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1. Introduction

Most material flow based layout techniques assume that the designer has access to data
describing the rate of movement of unit loads in a facility. This data is typically in the form of
process routings and forecasted production volumes that can be reformulated as material flow
rates between workcenters. Using product and facility data in this form, alternative layouts
are evaluated using measures of material handling volume distance, i.e., the total unit load
travel distance needed to execute a production schedule. Most line layout methods are aimed
at finding the volume distance minimizing assignment of workcenters to locations in a facility
for specific production and process data. In many practical situations, product and process
information is not known with certainty or may be subject to future changes resulting from
model changeovers, seasonal variations, etc. Uncertainty and/or dynamic variation in pro‐
duction data motivates the proactive management of risk in applying line layout algorithms.
A designer seeking to avert inflexibility with dynamically changing production data and/or
under-performance with stochastic production data is more apt to favor solutions exhibiting
robustness as opposed to those which minimize a single measure of expected performance. In
this study, volume distance robustness corresponds to meeting minimum acceptable per‐
formance standards for most or all operating scenarios. This objective is contrary to the logic
of line layout algorithms that focus on the computationally difficult problem of finding the
best performing solution for a fixed operating scenario. Achieving robustness requires
techniques that can identify reliable measures of solution performance for each operating
scenario to efficiently terminate the search for layout alternatives.

This study investigates line layout strategies focused on volume distance robustness. Uncer‐
tainty in layout information is represented through discrete probability distributions of
material flow rates and workcenter space requirements. Recent research suggesting that Monte
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Carlo simulation techniques can be applied to map the distribution of volume distance values
in the solution space corresponding to deterministic line layout problems is exploited to define
stopping criteria for robust procedures. A line layout algorithm is proposed which uses these
sampling procedures to first construct a mapping of the volume distance solution space for
each parameter set, and then identify layouts meeting minimum performance standards for
all potential operating scenarios.

The next section describes uncertainty in the information base associated with line layout
problems and describes previous work associated with solving stochastic problems and the
empirical mapping of volume distance distributions. The third section describes a robust
algorithm for solving the stochastic and/or dynamic line layout problem. In the fourth section,
two test problems are introduced and computational experience with the procedure is
described. The fifth section extends the study by allowing nonlinear material handling costs.
The final section offers a summary and conclusions.

2. Background information

Most layout techniques assume a deterministic, static production environment with many of
these methods based on a variation of the quadratic assignment problem (Koopmans and
Beckman 1957) which usually, although not always, assumes equal workcenter areas. Nu‐
merous linear-integer models for layout problems based on the quadratic assignment problem
(QAP) have been proposed including Kaufman and Broeckx (1978), Ritzman et al. (1979),
Bazaraa and Sherali (1980), Burkard and Bonninger (1983), and Frieze and Yadegar (1983),
Heragu and Kusiak (1991), and others. Given the NP completeness of the QAP (Sahni and
Gonzalez 1976), many heuristic methods have also been proposed which have increasingly
focused on optimization tools such as simulated annealing, genetic algorithms and tabu search
to improve the performance of local search procedures, (see Burkard and Rendl 1984, Wilhelm
and Ward 1987, Goldberg 1988). Heragu and Alfa (1992) present a detailed performance
comparison of several of these heuristics. Skorin-Kapov (1990, 1994) adapted tabu search to
the QAP using the two phase "tabu-navigation procedure". Kelly et al. (1994) developed
diversification strategies and applied them to the QAP independently of search procedures
such as tabu search, simulated annealing, and genetic algorithms.

The assumption of static production data contrasts with many applications where there is
known to be time variation in the parameters driving layout design. Increasingly, researchers
are addressing such dynamic variations of the problem. Rosenblatt (1986) presented a dynamic
programming strategy for the stochastic layout problem that could be applied in either an
optimal or heuristic mode. Lacksonen and Enscore (1993) modified the QAP to prototype the
dynamic layout problem to minimize flow costs and rearrangement costs over discrete time
periods and compared five alternative solution methods. Conway and Venkataraman (1994)
used a genetic search algorithm to solve the constrained dynamic layout problem (CDLP) and
found it to be effective in solving the sample problems presented in Rosenblatt (1986).
Lacksonen (1994) extended the analysis of dynamic layout problems by developing heuristic
procedures for the QAP applicable to problems where workcenters have varying areas.

Theory and Applications of Monte Carlo Simulations88



Other studies have modeled parameter uncertainty that is associated with stochastic variation
in product mix, production volume and process routings. Previous studies addressing
stochasticity in layout problems include Rosenblatt and Lee (1986) which assumes that
demands for individual products are characterized by three alternative levels; low, medium
and high. Their method for resolving uncertainty involved the enumeration of all possible
demand scenarios and evaluation of layout alternatives for each scenario with respect to
expected volume distance and maximum regret criteria. The method then identified robust
solutions as those within a given percentage of the optimal for each scenario and both criteria.
The study assumed equal workcenter space requirements and feasibility to enumerate all
potential layout alternatives for each scenario. Other studies have attempted to address
stochasticity by proposing measures of flexibility as a basis for solving the layout problem.
Gupta (1986) proposed a simulation strategy for generating material flow rates and then used
a CRAFT-like procedure to solve for a layout associated with each scenario. A flexibility
measure based on a penalty measure associated with workcenter travel distances, not material
flow rates, was used to find a solution. Webster and Tyberghein (1980) proposed a performance
measure for individual layouts based on volume distance performance across the set of
potential material flow scenarios.

Rosenblatt and Kropp (1992) have presented a formulation of the single period stochastic
layout problem. A variation of the formulation presented in that study can be based on the
following parameters:

• n : the number of workcenters and workcenter locations, (and load transfer points), in a
facility,

• S : the number of potential material flow scenarios that could occur in the application
problem,

• mijs : the expected volume of material flow between workcenters i and j within material flow
scenario s, in unit handling loads per unit time, for i, j = 1,...,n and s = 1,...,S,

• ps : the probability that material flow scenario s is realized for s = 1,...,S, 0 ≤ ps≤ 1, ps > 0.

• dyz : the travel distance between workcenter locations y and z,

• d(i,j)k : the travel distance between workcenters i and j associated with layout alternative k
for k = 1,...,n!, where d(i,j)k = dyz when workcenters i and j are assigned to locations y and z,
respectively.

The expected volume distance can then be formulated as:
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In contrast to their use in Rosenblatt and Kropp (1992), the ps probability terms could also
represent the proportion of time that a system operates under scenario s. If layout rearrange‐
ment were not feasible, this interpretation of ps could be applied in the same formulation of vk

for dynamic layout problems. Assuming workcenters of equal area, Rosenblatt and Kropp
(1992) computed a weighted average flow matrix and solved the problem as a quadratic
assignment problem (QAP). They related the results from this procedure to a flexible facilities
design measure proposed by Shore and Tompkins (1980) known as the total expected facility
penalty. This measure is based on the regret value of using a layout designed for one scenario
under the changing conditions of the other states.

The motivation to focus on a single set of expected parameter values in most of the studies
described above is related to the computational difficulty of solving the QAP. Simultaneous
consideration of multiple production scenarios requires interpretation of the performance of
candidate layout alternatives relative to the set of all possible layout alternatives. In effect, this
requires knowledge about the optimal solution, (possibly by solving the QAP), for the
parameter sets associated with each production scenario. To address this problem, one study
was focused on analyzing the form of the distribution of volume distance values associated
with the solution space for 6,400 line layout problems representing a diverse range of material
flow parameters (Malmborg and Bukhari 1997). For each of the 6,400 randomly generated line
layout problems, the corresponding volume distance distributions were enumerated and
analyzed. Fit parameters for volume distance distributions were formulated to represent
several well-known distributions including the uniform, gamma, normal and exponential. For
every case examined, the fit of the volume distance values to a normal distribution was several
orders of magnitude better than any of the other distributions studied. This suggested that the
population of n! volume distance values tended toward normality for any set of material flow
parameters used in these line layouts. The implication of the findings was that for static line
layout problems, designers can usually assume that the corresponding volume distance
distribution is normally distributed and its parameters can be estimated through a reasonably
low volume of random sampling. In a follow-up study, Bukhari et.al. (1998) analyzed the
volume distance distributions for 231,200 line layout problems representing a carefully
constructed cross section of material flow and travel distance parameters. Order of magnitude
differences observed in fit statistics from that study also supported the extension of the
normality result to more general cases of line layout problems.

To assess whether analogous inferences could be made for line layout problems with varying
workcenter space requirements, another study investigated the feasibility of mapping the form
of volume distance functions associated with more general forms of line layout problems
(Malmborg 1999). This investigation considered a range of material flow and space require‐
ments distributions. Using random samples representing between 0.25% and 2.5% of the
solution space for problems with n = 8, and 0.014% to 0.28% of the solution space for problems
with n = 10, it was shown that reasonably accurate estimates of the form of the volume distance
distribution could be generated. Accuracy in this case was measured by the proportion of the
true volume distance distribution replicated by the estimated distribution for a given sample
size and resolution of the histogram describing the volume distance distribution. Although
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the results of the latter investigation suggested that volume distance distributions for line
layout problems with dynamic distance functions do not generally follow a normal distribu‐
tion, the ease and accuracy with which the form of the volume distance distribution could be
empirically estimated was insensitive to both the distribution of space requirements and
material flow parameters.

The significance of the three studies investigating the feasibility of mapping volume distance
distributions is that simulation techniques may provide a viable means for generating "context"
for the evaluation of line layout solutions. This could provide a basis for quickly identifying
"good" quality solutions for line layout problems associated with individual production
scenarios and therefore yield a method to support risk averting line layout strategies aimed at
finding robust solutions. This possibility is explored in more detail in the following section.

3. A robust line layout procedure

Building on the studies described in the previous section, a robustness based line layout
procedure is described below:

Step 1. Identify the production scenarios associated with a problem including; n, S, m
ijs
 and p

s

for i, j = 1,...,n and s = 1,...,S.

Step 2. For each production scenario, select a sample size m, and use simulation to map the
form of the corresponding volume distance distribution. Do this by randomly generating m
line layouts and computing:

 

vxs  =∑
i=1

n
∑
j=1

n
mijsdx(i, j)    for  x =  1, ..., m,

 

where dx(i,j) denotes the distance between workcenters i and j in randomly generated line
layout x. This step yields the values hys for y = 1,...,r and s = 1,...,S where r denotes the number
of cells of equal width used to characterize the histogram of all possible volume distance values,
and hys denotes the proportion of observations in cell y of the estimated volume distance
distribution for y = 1,...,r and s = 1,...,S. For each scenario, cell y is characterized by an upper
bound UBys, and a lower bound LBys, which correspond to the maximum and minimum volume
distance values defining the range for cell y. Compute the expected volume distance distribu‐
tion characterized by the objective function:

 

vx  =  ps∑
i=1

n
∑
j=1

n
mijsd (i, j)k  fork  =1, ..., n !  and  x =1, ..., m.
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and compute hy for y = 1,...,r.

Step 3. Define the minimum performance criterion for each scenario, β
s
 for s = 1,...,S and 0≤ β

s
≤ 1, and the minimum overall performance criterion for the expected value, β, 0 ≤β ≤ 1. To
satisfy the minimum performance criterion for scenario s, the volume distance value of a
candidate solution, v

s
, must place it in the lower (1-β

s
)×100 percentile of estimated volume

distance values for all possible line layouts.

Step 4. Using any appropriate procedure, generate candidate solutions. One example naïve
procedure can be the following. First, randomly select one workcenter from n workcenters and
assign it to location 1. Second, randomly select one workcenter from the remaining n – 1
workcenters and assign it to location 2. Repeat the above step until only one workcenter
remains, which will be assigned to location n. This is a simple unbiased procedure to generate
one candidate solution. It can be repeated as many times as needed to obtain more candidate
solutions. However, we should note that identical solutions are possible when this procedure
is repeated.

For each candidate, compute vs and cs where cs = y if LBys≤ vs < UBys and 1 ≤ cs≤ r for s = 1,...,S.
Compute analogous measures for the expected volume distance case, v and c. Terminate the
search when a solution satisfies:

  ∑
y=cs

r
h ys ≥β s  for s =1, ..., S     and      ∑

y=c

r
h s ≥β  .

 

The procedure described above defines a robust solution as one where the percentile volume
distance value falls within a pre-specified range for each production scenario. It could be
applied whether or not the ps probability values are known. If these values are known, they
can be used, along with other considerations, to guide the determination of the βs aspiration
values for s = 1,...,S. The expected value case is equivalent to the weighted flow matrix approach
as described in Rosenblatt and Kropp (1992). In that study, it is argued that solving this problem
directly tends, in itself, to yield a surprisingly robust solution. This possibility is investigated
in further detail in the section below.

4. Applications of the robust line layout procedure

To study the procedure described in the preceding section, variations of two sample problems
introduced in Malmborg (1999) are utilized. The paragraphs below illustrate the implemen‐
tation of the four step procedure for the two sample problems.

4.1. Sample problem 1

Step 1. The first sample problem is based on the uniformly distributed, ten workcenter problem
presented in Malmborg (1999). To generate a stochastic variation of this problem, nine
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additional material flow scenarios were randomly generated using the uniform distribution
with n = 10 workcenters. Thus, Problem 1 consists of S = 10 production scenarios where it is
assumed that p

s
 = 1/n = 0.10 for s = 1,...,10. Workcenter areas, (denoted as ai for i = 1,...,n), are

generated using the "ABC curve" concept as described in Graves, et.al., (1977). For all sample
problems, a total facility area of 1000 square yards and a workcenter space requirements rank
ordering of a1≥ a2≥...≥ a10 is assumed. For randomly generated Problem 1, a 25%/75% distribu‐
tion of space requirements holds, i.e., 25% of the workcenters require 75% of the total area in
the facility. Thus, a fit parameter of w = 0.2075 results from solving, 0.25w = 0.75, and space
requirements for individual workcenters are given by:

ai =1000  (i / 10)w –((i −1) / 10)w   for  i =1, ..., 10, yielding :

{a1, a2, ..., a10}={620,  96,  63,  48,  39,  33,  29,  26,  24,  22}.

(To facilitate performance validation of the procedure, each workcenter in the two sample
problems is assumed to have a width of exactly one unit with unit load travel originating and
terminating at centroids. This assumption reduces the sample problem for each scenario to a
line layout with exactly 10! = 3,628,800 decision alternatives where the global optimal solution
can be ascertained.)

Step 2. For the first sample problem, a sample size of m = 10,000 representing 0.275% of the
size of the solution space for each scenario was selected based on recommendations reported
in Malmborg (1999). A total of r = 100 cells were defined for the histogram associated with each
scenario. The sampling procedure involved random generation of 10,000 sequences of size 10,
i.e., line layouts, and then constructing a corresponding frequency histogram of volume
distance values for each scenario. Sampling was done with replacement. A sample size of m
= 10,000 provides reasonably accurate estimates of the volume distance histogram as measured
by the fit performance measure:

Fs  =∑
y=1

r
min{ f ys,  h ys},

where fys denotes the proportion of observations in cell y of the actual volume distance
distribution for scenario s. The results from using m = 10,000 and r = 100 with sample Problem
1 are:

F1 =0.966,  F2 =0.966,  F3 =0.964,  F4 =0.969,  F5 =0.963

F6 =0.972,  F7 =0.962,  F8 =0.956,  F9 =0.960,  F10 =0.966,

with F = 0.964 for the overall expected value of volume distance function. The Fs fit statistics
summarized above are normalized for the actual distributions. That is, they represent the
proportion of observations in the estimated distribution for each scenario which fall within
the correct cells of the actual distributions for that scenario. For the estimated volume distance
distributions, cell widths were obtained using (UBms – LB1s)/m with:
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LBys = LB1s +  (y - 1) (UBms – LB1s) / m and  UBys = LBys +  (UBms – LB1s) / m.

For the first sample problem, the values of LB1s and UBms for the estimated and actual volume
distance distributions are summarized in Figure 1. The "actual" values of LB1s in Figure 1
correspond to the volume distance values for the global optimal solutions for the line layout
problem associated with each operating scenario.

Step 3. The minimum performance criteria for sample Problem 1 were fixed to be βs = 0.98 for
s = 1,...,10 with β = 0.995.

Step 4. The equivalent of a simple random sampling procedure was used to generate alterna‐
tive line layouts. This was based on using the same 10,000 random sequences of size 10 used
to generate the mapping of the volume distance distributions for each scenario. By program‐
ming the procedure to retain solutions meeting the above criteria, 11 line layout solutions were
generated. The ranked percentile values (i.e., c values), for these of these 11 solutions are
summarized in Figure 2. For all of these solutions, volume distance values associated with
individual scenarios are in the lowest percentile of the estimated population of all possible
solutions while the expected volume distance value lies within the lowest one half percentile
of the estimated population of all possible solutions.

Figure 1. Comparison of Estimated and Actual Bounds for Each Scenario: Problem 1
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Figure 2. Ranked percentile Values for Problem 1 Solutions Meeting the Volume Distance Criteria

4.2. Sample problem 2

Step 1. The second sample problem was designed to illustrate a situation where both material
flow parameters and workcenter area requirements are uncertain. In this ten workcenter
problem, a total of twelve operating scenarios are based on the four sets of material flow
parameters based on the uniform, normal, exponential and gamma distributions, and the three
values of w illustrated below:

w =0.75 :  {a1, a2, ..., a10} =  {178,  121,  106,  98,  92,  87,  84,  81,  78,  76}

w =0.50 :  {a1, a2, ..., a10} =  {316,  131,  101,  85,  75,  67,  62,  58,  54,  51}

w =0.25 :  {a1, a2, ..., a10} =  {562,  106,  71,  55,  46,  39,  35,  31,  28,  26}

The four material flow matrices used in Problem 2 are taken directly from Malmborg (1999).
Equal probability scenarios are assumed with ps = 1/12 = 0.0833 for s = 1,...,12.

Step 2. Once again, a sample size of m = 10,000 representing 0.275% of the size of the solution
space for each scenario was selected where r = 100 and sampling was done with replacement.
Relative to the accuracy of estimates of the volume distance histogram as measured by the F

s

fit performance measure, the results from sample Problem 2 are:

F1 =0.962,  F2 =0.967,  F3 =0.965,  F4 =0.966,  F5 =0.967,  F6 =0.961

F7 =0.968,  F8 =0.936,  F9 =0.947,  F10 =0.967,  F11 =0.971,  F12 =0.966,
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with F = 0.962 for the overall expected value of volume distance function. As with sample
Problem 1, the Fs fit statistics summarized above are normalized for the actual distributions.
For each of the twelve scenarios associated with sample Problem 2, Figure 3 summarizes the
cell boundaries associated with the estimated and actual volume distance distributions. In the
figure, "actual" values of LB1s correspond to the volume distance values for the global optimal
solutions for the line layout problem associated with each operating scenario.

Step 3. The minimum performance criteria for sample Problem 2 were fixed to be β
s
 = 0.99 for

s = 1,...,12 with β = 0.998.

Step 4. Once again using a simple random sampling procedure to generate 10,000 alternative
line layouts, line layout solutions meeting the minimum performance were identified. A total
of nine solutions were found meeting these criteria with their ranked c values summarized in
Figure 4.

Figure 3. Comparison of Estimated and Actual Bounds for Each Scenario: Problem 2
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Figure 4. Ranked Percentile Values for Problem 2 Solutions Meeting the Volume Distance Criteria

Table 1 summarizes how each of the best solutions obtained from the method for Problems 1
and 2 compares to the global optimal solution for each scenario. For all scenarios, the best
solution is within 10% of the global optimal solution. Clearly, the significance of these results
depends on the extent to which the underlying volume distance distributions have been
accurately estimated. However, based on the results in Figures 1 and 3, the empirical estimation
of volume distance functions appears to be within reasonable accuracy for most practical
problems where secondary criteria normally result in some tradeoffs of volume distance
anyway. In addition, the results generally support the assertion of Rosenblatt and Kropp
(1992) that solving dynamic line layout problems using the weighted average flow matrix tends
to yield robust solutions.
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Sample Problem 1:

Global Best Percent

Scenario: Optimal Solution Discovered Solution Deviation

1 19012 20573 8.21%

2 18382 19404 5.56%

3 18284 19003 3.93%

4 19429 21060 8.39%

5 17850 19026 6.59%

6 20028 20784 3.77%

7 19869 20347 2.41%

8 20722 22186 7.06%

9 20626 21262 3.08%

10 18901 19752 4.50%

Sample Problem 2:

Global Best Percent

Scenario: Optimal Solution Discovered Solution Deviation

1 20276 21498 6.03%

2 25291 27322 8.03%

3 27344 30023 9.80%

4 21103 21483 1.80%

5 27025 27559 1.98%

6 29862 30434 1.92%

7 21065 21335 1.28%

8 26754 27415 2.47%

9 28608 30170 5.46%

10 20901 21529 3.00%

11 26239 27195 3.64%

12 28644 29793 4.01%

Table 1. Comparison of Global Optimal and Best Observed Volume Distance Objective Functions By Individual
Problem Scenarios for Sample Problems 1 and 2.
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5. Nonlinear materials handling costs

When materials handling costs are nonlinear, the dynamic line layout problem cannot be
reduced to the single QAP described in equation (1). This section assumes that four con‐
ventional materials handling devices are used in a facility,  (i.e.,  four non-automated but
possibly mechanized types of equipment) [Chan and Malmborg, 2010b]. Adapting a var‐
iation of the ergonomics-based device selection criteria similar to that presented in,  [Al-
Araidah  et  al.,  2006],  we  use  the  following  volume  and  distance  based  rules  to  drive
device selection in the current study and arbitrarily assume the unit  movement costs as
shown below:

Based on these distance ranges and capacity limits, the version of the dynamic line layout
problem addressed in the current study can be summarized as:

S n

k s=1 i=1 1

ijs

ijs

ijs
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(2)

Apart  from nonlinear  materials  handling costs  precluding the reduction of  the  line  lay‐
out problem to a single QAP, variation in work center space requirements limits the use
of optimization procedures that exploit a static parameter set describing the distances be‐
tween the candidate locations in a facility.  As described in,  [Malmborg, 1999],  the n(n –
1)/2 parameters representing distances between pair wise combinations of work center lo‐
cations in a facility remains fixed in a line layout problem when work centers have equal
areas.  When work centers have unequal areas,  the set of d(i,j)k  parameter values change
with  each  change  in  the  assignment  of  work  centers  to  locations  in  a  facility.  To  illus‐
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trate, consider a simple line layout with three work centers A, B, C having areas, a1 = 20,
a2  =  10,  a3  =  30 and arranged along a  line with bidirectional  travel,  work center  widths
equal to one, and movement between work center centroids. The work center line layout
sequences,  {A-B-C}  and  {A-C-B}  would  respectively  yield  the  distances  between  work
centers given by:

Sequence :  {A−B −C}→

d (A
,
A

)
k =0, d (A

,
B

)
k =15, d (A

,
C

)
k =35

d (B
,
A

)
k =15,  d (B

,
B

)
k =0, d (B

,
C

)
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d (C
,
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)
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B
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,
C

)
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Sequence :  {A−C −B}→
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)
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)
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)
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)
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)
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d (C
,
A

)
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,
B

)
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,
C

)
k =0

This dynamic shifting in the d(i,j)k  parameter set prevents the use of solution procedures
that  exploit  static  distance between location parameters,  [Heragu and Kusiak,  1991,  Bu‐
khari et al., 1998].

The  robust  procedure  described  in  Section  3  is  used  to  solve  this  dynamic  line  layout
problem with nonlinear materials handling costs and unequal work centers areas. The ef‐
fectiveness of  this  simple procedure lies  in the degree to which small  vs.  large random
samples can identify a significant number of candidate solutions satisfying the candidacy
conditions for  acceptable  values of  β.  The extent  to which small  sample sizes can accu‐
rately represent the distribution of cost values in a layout problem relative to large sam‐
ples can be illustrated using a histogram fitting approach described in, [Malmborg, 1999].
To assess the extent to which small samples can be used to accurately estimate the distri‐
bution of  materials  handling cost  values,  the sample problem summarized in Table 2 is
examined where n=9 and S=8. Table 2 presents the eight material flow matrices, scenario
probabilities, and work center space requirements for this sample problem. The space re‐
quirements  for  the  problem  are  generated  based  on  an  approximate  total  of  400  unit
areas for  the facility,  i.e.,  a1  +  a2  +  … + an  =  A  =  400.  Space requirements for  individual
areas are generated using the fit parameter, w, 0 ≤ w ≤ 1, where:

ai = A (i / n)w –  ((i –1) / n)w , for i =  1, …, n and w =  0.25.

The w fit parameter imposes alternative distributions of space requirements in a facility and
can be used to control the disparity between the largest and smallest work centers. For example,
to approximate a space distribution where 20% of work centers consume 80% of total space in
a facility, the fit parameter is obtained by solving, iw = 0.2w = 0.8 ฀ w = ln(0.8)/ln(0.2) ≈ 0.139.
The above equation is then used to estimate points along the curve resulting in the work center
area values shown in the example of Table 2 where a fit parameter of w = 0.25 is used, (appli‐
cation of this definition yields a total of 404 unit areas after rounding off ). The advantage of
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this representation is that it enables variation in the distribution of space requirements in
computational studies using a single parameter.

s = 1 

0,5,4,8,1,2,6,2,8
4,0,6,4,7,3,4,5,4
6,7,0,9,1,7,6,4,9
9,2,5,0,9,4,4,6,8
4,7,8,3,0,4,3,5,8
3,5,1,7,9,0,1,5,6
4,3,4,7,2,7,0,6,9
4,6,2,2,1,1,4,0,7
5,3,5,7,6,6,8,4,0

 s = 2 

0,3,2,3,7,4,8,9,3
4,0,6,2,1,6,4,9,8
6,1,0,9,3,9,4,6,3
1,7,6,0,8,8,8,4,3
7,1,8,8,0,1,8,1,3
2,4,2,9,3,0,7,2,3
4,9,1,3,8,2,0,7,3
6,6,9,7,4,7,3,0,8
1,8,7,4,2,3,7,3,0

 s = 3 

0,2,4,8,1,6,6,4,4
2,0,2,7,6,6,8,2,4
3,5,0,5,6,6,9,7,4
5,1,8,0,5,6,9,1,5
8,7,5,4,0,1,3,2,3
6,4,2,1,5,0,8,4,7
3,5,5,8,9,4,0,1,3
6,4,9,5,7,5,2,0,5
8,9,3,9,2,5,4,3,0

 s = 4 

0,4,6,8,1,1,8,7,6
9,0,7,2,2,1,7,6,7
3,1,0,6,9,5,5,9,5
5,3,3,0,4,7,9,1,6
7,7,4,9,0,1,9,2,8
7,7,7,2,2,0,7,2,2
8,5,4,1,4,1,0,4,4
3,9,7,1,3,2,4,0,9
4,4,4,5,7,8,6,8,0

s = 5 

0,3,2,7,3,3,5,2,5
2,0,4,4,4,3,7,7,3
2,6,0,6,7,2,6,4,8
7,3,8,0,4,6,7,7,1
3,5,6,4,0,1,6,2,4
5,1,9,2,8,0,6,5,2
8,2,6,9,1,9,0,7,9
7,6,3,8,6,6,3,0,2
6,8,1,4,1,5,8,2,0

 s = 6 

0,6,4,8,1,9,4,9,5
5,0,4,7,9,8,2,8,6
1,7,0,4,8,4,8,9,6
2,4,2,0,2,9,5,7,2
5,9,5,4,0,6,1,7,2
8,8,9,2,3,0,9,7,5
9,5,7,1,1,1,0,2,5
4,4,2,5,2,3,7,0,9
1,6,3,8,3,2,3,1,0

 s = 7 

0,9,2,9,2,4,5,6,2
4,0,9,5,2,2,2,7,3
1,3,0,7,5,7,3,8,2
2,2,2,0,8,1,9,5,3
4,4,3,7,0,6,1,4,2
1,6,4,1,6,0,8,3,7
4,1,5,5,7,4,0,3,5
1,7,6,9,6,6,9,0,3
1,3,3,1,6,1,5,3,0

 s = 8 

0,2,5,6,8,6,3,5,5
7,0,6,9,5,7,2,9,6
5,2,0,8,1,9,3,7,9
4,3,4,0,9,5,1,5,2
9,5,9,1,0,1,2,3,8
6,2,7,6,9,0,5,9,2
3,9,1,6,3,1,0,9,2
1,3,9,2,8,1,6,0,5
7,5,5,9,6,8,1,6,0

with

p1 = 0.0436,  p2 = 0.1515,  p3 = 0.0759,  p4 = 0.1366,  p5 = 0.1732,  p6 = 0.1867,  p7 = 0.0748,  p8 = 0.1586

a1 = 232,  a2 = 44,  a3 = 28,  a4 = 24,  a5 = 20,  a6 = 16,  a7 = 16,  a8 = 12,  a9 = 12

Table 2. Sample Dynamic Line Layout Problem with n=9, S=8.

Assuming that the nine work centers each have a width of exactly one unit area, work cen‐
ters are arranged along a line where bidirectional travel is used, and load transfer points
correspond to work center centroids, the histograms of the materials handling cost values
for the sample problem are obtained for the eight material flow scenarios using a resolu‐
tion of r = 50 cells. Table 3 presents the bsj values for s = 1,…, S and j = 1,…, r. A line plot of
these values is presented in Figure 5 which clearly illustrates the discontinuous nature of
the materials handling cost distribution resulting from the materials handling device selec‐
tion rule. Using the alternative sample sizes of q=1000, 2500, 5000, 7500 and 10000, 20000,
50000 and 90000, (respectively representing 0.275%, 0.689%, 1.378%, 2.067%, 2.75%, 5.5%,
13.75%, and 24.75% of the sample space for n=9), sequences are randomly generated and
the hsj estimates are obtained. Table 4 presents the Fs values resulting from each of the eight
random samples. The results in Table 4 suggest that larger samples do little to improve the
fit of estimated cost distributions relative to smaller samples. This finding is consistent with
that reported in, [Malmborg, 1999], where a similar phenomenon is observed with volume
distance distributions. A similar observation has also been made in other studies [Chan and
Malmborg, 2010a, 2011]
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Material Flow Scenarios:

12345678

0.0050.0040.0040.0040.0040.0040.0040.004

0.0180.0170.0170.0170.0160.0170.0170.017

0.0180.0190.0200.0190.0190.0190.0190.019

0.0230.0220.0220.0220.0230.0210.0220.023

0.0370.0370.0390.0370.0370.0360.0370.039

0.0450.0450.0460.0460.0460.0450.0450.046

0.0420.0430.0420.0430.0430.0430.0440.043

0.0270.0280.0260.0270.0280.0290.0280.026

0.0070.0080.0060.0070.0070.0080.0070.006

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0040.0040.0040.0040.0040.0050.0030.004

0.0120.0120.0130.0120.0120.0120.0120.012

0.0200.0200.0210.0210.0200.0200.0210.021

0.0240.0240.0250.0240.0240.0240.0240.024

0.0210.0210.0220.0200.0220.0200.0200.021

0.0310.0310.0330.0320.0320.0310.0320.033

0.0410.0410.0430.0420.0420.0410.0410.042

0.0370.0370.0360.0370.0370.0370.0380.037

0.0240.0240.0220.0230.0230.0240.0240.022

0.0080.0070.0060.0060.0060.0070.0070.006

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0000.0000.0000.0000.0000.0000.0000.000

0.0050.0050.0060.0060.0050.0060.0050.006

0.0130.0140.0150.0140.0140.0150.0130.014
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0.0230.0230.0240.0240.0240.0240.0230.024

0.0280.0280.0290.0290.0290.0280.0280.029

0.0260.0260.0260.0250.0260.0250.0260.026

0.0320.0330.0340.0340.0340.0340.0330.034

0.0380.0380.0390.0390.0390.0380.0390.038

0.0310.0320.0300.0310.0310.0310.0320.031

0.0260.0250.0250.0250.0250.0260.0250.025

0.0210.0210.0210.0210.0210.0210.0200.021

0.0260.0270.0280.0270.0270.0280.0270.027

0.0340.0360.0370.0360.0360.0360.0350.036

0.0400.0400.0420.0410.0410.0410.0400.042

0.0520.0520.0540.0540.0540.0530.0530.053

0.0520.0520.0500.0510.0510.0510.0520.051

0.0430.0430.0420.0420.0430.0420.0430.042

0.0330.0320.0300.0310.0310.0310.0320.030

0.0190.0170.0160.0160.0160.0160.0170.016

0.0100.0090.0080.0080.0090.0080.0090.008

0.0020.0020.0010.0010.0020.0010.0020.001

Table 3. Parameter Values, bsj for s=1,…,S and j=1,…,r for the Nine Work Center Sample Problem with n=9, S=8, r=50.

Figure 5. Materials Handling Cost Histograms for the Eight Material Flow Scenarios: n=9, S=8, r=50.
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q=1000 q=2500 q=5000 q=7500 q=10K q=20K q=50K q=90K

1 0.839 0.819 0.806 0.808 0.823 0.826 0.826 0.823

2 0.833 0.823 0.809 0.808 0.822 0.825 0.817 0.816

3 0.837 0.821 0.806 0.807 0.820 0.824 0.820 0.818

4 0.834 0.822 0.804 0.805 0.819 0.822 0.814 0.813

5 0.834 0.819 0.802 0.804 0.817 0.820 0.817 0.816

6 0.835 0.816 0.804 0.806 0.819 0.823 0.821 0.814

7 0.835 0.818 0.801 0.803 0.819 0.821 0.817 0.817

8 0.836 0.824 0.810 0.810 0.823 0.826 0.816 0.816

9 0.836 0.824 0.807 0.809 0.823 0.827 0.822 0.822

Table 4. Fs Values for Various q and s Parameters With r = 50 for the Nine Work Center Problem.

6. Summary and conclusions

A procedure has been proposed for finding robust solutions to dynamic line layout problems.
It is based on finding line layout solutions that meet minimum aspiration criteria for each
operating scenario associated with a line layout problem. Following the simulation based
strategy reported in Malmborg (1999), the procedure is to estimate the form of the volume
distance distribution corresponding to each parameter set associated with a line layout
problem. These estimates provide context for evaluating the performance of line layout
solutions associated with the different operating scenarios that describe a line layout problem.
Candidate layouts are then identified which meet minimum performance standards for all
possible scenarios. Two sample problems with ten workcenters and one same problem with
nonlinear material handling costs were studied which involved variation in material flow
parameters and the distribution of space among workcenters. In each case, reasonably accurate
estimates of volume distance distributions were obtained using just 10,000 random samples
of line layout alternatives. Candidate solutions with expected volume distance values within
roughly 5% of the global optimal solution were easily obtained in both cases.

The results from this study suggest a reasonable strategy for dealing with some dynamic line
layout problems. Since these problems are generally unmanageable from a computational
perspective, solution strategies based on optimization of volume distance for a static parameter
set do not generally provide an attractive course of action. More importantly, such an approach
may not adequately address the risks associated with inflexibility in the face of dynamically
changing production conditions and/or under-performance resulting from stochastic variation
in the production environment. Solutions exhibiting robustness provide a more effective
alternative for dealing with the variation found in the majority of practical situations. The
results from this study strongly suggest that finding such solutions, in many instances, should
not prove particularly difficult.
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