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1. Introduction

A seismic array is defined as a suite of seismometers with similar characteristics. Seismic ar‐
ray were originally built to detect and identify nuclear explosions. Since their development
all over the world, seismic arrays have contributed to study interior of volcanoes, continen‐
tal crust and lithosphere, determination of core-mantle boundary and the structure of inner
core. Seismic arrays have been used to perform many regional tomographic studies (e.g.,
Achauer and the KRISP Working Group, 1994; Ritter et al., 1998, 2001); they helped to re‐
solve fine-scale structure well below the resolution level of global seismology in many dif‐
ferent places in the Earth, from the crust using body waves (e.g., Rothert and Ritter, 2001)
and surface waves (e.g., Pavlis and Mahdi, 1996; Cotte et al., 2000), the upper mantle (e.g.,
Rost and Weber, 2001), the lower mantle (e.g., Castle and Creager, 1999), the core-mantle
boundary (e.g., Thomas et al., 1999; Rost and Revenaugh, 2001), and the inner core (e.g., Vi‐
dale et al., 2000; Vidale and Earle, 2000; Helffrich et al., 2002). A different branch of seismol‐
ogy that benefited from arrays is “forensic seismology” (Koper et al., 1999; 2001; Koper and
Wallace 2003). Studied have been also carried out to track the rapture propagation of large
and moderate earthquakes (Goldstein and Archuleta 1991a,b: Spudich and Cranswick 1984;
Huang 2001; D’Amico et al. 2010; Sufri et al. 2012; Koper et al. 2012), studies related to the
seismic noise have been also developed using seismic arrays (Koper and Fathei, 2007; Ger‐
stoft et al. 2006; D’Amico et al. 2008; Schulte-Pelkum et al., 2004). For example Gerstoft et al.
(2006) used beamforming of seismic noise recorded on California Seismic Network to identi‐
fy body and surface waves generated by the Hurricane Katrina. Schulte-Pelkum et al., (2004)
measured direction and amplitude of ocean-generated seismic noise in the western United
States. Koper and Fatehi (2007) used 950, randomly chose, 4-sec long time windows from
1996 to 2004 at the CMAR array located in Thailand. In their work they found, around 1Hz,
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a large noise peak coming from southwest near 220 degrees and an apparent velocity of
3.5-4.0km/s. Their results are robust from year-to-year and are also consistent from season to
season. Two lesser noise peaks show probably a seasonal dependence, being much stronger
in the fall and winter than in the summer and spring. Neither peak is sensitive to the “hour-
to-hour” analysis meaning they are uncorrelated to anthropical noise. Koper and De Foy
(2008) showed that the seismic noise recorded at the CMAR array during 1995-2004 can be
strongly correlated with the ocean wave’s heights. They carried out this information by us‐
ing data from TOPEX/POSEIDON satellite tracks and explained them by the local monsoon-
driven climate. For all this different purpose a lot of different arrays techniques and
methods have been developed (for reviews see: Rost and Thomas, 2002; Filson, 1975) and
applied to a wide number of high-quality data set.

The main goal of this chapter is to highlight the main characteristics of noise for the Alice
Springs ARray (Australia). Furthermore detecting the noise we would like, if it exists, try to
found the large peak noise, the predominant direction and estimate the optimal phase veloc‐
ity and eventual time dependence. This kind of study could play a key role in for the isola‐
tion of the seismic noise in designing new arrays or particular instruments such as the
construction of gravitational wave detectors (Hoffmann et al.,2002 and reference in therein).
Theoretically knowing the seismic noise features and source it will be possible to subtract its
effect from the data.

2. Data set and processing

Alice Springs Array is located in Australia and it is made by 19 vertical component short
period seismographs deployed with an effective aperture of about 10 km (Fig.1). We ignored
elevation differences among the array elements and considered only 2D wavenumber vec‐
tors. This is a reasonable since the ASAR array is relatively flat.

Continuous data were available from 1994 to 2004 and it was possible to get them by using
the “autodrm request” of the U.S. Army Space and missile Defense Command monitoring
research program (www.rdss.info, last access in 2009). It supports different researches relat‐
ed to the nuclear explosions monitoring. Time series containing randomly noise recorded
for each station in all the time period where recordings are available. In the present paper
data from 1999 to 2001 are used. We extracted several minutes of continuous data once a
week for the selected time period, making sure to vary the time of day and the day of the
week (Fig. 2). We used the Generic Array Processing software (GAP; Koper 2005), a set of
freely C programs for processing seismic array data. These programs operate on binary SAC
files and output GMT (Wessel and Smith, 1991) scripts for visualizing the results; they were
developed to work both with small aperture array and other type of array as well. In present
paper we used in particular the program called “capon.c” that performs the signal process‐
ing following the maximum likelihood Capon (1969) method; the idea is to use a spectral
density function that provides the information concerning the power as a function of fre‐
quency, this function also provides the vector velocities of the propagating waves. This kind
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of approach is also known in literature as frequency-wavenumber (f-k) analysis; it offers the
opportunity to determine the back-azimuth and the slowness of coherent seismic waves
with a high resolution. Furthermore, it has the possibility to detect and discriminate simulta‐
neously several microseismic sources. Each trace was examined to eliminate those with spu‐
rious transients or glitches, null traces and those contain obvious earthquake energy. After
this selection the original dataset was reduced about of the 5%; each time window is 5 mi‐
nutes long. Figure 3 shows a schematic diagram of the method applied in this study. The
analyses are performed at different frequency bands (around 0.4Hz, 0.6Hz, 0.8 Hz, 1.0Hz,
2.0Hz and 4.0Hz).

Figure 1. Alice Springs Array (ASAR) location and array geometry. The white triangle in the top panel represents the
reference element, while the dark gray triangles are the other 18 elements of the array
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Figure 2. Characteristics of our data set of seismic noise recorded by ASAR. (a) number of recording as function of
year, month (b) and hours (UTC) (c)
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Figure 3. Example of used time windows and schematic representation of the procedure applied in the present study

3. Results and discussion

Figures 4 shows the number of recording as a function of the optimal ray parameter for the
frequencies of 0.4, 0.6, 0.8, and 1.0 Hz. Figures 5, 6, 7, 8, 9, 11, and 12 show the time-averaged
ambient noise field at ASAR array averaged per each year and the average for the three-year
period and the three-year period respectively, binned according to month at the frequency
of 0.4Hz, 0.6Hz, 0.8 Hz, 1.0Hz. Figure 13 reports the results obtained for 2.0 and 4.0Hz re‐
spectively and showing the average per each year and the average for the three-year period.
Figure 14 plots the local maxima (from 0.4 to 1.0 Hz) computed using the Capon (1969)
method; red dots represent all the local maxima while blue are the maxima having a relative
power greater than 5db. We observed, for the frequencies of 0.4, 0.6, 0.8 and 1.0 Hz, the most
prominent pick coming from the S-W direction with an optimal backazimuth around
190-200 degrees and an apparent velocity of about 3-4km/s indicative of higher mode Ray‐
leigh waves. This energy is probably generated as waves from the interaction of oceanic
waves with the coast in the Australian Bight. Because of the high attenuation of short period
Rayleigh waves, it is really unlikely that the noise is generated further away from the ASAR
array. It is also possible to highlight a possible correlation between noise peaks and the dis‐
tance of the array to the coast line. In fact, according the plot in figure 14 for each different
frequency it is possible to notice that the largest number of peak having a relative power
greater than 5db is coming from the S-W direction; the second large number of peak is com‐
ing from the N-E direction and a very few are coming from the S-E part that is the largest
distance from the coast. An other important noise peak shown in figure 14 occurs in the cen‐
ter of the plot, indicating that energy is coming almost with a vertical incidence on the array.
There is not any peak for the high-frequencies (f=2.0; 4.0 Hz); that is probably due to the lo‐
cation of the array. Furthermore we can also point our attention on the amplitude as a func‐
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tion of time (fig. 15). It seems there are some seasonal patterns, in fact, the maximum peaks
occur in the winter time while the minimum values are during the summer time (please re‐
member that the array is located in the Southern Hemisphere).

Figure 4. Number of recordings as a function of the optimal ray parameters for different frequency
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Figure 5. Average of the relative power per year at 0.4 Hz
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Figure 6. Average of the relative power per month at 0.4 Hz
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Figure 7. Average of the relative power per year at 0.6 Hz
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Figure 8. Average of the relative power per month at 0.6 Hz
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Figure 9. Average of the relative power per year at 0.8 Hz
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Figure 10. Average of the relative power per month at 0.8 Hz
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Figure 11. Average of the relative power per year at 1 Hz
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Figure 12. Average of the relative power per month at 1 Hz
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Figure 13. Average of the relative power per year at 2 Hz (a) and 4 Hz (b)
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Figure 14. Local maxima computed using the Capon (1969) method having a relative power greater than 5db for dif‐
ferent frequencies It is possible to notice a relationship between the maxima in the S-W and N-E direction; they seem
be quite spread in the N-W and S-E directions; perhaps due to the distance between the array and the coast lines.
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Figure 15. Maximum amplitude versus time

4. Concluding remarks

Seismic array have contributed to develop different studies to investigate the interior of
the Earth. In this paper we used some array techniques in order to highlight the charac‐
teristic of noise for a relative small aperture array (about 10 km): the ASAR array locat‐
ed  in  central  Australia.  We  used  waveforms  from  1999  to  2001  choosing  the  data  in
order to cover each year,  month day and part  of  it.  We used the Capon (1969) method
and we performed the analysis at different frequencies (0.4, 0.6, 0.8, 1.0, 2.0 and 4.0 Hz).
For each frequency the optimal ray parameter,  the optimal phase velocity and the opti‐
mal  backazimuth  were  calculated.  Results  show  that  there  is  a  consistent  peak  for  the
optimal  backazimuth  around  190-200  degrees  for  the  frequency  ranged  from  0.4  to  1.0
Hz; the maximum peak disappears for the 2.0 and 4.0Hz analysis. The predominant peak
in  the  S-W direction  could  be  interpreted  as  ocean  waves  interacting  with  the  coast  in
the Australian Bight. The absence of peaks for the analysis above the 2.0 Hz confirm that
there is no evidence of anthropical noise,  that is  probably due to the location of the ar‐
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ray.  We  found  a  maximum  peak  around  3-4Km/s  for  the  phase  velocity  indicative  of
higher-mode  Rayleigh  waves.  Some  dispersion  is  evident  in  the  phase  velocity  peaks,
and the large noise peak to the southwest is consistent from season to season, suggesting
that there are some seasonal patterns as well.  In some of the f-k spectra it is possible to
notice a double peak, in which there appears to be a body-wave component to the noise.

The author thanks Dr. Keith Koper (University of Utah, USA) for providing the Generic Ar‐
ray Processing software. Data where obtained using the “autodrm request” of the U.S. Army
Space and missile Defense Command monitoring research program (www.rdss.info, last ac‐
cess in 2009). The author is also very thankful to Ms. Silvia Vlase for her support.
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