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Chapter 1

Classical and Quantum Conjugate Dynamics –
The Interplay Between Conjugate Variables

Gabino Torres-Vega

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53598

1. Introduction

There are many proposals for writing Classical and Quantum Mechanics in the same lan‐
guage. Some approaches use complex functions for classical probability densities [1] and
other define functions of two variables from single variable quantum wave functions [2,3].
Our approach is to use the same concepts in both types of dynamics but in their own realms,
not using foreign unnatural objects. In this chapter, we derive many inter relationships be‐
tween conjugate variables.

1.1. Conjugate variables

An important object in Quantum Mechanics is the eigenfunctions set {|n >}n=0
∞  of a Hermi‐

tian operator F̂ . These eigenfunctions belong to a Hilbert space and can have several repre‐
sentations, like the coordinate representation ψn(q)= q | n . The basis vector used to provide
the coordinate representation, |q > , of the wave function are themselves eigenfunctions of
the coordinate operator Q̂ We proceed to define the classical analogue of both objects, the
eigenfunction and its support.

Classical motion takes place on the associated cotangent space T *Q with variable z =(q, p),
where q and p are n dimensional vectors representing the coordinate and momentum of
point particles. We can associate to a dynamical variable F (z) its eigensurface, i.e. the level
set

ΣF ( f )= {z∈T *Q | F (z)= f } (1)
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Where f  is a constant, one of the values that F (z) can take. This is the set of points in phase
space such that when we evaluate F (z), we obtain the value f . Examples of these eigensurfa‐
ces are the constant coordinate surface, q = X , and the energy shell, H (z)= E , the surface on
which the evolution of classical systems take place. These level sets are the classical analogues
of the support of quantum eigenfunctions in coordinate or momentum representations.

Many dynamical variables come in pairs. These pairs of dynamical variables are related
through the Poisson bracket. For a pair of conjugate variables, the Poisson bracket is equal to
one. This is the case for coordinate and momentum variables, as well as for energy and time.
In fact, according to Hamilton’s equations of motion, and the chain rule, we have that

{t , H }=∑
i

( ∂ t
∂ q i

∂H
∂ pi

- ∂H
∂ q i

∂ t
∂ pi

)=∑
i

( dt
d q i

d q i

dt +
d pi

dt
dt

d pi
)= dt

dt =1 (2)

Now, a point in cotangent space can be specified as the intersection of 2n hypersurfaces. A
set of 2n independent, intersecting, hypersurfaces can be seen as a coordinate system in co‐
tangent space, as is the case for the hyper surfaces obtained by fixing values of coordinate
and momentum, i.e. the phase space coordinate system with an intersection at z =(q, p). We
can think of alternative coordinate systems by considering another set of conjugate dynami‐
cal variables, as is the case of energy and time.

Thus, in general, the T *Q points can be represented as the intersection of the eigensurfaces
of the pair of conjugate variables F  and G,

ΣFG( f , g)= {z∈T *Q | F (z)= f ,  G(z)= g}. (3)

A point in this set will be denoted as an abstract bra ( f , g | , such that ( f , g |u) means the
function u( f , g).

We can also have marginal representations of functions in phase space by using the eigen‐
surfaces of only one of the functions,

ΣF ( f )= {z∈T *Q | F (z)= f } ,     and    ΣG(g)= {z∈T *Q | G(z)= g}.

A point in the set ΣF ( f ) ΣG(g)  will be denoted by the bra ( f | (g |  and an object like
( f | u) (g |u)  will mean the f g  dependent function u( f ) u(g) .

1.2. Conjugate coordinate systems

It is usual that the origin of one of the variables of a pair of conjugate variables is not well
defined. This happens, for instance, with the pair of conjugate variables q and p. Even
though the momentum can be well defined, the origin of the coordinate is arbitrary on the
trajectory of a point particle, and it can be different for each trajectory. A coordinate system
fixes the origin of coordinates for all of the momentum eigensurfaces.
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A similar situation is found with the conjugate pair energy-time. Usually the energy is well
defined in phase space but time is not. In a previous work, we have developed a method for
defining a time coordinate in phase space [4]. The method takes the hypersurface q 1 = X ,
where X  is fixed, as the zero time eigensurface and propagates it forward and backward in
time generating that way a coordinate system for time in phase space.

Now, recall that any phase space function G(z) generates a motion in phase space through a
set of symplectic system of equations, a dynamical system,

dz
df = XG,       XG = ( ∂G

∂ p , - ∂G
∂ q ), (4)

where f  is a variable with the same units as the conjugate variable F (z). You can think of
G(z) as the Hamiltonian for a mechanical system and that f  is the time. For classical sys‐
tems, we are considering conjugate pairs leading to conjugate motions associated to each
variable with the conjugate variable serving as the evolution parameter (see below). This
will be applied to the energy-time conjugate pair. Let us derive some properties in which the
two conjugate variables participate.

1.3. The interplay between conjugate variables

Some relationships between a pair of conjugate variables are derived in this section. We will
deal with general F (z) and G(z) conjugate variables, but the results can be applied to coordi‐
nate and momentum or energy and time or to any other conjugate pair.

The magnitude of the vector field | XG |  is the change of length along the f  direction

|XG|= d q i

df
d q i

df +
d pi

df
d pi

df =
d lF

df  , (5)

where dlF = (dq i)2 + (d p i)2 is the length element.

A unit density with the eigensurface ΣG(g) as support

(z|g)=δ(z - v),     v∈ΣG(g) (6)

is the classical analogue of the corresponding quantum eigenstate in coordinate q | g  and
momentum p | g  representations. When G(z) is evaluated at the points of the support of
(z | g), we get the value g . We use a bra-ket like notation to emphasise the similarity with
the quantum concepts.

The overlap between a probability density with an eigenfunction of F̂  or Ĝ provides margin‐
al representations of a probability density,
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ρ( f )≔ ( f | ρ)≔ ∫( f | z)(z | ρ)dz = ∫δ(z - f )ρ(z)dz ,      f ∈∑
F

( f ). (7)

ρ(g)≔ (g | ρ)≔ ∫(g | z)(z | ρ)dz = ∫δ(z - g)ρ(z)dz ,      g∈∑
G

(g). (8)

But, a complete description of a function in T *Q is obtained by using the two dimensions
unit density (z | f , g)=δ(z - ( f , g)), the eigenfunction of a location in phase space,

ρ( f , g)≔ ( f , g | ρ)≔ ∫( f , g | z)(z | ρ)dz = ∫δ(z - ( f , g))ρ(z)dz ,     ( f , g)∈∑
FG

( f , g). (9)

In this way, we have the classical analogue of the quantum concepts of eigenfunctions of op‐
erators and the projection of vectors on them.

1.4. Conjugate motions

Two dynamical variables with a constant Poisson bracket between them induce two types of
complementary motions in phase space. Let us consider two real functions F(z) and G(z) of
points in cotangent space z ∈ T*Q of a mechanical system, and a unit Poisson bracket be‐
tween them,

{F , G}= ∂ F
∂ q i

∂G
∂ pi

- ∂G
∂ q i

∂ F
∂ pi

=1 , (10)

valid on some domain D=D( ∂ F
∂ q i )∩D( ∂ F

∂ q i )∩D( ∂ F
∂ q i )∩D( ∂ F

∂ q i ), according to the considered func‐

tions F  and G. The application of the chain rule to functions of p and q, and Eq. (10), sug‐
gests two ways of defining dynamical systems for functions F and G that comply with the
unit Poisson bracket. One of these dynamical systems is

d pi

dF = - ∂G
∂ q i  ,      d q i

dF = ∂G
∂ pi

 . (11)

With these replacements, the Poisson bracket becomes the derivative of a function with re‐
spect to itself

{F , G}= ∂ F
∂ q i

∂ q i

∂ F +
∂ pi

∂ F
∂ F
∂ pi

= dF
dF =1 .

(12)
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Note that F  is at the same time a parameter in terms of which the motion of points in phase
space is written, and also the conjugate variable to G.

We can also define other dynamical system as

d pi

dG = ∂ F
∂ q i  ,      d q i

dG = - ∂ F
∂ pi

 . (13)

Now, G is the shift parameter besides of being the conjugate variable to F . This also renders
the Poisson bracket to the identity

{F , G}=
d pi

dG
∂G
∂ pi

+ d q i

dG
∂G
∂ q i = dG

dG =1 . (14)

The dynamical systems and vector fields for the motions just defined are

dz
dG = X F  ,      X F = (- ∂ F

∂ pi
, ∂ F
∂ q i ) ,     and     dz

dF = XG ,      XG = ( ∂G
∂ pi

, - ∂G
∂ q i ) (15)

Then, the motion along one of the F  or G directions is determined by the corresponding
conjugate variable. These vector fields in general are not orthogonal, nor parallel.

If the motion of phase space points is governed by the vector field (15), F  remains constant
because

dF
dG = ∂ F

∂ q i
∂ q i

∂G + ∂ F
∂ pi

∂ pi

∂G =
∂ pi

∂G
∂ q i

∂G - ∂ q i

∂G
∂ pi

∂G =0 . (16)

In contrast, when motion occurs in the F  direction, by means of Eq. (16), it is the G variable
the one that remains constant because

dG
dF = ∂G

∂ q i
∂ q i

∂ F + ∂G
∂ pi

∂ pi

∂ F = -
∂ pi

∂ F
∂ q i

∂ F + ∂ q i

∂ F
∂ pi

∂ F =0 . (17)

Hence, motion originated by the conjugate variables F (z) and G(z) occurs on the shells of
constant F (z) or of constant G(z), respectively.

The divergence of these vector fields is zero,

∇ ∙X F = - ∂
∂ q i

∂ F
∂ pi

+ ∂
∂ pi

∂ F
∂ q i =0 ,           ∇ ∙XG = ∂

∂ q i
∂G
∂ pi

- ∂
∂ pi

∂G
∂ q i =0 . (18)
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Thus, the motions associated to each of these conjugate variables preserve the phase space
area.

A constant Poisson bracket is related to the constancy of a cross product because

XG ∧X F = dz
dF ∧

dz
dG =| q̂ p̂ n̂

∂G
∂ p - ∂G

∂ q 0

- ∂ F
∂ p

∂ F
∂ q 0

|= n̂( ∂G
∂ p

∂ F
∂ q - ∂G

∂ q
∂ F
∂ p )= n̂{F , G} . (19)

where n̂ is the unit vector normal to the phase space plane. Then, the magnitudes of the vec‐
tor fields and the angle between them changes in such a way that the cross product remains
constant when the Poisson bracket is equal to one, i.e. the cross product between conjugate
vector fields is a conserved quantity.

The Jacobian for transformations from phase space coordinates to ( f , g) variables is one for
each type of motion:

J =| ∂ q
∂ f

∂ p
∂ f

∂ q
∂ g

∂ p
∂ g

|=| ∂G
∂ p - ∂G

∂ q
∂ q
∂ g

∂ p
∂ g

|= ∂G
∂ p

∂ p
∂ g + ∂G

∂ q
∂ q
∂ g = dG

dg =1 , (20)

and

J =| ∂ q
∂ f

∂ p
∂ f

∂ q
∂ g

∂ p
∂ g

|=| ∂ q
∂ f

∂ p
∂ f

- ∂ F
∂ p

∂ F
∂ q

|= ∂ F
∂ q

∂ q
∂ f + ∂ F

∂ p
∂ p
∂ f = dF

df =1 . (21)

We have seen some properties related to the motion of phase space points caused by conju‐
gate variables.

1.5. Poisson brackets and commutators

We now consider the use of commutators in the classical realm.

The Poisson bracket can also be written in two ways involving a commutator. One form is

{F , G}= ( ∂G
∂ p

∂
∂ q - ∂G

∂ q
∂
∂ p )F = LG, F =1 ,

(22)

Advances in Quantum Mechanics8



and the other is

{F , G}= ( ∂ F
∂ q

∂
∂ p - ∂ F

∂ p
∂
∂ q )G = LF , G =1 . (23)

With these, we have introduced the Liouville type operators

LF = ∂ F
∂ q

∂
∂ p - ∂ F

∂ p
∂
∂ q = X F ∙∇ ,     and LG = ∂G

∂ p
∂
∂ q - ∂G

∂ q
∂
∂ p = XG ∙∇  . (24)

These are Lie derivatives in the directions of X F  and XG, respectively. These operators gen‐
erate complementary motion of functions in phase space. Note that now, we also have oper‐
ators and commutators as in Quantum Mechanics.

Conserved motion of phase space functions moving along the f  or g  directions can be ach‐
ieved with the above Liouvillian operators as

∂
∂ f = - LG,  and     ∂

∂ g = - LF  . (25)

Indeed, with the help these definitions and of the chain rule, we have that the total deriva‐
tive of functions vanishes, i.e. the total amount of a function is conserved,

d
df = dq

df
∂
∂ q + dp

df
∂
∂ p + ∂

∂ f = dz
df ∙∇ + ∂

∂ f = XG ∙∇ + ∂
∂ f =LG + ∂

∂ f = - ∂
∂ f + ∂

∂ f =0 , (26)

and

d
dg = dq

dg
∂
∂ q + dp

dg
∂
∂ p + ∂

∂ g = dz
dg ∙∇ + ∂

∂ g = X F ∙∇ + ∂
∂ g =LF + ∂

∂ g = - ∂
∂ g + ∂

∂ g =0 . (27)

Also, note that for any function u(z) of a phase space point z, we have that

LF , u(z) =LF u(z)= X F ∙∇u(z)= dz
dG ∙∇u(z)= - ∂

∂ g u(z), (28)

and

LG, u(z) =LGu(z)= XG ∙∇u(z)= dz
dF ∙∇u(z)= - ∂

∂ f u(z) , (29)

which are the evolution equations for functions along the conjugate directions f  and g .

These are the classical analogues of the quantum evolution equation d
dt = 1

iℏ   , Ĥ  for time
dependent operators. The formal solutions to these equations are

Classical and Quantum Conjugate Dynamics – The Interplay Between Conjugate Variables
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u(z; g)= e -gLF u(z) ,     and    u(z; f )= e - f LGu(z). (30)

With these equations, we can now move a function u(z) on T *Q in such a way that the
points of their support move according to the dynamical systems Eqs. (15) and the total
amount of u is conserved.

1.6. The commutator as a derivation and its consequences

As in quantum theory, we have found commutators and there are many properties based on
them, taking advantage of the fact that a commutator is a derivation.

Since the commutator is a derivation, for conjugate variables F (z) and G(z) we have that, for
integer n,

LG
n , F =n LG

n-1 ,           LG, F n =n F n-1,        LF
n , G =n LF

n-1 ,           LF , G n =n G n-1 . (31)

Based on the above equalities, we can get translation relationships for functions on T *Q. We

first note that, for a holomorphic function u(x)= ∑
n=0

∞
unx n,

u(LG), F = ∑
n=0

∞
unLG

n , F = ∑
n=0

∞
nunLG

n-1 =u '(LG) . (32)

In particular, we have that

e f LG, F = f e f LG . (33)

Then, e f LG is the eigenfunction of the commutator ∙ , F  with eigenvalue f .

From Eq. (32), we find that

u(LG)F - Fu(LG)=u '(LG). (34)

But, if we multiply by u -1(LG) from the right, we arrive to

u(LG)F u -1(LG)= F + u '(LG)u -1(LG). (35)

This is a generalized version of a shift of F , and the classical analogue of a generalization of
the quantum Weyl relationship. A simple form of the above equality, a familiar form, is ob‐
tained with the exponential function, i.e.

e f LGF e - f LG = F + f  . (36)

Advances in Quantum Mechanics10



This is a relationship that indicates how to translate the function F (z) as an operator. When this
equality is acting on the number one, we arrive at the translation property for F  as a function

F (z; f )= (e f LGF (z))= F (z) e f LG 1 + f  e f LG1= F (z) + f  . (37)

This implies that

d
df F (z; f )=1 , (38)

i.e., up to an additive constant, f  is the value of F (z) itself, one can be replaced by the other
and actually they are the same object, with f  the classical analogue of the spectrum of a
quantum operator.

Continuing in a similar way, we can obtain the relationships shown in the following diagram

Diagram 1.

Classical and Quantum Conjugate Dynamics – The Interplay Between Conjugate Variables
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where the constant s has units of action, length times momentum, the same units as the
quantum constant ℏ.

Some of the things to note are:

The operator e gLF  is the eigenoperator of the commutator ∙ , G  and can be used to gener‐
ate translations of G(z) as an operator or as a function. This operator is also the propagator
for the evolution of functions along the g  direction. The variable g  is more than just a shift
parameter; it actually labels the values that G(z) takes, the classical analogue of the spec‐
trum of a quantum operator.

The operators LF  and G(z) are also a pair of conjugate operators, as well as the pair LG

and F (z).

But LF  commutes with F (z) and then it cannot be used to translate functions of F (z), F (z) is
a conserved quantity when motion occurs along the G(z) direction.

The eigenfunction of LF , ∙  and of sLF  is e fG(z)/s and this function can be used to shift LF  as
an operator or as a function.

The variable f  is more than just a parameter in the shift of sLF , it actually is the value that
sLF  can take, the classical analogue of the spectra of a quantum operator.

The steady state of LF  is a function of F (z), but e gF (z)/s is an eigenfunction of LG and of
LG, ∙  and it can be used to translate LG.

These comments involve the left hand side of the above diagram. There are similar conclu‐
sions that can be drawn by considering the right hand side of the diagram.

Remember that the above are results valid for classical systems. Below we derive the corre‐
sponding results for quantum systems.

2. Quantum systems

We now derive the quantum analogues of the relationships found in previous section. We
start with a Hilbert space H of wave functions and two conjugate operators F̂  and Ĝ acting
on vectors in H, and with a constant commutator between them

F̂ , Ĝ = iℏ , (39)

together with the domain D=D(F̂ Ĝ)∩D(ĜF̂ ) in which the commutator holds. Examples of
these operators are coordinate Q̂ and momentum P̂  operators, energy Ĥ  and time T̂  opera‐
tors, creation â† and annihilation â operators.

Advances in Quantum Mechanics12



The eigenvectors of the position, momentum and energy operators have been used to pro‐
vide a representation of wave functions and of operators. So, in general, the eigenvectors
| f  and | g  of the conjugate operators F̂  and Ĝ provide with a set of vectors for a represen‐
tation of dynamical quantities like the wave functions f | ψ  and g | ψ .

With the help of the properties of commutators between operators, we can see that

F̂ n, Ĝ = iℏF̂ n-1,          F̂ , Ĝn = iℏĜn-1. (40)

Hence, for a holomorphic function u(z)= ∑
n=0

∞
unz n we have that

û(F̂ ), Ĝ = iℏû '(F̂ ) ,         F̂ , û(Ĝ) = iℏû '(Ĝ) ,  (41)

i.e., the commutators behave as derivations with respect to operators. In an abuse of nota‐
tion, we have that

1
iℏ ∙ , Ĝ = d ∙

d F
^  ,           1

iℏ F̂ , ∙ = d ∙
d G

^  . (42)

We can take advantage of this fact and derive the quantum versions of the equalities found
in the classical realm.

A set of equalities is obtained from Eq. (43) by first writing them in expanded form as

û(F̂ )Ĝ - Ĝû(F̂ )= iℏû '(F̂ ),      and      F̂ û(Ĝ) - û(Ĝ)F̂ = iℏû '(Ĝ). (43)

Next, we multiply these equalities by the inverse operator to the right or to the left in order
to obtain

û(F̂ )Ĝû-1(F̂ )= Ĝ + iℏû '(F̂ )û-1(F̂ ),     and    û-1(Ĝ)F̂ û(Ĝ)= F̂ + iℏû-1(Ĝ)û '(Ĝ). (44)

These are a set of generalized shift relationships for the operators Ĝ and F̂ . The usual shift
relationships are obtained when u(x) is the exponential function, i.e.

Ĝ(g) : = e -ig F
^

/ℏĜe ig F
^

/ℏ = Ĝ + g ,     and    F̂ ( f ) : = e if G
^

/ℏF̂ e -if G
^

/ℏ = F̂ + f  . (45)
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Now, as in Classical Mechanics, the commutator between two operators can be seen as two
different derivatives introducing quantum dynamical system as

d P
^ ( f )
df = - ∂G

^ (Q
^

, P
^ )

∂Q
^ = 1

ih P̂( f ), Ĝ(Q̂, P̂) ,        d Q
^ ( f )
df = ∂G

^ (Q
^

, P
^ )

∂ P
^ = 1

iℏ Q̂( f ), Ĝ(Q̂, P̂)  , (46)

d P
^ (g )
dg = ∂ F

^ (Q
^

, P
^ )

∂Q
^ = 1

iℏ F̂ (Q̂, P̂), P̂(g)  ,     and     d Q
^ (g )
dg = - ∂ F

^ (Q
^

, P
^ )

∂ P
^ = 1

ih F̂ (Q̂, P̂), Q̂(g)  , (47)

where

P̂( f )= e if G
^

/ℏP̂e -if G
^

/ℏ ,           Q̂( f )= e if G
^

/ℏQ̂e -if G
^

/ℏ ,  (48)

P̂(g)= e -ig F
^

/ℏP̂e if F
^

/ℏ ,     and     Q̂(g)= e -ig F
^

/ℏQ̂e ig F
^

/ℏ . (49)

These equations can be written in the form of a set of quantum dynamical systems

d ẑ
df = X̂ G ,           X̂ G = ( ∂G

^

∂ P
^ , - ∂G

^

∂Q
^ ) ,           d ẑ

dg = X̂ F  ,           X̂ F = (- ∂ F
^

∂ P
^ , ∂ F

^

∂Q
^ ) , (50)

where ẑ =(Q̂, P̂).

The inner product between the operator vector fields is

X̂ F
† ∙ X̂ F = (- ∂ F

^

∂ P
^ , ∂ F

^

∂Q
^ )†∙ (- ∂ F

^

∂ P
^ , ∂ F

^

∂Q
^ )= ( d Q

^

dg )2 + ( d P
^

dg )2≔ ( d l̂ F

dg )2
, (51)

where (d l̂ F )2≔ (dQ̂)2 + (d P̂)2, evaluated along the g  direction, is the quantum analogue of

the square of the line element (dlF )2 =(dq)2 + (dp)2.

We can define many of the classical quantities but now in the quantum realm. Liouville type
operators are

L̂
^

F ≔
1

iℏ F̂ , ∙  ,     and    L̂
^

G≔
1

iℏ ∙ , Ĝ  .
(52)

These operators will move functions of operators along the conjugate directions Ĝ or F̂ , re‐
spectively. This is the case when Ĝ is the Hamiltonian Ĥ  of a physical system, a case in
which we get the usual time evolution of operator.
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There are many equalities that can be obtained as in the classical case. The following dia‐
gram shows some of them:

Diagram 2.
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Note that the conclusions mentioned at the end of the previous section for classical systems
also hold in the quantum realm.

Next, we illustrate the use of these ideas with a simple system.

3. Time evolution using energy and time eigenstates

As a brief application of the abovee ideas, we show how to use the energy-time coordinates
and eigenfunctions in the reversible evolution of probability densities.

Earlier, there was an interest on the classical and semi classical analysis of energy transfer in
molecules. Those studies were based on the quantum procedure of expanding wave func‐
tions in terms of energy eigenstates, after the fact that the evolution of energy eigenstates is
quite simple in Quantum Mechanics because the evolution equation for a wave function

iℏ ∂
∂ t

|ψ > = Ĥ |ψ >  is linear and contains the Hamiltonian operator. In those earlier calcula‐
tions, an attempt to use the eigenfunctions of a complex classical Liouville operator was
made [5-8]. The results in this chapter show that the eigenfunction of the Liouville operator
LH  is e gT (z) and that it do not seems to be a good set of functions in terms of which any other
function can be written, as is the case for the eigenfunctions of the Hamiltonian operator in
Quantum Mechanics. In this section, we use the time eigenstates instead.

With energy-time eigenstates the propagation of classical densities is quite simple. In order
to illustrate our procedure, we will apply it to the harmonic oscillator with Hamiltonian giv‐
en by (we will use dimensionless units)

H (z)= p 2

2 + q 2

2  . (53)

Given and energy scaling parameter Es and the frequency ω of the harmonic oscillator, the
remaining scaling parameters are

ps = mEs ,      qs =
Es

mω 2  ,     ts = 1
ω  . (54)

We need to define time eigensurfaces for our calculations. The procedure to obtain them is
to take the curve q =0 as the zero time curve. The forward and backward propagation of the
zero time curve generates the time coordinate system in phase space. The trajectory generat‐
ed with the harmonic oscillator Hamiltonian is

q(t)= 2Ecos (t + π
2 ) ,     p(t)= 2Esin (t + π

2 ) . (55)

With the choice of phase we have made, q =0 when t =0, which is the requirement for an ini‐
tial time curve. Then, the equation for the time curve is
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 p =q tan (t + π
2 ),   or   q = p cot (t + π

2 ) . (56)

These are just straight lines passing through the origin, equivalent to the polar coordinates.
The value of time on these points is t , precisely. In Fig. 1, we show both coordinate systems,
the phase space coordinates (q, p), and the energy time coordinates (E , t) on the plane. This
is a periodic system, so we will only consider one period in time.

Figure 1. Two conjugate coordinate systems for the classical harmonic oscillator in dimensionless units. Blue and black
lines correspond to the (q, p) coordinates and the red and green curves to the (E , t) coordinates.

At this point, there are two options for time curves. Both options will cover the plane and
we can distinguish between the regions of phase space with negative or positive momen‐
tum. One is to use half lines and t  in the range from -π to π, with the curve t =0 coinciding
with the positive p axes. The other option is to use the complete curve including positive
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and negative momentum values and with t∈ ( - π / 2, π / 2). In the first option, the positive
momentum part of a probability density will correspond to the range t∈ ( - π / 2, π / 2), and

the negative values will correspond to t∈ (-π, - π
2 )∪ (π / 2, π). We take this option.

Now, based on the equalities derived in this chapter, we find the following relationship for a
marginal density dependent only upon H (z), assuming that the function ρ(H ) can be writ‐
ten as a power series of H , ρ(H )=∑

i
ρiH

i,

e -τLH ρ(H )=∑
n

( - τ)n

n ! LH
n ∑

i
ρiH

i =∑
i

ρiH
i =ρ(H ) ,  (57)

where we have made use of the equality LH H =0. Then, a function of H  does not evolve in
time, it is a steady state. For a marginal function dependent upon t , we also have that

e -τLH ρ(t)= e τd /dtρ(t)=ρ(t + τ) . (58)

where we have made use of the result that d
dt = - LH . Therefore, a function of t  is only shifted

in time without changing its shape.

For a function of H  and t  we find that

e -τLH ρ(H , t)= e -τd /dtρ(H , t)=ρ(H , t + τ) . (59)

This means that evolution in energy-time space also is quite simple, it is only a shift of the
function along the t  axes without a change of shape.

So, let us take a concrete probability density and let us evolve it in time. The probability
density, in phase space, that we will consider is

ρ(z)= H (z)e -((q-q0)2+( p- p0)2)/2σ 2

,  (60)

with (q0, p0)= (1,2) and σ =1. A contour plot of this density in phase-space is shown in (a) of
Fig. 2. The energy-time components of this density are shown in (b) of the same figure. Time
evolution by an amount τ correspond to a translation along the t  axes, from t  to t + τ, with‐
out changing the energy values. This translation is illustrated in (d) of Fig. 2 in energy-time
space and in (c) of the same figure in phase-space.

Recall that the whole function ρ(z) is translated in time with the propagator e -τLH . Then,
there are two times involved here, the variable t  as a coordinate and the shift in time τ. The
latter is the time variable that appears in the Liouville equation of motion
dρ(z ; τ)

dτ = - LH ρ(z;τ).
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Figure 2. Contour plots of the time evolution of a probability density on phase-space and on energy-time space. Initial
densities (a) in phase space, and (b) in energy-time space. (d) Evolution in energy-time space is accomplished by a shift
along the taxes. (c) In phase space, the density is also translated to the corresponding time eigensurfaces.

This behaviour is also observed in quantum systems. Time eigenfunctions can be defined in
a similar way as for classical systems. We start with a coordinate eigenfunction |q >  for the
eigenvalue q =0 and propagate it in time. This will be our time eigenstate

|t >  = e
it H

^

ℏ  |q =0>  . (61)

The projection of a wave function onto this vector is

< t|ψ > = <q =0|e -
it H

^

ℏ |ψ> =ψ(q=0; t) , (62)

Which is the time dependent wave function, in the coordinate representation, and evaluated
at q =0. This function is the time component of the wave function.

The time component of a propagated wave function for a time τ is

< t|ψ(τ)> = <q =0|e -
it H

^

ℏ e -
iτ H

^

ℏ |ψ> = < t + τ|ψ>  . (63)

Then, time evolution is the translation in time representation, without a change in shape.
Note that the variable τ is the time variable that appears in the Schrödinger equation for the
wave function.
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Now, assuming a discrete energy spectrum with energy eigenvalue En and corresponding
eigenfunction |n > , in the energy representation we have that

<n|ψ(τ)> = <n|e -
iτ H

^

ℏ |ψ> = e -
iτEn

ℏ <n|ψ> , (64)

i.e. the wave function in energy space only changes its phase after evolution for a time τ.

4. Concluding remarks

Once that we have made use of the same concepts in both classical and quantum mechanics,
it is more easy to understand quantum theory since many objects then are present in both
theories.

Actually, there are many things in common for both classical and quantum systems, as is the
case of the eigensurfaces and the eigenfunctions of conjugate variables, which can be used as
coordinates for representing dynamical quantities.

Another benefit of knowing the influence of conjugate dynamical variables on themselves
and of using the same language for both theories lies in that some puzzling things that are
found in one of the theories can be analysed in the other and this helps in the understanding
of the original puzzle. This is the case of the Pauli theorem [9-14] that prevents the existence
of a hermitian time operator in Quantum Mechanics. The classical analogue of this puzzle is
found in Reference [15].

These were some of the properties and their consequences in which both conjugate variables
participate, influencing each other.
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