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1. Introduction

Cell-ECM interactions Fundamental to the success of using biomaterials in medical and
health care applications, is the understanding of their interactions with biological tissues
and systems. First step towards this end is the elucidation of cell-ECM interactions, which
has attracted considerable interest in recent decade. Cellular decision-making process is
driven by the internal genetic program and external factors comprising primarily other cells
and extracellular matrix (ECM) via soluble factors and direct physical connections such as
focal adhesion [1, 2]. Three key features of ECM have been identified of great significance in
affecting cells, namely, chemical and biological composition, dimensionality (two- vs. three-
dimensional), and physical properties [3-6]. These features can be sensed by cells via cell-
ECM linkages, and the resulting signals subsequently follow intracellular pathways and
trigger a cascade of events leading to alterations in gene expression and manifestation in
phenotype. In contrast to the long recognized chemical composition and adhesive character‐
istics of the ECM, physical cues including topography, pore size, geometric patterns, and
mechanical stiffness and their significance has just started being appreciated [7-10]. Whilst
characteristics of ECM have profound effect on cells, cells may also actively exert impact on
ECM by secretion of soluble factors or modify properties of ECM, or contribute to maintain‐
ing integrity or properties of ECM. At a larger scale, biological systems may actively interact
with biomaterials to maintain or re-establish homeostasis.

Dynamic aspect of ECM To date, the majority of the substrates employed in cellular studies
and other biological investigations have been of fixed mechanical stiffness and/or adhesive
properties throughout cell culture. There is an increasing realization that a cell’s microenvir‐
onment is dynamic and changing with time [11-13]. It is the case in both pathologic and nor‐
mal tissues, at the tissue-implant interfaces, and during development and aging [14],
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especially for load-bearing and mechanically active tissues (e.g., heart, cartilage, lung) [15].
Not only do these changes naturally occur, but there are also benefits associated with them
from a tissue engineering viewpoint, as highlighted in the series of discussions in the March
2005 issue of MRS (Materials Research Society) Bulletin [16, 17] and later studies. Whitesides
[18] and Mrksich [19] and their coworkers among a number of investigators pioneered the
work on engineering cell growth by using dynamic substrates. Their work and later reports
on differential cell responses to materials with different properties suggest that it is benefi‐
cial for biomaterials to have controlled changing properties [20]. These facts make it very de‐
sirable for the bio-mimetic materials to have the capability of undergoing controlled
remodeling with respect to time. They also raised caution in interpretation of the observa‐
tions made from the majority of the biological studies, where properties of the substrates
(e.g., culture flask, Petri dish, and hydrogels) remain unchanged throughout the process.

The scope of this work A significant number of reviews are available on the changes in
soluble factors of ECM that may affect cellular behavior (e.g., [21]) and particularly on the
changing environment in bioreactors [22] (e.g., nutrients concentration, oxygen level, tem‐
perature). Thus, they are not covered in this review. Moreover, flow conditions and the re‐
sulting traction forces, and their effect on certain cell types including blood cells (i.e.,
endothelial cells and red blood cells) have also been intensively reviewed and hence are not
discussed here. This is also the case for mechanical forces, strain and stress applied directly
to the cells (e.g., [23, 24]) in load-bearing tissues such as bone, cartilage and lung (for refer‐
ence, see, e.g., [25-27] ).

Therefore, this review is focused on the latest studies and current knowledge of two- or
three- dimensional substrates with changing or dynamic mechanical and adhesive proper‐
ties, design and conditions to trigger and achieve designed dynamics, and the impact of in-
situ change of these properties on cell behavior, which provides guideline for design of
biomaterials for their applications in medical and healthcare applications. Note that me‐
chanical stiffness and elastic modulus were used interchangeably in this work.

2. Dynamic nature of the cell microenvironment

Normal tissues The micro-environment within which cells reside in natural tissues under‐
goes constant synthesis and degradation [16, 17], and has long been recognized as dynamic
and changing [25, 28]. Although the composition of tissues generally remain tightly control‐
led in maturation, ECM remodeling constantly takes place [25, 29, 30], particularly when un‐
der hormonal stimulation or stress responses (e.g., [31]). Cells actively participate in tissue
remodeling by secreting and mobilizing ECM molecules [32]. Alterations in ECM composi‐
tion may result in changes in cell adhesion and /or tissue stiffness [33, 34] which further
stimulates cellular responses. For instance, laminin component involved in cell adhesion to
ECM is variant due to dynamics in exogenous factors [35]; normal cartilage shows elevated
stiffness [36]; and vocal fold tissue exhibits dynamic viscoelastic properties [37]. Some speci‐
alized cell types can experience fast adhesion and detachment from ECM [38]. Changing
ECM can also modify cell-cell interactions, further affecting cell behavior [39].
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Pathological tissues Diseased tissue may possess properties such as mechanical stiffness
different from those of the normal tissue [40, 41]. As a typical example, it has been found
that tumor cells display enhanced movement towards ECM with lower mechanical rigidity,
which is interesting considering the general stiffening phenomenon of tumor tissues [42],
and biomechanical characteristics of tissues play a crucial role in tumor development [41]. It
has also been shown that during the surgical procedures such as radio-frequency (RF) abla‐
tion, tissue properties can be modified [43]. Moreover, changes in ECM composition and rel‐
ative quantity of ECM molecules can be correlated to pathology. For instance, ECM
composition change that occurs during sub-epithelial tissue remodeling proved associated
with asthma [33]. ECM remodeling in diseased heart valves is correlated to myofibroblast
contractility [44], and certain cell types such as valvular interstitial cells can be activated and
contribute to further tissue remodeling [45]. Additionally, ECM remodeling affects tissue
mechanical properties in addition to inflammatory responses [46]. Moreover, mechanical
forces, as experienced in traumatic brain injury or even under normal conditions, could po‐
tentially cause protein aggregation, giving rise to various diseases including neurodegenera‐
tive diseases [47]. Furthermore, early investigation of properties of central nervous (CNS)
tissue under impact yielded modulus values with considerable variation. As an example,
Fallenstein and coworker reported storage modulus of human brain tissue of 0.6 ~ 1.1 kPa
under sinusoidal shear stress input mimicking head impact [48].

Development and aging During development, synthesis and degradation of ECM is a con‐
trolled process (e.g., [8, 49]), and mis-regulation contributes to many forms of diseases [30]
Particularly, the microenvironment for embryonic and adult stem cells is regulated both
temporally and spatially [2, 34], and is involved in various developmental processes includ‐
ing responses to soluble factors, cell differentiation, and morphogenesis [12]. ECM in mus‐
culoskeletal and other tissues adapts to increasing mechanical requirements by altering the
size of tissue components [50] during development. Structural dynamics of ECM compo‐
nents such as collagen, laminin, and fibronectin coincides with estrous cycle and develop‐
mental progression [51]. Besides development, aging is also accompanied by changing ECM
composition and structures. For example, in connective tissues, aging has been reported to
be associated with increase in type I collagen content and decrease in both type III collagen
and proteoglycans content, and with collagen fiber disruption and unraveling [50].

Tissue-implant interfaces With the growing interest in developing biomimetic materials for
tissue engineering applications, tissue-implant interfaces have been subject to considerable
research effort. Previous reports showed that cells can actively modify ECM at the interfa‐
ces, and cause drastic changes in tissue or construct mechanics using fibroblast-populated
construct and other biomaterials [52, 53]. The study by Lee and co-workers suggested that
dynamic moduli of an alginate material may be due to the bioactivities of the chondrocytes
encapsulated in the scaffold [54]. In a similar study, different substrate composition and ar‐
chitecture gave rise to distinct levels of modulus increase owing to chondrocytes responses
[55]. To take another example, smooth muscle cells (SMCs) in contact with engineered arteri‐
al construct displayed distinctive responses in protein synthesis and consequently the me‐
chanical properties of ECM were significantly different [56]. Additionally, biodegradable
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materials used in various tissue engineering applications possess changing properties asso‐
ciated with specific degradation profiles.

Engineering advantages It has been suggested that temporal control over substrate or scaf‐
fold properties may entail great benefits in engineering cell growth. Among the notable ex‐
amples is the stem cell differentiation and proliferation. A recent work showed enhanced
hepatic functions from differentiated stem cells on softer substrates and improved expan‐
sion of undifferentiated cells on stiffer ones [57]. Therefore, it is promising to use stiffer sub‐
strates for optimal proliferations and subsequently soften them to gain better hepatic
functions once differentiation completes. Langrana group also found that different neurite
properties (e.g., axonal length and primary dendrite number) show differential preference
towards substrate stiffness [58], suggesting the strategy of promoting nerve regeneration
with scaffold of varying properties. Similar approach can be adopted to take advantage of
differential cell responses (e.g., migration and functions) to adhesive properties.

The recurring indication from the above discussions is that in vivo ECM interacts with cells
in many ways, and that the alteration in ECM composition or structures leads to changes in
adhesive properties (hence cell adhesion) and/or mechanical properties. This potentially af‐
fects a variety of cell types and their properties and functioning, at different developmental
stages, under normal or pathological conditions, or upon impact or injury. It also holds
promises in offering novel approaches to tissue engineering applications. As a result, it is
imperative to understand cellular responses to changing substrate properties for basic biology
and biomimetic material (including biodegradable materials) design.

3. Types of dynamic substrates and stimuli

Here we consider two major classes of dynamic substrates that are based on self-assembled
monolayer, or SAM, and hydrogels, as well as other types of substrates with surface or
structural modifications. Since the focus of this work is on mimicking dynamic nature of
ECM to examine cellular responses, those dynamic materials that are developed for other
specific applications such as drug delivery [59] and do not involve changes that mimic dy‐
namic ECM are beyond the scope of the review.

3.1. Self-assembled monolayer (SAM)

SAMs are formed by adsorption of molecules in solution or gas phase onto substrates in a
spontaneous and organized fashion [60], and have emerged as an important candidate of
materials  in  studying cellular  responses  to  dynamic  substrates  [60,  61]  where  modifica‐
tions could be made in situ. One of the major research focuses in this direction is to exam‐
ine  the  effect  of  dynamic  adhesive  property  of  the  substrate  on  cells,  particularly  by
leveraging the ability to selectively capture or release cells upon application of a variety of
stimuli (Table 1).
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Type Substrates Properties changed

and stimuli

Cell model Observations and notes Ref.

SA
M

SAM incorporating

O-silyl

hydroquinone

moiety

Adhesion on/off

Stimulus: electric potential

3T3

fibroblasts

Modulation of cell adhesion and migration [17,

61,

65]

Electro-active

quinine monolayer

on Au

Adhesion on/off

Stimulus: electric potential

3T3

fibroblasts

Selective release of adherent cells [68]

Azobenzene

containing SAM on

Au

Adhesion on/off

Stimulus: UV/visible light

3T3

fibroblasts

Attachment and release of adherent cells

Potential to control part of a single cell or groups of

cells

[69]

Po
ly

m
er

ic
 H

yd
ro

ge
l

MMP responsive

polymer hydrogel

network

Degradation of hydrogel

Stimulus: cell secreted

MMP

Human

foreskin

fibroblasts

(HFFs)

Cell infiltration into the gel network with time [74]

Thermo-responsive

polymer with

photosensitive

surface

Adhesion on/off

Stimulus: UV radiation and

temperature

CHO-K1

cells

Reversible control over cell adhesion

Ability to control a population of cells

[72]

poly(NIPAM-co-

sodium acrylate)

hydrogel films on

rigid substrates.

Topographic change

(swelling/de-swelling of

gels)

Stimulus: temperature

Porcine

epithelial

cells

Dynamic patterned substrates

Reversible encapsulation of adherent cells

[73]

DNA crosslinked

PAM gels

Crosslinking density↑è

Mechanical stiffness ↑,

vice versa

Stimulus: ssDNA

L929 & GFP

fibroblasts

On dynamic substrate, L929 cells spread more than

those on static stiff substrates (~23 kPa), while GFP

fibroblasts respond differently to stiffening and

softening of substrates

Cell spreading and polarity (aspect ratio) respond

differently to stiffness dynamics

The range, starting point, and end point of change

matter

[81,

83]

DNA crosslinked

PAM gels

Crosslinking

density↓èstiffness ↓

Stimulus: ssDNA

Primary

spinal cord

cells

Neurite outgrowth respond to dynamic stiffness

The trend in the response match that to the static

stiffness except for primary dendrite length

[20]

HA hydrogel Crosslinking density

change and ECM

deposition è

Mechanical stiffness

change

Stimulus: hydrolysis or

enzyme

human

mesenchym

al stem cells

(hMSCs)

Mechanical properties can be engineered with

degradation

Stiffness ↑ when degradation equals ECM deposition,

and Stiffness ↓ at rapid degradtion

Cellular responses to dynamic stiffness are different

from static gels with the same initial or ending

conditions

[78]
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Type Substrates Properties changed

and stimuli

Cell model Observations and notes Ref.

Methacrylated HA

hydrogel

UV exposure è stiffness ↑

Stimulus: UV radiation and

addition of reactive groups

for

hMSCs Fate of hMSCs differentiate depends on the dynamics of

stiffness change of substrates

Adipogenic differentiation favored when cells is on the

softer substrate long (stiffening at later times)

Osteogenic differentiation when cells are on the stiffer

substrate (stiffening at early times).

[79]

Hydrogel based on

PAM crosslinked by

photosensitive

reagent

Mechanical Stiffness

(global or local)↓

Stimulus: UV radiation

3T3

fibroblasts

Stiffness decrease of 20-30% upon propose UV

radiation

Global stiffness decrease results in less spreading

Localized softening to anterior and posterior area gives

to differential responses

[76]

PEG based

hydrogel with

photosensitive

crosslinker

Mechanical Stiffness↓

Adhesive property change

Stimulus: UV radiation

hMSCs and

Valvular

inter-stitial

cells (VICs)

Valvular cell differentiation into myo-fibroblasts is

inhibited by softening

Good viability of hMSCs

[77]

O
th

er
 ty

pe
s 

of
 s

ub
st

ra
te

s

Piezo-controlled

substrate and AFM

cantilever

Mechanical stiffness with

cycling changes

Stimulus: stiffness clamp

on AFM

NIH 3T3 Apparent stiffness↑ leads to cells contraction rate↑ and

contraction velocity↓

Changes took place instantaneously, and so did

responses

Responses were reversible, and consistent for same cell.

[84]

Photo-active glass

substrate with

modifications

Adhesion on/off

Stimulus: UV radiation &

pro- adhesive molecules

HEK293,

COS, NIH

3T3

Spatio-temporal control over cell adhesion

Single cell control

[62]

Substrates with

photo-responsive

caged peptides

Adhesion on/off

Stimulus: UV

3T3

fibroblasts

Modifications of non-adhesive surfaces to adhesive

ones

[63]

PEG-modified ITO

microelectrodes on

glass substrates

Adhesion on/off

Stimulus: electric potential

HepG2

(hepatic)

and 3T3

cells, co-

culture

Micro-patterned co-culture made possible [85]

Pr
om

is
in

g 
m

at
er

ia
ls

*

Photo-crosslinked

alginate hydrogel

Stiffness change;

Stimulus: light or

hydrolysis

Primary

bovine

chondrocyte

s

High survival rate for primary bovine chondrocytes

Cellular responses to dynamic changes to be studied

[92]

Gellan Gum

hydrogel with both

ionic crosslinking

and

Stiffness, swelling, and

degradation change

Stimulus: light or ion

exchange

NIH 3T3 Swelling and hydrolytic degradation vary with respect

to crosslinking mechanism

Stiffness may be changed quickly during photo-

crosslinking process

[88]
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Type Substrates Properties changed

and stimuli

Cell model Observations and notes Ref.

Methacrylated HA

hydrogel with

photo-crosslinker

Stiffening

Stimulus: UV radiation

NIH3T3L

HeLa

Primary

osteoblast

Good cell viability

Cellular responses to dynamic changes to be studied

[80]

PEG-based

hydrogel

incorporating

CMP*

Softening

Stimulus: temperature or

free CMP

N/A Cellular responses to dynamic changes to be studied [90]

PEG hydrogel (PEG

vinyl sulfone

crosslinked with

PEG-diester-dithiol)

Softening

Stimulus: hydrolysis

3T3 balb

fibroblasts

Good cell viability in 3D gels

Cellular responses to dynamic changes to be studied

[91]

Resilin-like

polypeptide (RLP)

network

crosslinked by

THPP

Dynamic stiffness

Stimulus: oscillation

N/A Cellular responses to dynamic changes to be studied [86]

Thermo-reversible

hydro-ferrogels

(FGs)

Mechanical stiffness

change

Stimulus: temperature

change

N/A Cellular responses to dynamic changes to be studied [89]

Note: ssDNA: single-stranded DNA; ↑ increase; ↓ decrease. *For ‘Promising materials’, most provides in vitro cyto-tox‐
icity study, and cellular responses to dynamic properties remain to be investigated. N/A: not available

Table 1. A partial list dynamic substrates currently used in studying cell responses.

These stimuli, applied to initiate substrate dynamic, include light [62, 63], electricity [16, 17],
pH, temperature, and others [16, 64] (Fig. 1). These approaches generally involve photo‐
chemical or electrochemical conversion, redox reactions, or stimulated configuration change
of surface proteins, which leads to the attachment, detachment, shielding, or exposing of cell
adhesion molecules, among which a popular choice is RGD peptide.

Mrksich group has been actively engaged in the development of SAM-based dynamic sub‐
strates by integrating surface chemistry, micro-patterning, and cell microenvironment engi‐
neering  [17,  19,  61,  65,  66].  Based on  an  elegant  design  of  SAM with  electrochemically
responsive group on a micro-patterned substrate, they first applied electrical stimulation to re‐
lease 3T3 fibroblasts from designed areas on the substrate, and subsequently encouraged mi‐
gration of neighboring cells to those areas with newly added adhesion molecules [65]. Refining
this design by adding responsiveness to both negative and positive electric potentials, they
demonstrated selective control over cell release [67] (Fig. 1C). Other groups have also engaged
in the effort along this direction. By employing a hydroquinone terminated SAM based on re‐
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dox reactions, Chan and colleagues proposed a SAM on gold surface that enables attachment
and release of cell adhesion molecules such as those with RGD motif [68], and selectively re‐
leased adherent 3T3 fibroblasts bound through RGD motifs but not those adherent based on
hydro-phobic interactions (Fig. 1A). Reversibility of cell adhesion is attractive in studying cel‐
lular responses and cell-ECM interactions [60]. As an example, a surface chemistry involving
azobenzene capable of switching between two configurations was utilized to expose or hide
adhesion sites (e.g., RGD motif) upon photochemical stimulation[69] (Fig. 1B). While the find‐
ing is interesting, the long exposure of cells to UV may be problematic despite the reported neg‐
ligible impact of light with wavelength over 320 nm on cells [63].

Figure 1. SAM-based dynamic substrates. (A) Schematic of the approach based on redox reaction (A1) by adjusting elec‐
trochemical potential, and cell detachment upon application of electric potential (A2). Extracted from [68]. (B) Schematic
of altering configuration of azobenzene group under light of different ranges of wave length (B1) [69] and application to
cell culture (B2) where NIH 3T3 fibroblasts initially adhere to adhesive surface (a) which was inhibited upon surface modifi‐
cation (b) followed by recovery of adhesion due to azobenzene configuration change (c). Extracted from [69]. (C) Illustra‐
tion of a SAM that allows different modifications with positive and negative electric potential (C1) and its application in
selective release of Swiss 3T3 cells (C2). Extracted from [67]. All with permission from publishers.
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The above surveys part of the key advancement using SAM in modifying adhesion proper‐
ties of the substrates mimicking those of natural cellular microenvironment. For a complete
analysis of SAMs and their various applications, readers are referred to other reviews (e.g.,
[60, 70]). It suffices to point out that SAMs possess advantages in the precision (down to mo‐
lecular level) of the control that can be applied in mechanistic studies [60, 66] of cell-ECM
interactions, and are potentially useful for cell-based diagnostics among many applications.
However, this approach has certain limitations. First, it mostly relies on coupling between
electrical, chemical (including pH), mechanical, thermal, optical and biochemical (e.g., pro‐
tein conformation) cues whose applicability under in vivo conditions is problematic. Next,
the resulting changes in these studies are mostly of surface biochemical properties or of the
presentation and biological activities of the surface ligands. Nevertheless, SAMs have great‐
ly facilitated the probe and understanding of cell-ECM interactions and particular interplay
between cells and ECM with dynamics in adhesive properties.

3.2. Polymeric hydrogels

Hydrogel materials are gaining popularity in the development of biomimetic materials, pri‐
marily due to the hydrated nature of natural ECM [14, 71]. Implantable hydrogel materials
are increasingly being used in cardiovascular disease, nerve regeneration, and other condi‐
tions [59]. With careful design, hydrogel materials can have tunable materials properties,
which have been demonstrated in a myriad of examples (Table 1). For instance, different
than SAM-based approach, a polymer with both thermo- and photo-sensitivity was used to
reversibly control adhesion of a group of cells [72]. Kim and colleagues took advantages of
the thermo-responsive swelling behavior of copolymer between NIPAM and sodium acryl‐
ate, and created a hydrogel film that can be used to control cell encapsulation with surface
topography [73]. Moreover, biomaterials responsive to the natural stimuli such as those ex‐
perienced by biodegradable materials were found useful in mimicking biological events un‐
der physiological conditions, as illustrated in cell invasion to a MMP-responsive hydrogel
scaffold [74]. This finding, among others, exemplifies the strategy of triggering material dy‐
namic from bio-responsiveness to potential site- or disease-specific cues. The information
from these studies is instrumental to the design of biodegradable materials in optimizing
degradation profile for target cellular responses [75]. Naturally, in order to achieve desired
outcome in adopting these strategies, it is important to gain thorough understanding of the
natural environment, and minimize risks associate with biodegradable materials such as
premature degradation, and potential toxicity of intermediate products from degradation.

Using a popular polyacrylamide hydrogel culture system with modifications that impart it
with photo-sensitivity, Wang and colleagues [76] showed that upon UV induced substrates
softening, spreading of 3T3 fibroblasts was hindered in contrast to that under static condi‐
tions (Fig. 2A). More interestingly, localized softening at anterior and posterior of cells yield‐
ed differential cellular morphology and migration responses [76]. Meanwhile, a PEG based
polymer (PEGA) crosslinked by photosensitive crosslinker (PEGdiPDA) has been developed
by Kloxin et al. [77], and used to lower gel stiffness upon UV exposure, which resulted in
de-activation of myofibroblasts (Fig. 2B). Although UV radiation is preferentially avoided,
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these methods made possible high precision in applying changes of cellular mechanical mi‐
croenvironment, and potentially allow creation of dynamic stiffness gradient.

Figure 2. Photosensitive hydrogels and the study of cellular responses. (A) On a polyacrylamide hydrogel with photo‐
sensitive crosslinker, NIH 3T3 cells contract as indicated by projection area in response to UV-induced substrate soften‐
ing. Extracted from [76]. (B) Valvular interstitial cells (VICs) on a PEG based hydrogel with photosensitive crosslinker
displayed de-activation when UV radiation triggered substrate stiffness decrease. Extracted from [77]. Both with per‐
mission from publishers.
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Similar  observations  were  made  by  Burdick  group  for  human  mesenchymal  stem  cells
(hMSCs) by using hyaluronic acid (HA) hydrogel degradable from hydrolytic and enzy‐
matic  reactions  [78]  (Fig.  3A).  Very  recently,  a  new  material  platform  has  been  con‐
structed  by  this  group  [79]  and  others  [80]  where  the  stiffness  of  a  methacrylated
hyaluronic acid hydrogel is increased via addition of photo-initiator and UV light expo‐
sure.  In  response  to  elevated  stiffness,  human mesenchymal  stem cells  (hMSCs)  spread
more  and  exert  greater  traction  forces  in  hours  (almost  one  magnitude  of  difference),
and the rate of stiffness elevation dictates fate of cell  differentiation towards adipogenic
(slower)  or  osteogenic  (faster)  lineage.  Their  work highlighted that  cellular  behavior  on
dynamic gels is  not the same as that on static gels with same initial  or final properties,
underlining the significance of  dynamics  in  gel  properties.  This  has  been echoed in the
concurrent work [81],  where,  for instance, the fibroblasts on 100% crosslinked hydrogels
demonstrated  different  morphology  from  that  on  100%  crosslinked  gels  modified  from
50% gels.  Therefore,  it  is  conceivable that  the previous state of  the cells  and their  ECM
is also among the determinants  of  their  current  state,  and that  time dimension of  ECM
is of great importance.

Factors  other  than  environmental  conditions  (e.g.,  light,  pH,  temperature)  can  also  be
delivered  to  stimulate  dynamics  in  substrate  properties.  Incorporating  DNA  as  cross‐
linker,  Jiang  and  colleagues  have  developed  a  hydrogel  system  for  cell  attachment
where mechanical properties of the substrates can be altered in situ  in a controlled fash‐
ion when the cell  culture is  present  [20,  81].  These DNA crosslinked hydrogels  may al‐
so  be  designed  to  be  potentially  responsive  to  bio-stimuli,  such  as  temperature  or
enzymes.  Two  representative  cell  types  were  chosen  for  the  study  of  cell  responses  to
dynamic substrate:  fibroblasts  whose sensitivity to mechanical  cues is  well  documented,
and neurons whose mechanosensing capability has recently just  started being appreciat‐
ed. The reports [20, 81] offered evidence that both cell  types do respond to dynamic al‐
ternations  in  the  mechanical  characteristics  of  ECM, and suggest  that  the  alternations  in
the  mechanical  stiffness  may  be  involved  in  disease  progression  (Fig.  3B).  It  has  been
shown  that  the  stiffness  change  resulting  from  pathological  processes,  may  also  aid  in
further progression of diseases [82].

The  same  material  system  was  employed  by  Previera  and  co-workers,  and  they  firstly
proved  the  dual  mechanical  stimuli,  namely  strain  and  stiffness  drop,  during  the  dy‐
namic  processes,  and  secondly  contrasted  cell  behavior  to  stiffness  decrease  with  that
for  hardening  of  the  substrates  [83].  On  hardening  gels  (from  12  kPa  to  22  kPa),  cells
spread  more  than  those  on  static  substrates  of  higher  stiffness  (22  kPa),  whereas  on
softening ones,  they  have greater  spreading area  than that  on either  starting or  ending
stiffnesses.  In  these  studies,  cell  responses  are  determined  by  the  range  of  rigidity
change (due to crosslinking density), starting and ending rigidity, and specific cell prop‐
erties  (e.g.,  projection  area  vs.  aspect  ratio  and  protrusion  for  fibroblasts).  The  stress
generation may also be involved in affecting cell behavior [83].
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Figure 3. Substrates with dynamic mechanical stiffness and their application in cell culture studies. (A) Live/deal cell
staining of human mesenchymal stem cells (hMSCs) in a hyaluronic acid hydrogel (A1) and the analysis of gene expres‐
sion of type I/II collagen and aggrecan revealed that aside from type I collagen, both type II collagen and aggrecan
exhibited an elevated level of expression on dynamic gels from the static ones. Extracted from [78]. With permission
from publisher. (B) L929 fibroblast growth in a DNA crosslinked hydrogel with dynamic stiffness from crosslinking den‐
sity change (B1) and the quantification of spreading area and aspect ratio (B2) showed that dynamic gels are signifi‐
cantly different from their static counterparts. Extracted from [81].

3.3. Other types of materials

The approach of employing polymeric hydrogel to study dynamic changes has certain limi‐
tations, one of which is the coupling of mechanical stiffness and forces (e.g., [83]). To ad‐
dress this concern and others, different from the approach by using SAM or polymeric
hydrogel, AFM based method put forth by Webster and co-workers [84] probed cellular re‐
sponse to instant step change in stiffness excluding influence from stress or strain in the sub‐
strates (Table 1). It has been confirmed that indeed individual 3T3 fibroblasts are able to
sense and respond to the stiffness in a scale of seconds as demonstrated in traction rate and
contraction velocity [84]. However, this approach is most likely with inherent limitation in
mimicking natural cell environment while remains an interesting tool in probing cellular re‐
sponses to instantaneously change in stiffness. Additionally, this approach is applicable
mostly to cells with dynamic morphology.

Common cell culture substrates (e.g., glass coverslip) modified with common photo-cleava‐
ble agents (NPE-TCSP) were shown to be useful for controlling cell adhesion selectively and
temporally [62]. In this method, target areas were first irradiated to remove BSA known to
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prevent cell adhesion, and then pro-adhesive molecules (e.g., fibronectin) were added, fol‐
lowed by cell seeding. It is useful to study dynamics in interactions between single cells. Pe‐
tersen et al. [63] used light to stimulate photosensitive surface modification resulting in
uncovering of the RGD motif upon release of a caging group (Fig. 4A). In doing so, adhesion
of 3T3 fibroblasts was first inhibited and then encouraged, although this process is not re‐
versible. With a sequential activation of adhesive sites upon application of electric potential,
a recent study [85] demonstrated the utility of substrates with ITO (indium tin oxide) micro‐
electrodes modified with poly(ethylene glycol), or PEG, in co-culture of two cell types (hep‐
atic cells and fibroblasts) in a controlled manner (Fig. 4B).

Figure 4. Cellular behavior in responses to other substrates with dynamic properties. (A) 3T3 fibroblasts grown in areas of
patterned stripes (A1) generated from UV radiation based on the surface chemistry involving a caging group (A2). Extract‐
ed from [63]. (B) With PEG-modified ITO microelectrodes on glass substrates (B1), co-culture of two different cell types,
HepG2 (hepatic) and 3T3 cells, was made possible. Extracted from [85]. Both with permission from publishers.
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3.4. Promising substrates

By applying an oscillation to a resilin-like polypeptide network crosslinked by THPP (β-
[Tris(hydroxymethyl) phosphino] propionic acid (betaine), Li and colleagues were able to
observe dynamic mechanical stiffness of the gels varying with regard to oscillatory frequen‐
cy mimicking the load from human vocal tissues [86] Oscillatory shear induced stiffening
and softening of the collagen network might also serve as good substrates for mimicking
cellular microenvironment particularly that in mechanically active tissues [87]. Ion concen‐
tration may be another stimulus to allow for temporal modification of hydrogel properties
as exchange of ions between monovalant and divalant cations [88], and further work is
needed to confirm it. Temperature-dependent substrate softening has been demonstrated by
Krekhova et al. [89] and 3D complex with temperature-mediated crosslinking hence me‐
chanical properties has been proposed by Stahl et al. [90], while applicability of these sys‐
tems in mimicking cellular microenvironment remains to be seen. Zustiak et al. [91]
reported mechanical stiffness drop, from approximately 1 kPa and at different rate, along
with degradation of a poly(ethylene glycol), or PEG, hydrogel which might serve as not only
drug delivery vehicle but also biomaterial construct, and they have offered preliminary evi‐
dence of good viability of 3T3 balb fibroblasts on the hydrogel substrate. Similarly, rigidity
change from ~180 kPa to tens of kPa in 3-week period of degradation from a photo-cross‐
linked alginate hydrogels based on alginate methacrylation were presented by Jeon et al
[92], and cyto-toxicity has been found to be low. In summary, these substrates holds prom‐
ises as substrates with modifiable properties in situ, and need to be carefully tuned and eval‐
uated for use as substrates with dynamic properties (Table 1). Other materials responsive to
various stimuli including pH, temperature, and biochemical factors for a variety of applica‐
tions, including can be found in the earlier reviews [64, 70, 93], and thus are not discussed in
detail here due to the focus of the current analysis.

4. Design considerations and outlook

4.1. Dynamic properties of the substrates

As indicated in the discussions in Background and Motivation, the progression in changes
of ECM properties is also critical in addition to changes per se in light of the observations in
normal and pathological tissues, development and aging, and potential engineering bene‐
fits. Towards this end, rate of change (e.g., gradual vs. abrupt), range of change (e.g., small
perturbation vs. drastic modifications), and change profile (e.g., monotonic increase vs. fluc‐
tuation) characterizing the nature of changes and their impact on cellular processes are sub‐
ject to research effort, apparently adding to the complexity of the problem (Table 1). Take
biodegradable material (e.g., [94]) as an example. It would be relevant to understand how
mechanical and adhesive characteristics evolve with degradation and how the degradation
profile affects the changes in the cellular micro-environment. Experimental design along this
line may include, for example, different rates of release of RGD motif decreasing adhesive‐
ness while keeping the same range of change (e.g., half of the total RGD presenting sites), or
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altering the range of change while maintaining the same rate of change. Furthermore, it is
not clear at this point whether cellular responses to opposite changes (e.g., increase vs. de‐
crease in adhesiveness or rigidity) of substrate properties are symmetric, thus their behavior
to one direction of dynamic alterations may not be a reliable predictor of that to the opposite
changes.

4.2. Potential effect on cell-cell interactions

Changes in adhesive or mechanical properties of ECM can stimulate cells, which, in re‐
sponse, secrete soluble factors and ECM molecules, and this further impacts neighboring
cell types. Additionally, some cell types such as neurons may use other cells (e.g., astroglia)
as substrate [95], and stiffness change of ‘underlying’ cells per se due to ECM stimulation
may give rise to further alternations thanks to cell-cell interactions. For instance, during
asthma, ECM stiffening contributes to stiffness increase of airway smooth muscle (ASM)
cells, which potentially affects other cell types in the close proximity [33].

4.3. Design parameters for biomaterials and outlook

The design parameters of dynamic substrates from current studies are summarized in Table
2, which includes, but are not limited to, material system to consider (e.g., SAM or polymer‐
ic hydrogel materials), nature of change (mechanical stiffness or adhesion), rate of change
(e.g., transient or gradual change, controllability of the rate of change), range of change (e.g.,
at different stiffness range) as well as potential issues in further investigations and applica‐
tions to medical and healthcare applications. If the interest is in understanding the cellular
behavior to mechanical stiffness alone, then an AFM based approach might be more attrac‐
tive [84] as others will involve stress or strain as part of the stiffening or softening process. If
precise control over stiffness range is desired, the DNA crosslinked PAM hydrogel system
will serve the purpose better [20, 58, 81]. Polymeric hydrogel materials with controllable
degradation profile and hence mechanical stiffness dynamics during degradation (e.g., [88])
will serve the purpose best when biodegradable materials are applied. Some of the material
systems do offer unique benefits such as reversible property change or without using envi‐
ronmental factors (by applying oscillation, crosslinker, or ssDNA).

Meanwhile, there are inherent limitations to each of the material system under discussion
(Table 2). UV exposure generally causes concern to its impact on cellular activities despite
the findings of little impact from a number of studies based on a range of biological assays.
Under physiological conditions, application of certain cues (e.g., ssDNA, light, or ion) might
be too difficult or it might be greatly limited (e.g., temperature triggered changes). However,
it is still possible to find ways to apply these cues with careful design. For instance, ssDNA
design based on pre-screening using BLAST search against targeted specie or tissue type
may minimize the chance of interfering with normal biological activities. Local heating/cool‐
ing may be carefully applied to induce dynamic changes to achieve cellular responses. Three
dimensional system may better mimic natural cellular micro-environment than their 2D
counter parts.
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Stimuli Material

system

Nature of

change

Range of change Rate of

change

Invasiveness of stimulus and

potential issues

Ref.

Ion Ion-crosslinked GC

hydrogel

Stiffness ~22 to ~17 kPa (with

chemical crosslinking)

N/A Under physiological conditions, divalent ions

exchanged by mono-valent ones

[88]

Light Hydrogels based

on PAM crosslinked

by photosensitive

agents

Softening Stiffness: 5.5~7.2 kPa Approximately

0.5~0.6 kPa/ min

UV exposure for 3 min

UV radiation with low energy density

Depth of penetration and limit on dose

[76]

Methacrylated HA

hydrogel

Stiffening

Irreversible change

Stiffness: ~3 to ~30

kPa

Approximately 9

kPa/hr (short

term); 2 kPa/day

(long-term)

UV exposure for a few min

Potential toxicity of photoinitiator

Depth of penetration and limit on dose

[79]

Photo-crosslinked

methacrylated

Gellan Gum

hydrogel

Stiffness; Swelling

Hydrolytic

degradation

Stiffness: a few kPa to

22 kPa (by physical

crosslinking)

Approximately

20 kPa/ min

UV exposure for one min

Depth of penetration and limit on dose

[88]

Methacrylated HA

hydrogel with

photo-crosslinker

Stiffness;

Irreversible change

Stiffness: 1.6 to 3.8

kPa; 3-12 kPa

Approximately

0.1 or 0.3

kPa/min (during

gelation)

UV exposure for a few min

Potential toxicity of photo-initiator

Depth of penetration and limit on dose

[80]

PEG based

hydrogel with

photosensitive

crosslinker

Stiffness↓

Adhesive property

Irreversible change

N/A N/A Depth of penetration and limit on dose [77]

DNA DNA crosslinked

PAM system

Stiffening &

softening,

potentially coupled

with strain/stress

Reversible change

Stiffness: ~5.9 to 22.9

kPa

Stress > 0.5 Pa

Up to 8.5 kPa/

day

No differentiation in cellular responses

between forces, stress, and stiffness

Potentially interference from DNA with bio-

activity (e.g., as anti-sense DNAs), and

potential issue with DNase

BLAST search against target specie & tissue

type

[20, 81,

83]

AFM/

stiffness

clamp

Piezo-controlled

substrates and

AFM stiffness

clamp

Instantaneous

change in stiffness

Unidirectional

Stiffness: 3.6 to 90

nN/µm

Step change

(instantane-

ously)

Applicable only to cells with dynamic

morphology

[84]

Hydro-lysis Photo-crosslinked

alginate hydrogel

Softening due to

degradation

Stiffness: ~25 to ~180

kPa

7-8 kPa/ day In sample preparation (with cells), UV

exposure for 10 mins

[92]

HA hydrogel Stiffening &

structure change

Stiffness: e.g., ~5 to

30 kPa for one case

0.7 kPa/ day Dense crosslinking may impede cellular

growth limited by diffusion& concentration of

radicals

[78]

PEG hydrogel (PEG

vinyl sulfone

Softening due to

degradation

Stiffness: from ~1

kPa-3 kPa to very low

From ∼900

Pa/day to 500

Pa/day

Good cell viability

Hydrogel degraded in 16 hours

[91]
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Stimuli Material

system

Nature of

change

Range of change Rate of

change

Invasiveness of stimulus and

potential issues

Ref.

crosslinked with

PEG-diester-dithiol)

Temp-

erature

Thermo-reversible

hydro-ferrogels

(FGs)

Stiffening due to

structural transition

Stiffness: ~28-24 kPa

for 2ºC change at

37ºC

A few kPa for 1ºC

of temperature

change

Temperature change needs to be defined to

be relevant to cell culture

[89]

PEG-based

hydrogel

incorporating

CMP*

Stiffness change

Due to temperature

and free CMP

Stiffness (indirect

measurement)

N/A Temperature change needs to be defined to

be relevant to cell culture

Bio-compatibility of free CMP

[90]

Oscilla-

tion

Resilin-like

polypeptide based

elastomer

Stiffness change

due to oscillation

Storage modulus

between 0.5 and 10

kPa

Highly dynamic Strain/stress that is associated with oscillation [86]

Note: N/A: not available; This is a partial list of the current work under examination.

Table 2. Design considerations in constructing dynamic substrates mimicking extra-cellular matrix (ECM).

A few new material system have been identified with the potential as dynamic cell culture
platform as well as choice of biomaterials (Table 1). Many of them have demonstrated good
cyto-compatibility, and investigation of impact of in situ changes to cells will be desired.

5. Concluding remarks

There is an increasing recognition of the discrepancy between static nature of the current cell
culture substrates or scaffolds and the dynamics in ECM in natural or diseased tissue, dur‐
ing development and aging, or at tissue-scaffold interfaces. This has motivated the develop‐
ment of materials with controlled changing properties that mimic those of ECM. An array of
stimuli, including environmental factors (temperature, pH, light, electrical potential) and
non-environmental cues including enzyme and DNA, have been implemented to trigger dy‐
namics in a number of material platform such as SAMs, polymeric hydrogels and other sub‐
strates with surface chemistry and modifications.

To date, most of the effort along this line has been devoted to in vitro models, and in vivo
studies of the effect of dynamic tissue properties on cellular behavior are still rather limited,
which awaits further development in cell biology and proper tools such as imaging techni‐
ques [12, 14, 29].

Understanding the interplay between cells  and the extracellular matrix (ECM) including
its  dynamic  aspect  is  fundamental  to  biology,  development,  aging  and  pathology,  and
can aid  in  the  design  of  biomaterials.  Ultimately,  the  system enabling  both  spatial  and
temporal control [96] of cells would be most relevant in terms of bio-mimicry and tissue
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engineering applications. Some of the potential directions include creating dynamic adhe‐
sive  gradient  to  guide  cell  migration  or  neurite  outgrowth  at  desired  time  point,  con‐
structing  scaffolds  with  suitable  mechanical  rigidity  to  inhibit  glia  cell  growth  (thus
hinder  scar  formation)  while  promoting  nerve  regeneration  with  compliance  gradient,
and  developing  dynamic  platform  for  stem  cell  harvesting  and  differentiation  for  cell-
based therapies.
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