for generating novel isospectral
deformations. We will therefore refer to a particular Ŵ00(x) as a base deformation in the
following.

In order to expand the space of concrete isospectral deformations further we transform
Eq.(16) into an ordinary second order differential equation by the substitution

F0(x) =
1

W(x)

d

dx
ln U0(x) . (20)

This substitution gives rise to the following linear homogeneous second order differential
equation

−
d2

dx2
U0(x) + V+(x)U0(x) = 0 . (21)
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This equation coincides of course with the zero-energy eigenfunction equation. However,
keep in mind that U0 is not in general to be identified with the eigenfunction of the system.
This is of particular importance to remember in light of Eq.(16). The special solution F0(x) =
1 is generated by the solution

U0(x) ∼ e

∫

x
W(t)dt . (22)

The particular solutions for F0(x) stemming from Eq.(21) can be fed into Eq.(19) (as F00(x))
and thus expand the space of available concrete deformations. The physical potential V̂−(x)
generated by Ŵ0(x) can in general thus be written [6]2

V̂−(x) ≡ Ŵ
2
0 (x)− Ŵ

′

0(x) = Ŵ
2
00(x)− Ŵ

′

00(x) +

+
4Ŵ00(x)e−2

∫

x
Ŵ00(t)dt

C01 +
∫

x
e−2

∫

u
Ŵ00(t)dtdu

+ 2

[

e−2
∫

x
Ŵ00(t)dt

C01 +
∫

x
e−2

∫

u
Ŵ00(t)dtdu

]2

(23)

with

Ŵ00(x) =
d

dx
ln U0(x) . (24)

3.2. Recursive linear deformations

Although the Riccati equation can be transformed into an ordinary second order differential
equation the non-linearity of the Riccati equation allows for a solution space which is larger
than the one associated with linear differential equations of second order, as became evident
in the previous section. It is therefore natural to ask whether the non-linearity of the Riccati
equation implies even more isospectral deformations than the ones we already have deduced
[6]. We will explore this question in this and the next section.

3.2.1. The sum

Let us entertain the following idea. Assume that we have derived a particular base
deformation Ŵ00(x) from an explicitly given superpotential W(x). Then assume that we
add another term F1(x)W(x) (possibly multiplied with a constant) to that deformation such
that we in principle get a novel deformation on the form Ŵ(x) = F10(x)W(x) + Ŵ00(x).
After determining F10(x) from the isospectrality condition Eq.(14) add yet another term of
this kind to the deformation. Let us assume that this process can be repeated indefinitely.
Will terms added in this manner give rise to novel deformations? We will in the following
show that they do. This represents a recursive deformation scheme.

Following the basic idea, after m iterations we thus have the general recursive linear (in W(x))
deformation

Ŵm0(x) = (
m

∑
i=0

λiFi0(x))W(x) = λmFm0(x)W(x) + Ŵ(m−1)0(x) , λ0 ≡ 1 . (25)

2 Note that the corresponding expression in [6] ((2.14)) is misprinted.
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The λi’s are assumed to be independent real constants. Starting with a known superpotential
m consecutive applications of the isospectrality condition yields the following set of equations











































F′
00(x) + [ln W(x)]′F00(x) + W(x)F2

00(x) = W(x) + (ln W(x))′ ,
F′

10(x) + [(ln W(x))′ + 2F00(x)W(x)]F10(x) + λ1W(x)F2
10(x) = 0 ,

F′
20(x) + [(ln W(x))′ + 2(F00(x) + λ1F10(x))W(x)]F20(x) + λ2W(x)F2

20(x) = 0 ,
...
...

F′
m0(x) + [(ln W(x))′ + 2Ŵ(m−1)0(x))]Fm0(x) + λmW(x)F2

m0(x) = 0 .

(26)

The first equation in Eq.(26) coincides of course per definition with Eq.(16). Note that
Fj0(x) = 1 only solves the first equation in Eq.(26). Let us consider an arbitrary iteration
level n ( 6= 0) and make the following substitution in Eq.(26)

Fn0(x) =
1

W(x)
(ln Un(x))′ . (27)

The equation for Fn(x) can then be written

U′′
n (x) + (λn − 1)

[U′
n(x)]2

Un(x)
+ 2Ŵ(n−1)0(x)U′

n(x) = 0 . (28)

This equation corresponds to Eq.(21) in the case when n = 0. It reduces in general to an
ordinary linear differential equation only when λn = 1 , ∀n 6= 0. We will focus on this
special case in this work.

The general solution of Eq.(28) for arbitrary n 6= 0, and with λn set to unity, can be found by
elementary means, and we deduce that

Fn0(x)W(x) =
Cn2e−2

∫ x
Ŵ(n−1)0(t)dt

Cn1 + Cn2

∫ x
e−2

∫ u
Ŵ(n−1)0(t)dtdu

=

=
d

dx
ln(Cn1 + Cn2

∫ x
e−2

∫ u
Ŵ(n−1)0(t)dtdu) . (29)

Cn1 and Cn2 are integration constants, which we assume to be real. We can reduce the
number of integration constants to one at each iteration level, but we will stick to the habit of
explicitly writing down the actual number of constants in order to make it easier to compare
the various formulas we deduce, which stem from both second and first order differential
equations. We also note that the structure of Fn0(x) implies that previous deformations are
not regenerated in general. Of course, this does not exclude this possibility to arise, as we
will see in Section 5. Hence, m in Eq.(25) has in principle no natural upper bound. From
Eq.(25) and Eq.(29) we get the following expression for the superpotential at iteration level m
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Ŵm0(x) = Ŵ00(x) +
m

∑
j=1

d

dx
ln(Cj1 + Cj2

∫ x
e−2

∫ u
Ŵ(j−1)0(t)dtdu) =

= Ŵ00(x) +
d

dx
ln

m

∏
j=1

(Cj1 + Cj2

∫ x
e−2

∫ u
Ŵ(j−1)0(t)dtdu) ≡

≡ Ŵ00(x) +
d

dx
ln Pm(x) . (30)

From Eq.(30) we deduce that

e−2
∫ x

Ŵ(j−1)0(t)dt = P−2
j−1(x)e−2

∫ x
Ŵ00(t)dt ; P2

0 (x) ≡ 1 , j 6= 0 , (31)

such that






































P1(x) = C11 + C12

∫ x
e−2

∫ u
Ŵ00(t)dtdu ,

P2(x) = P1(x)(C21 + C22

∫ x
P−2

1 (u)e−2
∫ u

Ŵ00(t)dtdu) ,
...
...

Pm(x) = Pm−1(x)(Cm1 + Cm2

∫ x
P−2

m−1(u)e
−2

∫ u
Ŵ00(t)dtdu) .

(32)

Hence,

Pn(x) =
n

∏
j=1

(Cj1 + Cj2

∫ x
P−2

j−1(u)e
−2

∫ u
Ŵ00(t)dtdu) . (33)

This last form of the Pn(x) functions neatly exhibits how the base deformation Ŵ00(x)
generates the higher order deformations. Some of the details we have deduced so far are
presented in Figure 1.

Make the following substitution at each iteration level in Eq.(25)

Fn0(x) → Fn0(x) +
1

Xn(x)
. (34)

This implies (with the λm’s reinstated in Eq.(25)) a generalized form Ŵm(x) of the
superpotential Ŵm0(x)

Ŵm0(x) =
m

∑
i=0

λiFi0W(x) ⇒ Ŵm(x) = Ŵm0(x) +
m

∑
i=0

λi

Xi(x)
W(x) . (35)
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W
×F0=F00
−−−−−→ Ŵ00

+F10W
−−−−→ Ŵ10 = Ŵ00 + (ln P1)

′ +F20W
−−−−→ · · ·

+Fm0W
−−−−→ Ŵm0

W
×F0=1
−−−−→ Ŵ00 = W

+F10W
−−−−→ Ŵ10 = W + (ln P1)

′ +F20W
−−−−→ · · ·

+Fm0W
−−−−→ Ŵm0

Figure 1. The upper line depicts the solvable deformation chain Eq.(25) to iteration level m. There is no upper bound on m.
The Fj0(x) functions are given in Eq.(29). The Pj(x) functions are given in Eq.(30) and Eq.(32). They are functions of a base

deformation Ŵ00(x). A base deformation Ŵ00(x) is generated by the zero-energy Schrödinger equation interacting with the
partner potential V+(x), Eq.(21). The second line depicts the important special case when F0(x) = 1. This particular solution
can be derived as a special case of Eq.(19) with X−1

0 = 0, which can be achieved by C01 → ∞, and F00(x) determined by

Eq.(20) and the solution Eq.(22). Ŵ10(x) then coincides with Eq.(19) (when F00(x) = 1 and C01 is finite in Eq.(19)); Eq.(19) is

thus in this particular case regenerated by the scheme at the next recursion level, i.e.

From Eq.(26) we find that Xn(x) satisfies the equation

d

dx
Xn(x)− (

d

dx
ln W(x) + 2Ŵn0(x))Xn(x) = λmW(x) . (36)

This equation is a generalization of Eq.(18). The n’th deformation term Eq.(29) thus changes
into

Fn0(x)W(x) → Fn0(x)W(x) +
d

dx
ln(Cn3 + λn

∫ x
e−2

∫ u
Ŵn0(t)dtdu) . (37)

Cn3 are integrations constants, which we assume to be real. Eq.(37) implies that the more
general expression for the superpotential in Eq.(35) can be written as

Ŵm(x) = Ŵm0(x) +
d

dx
ln Qm(x) , (38)

where

Qm(x) ≡
m

∏
i=0

(Ci3 + λi

∫ x
e−2

∫ u
Ŵi0(t)dtdu) . (39)

m = 0 in Eq.(38) (λ0 ≡ 1) reproduces Eq.(19). In the special case when λm = 1 , ∀m in Eq.(25)
we get

Ŵm(x) = Ŵ00(x) +
d

dx
ln Pm(x) +

d

dx
ln Qm(x) . (40)

When we compare the expressions for (Pm(x))′ and (Qm(x))′ we find that they differ by just
the last term in (Qm(x))′.
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3.2.2. The product

What happens if we in Eq.(25) assume a product structure instead of a sum structure ? Let
us assume that we have determined a base deformation. Let this be the seed superpotential
for the deformation

Ŵ00(x) → Ŵ10(x) = F10(x)Ŵ00(x) = F10(x)F00(x)W(x) , (41)

where F10(x) is some function to be determined by the isospectrality condition. This product
scheme can of course in principle be repeated an arbitrary number m times

Ŵm0(x) = (
m

∏
i=0

Fi0(x))W(x) = Fm0(x)Ŵ(m−1)0 . (42)

This structure gives rise to the following set of equations







































F′
00(x) + (ln W(x))′F00(x) + W(x)F2

00(x) = W(x) + (ln W(x))′ ,

F′
10(x) + (ln Ŵ00(x))′F10(x) + Ŵ00(x)F2

10(x) = 1
F00(x)

(W + (ln W(x))′) ,

...

...

F′
m0(x) + (ln Ŵ(m−1)0(x))′Fm0(x) + Ŵ(m−1)0(x)F2

m0(x) = W(x)

Ŵ(m−1)0(x)
(W(x) + (ln W(x))′) .

(43)
Clearly, each iteration level depends on all the previous ones, and at each level we are
dealing with a non-homogenous non-linear differential equation. Interestingly, by making
the following substitution at an arbitrary iteration level n 6= 0

Fn0(x) =
1

Ŵ(n−1)0(x)
(ln Un(x))′ , (44)

where Un(x) is some function, the equations Eq.(43) all reduce to Eq.(21). Hence, attempting
to generate novel deformations recursively via a product structure, of the kind above, fails.
This conclusion was also reached in [6], but at the level of the second order linear differential
equation Eq.(21).

3.3. Recursive non-linear deformations

We have so far only considered linear (in the superpotential) deformations. In this section we
will briefly consider two non-linear deformation schemes. Let us first consider a polynomial
kind of deformation. That is, given a superpotential Ŵ(i−1)0(x) which we will assume is

derived, in some way or another, from some seed superpotential W(x). Consider then the
polynomial deformation

Ŵi0(x) = Fi0(x)Wk(x) + Ŵ(i−1)0(x) ; k ∈ {1, 2, 3, . . .} . (45)
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The isospectrality condition then implies

F′
i0(x) + [k(ln W(x))′ + 2Ŵ(i−1)0(x)]Fi0(x) + Wk(x)F2

i0(x) = 0 . (46)

This is a Riccati type equation of the kind we have met earlier in this work. Apparently,
different k-values give rise to very different equations to solve. However, and rather
intriguingly, all the possible k-values implies the same deformation. This is seen by making
the following substitution

Fi0(x) =
1

Wk(x)

U′
k(x)

Uk(x)
, (47)

where Uk(x) is some function. This expression inserted into Eq.(46) gives

U′′
k (x) + 2Ŵi−1(x)U′

k(x) = 0 . (48)

Hence, Ŵi0(x) is independent of k and we are essentially left with a linear deformation.
Clearly, the range of values of k can be expanded to the real numbers.

Another canonical generalization of our work is to consider deformations on the form

Ŵ(x) = H0(x)F (W) , (49)

where F is any functional of the seed superpotential W(x). The isospectrality condition then
implies

H′
0(x) + (lnF (W))′H0(x) +F (W)H2

0(x) = F (W)−1(W2(x) + W ′(x)) . (50)

Note that H0(x) = 1 does not solve this equation unless F (W) = W, since Eq.(50) with
H0(x) = 1 implies F ′(x) +F2(x) = V+(x). Since V+(x) is uniquely given in Eq.(2) any other
choice of functional will fail to satisfy the isospectrality condition. Hence the conclusion. The
particular solution H0(x) = 1 is not forced upon us. We can in principle do without it. It is
easily verified that Eq.(50) can be cast into the form Eq.(21) by the substitution

H0(x) =
1

F (W)
(ln U(x))′ . (51)

We can also look for an expanded solution by writing

H0(x) = H00(x) +
1

Z0(x)
, (52)

where H00(x) is a particular solution of Eq.(50). We then get the equation

d

dx
Z0(x)− (

d

dx
lnF (W) + 2H00(x)F (W))Z0(x) = F (W) , (53)
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which is a generalized form of Eq.(18). The reciprocal solution has the general form

1

Z0(x)
=

e−2
∫ x

H00(t)F (W)dt

F (W)(C +
∫ x

e−2
∫

H00(t)F (W)dtdu)
. (54)

C is an integration constant, which we assume to be real. Utilizing that H00(x) =
F−1(x)(ln U(x))′ the resulting deformation coincides with Eq.(19). We thus therefore
conclude that non-linear deformations on the form Eq.(49) does not generate additional
deformations to the ones already generated by Eq.(13).

3.4. Deforming the Coulomb potential

As a relatively simple application of the linear deformation scheme let us briefly consider
deformations of the Coulomb potential. This potential has, within the framework of
SUSYQM, been treated in several previous works [5]. The superpotential and the partner
potential for the Coulomb potential are given by [5]

W(x) =
q2

2(l + 1)
−

(l + 1)

x
, (55)

V+(x) =
1

4
(

q2

l + 1
)2

−
q2

x
+

(l + 1)(l + 2)

x2
. (56)

q and l in these expressions are the electric charge and the angular momentum quantum
numbers, respectively. These potentials result in the following general solution for U0(x) in
Eq.(21) [6]

U0(x) = C1 Ml+1,l+ 3
2
(

q2x

l + 1
) + C2Wl+1,l+ 3

2
(

q2x

l + 1
) . (57)

The M(x)- and W(x)-functions are the Whittaker functions. The solution Eq.(22) is given by
[6]

U0(x) ∼ e
q2 x

2(l+1)−(l+1) ln(2x)
. (58)

We will for simplicity assume this solution in the following. We will let C01 → ∞ in Eq.(19)
such that we deal with the identity deformation Ŵ0(x) = Ŵ00(x) = W(x). We will also
ignore the Qj(x) contributions in the following. Define A ≡ q2/(2(l + 1)) and B ≡ l + 1. It
then follows that

P1(x) = C11 + C12

∫ x
t2Be−2Atdt , (59)

such that

Ŵ10(x) = A −
B

x
+

C12x2Be−2Ax

C11 + C12

∫ x
t2Be−2Atdt

. (60)
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Let us consider the s-state with l = 0 in order to get a better grasp on the content buried in
Eq.(60). We also set q ≡ 1. The expression for Ŵ10(x) then reduces to

Ŵ10(x) =
1

2
−

1

x
+

C12x2e−x

C11 − C12(x2 + 2x + 2)e−x
(61)

after redefining C11 such that the lower integration limit of the integral in Eq.(60) does
not appear explicitly in the expression for the potential. We will automatically do such
redefinitions in the following when it is appropriate. The corresponding physical potential
V̂−1(x) can either be derived from the definition V̂−1(x) ≡ Ŵ2

10(x)− Ŵ ′

10(x) or from Eq.(23)

with Ŵ00(x) = W(x) and C01 finite. This is a consequence of a regeneration of Eq.(19) by the
recursion scheme which was noted in Figure 1. From the definition it follows that

V̂−1(x) =
1

4
−

1

x
+

C12x(2x − 4)e−x

C11 − C12(x2 + 2x + 2)e−x
+

2C2
12x4e−2x

(C11 − C12(x2 + 2x + 2)e−x)2
. (62)

In the special case when we set C11 = 0 the last term in Eq.(61) becomes independent of the
exponentials (and C12) and thus reduces to a pure rational function. The physical potential
V̂−1(x) generated by Ŵ10(x) is then given by

V̂−1(x) =
1

4
−

1

x
+

4x(x + 2)

(x2 + 2x + 2)2
≡ V−(x) +

4x(x + 2)

(x2 + 2x + 2)2
. (63)

Let us go to the second iteration level starting from the expression for Ŵ10(x) in Eq.(61) with
C11 = 0, for convenience. It then follows that

Ŵ20(x) = Ŵ1(x) +
C22x2ex

C21(x2 + 2x + 2)2 + C22(x2 + 2x + 2)ex
. (64)

Note that when C21 = 0 we get Ŵ20(x) = W(x). Hence, the deformation scheme allows
in general for the possibility that additional iterations in particular cases may regenerate
previous potentials in a nontrivial fashion. The expression for the corresponding physical
potential is given by

V̂−2(x) = V̂−1(x) +

[

C22x2ex

C21(x2 + 2x + 2)2 + C22(x2 + 2x + 2)ex

]

×

×

[

−4(
1

x
+

1
2 x2

x2 + 2x + 2
) +

2(C21(2x + 2) + C22ex)

C21(x2 + 2x + 2) + C22ex

]

. (65)
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Figure 2. Generic plots depicting V̂

−
(x), V̂

−1(x) and V̂
−2(x). The plots for V̂

−2(x) show how drastic the nature of a potential
might change as the values of the integration constants change.

The superpotential stemming from the third iteration with Ŵ20(x) in Eq.(64) as the starting
point is given by

Ŵ30(x) = Ŵ20(x) +

(

C32x
2
e

x

C21(x2 + 2x + 2)2 + C22(x2 + 2x + 2)ex

)

(

C31 +
C32

C22
ln

∣

∣

∣

∣

C21(x
2 + 2x + 2) + C22e

x

x2 + 2x + 2

∣

∣

∣

∣

)
. (66)

This superpotential introduces the possibility for a logarithmic singularity away from the
origin when C22/C21 < 0. We note that setting C31 = 0 does not regenerate a previous
potential as was possible at the previous iteration level when we correspondingly put C21 =
0. From Eq.(66) we can deduce the physical potential V̂

−3(x) at the third iteration level. We
do not reproduce it here due to its complexity. Due to the complicated integrals appearing
we are not able to provide the analytical expression for Ŵ40(x). We leave detailed studies of
the Coulomb potential for the future.

Advances in Quantum Mechanics720



4. Conclusion

In a previous paper we showed that isospectral deformations on the form Eq.(15) are
contained in the space of deformations generated by isospectral deformations on the form
Eq.(13). In this work we have shown that Eq.(13) can be considered as the initial, or base,
deformation of a novel infinite recursive isospectral deformation chain. This thus answers
to some extend the question by which we ended our previous paper [6]; how does the
most general isospectral deformation of the kind considered there (Eq.(13) in this paper)
look like. The results in this work do obviously only give a partial answer. We deduced in
particular that a class of recursive deformations exists which is generated by the solutions of
the non-linear differential equations in Eq.(28).

We briefly discussed various ways to construct alternative recursive deformation structures.
We considered a linear product structure, polynomial deformations and completely
generalized base deformations. They all either failed to provide a recursive structure or
they turned out to be identical to the deformation scheme developed in this work.

We applied the linear recursive scheme to the Coulomb potential. We derived novel
superpotentials which all per construction satisfy the isospectrality condition. It is
straightforward, although very tedious, to check that the corresponding physical potentials
V+ at the various iteration levels all satisfy the isospectrality condition Eq.(26). This
application did also demonstrate how easily novel isospectral deformations can be generated
in this approach. It did also demonstrate an increased relative complexity of the generated
potentials with the number of iterations, as one also naively would expect from the
expression Eq.(33).

The results in this work is obviously only a starting point for further research. One issue
which needs clarification is the more general implications which can be drawn from Eq.(28).
Another obvious issue is the behaviour of the transmission T and reflection R coefficients
when the deformation chain is applied to some known initial scattering process. It is known
that T and R are invariant under the simple deformation in Eq.(15) [5]. However, it is unclear
whether this property is also a property of the general deformation chain. It is also of great
interest to study the relation between our chain construction and the conventional operator
approaches. One possible strategy one might follow in order to cast some light on this
issue is to study the relation between the deformation chain and the concept of intertwining
operators. It is known that many exactly solvable potentials are related by intertwining
operator transformations including the Darboux transformations which also appear in our
context [6]. Clearly, key to our construction in this work is the non-linearity of the Riccati
equation. One could contemplate studying the associated JET-space and its deformations.
Furthermore, an analysis of the intertwining of the hierarchy of the JET-spaces associated
with the system of equations in Eq.(26) might also cast new light on our subject.
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