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1. Introduction

Generation of large amount of biological data has provided us with some of its unique chal‐
lenges in modeling of biological systems. Recent advances in imaging techniques, such as
confocal, FRET, multi-photon among others, led systems level information for biological
processes and accumulation of even more biological data. There is a clear need for quantita‐
tive (mathematical and computational) tools that are capable of analyzing such large
amount of information. Equally pressing is the need for theoretical models that can eluci‐
date the cellular and molecular mechanisms of complex biological processes. Systems biolo‐
gy modeling (differential equations, stochastic simulations, agent based models) is emerging
as a powerful tool that can provide mechanistic insight into workings of complex biological
systems as well as allow analysis of large datasets. Such computational models can be vali‐
dated using synergistic experiments (in an iterative manner) and also possess predictive
power. Monte Carlo (MC) simulation is a stochastic modeling approach that can be utilized
to carry out in silico studies of biological problems.

Monte Carlo simulation is now an established technique to solve problems in a wide variety
of disciplines. It is an essential tool in statistical mechanics and has been frequently used for
problems in material science and engineering. Monte Carlo method relies on selecting an in‐
itial configuration state and then iterate through a series of steps during which one or more
moves are selected and evaluated for acceptance. The number of moves per step is often tak‐
en to be the number of available degrees of freedom in that step so as to ensure probing (on
the average) of each degree of freedom once per step. However, other types of implementa‐
tions (such as a rejection-free algorithm) are also possible. Use of Monte Carlo method to
solve biological problems has its unique challenges, but if successfully addressed, it can be‐
come a powerful tool. Monte Carlo models (for biological systems) can be developed based
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on statistical mechanics and thus it is expected that it would work well for probing the un‐
derlying biophysics of a complex biological process. Of particular interest is a class of Monte
Carlo simulations that are based on a set of pre-defined probabilistic rate constants and can
be called kinetic Monte Carlo models. Probabilistic rate constant based kinetic Monte Carlo
simulations can be developed for a wide variety of biological processes that span multiple
length and time scales. We demonstrate that controlled kinetic Monte Carlo experiments are
capable of revealing fundamental regulatory mechanisms in a complex biological system.

The organization of the chapter is as follows. We begin with a discussion of the random
walk problem in section 2.  It  elucidates the theoretical basis of Monte Carlo simulations
in terms of master equations. It is also an instructive example problem to elucidate some
key features, such as the concept of probabilistic simulation parameters (constants), of the
kinetic Monte Carlo method. In section 3 Monte Carlo simulation is discussed in the con‐
text  of  physical  sciences  and  materials  engineering.  This  allowed  us  to  discuss  how
Monte  Carlo  models  can  be  developed  based  on  statistical  mechanics  (detailed  balance
and ergodicity). We also briefly discuss implicit and explicit free energy based implemen‐
tations of Monte Carlo simulations as applied in physical sciences and materials engineer‐
ing. In section 4 we describe how Monte Carlo simulations can be used to solve problems
in biophysics and biology. A probabilistic  rate constant based kinetic Monte Carlo algo‐
rithm is discussed in detail.  We developed this algorithm to solve the following biologi‐
cal  problems:  (i)  the  problem  of  B  cell  affinity  discrimination  and  B  cell  activation
(section 5), (ii) systems biology of apoptotic cell death signaling (section 6). We conclude
with a discussion on emergence of Monte Carlo simulation as a tool to solve problems of
biomedical  relevance  (section  7).  The  discussion  is  focused on  our  recent  efforts  to  ad‐
dress some key issues in cancer biology and cancer therapy.

2. Monte Carlo simulation of random walk

Random walk is a probabilistic process that is analytically tractable and can also be easily
simulated on a computer. Analytical approach is based on master equations that describe
the system by equations in probability space. Computer simulation for a random walk is
carried out using a set of pre-defined probability constants that are taken from the master
equation [1-2]. Random walk based kinetic Monte Carlo simulations can be developed that
can describe diffusion and trafficking in biological systems. Below we discuss a simple one-
dimensional random walk for which results obtained from Monte Carlo simulations can be
readily compared with exact results obtained by analytically solving random walk master
equations.

2.1. Master equation description for one-dimensional random walk

At each step, a random walker executing a one-dimensional random walk (on a lattice)
jumps to one of the two neighboring lattice sites. One-dimensional random walk is descri‐
bed by a master equation (discrete time and discrete space formulation) of the form: Pn,N+1 =
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(1/2) Pn-1,N + (1/2) Pn+1,N. Pn,Nis the probability of finding the random walker at site n at time
step N [1]. The above master equation describes probability conservation for a symmetric
random walk having equal (=1/2) probability of moving left or right. The random walker can
reach the site n (at time N+1) from either of the two neighboring sites n-1 or n+1.

Random walk master equation can be solved by defining a characteristic function G =
ΣPn,Neins (the sum is over all possible values of n [-∞,∞]) [1]. By making this change in varia‐
ble n → s (through the function G), the random walk master equation becomes an algebraic
equation G(s,N) = α G(s,N-1), where α = (eis + e-is). The equation in G can be solved recursive‐
ly G(s,N) = αN G(s,0). For a random walk starting at the origin (n=0 at N=0), G(s,0) = 1, lead‐
ing to G(s,N) = (eis + e-is)N. The probability function for the random walker Pn,N can then be
obtained by expanding G(s,N) in a power series (binomial expansion) and comparing with
the starting definition G = ΣPn,Neins. Various moments of the random walk, such as <n> = 0
and <n2> = N can be obtained directly from G(s,N).

A more general form of the random walk master equation is: Pn,N+1 = pr Pn-1,N + pl Pn+1,N +
pwPn,N; pr,pl, and pw are right jump, left jump, and waiting (at site n) probabilities respective‐
ly. This equation is still amenable to exact solution through the characteristic function
G(s,N).

2.2. Monte Carlo simulation of a one-dimensional random walk

First, we need to decide on the allowed moves, which are called Monte Carlo moves, in the
simulation. For a simple one-dimensional random walk there are two possible Monte Carlo
moves: right and left jumps. At each Monte Carlo time step, those two moves are sampled
with equal probability and then the chosen move is performed by increasing or decreasing
the position, n, by unit length (n → n+1 or n → n-1). We store the information for the posi‐
tion of the random walker in a pre-defined variable (memory location on a computer). The
process is then repeated many times by the use of a loop (such as the for loop). Position data
(n) is recorded at every time-step or every M (integer) number of MC time steps. Often data
is stored in a separate output file location that can be processed later for analyzing simula‐
tion data.

Sampling of a probability distribution, such as the equal probability sampling of right / left
jumps, can be carried out on a computer using pseudo random number generators. Stand‐
ard uniform random number generators in a programming platform, such as the rand func‐
tion in the C library, are often used for this purpose. Uniform random number generators
provide a number by sampling a uniform probability density function in the interval (0,1).
Equal sampling in case of a one-dimensional symmetric random walk can be achieved by
diving the interval (0,1) into two equal parts. At each MC step, the random number is called
once, and right / left jump is chosen depending on whether the random number is > or < 0.5
(Head or Tail). Other types of probability distributions can be sampled by utilizing the uni‐
form random number generator.

We can run the random walk simulation many times by generating a different sequence of
random numbers in each run. Thus each simulation run corresponds to a distinct random
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walk trajectory. One can solve the random walk problem by calculating Pn,Nfrom many runs
of such random walk simulations; statistical quantities such as <n> or <n2> can also be esti‐
mated. A computer program for simulating two-dimensional random walk is provided in
the Appendix. Results from simulations should agree with the exact results obtained from
the solution of the random walk master equation. For a slightly generalized random walk,
having asymmetric right and left jumps and also a waiting probability, the uniform distribu‐
tion in (0,1) is sampled accordingly (based on Pr, Pl, and Pw). The probability constants Pr, Pl,
and Pw can be taken as an input of the simulation. This type of random walk simulations
provides a simple example of the probabilistic constant based kinetic Monte Carlo method.
Each Monte Carlo step in such a simulation can be assigned a physical time (depending on
the system under study); the probability constants Pr, Pl, and Pw would vary with the physi‐
cal time-scale assigned to a MC step. Periodic boundary conditions can be used to avoid fi‐
nite size effects.

3. Monte Carlo simulation in physical sciences and materials engineering

Monte Carlo simulation is now an established method in statistical mechanics having wide
applicability [2-4]. Monte Carlo moves in such systems typically correspond to changes in
configuration space and hence the total energy of the system under consideration. The two
key requirements for this class of simulations are ergodicity (of the MC moves) and the de‐
tailed balance condition of the acceptance criteria [3].

3.1. Ergodicity and detailed balance

Ergodicity  demands  that  any  state  in  the  configuration  space  of  the  system  can  be
reached in a finite number of Monte Carlo moves starting from an arbitrary initial state.
Such  a  condition  ensures  that  the  configuration  space  of  the  system  is  adequately  ex‐
plored in a given time.

Detailed balance maintains the equilibrium probability distribution for different states by
setting a condition for equilibrium. The requirement of detailed balance can be elucidated
by considering a two state system. Suppose N1 is the number of particles in state 1 (or the
number of one particle system in state 1 for an ensemble of systems) and N2 is the same for
state 2. S1→2 represents the probability that state 1 is proposed to move to state 2 (similarly
define S2→1 for 2 → 1) and P1→2 represents the acceptance probability (similarly P2→1 for 2 →
1). The condition of detailed balance ensures equilibrium in the following man‐
ner:N1S1→2P1→2 = N2S2→1P2→1. Assuming each degree of freedom is sampled once (on average)
per Monte Carlo step: S1→2 = S2→1. In equilibrium, the particles (or the ensemble) should be
distributed according to the Gibbs-Boltzmann distribution so that Ni ~ exp(- Ei/ KBT). Hence
P1→2 / P2→1 = exp{-(E2 – E1)/KBT}. In the Metropolis Monte Carlo algorithm, P2→1 = 1 (assuming
E2> E1). Thus for any move that results in an increase in free energy the acceptance probabili‐
ty is given by P1→2= exp{-(E2 – E1)/KBT}.
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3.2. Various implementations of Monte Carlo algorithm

i. Explicit free energy simulations: Algorithms with explicit consideration of thermo‐
dynamic free energy, such as the Metropolis acceptance criteria, have been widely
used to calculate physical properties of a system at equilibrium [2-6]. For systems
that are not analytically tractable, such as the Ising model in 3 dimensions and cer‐
tain disordered systems, Monte Carlo simulation remains a powerful approach. For
systems that are driven out-of-equilibrium, Monte Carlo simulation is an essential
tool to study the approach-to-equilibrium dynamics in such systems [3].

ii. Implicit free energy simulations: Various types of discrete particle based simula‐
tions have been employed to study physical properties of systems that remain out-
of-equilibrium. Examples of such non-equilibrium systems include surface growth
models that show kinetic roughening [7-8]. Non-equilibrium condition is generated
in a wide variety of systems such as in molecular beam epitaxy where a surface is
grown by vapor deposition. The discrete particle based simulations that are devel‐
oped to study surface growth and kinetic roughening in non-equilibrium systems
can be considered as atomistic (or discrete particle based) kinetic Monte Carlo sim‐
ulations. These simulations are often based on a set of rules for Monte Carlo moves
and any consideration of free energy (if needed) remain implicit. Some of the initial
simulations were developed to study universal properties of out-of-equilibrium
systems; such universal properties were also studied utilizing coarse-grained field
theoretic models [7-10]. However, more complex Monte Carlo models can be devel‐
oped for realistic simulations of systems in material science, engineering, and nano‐
technology [11-15].

4. Monte Carlo simulations in biology

Metropolis Monte Carlo, an algorithm based on explicit consideration of free energy and de‐
tailed balance, has been utilized in the past to simulate biological processes such as receptor
clustering and cellular signaling. One of the early examples include a model for TNFR1 re‐
ceptor clustering that is induced by ligand binding [16]. In that study, a Hamiltonian was
constructed with a linear chemical energy and binding energy term for each lattice site, as
well as an interaction term involving molecules present in adjoining lattice sites. The interac‐
tion energy considered in their model was similar to the energy function used in lattice gas
models in statistical mechanics [3]. Another study modeled more complex receptor cluster‐
ing at the T cell synapse [17], in which two types of receptor-ligand pairs cluster at the cell-
cell contact but also known to segregate driven by receptor-ligand pair length differences
[18-23]. These two types of receptor-ligand pairs, which possess different equilibrium bond
lengths, cause membrane bending and tension; thus the Hamiltonian is a sum of elastic en‐
ergy from the membrane plus the interaction energies of receptors and ligands. In a separate
study, the functional role of T cell synapse was explored by a Monte Carlo model of mem‐
brane proximal signaling events in T cells [24]. An internal spin state {0 or 1} dependent en‐
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ergy term was considered in the Hamiltonian to model phosphorylation-dephosphorylation
type signaling reactions. Examples of Monte Carlo modeling include rolling and adhesion of
leukocytes [25] and dynamics of G-protein activation [26].

Another type of Monte Carlo approach, known as Gillespie’s stochastic simulation algo‐
rithm (SSA), has been widely used to simulate biochemical signaling networks, especially
for spatially homogeneous systems [27-28]. Several attempts have been made to introduce
diffusion into Gillespie’s SSA [29]. Some of the initial works that explored stochastic fluctua‐
tions in genetic regulatory networks used the SSA for its efficient sampling scheme [28,
30-31]. A similar approach, known as continuous time Monte Carlo, has been employed to
study low temperature systems [3, 32]. The advantage of this type of rejection-free algo‐
rithms arises from frequent sampling of high probability reaction moves (not wasting com‐
putational time by repeatedly rejecting low probability events). When large numbers of
signaling reactions are present, such as in a complex cell signaling network, Gillespie’s SSA
method might become computationally expensive.

4.1. Study of complex systems in biology: Probabilistic rate constant based kinetic Monte
Carlo simulations

Probabilistic rate constant based kinetic Monte Carlo simulations are emerging as a power‐
ful tool to solve biological problems. Though similar implicit free energy simulations have
been used in random walk problems as well as in non-equilibrium statistical physics, solv‐
ing complex biological problems by the Monte Carlo method pose its unique challenges.
Finding a suitable parameter mapping scheme, between experimentally measured rate con‐
stants and simulation parameters, is an example of such issues that needs to be addressed
when simulating biological systems [33]. Below we discuss a kinetic Monte Carlo method
that has been developed by us to solve the following problems: (i) antigen affinity discrimi‐
nation by B lymphocytes, (ii) systems biology of cell death (apoptosis) signaling [34].

In our developed kinetic Monte Carlo method a set of MC moves are carried out with pre-
defined probabilistic rate constants. All possible moves are randomly sampled by first ran‐
domly sampling individual objects (or agents). Once a move is selected, acceptance /
rejection for that move is determined by a pre-defined probability constant. In this method it
is possible to satisfy the conditions of detailed balance and ergodicity, thus the model can be
placed on a firm basis of statistical mechanics (necessary when thermodynamic considera‐
tions are relevant). A parameter mapping scheme was designed that can be used to obtain
the probabilistic simulation parameters from known rate constants. Assigning physical time
to a MC step is part of this parameter mapping scheme. For lattice simulation, individual
nodes are occupied by discrete particles (cells / molecules / agents); such explicit simulation
of individual objects (in a temporal model) can be considered agent-based simulations. In
our simulations, lattice size and lattice spacing are defined by relevant length scales of the
problem. For cell-signaling problems in biology, lattice size will be set by the size of a cell
and lattice spacing by size of protein molecules. Our simulation method can be modified,
when necessary, to perform off-lattice simulations. At the beginning of the simulation, mole‐
cules are either (i) uniformly and randomly distributed, or, (ii) distributed according to their
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known spatial localization. Even when the molecules are randomly distributed initially, spa‐
tial heterogeneity can emerge during the course of simulation.

4.2. Monte Carlo in biophysics and systems biology: Simulation method

i. Random sampling of all possible MC moves and acceptance / rejection criteria: This
can be implemented in the following manner. After an object (e.g. molecule) is first
randomly sampled, all possible diffusion / reaction moves (degrees of freedom) for
that object are randomly sampled to choose one particular move, which is then ac‐
cepted / rejected based on pre-defined probability constants. Thus the effective
probability for a Monte Carlo move is given by Peff = S Preaction, where S = 1/N is the
sampling probability for N number of allowed Monte Carlo moves and Preaction= ac‐
ceptance / rejection probability for the chosen reaction. If we decide to attempt N
Monte Carlo moves in a MC step (Δt), then S = 1.

ii. Detailed balance and ergodicity: The probabilistic constants (for reaction / diffusion
moves) contain the information for free energy changes, associated with a reaction
or a diffusion move, in an implicit manner. Let us first consider a bi-molecular re‐
action of the type A + B → C. We need two probability constants, Pon and Poff, corre‐
sponding to the forward and the backward reactions respectively. The ratio Pon /
Poff should be equal to exp(-βΔE)to satisfy the detailed balance condition at each
spatial point. β = 1/KBT and ΔE is the free energy change associated with the reac‐
tion move (ΔE = Ebound – Efree,Ebound< Efree). Clearly, the reaction probabilities Ponand
Poff should be connected to the kinetic reaction rate constants Konand Koff, the exact
relation for which is discussed later in the parameter mapping section. For a class
of problems in systems biology, thermodynamic considerations are not necessary
and the detailed balance condition to achieve Gibbs-Boltzmann equilibrium distri‐
bution need not be satisfied. Rather direct estimation of reaction probabilities (Preac‐

tion) from known rate constants (Kreaction) is more important in such systems biology
problems. Ergodicity is satisfied as any state in the configuration space can be
reached in a finite number of MC steps starting from an arbitrary initial state of the
system.

iii. Parameter mapping scheme: Time-scale of the simulation is estimated by consider‐
ing the time-scale for diffusive motion in the system. We associate Pdiffusion = 1 for
the fastest diffusing species and determine Δt (MC time step) by matching the dif‐
fusion constant (for that species) to the experimentally measured diffusion co-effi‐
cient. An approximate estimate for the diffusion constant D ~Pdiffusion (Δx)2/ (Δt) can
be used, where Pdiffusion is the diffusion probability of a given species, (Δx) is the lat‐
tice spacing, and, (Δt) is the MC time-step used in the simulation. Reaction proba‐
bilities are then estimated using t.

For the A + B → C type reaction, the dissociation reaction probability Poff can be calculated
directly from the backward reaction rate constant Koff by using Poff = Koff Δt. Such a mapping
would work for a class of reaction rates (expressed in sec-1 unit) such as the degradation rate
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or the catalytic conversion rate. Estimation of the association reaction probability Pon (for A +
B → C type reaction) is not straightforward as the forward reaction rate Kon has the unit
[area sec-1]. Note, the on rate Kon has two components to it, one of it captures the association
rate for two free reactant molecules and a second factor corresponds to the reaction proba‐
bility [35]. One can use simulations to find a relation between the ratios (Pon / Poff) and (Kon /
Koff). Typically, Poff can be varied in a simulation keeping Pon fixed, and the affinity constant
KA (= Kon / Koff) can be obtained from the average steady-state (or equilibrium) value of the
reactant molecules. A linear relationship in the form of (Pon / Poff) = α (Kon / Koff) was found,
which provides an estimation for the association reaction probability Pon. The constant α
captures the effect of diffusion-limited association of free reactant molecules and clearly its
value should depend on the spatial dimension of the system. If the value obtained for Pon or
Poff turns out to be >1, the MC time-step (Δt) needs to be readjusted accordingly.

iv. Simulating complexity in biological systems: Complexities involved in biological
processes, such as complex rules of cellular signaling, are handled well by Monte Car‐
lo simulations. In contrast, increasing complexity of a biological system can make de‐
veloping the correct set of differential equations for that system increasingly difficult.
Other examples of such complexity will include formation of multi-molecular com‐
plexes (hetero-oligomers) such as the assembly of an apoptosome during apoptotic
cell death activation. Our previous studies have shown the effectiveness of kinetic
Monte Carlo methods in capturing the complexities of a biological system. In addi‐
tion, such probabilistic rate constant based methods can be successfully combined
with other types of simulation or differential equation based models. We could com‐
bine the dynamical equation for membrane shape fluctuations with a kinetic Monte
Carlo  method  describing  receptor-ligand  binding  at  the  cell-cell  contact  region
[36].We can also couple our probabilistic rate constant based method to explicit free
energy based Monte Carlo techniques (such as the Metropolis scheme). Such a hybrid
simulation technique was found to be key to developing a Monte Carlo model for re‐
ceptor-lipid raft formation during B lymphocyte activation.

v. Boundary conditions: Appropriate boundary conditions, depending on the biologi‐
cal problem under consideration, need to be employed in the Monte Carlo simula‐
tion code. For example, when simulating an intra-cellular signaling pathway
signaling molecules are restricted to diffuse within the cellular volume. Such no
flux boundary conditions are implemented by reflective boundary conditions in a
lattice simulation. Linear dimensions of the simulation lattice are determined by
the size of a cell. Scaled-down versions with smaller lattice sizes are also used in
the cases of computationally expensive simulations.

5. B lymphocyte activation and antigen affinity discrimination

Only a few specific lymphocytes (T and B cells), out of billions of such cells, are known to
get activated and mount a successful immune response against a particular type of patho‐
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gen. How the adaptive immune system carry out such a task remains a problem of consider‐
able interest. B lymphocytes have an ability to adapt to the changing pathogenic load by
continuously generating diversity in the variable region of the receptor (somatic hypermuta‐
tion leading to variations in antigen binding affinity) and selecting the high affinity clones, a
feature known as affinity maturation. It is a strategy by which B lymphocytes optimize the
immune response given a pathogenic load. Affinity maturation is also key to design of vac‐
cines that rely on B cell mediated antibody production. Earlier studies indicated factors such
as competition for antigens could lead to selection of high affinity receptors during the proc‐
ess of affinity maturation. More recent observations, however, focus on antigen affinity dis‐
crimination at the level of single cell activation [37-42]. In B cells, affinity discrimination
implies increasing level of signaling response as the affinity (KA=Kon /Koff) for antigen is in‐
creased. Such a monotonically increasing response, however, is not obvious as low affinity
antigens clearly have the ability to quickly dissociate from a B cell receptor and serially acti‐
vate a large number of such receptors in a small amount of time. We use Monte Carlo simu‐
lations to explore the molecular mechanism of B cell affinity discrimination [36, 43-46].

Mathematical and computational modeling, often in synergy with biological experiments,
has been increasingly utilized to solve immunological problems. Previous studies in T cells
assumed a series of conformational changes in the T cell receptor upon antigen binding, a
concept known as kinetic proofreading, to explain affinity discrimination in T cells [47-49].
Kinetic proofreading was thought to compete against loss in serial triggering (the ability of a
single antigen to serially trigger many T cell receptors [50]), as the affinity for antigen is in‐
creased. Our initial Monte Carlo studies also utilized such kinetic proofreading require‐
ments in an ad hoc manner. However, explicit simulation of molecular level events, such as
B cell receptor oligomerization and lipid raft formation, can allow kinetic proofreading to
emerge naturally from simulations. Monte Carlo models seem to be particularly suitable for
simulating such molecular level details and biological complexity. Affinity discrimination
can be studied in a controlled manner as only the BCR-antigen binding affinity can be var‐
ied in our simulations by keeping other parameters fixed.

5.1. Brief description of simulation set up

B cell receptors are placed on a two-dimensional lattice that mimics the B cell surface. Anit‐
gens are also placed on a two-dimensional lattice that represents a lipid bilayer (surrogate
for an antigen presenting cell). Diffusion move consists of moving a molecule to one of its
four nearest neighbor nodes thus displacing the molecule by unit lattice spacing. Reaction
between a B cell receptor and an antigen molecule may take place when they are at the same
spatial location (x,y coordinates) on two opposing lattices. The probability of binding / un‐
binding between a BCR and an antigen should depend on the spatial location of the mole‐
cule to take into account the spherical curvature of a B cell. The center of the cell-cell contact
region is assumed to adjust itself to the equilibrium bond length of the BCR-antigen pair;
thus the probability for the association reaction at that point is maximal. Below we discuss
how increasing level of biological complexity can be simulated by our Monte Carlo model:
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a. Simulating formation of B cell receptor (BCR) oligomers and oligomerization mediated
signaling [46]

i. We allow two types of MC moves: diffusion and reaction. Once a molecule is
sampled randomly, diffusion or reaction is chosen with equal probability. Re‐
action moves include binding / unbinding between two molecules (such as be‐
tween a BCR and an antigen), BCR-BCR oligomer formation, phosphorylation
by signaling kinases. Simulation procedure is similar to that described in sec‐
tion #.4.2.

ii. Two antigen bound BCRs, when in sufficient spatial proximity, can form dim‐
ers and dimerization can eventually lead to formation of higher order oligom‐
ers. It is simulated based on the recent experimental observation that BCRs
oligomerize due to opening of their Cμ4 domains upon antigen binding
[51-52]. We also allow dissociation of such oligomers such as due to antigen
dissociation from a dimerized BCR.

iii. In our model, the tyrosine residues in the signaling chains (ITAMs) of BCRs
can get phosphorylated only when they are part of an oligomer; Signaling kin‐
ase Lyn can then bind and phosphorylate the tyrosine residues. Such a require‐
ment for oligomerization introduces a delay time before activating signal can
propagate downstream and thus provides a basis for kinetic proofreading.

iv. Syk (Spleen tyrosine kinase) can only bind to phosphorylated signaling chains
of BCR molecules and get phosphorylated. Syk phosphorylation propagates
the activation signal downstream.

v. We are also able to simulate diffusion of various types of molecules (free and
antigen bound) in a realistic manner by varying the probability of diffusion
move. BCR oligomers, for example, are assumed to be immobile.

vi. Affinity discrimination can be studied by running Monte Carlo experiments
where BCR-antigen affinity is varied but all the other parameters remain con‐
stant. Simulation results indicate that formation of BCR oligomers is affinity
dependent in a manner that can lead to enhanced signaling with increasing af‐
finity.

The complexity of lipid-mediated interactions cannot be captured by the oligomerization
model, however, such interactions are instrumental to understanding how signaling kinase
Lyn can access antigen bound BCRs (upon antigen stimulation). Lipid rafts are sphingolipid
and cholesterol enriched membrane microdomains [53]. Large (> 100 nm) and stable BCR-
lipid rafts are known to form upon antigen binding [54-57], whereas in resting B cells lipid
rafts are small and transient.

b. Simulating lipid mediated interactions and formation of BCR-lipid rafts

i. BCR-antigen binding is simulated by the probabilistic rate constant based ki‐
netic Monte Carlo model. We couple the kinetic MC model with an explicit
free-energy based model for lipid mediated interactions [58].
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ii. In the explicit free-energy based model, we simulate BCR-BCR and BCR-lipid
interactions through two energy-based parameters BB and BL. BB captures
pairwise BCR-BCR interaction energy such as that is needed to form BCR
oligomers. BL denotes the interaction between a BCR molecule and a raft-
forming sphingolipid. We can increase the strength of those parameters upon
antigen binding and follow the dynamics of BCR-BCR and BCR-lipid cluster
formation. Variations in BB and BL parameters, which depend on the state of
antigen binding, create a coupling between the implicit free-energy and explic‐
it free-energy Monte Carlo models.

iii. For antigen bound BCRs, origin of large BB lies in the opening of the Cμ4 do‐
mains of BCRs upon antigen binding. As for increased BL (upon antigen bind‐
ing), in addition to energetics and entropy, effects of membrane curvature can
be important.

iv. Lipid-lipid interactions, such as one that arises due to hydrophobic mismatch,
are captured by an energy-based parameter LL.

v. In resting B cells, Lyn is already in sphingolipid rich regions due to its dual ac‐
yl chains. We can explicitly simulate the spatial localization of Lyn kinase in
sphingolipid rich regions through a KL parameter. When there is no antigen,
BB and BL are small, and BCRs partition into non-raft regions of the mem‐
brane. Thus BCR and Lyn are segregated into distinct spatial regions in resting
B cells. This provides a mechanism for inhibition of spontaneous activation in
resting B cells.

vi. Antigen binding leads to enhanced BB and BL, generation of BCR-sphingoli‐
pid rafts, and co-localization of BCRs with signaling kinase Lyn. The delay in
BCR-Lyn association, upon antigen binding, provides a key step in kinetic
proofreading mechanism. Thus selective partitioning and recruitment of sig‐
naling molecules, in different spatial regions on the B cell membrane, emerge
as a basis for kinetic proofreading. Interestingly, the requirement of kinetic
proofreading time decreases with increasing affinity thus favoring increasingly
higher affinity for antigens.

It becomes evident that Monte Carlo simulations can handle spatial heterogeneity and clus‐
tering, a key aspect of biological complexity, in a rigorous manner. In addition, complex reg‐
ulatory mechanisms of B cell signaling, such as the signal transduction through distinct
phosphorylation sites on Syk, can be incorporated in a Monte Carlo simulation. Monte Carlo
method is also suitable for capturing stochastic effects that are unavoidable when antigen
concentration is low. Such antigen limiting conditions might arise, for example, during the
initial phase of an infection. Stochastic effects are also going to be important when BCR con‐
centration is low, such as in pre-plasma cells. Moreover, Monte Carlo models can be used to
probe the underlying biophysics of BCR-lipid raft domain formation (such as phase separa‐
tion, scaling behavior in domain growth, and the nature of criticality).
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5.2. Analysis of single cell data

Phosphorylation of BCR signaling chains (pBCR) and Syk (pSyk) are measured in our simu‐
lations as readouts for membrane proximal signaling. Each run of Monte Carlo simulations
provide us activation data at the level of single cells and thus can be readily compared with
data obtained from single cell experiments. Standard statistical measures, such as the aver‐
age and the second moment (or standard deviation), can be calculated for relevant variables
from many runs of the simulation. If simulation data for large number of runs is available,
then the full probability distribution for a physical variable can be calculated and compared
with experimental histograms obtained from, for example, flow cytometric measurements.
In our analysis, probability distributions for pBCR (Figure 1) and pSyk are generated for
various affinity values and affinity discrimination is obtained from the separation of proba‐
bility distributions.

Figure 1. Histogram plots of the number of BCR molecules with at least one ITAM phosphorylated by Lyn (figure re-pro‐
duced from our earlier published article in Journal of Theoretical Biology 2012;307: 174-182; reference [46]). Data from
one thousand single cell runs were used (at t =, 105 MC step); simulation parameters are listed in Table 2 of [46]. The num‐
ber of Lyn-phosphorylated BCRs, a measure of early-time membrane proximal signaling, increases with affinity.

We proposed the following metric that can be used to analyze the probability distributions
obtained from simulation data and quantitatively characterize affinity discrimination: Δ =
overlap area / (m1 – m2); the area of overlap between the histograms for two affinity values is
divided by m1 and m2, the histograms’ mean values for those two affinities. Lower Δ values
correspond to better affinity discrimination, with the best discrimination occurring at Δ=0
(no overlap between histograms). When Δ=0, it becomes necessary to compare the mean val‐
ues of the histograms. From Fig. 1, significant affinity discrimination is obtained even be‐
tween affinity values KA = 108 M-1 and KA = 109 M-1 (Δ values are provided in Fig. 6 of
reference [46]). The quantitative metric Δ can also be used to analyze single cell experimen‐
tal data for B cell activation (such as the pSyk data in fig 8 in reference [42]).
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5.3. Hybrid simulation methods

Our probabilistic rate constant based kinetic Monte Carlo method has the advantage that it
can be coupled to other types of Monte Carlo or differential equation based models. Monte
Carlo simulations can be computationally expensive, especially when large-scale intracellu‐
lar signaling pathways are considered. For many such signaling pathways, presence of large
number of molecules make stochastic fluctuations less significant and differential equation
based approaches are often sufficient to describe such systems [24, 59]. It is also assumed
that differential equation based approaches would be able to handle the biological complexi‐
ty. Whether differential equation based models are valid descriptions also depends on the
biological question one wants to address. In situations where membrane proximal events ac‐
tivate the downstream signaling, such as antigen binding mediated activation of B cell intra‐
cellular signaling pathways, spatial heterogeneity and other complexities might demand
application of Monte Carlo type approaches for the membrane events but differential equa‐
tions might be sufficient for describing the intracellular signaling processes. In such cases, a
hybrid simulation method, which combines a Monte Carlo simulation with an ODE / PDE
based model, can be an efficient modeling approach. We have developed two hybrid simu‐
lations in the context of studying B cell activation:

1. Modeling membrane deformation as a result of receptor-ligand binding: A time de‐
pendent Landau-Ginzburg type equation, which describes membrane shape fluctua‐
tions, was coupled to a probabilistic rate constant based kinetic MC model that
simulates receptor-ligand binding dynamics. The most widespread approach for mod‐
eling membrane deformation due to receptor-ligand binding is based on modeling the
free energy of the membrane as a function of receptor-ligand bond stretching and me‐
chanical restitution forces [17, 20-23].The change in the local intermembrane membrane
separation distance can be assumed to evolve (towards the free-energy minimum) ac‐
cording to a time-dependent Landau-Ginzburg formulation. A random noise term in
the equation captures the effect of thermal fluctuations (variance of noise ~ KBT). For the
purpose of calculating local concentrations of receptor-ligand complexes, the membrane
surface is discretized into square subdomains over which membrane separation re‐
mains approximately constant. The spatially averaged concentration of receptor-ligand
complexes in each of these subdomains is then calculated from the kinetic Monte Carlo
model and entered in the discrete form of the membrane equation [44-45]. In our Monte
Carlo model, memebrane separation is updated at the end of each MC time step by
solving the membrane equation.

2. Modeling lipid mediated interactions and BCR-lipid raft (microcluster) formation:Here,
a kinetic MC model (for receptor-ligand binding) is linked to an explicit free-energy
based MC model for lipid mediated interactions [58]. B cell receptors (BCRs) need to be
modeled as a two-layer structure: (i) the bivalent Fab domains move in the first layer
where it can bind monovalent antigens and (ii) the transmembrane part diffuse in the
second layer with lipids and other proteins. Diffusion moves in this second layer is ac‐
cepted / rejected based on an explicit free-energy based mechanism (such as the Met‐
ropolis scheme). Src family kinase Lyn is also simulated in a manner that can interact
with lipids. The hybrid Monte Carlo simulation proceeds as follows:
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i. At the beginning of the simulation, all the protein molecules and lipids are dis‐
tributed uniformly and randomly on their respective 2d lattice grids. Any clus‐
tering of proteins and lipids emerges from our simulation and MC simulations
are well suited to capture such spatial heterogeneity.

ii. Lipids are placed on a smaller sized lattice grid than that for protein molecules
such as BCRs. Lipids, however, are going to be sampled n times more fre‐
quently than protein molecules (n is determined by relative diffusion). Diffu‐
sion constants for lipids and BCRs (or other proteins) will be used to set the
time-step Δt of MC simulations. Lipid diffusion moves are determined by lip‐
id-lipid and lipid-protein free energy of interactions.

iii. Diffusion of antigen molecules is carried out only with the constraint of mutu‐
al physical exclusion. Diffusion of BCRs, however, has additional free energy
considerations arising from BCR-BCR and BCR-lipid interactions.

iv. Diffusion of Lyn molecules is also governed by free energy changes associated
with Lyn’s affinity to raft forming sphingolipids. Lyn prefers to cluster with
spingolipids due to increased hydrophobicity caused by its doubly acylated
(palmitoylation and myristoylation) form. We assume interdigitation between
the two leaflets will allow Lyn to get associated with BCR-lipid raft domains [60].

v. It is technically challenging to simulate two disparate size objects (lipids and
BCRs) on the same 2-dimensional lattice. Two possible ways to implement the
simulation:

a. One BCR and a significantly larger number of lipids will be placed on a
relatively large lattice block (approximately, 20 nm x 20 nm). We assume
the lone BCR in a lattice block will get a chance to interact with all other
lipids in the same block through short-time (<ΔT of MC step) rotational/
translational displacements.

b. Another potential solution is to define BCR and lipids blocks (approxi‐
mately 10 nm x 10 nm) on a 2-d lattice and allow exchange of blocks
(Monte Carlo moves) in a manner that will (i) allow one BCR molecule to
interact with several lipid molecules and (ii) satisfy detailed balance. Such
an approximation is justified by noting that the relevant length scale of the
problem, namely the size of generated raft domains (> 100 nm), is signifi‐
cantly larger than size of the unit blocks (~ 10 nm). A schematic of the sim‐
ulation is provided on the right. Initial results from simulations of two
distinct affinity values (KA= 107 M-1 and KA = 109 M-1) are shown in Fig 2.

The underlying physics of BCR-lipid raft formation is similar to the phase separation process in
a two liquid system. BCRs and raft forming lipids can be treated as one type of liquid molecules
that phase separates from other lipids and proteins. In the case of two liquids, phase separation
is typically driven by a low temperature quench that initially drives the system out-of-equili‐
brium. Some aspects of the out-of-equilibrium dynamics (towards an equilibrium state) stud‐
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ied  in  the  context  of  liquid-liquid  phase  separations  [3]  can  be  useful  here.  However,
complexity of the BCR-lipid raft formation makes any simulation and its analysis more chal‐
lenging. Here, antigen binding drives the system out of its steady state (small unstable rafts).
As long as we do not consider any active processes, the problem of BCR-lipid raft formation can
be considered as out-of-equilibrium dynamics towards an effective equilibrium state. BCRs are
assumed to have significantly increased mutual attractive interactions (BB) upon antigen bind‐
ing, presumably due to opening of the Cμ4 domains, introducing affinity into the problem of
raft formation. As expected, the phase diagram is also affinity dependent elucidating the phys‐
ical basis for early-time affinity discrimination in B cells.

 (A)

(B)

Figure 2. (A) Schematic of the BCR-lipid raft formation simulation. (B) Time-course of BCR-lipid raft formation is simu‐
lated for two affinity values, low affinity (top): KA = 107 M-1 (Pon = 10-3 and Poff=10-6) and high affinity (bottom): KA = 109

M-1 (Pon = 10-2 and Poff=10-7). Affinity discrimination has been studied experimentally for similar affinity values: KA = 9.9
x 106 M-1 (B1-8-Low antibody) and KA = 5.2 x 108 M-1 (B1-8-High antibody) for the antigen hapten NIP [42]. We use the
following energy-based parameter values in our simulation: BB = 3.0, BL = 2.0 and LL = 2.0 (in KBT); BB and BL values
are for antigen bound BCRs. Both unbound (blue) and bound BCRs (red) are shown at the cell-cell contact region. Raft
forming lipids (not shown) are co-clustered with the B cell receptors. Significantly larger amount of BCRs are clustered
in the high affinity case.

5.4. Simulating B cell affinity discrimination: Role of spatial heterogeneity

Recent work by us and others have demonstrated that early time (~ 100 seconds) membrane
proximal events, BCR oligomerization, BCR-lipid raft formation, and B cell immune synapse
formation, hold the key to B cell affinity discrimination problem. BCR-lipid raft structures
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start forming within tens of seconds after antigen binding and precede the formation of B
cell immune synapse (~ 100 seconds). Synaptic structure consists of a central cluster of BCR-
antigen complexes surrounded by a peripheral ring of integrin complexes (LFA1 –ICAM1)
[61-62]. Spatial clustering and heterogeneity, in the form of lipid rafts or immunological syn‐
apses, presumably modulate serial activation (serial triggering) and kinetic proofreading ef‐
fects and determine the nature of affinity discrimination in B cells. It is apparent that Monte
Carlo models can capture the relevant details of spatial clustering and spatial heterogeneity,
even when antigen or receptor concentration is low. We discussed how to combine implicit
and explicit free energy MC models in a hybrid simulation scheme to simulate BCR-lipid
raft formation. Detailed method for simulating B cell immune synapses can be found in our
earlier work [36, 43-44]. We showed that, a directed transport (of antigen bound receptors)
based mechanism is needed for synaptic pattern formation, as the size difference between
BCR-antigen (at least for IgM) and integrin complexes is not significant. Further work needs
to done that can link BCR-lipid raft formation to immunological synapse formation in B
cells. Whether affinity dependent signaling through rafts, as found in our simulations, can
generate an affinity dependent directed transport mechanism remains to be explored.

6. Systems biology of apoptotic cell death signaling

Programmed cell death, apoptosis, is one of the most important cellular processes. Apoptot‐
ic death is critical to a wide variety of cellular and physiological phenomena ranging from
the normal development of multicellular organisms to maintaining homeostasis [63-64].
Dysregulated apoptosis has been implicated in a large number of diseases including in can‐
cer and degenerative disorders. Targeting the apoptosis pathway is emerging as a new fron‐
tier in the therapeutic approaches for those diseases. Large number of signaling species and
an intricate network structure generate complexity in the apoptotic cell death signaling
pathway and make any computational study of apoptosis a challenging task. Apoptosis
pathway has evolved to sense and respond to a wide variety of stimuli through structurally
similar signaling molecules having similar pro- or anti- apoptotic functions. The system lev‐
el regulation of apoptosis signaling is achieved through a loop network structure that com‐
bines two distinct pathways known as Type 1 (extrinsic) and Type 2 (intrinsic or
mitochondrial) pathways (Figure 3). In addition, several smaller loop network structures ex‐
ist within the Type 2 pathway that seem capable of generating nonlinear effects in the sig‐
naling response. Such loop networks are different from well studied feed forward and feed
back loops that are frequently encountered in signaling pathways. Additional complexity in
the apoptotic pathway arises due to the formation of multi-molecular complex apoptosome.
Translocation of pro- and anti- apoptotic proteins to the mitochondrial membrane, such as
that happen for activated Bax dimers, generate spatial heterogeneity in the system.

6.1. Monte Carlo model for the apoptosis signaling pathway

We developed a fairly detailed Monte Carlo model to study the systems biology of apoptotic
cell death signaling [65]. We simulate a single cell using a cubic lattice in which all the mole‐
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cules were placed at different nodes of the lattice. Membrane bound molecules such as the
death inducing signaling complex (DISC) are confined to one surface of the cubic box and
allowed to diffuse only in two dimensions. Intracellular signaling molecules are allowed to
diffuse inside the cubic box when they are in free state; multi-molecular complexes are as‐
sumed to be immobile.

We simulate the signaling network shown in Fig. 3. Our model considers apoptotic signal‐
ing through two distinct pathways: direct activation of caspase 3 by caspase 8 (type 1) and
activation of caspase 3 through mitochondrial cytochrome c release and apoptosome forma‐
tion (type 2) (Fig. 3). In our model, intracellular apoptosis signalling was triggered by the
activation of caspase 8 molecules (at the cell surface) that, in turn, diffused in the cytosol and
activated both pathways of apoptosis signaling. In the type 1 pathway, caspase 8 molecules
directly catalyze the cleavage reaction of procaspase 3 to generate active form of caspase 3.
In the type 2 pathway, caspase 8 binds with Bid and catalyzes its truncation to form tBid
that, in turn, binds to Bax to generate Bax2 homodimers. Bcl2, an antiapoptotic molecule,
can inhibit both tBid and Bax, thus creates a local loop structure in the type 2 signaling cas‐
cade. Formation of the active Bax2 complex leads to cytochrome c release from mitochondria
and formation of multi-molecular Cytochorme c-Apaf1-ATP complex apoptosome, which
ultimately induces activation of caspase 3. Hence, caspase 3 activation at the end of both the
type 1 and the type 2 pathways creates a global loop structure in apoptosis signaling. Values
for kinetic rate constants and molecular concentrations are taken from previous measure‐
ments (and/or used in previous theoretical studies) [66-69].

Figure 3. Schematic of a simplified signalling network for the apoptotic cell death pathway.
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6.2. Simulation code for apoptosis signaling

We define several generalized functions to carry out diffusion or reaction moves. Those
functions are called when a molecule is randomly sampled and a MC move (diffusion or re‐
action) is attempted. Separate diffusion functions are defined depending on, for example,
whether a molecule is diffusing in the intracellular space (within cytosol) or on the mito‐
chondrial surface. Similarly, separate functions are assigned for distinct reaction types such
as for binding and unbinding reactions. When a given molecule is known to stay bound
with more than one molecule (of the same type or different types), we assign multiple bind‐
ing sites for that molecule. Ability to bind to multiple partners (at the same time) allows us
to simulate oligomeric complexes such as the apoptosome. At each MC time step, N random
sampling of molecules are carried out, where N is the total number of molecules in the sys‐
tem; hence, on average one molecule is sampled once within a MC time step. We define sep‐
arate functions for each molecular species. Once a molecule is randomly chosen, diffusion or
reaction move is attempted by calling the function for that molecule. As an example, we pro‐
vide the function for Caspase 8 molecule in the Appendix.

Simulating the type 2 pathway can be computationally expensive due to the presence of low
probability reactions, such as the Bid-Bax reaction or the formation of apoptosome. One po‐
tential modification to improve the speed of the simulation is to partition the signaling net‐
work into groups of fast and slow reactions and then sample the slow reactions less
frequently than the fast reactions [70-71].

6.3. In silico experiments of apoptosis signaling

We wanted to study the mechanism of system level regulations in apoptosis signaling. In
silico experiments were designed to address the following biological question: how do the
two distinct apoptotic pathways get activated? A related question is why two very distinct
time-scales are observed in biological experiments of apoptosis [72]. In order to address
these questions we designed three sets of experiments

i. Study the type 1 pathway only (set the rate constant for the type 2 pathway to
zero).

ii. Study the type 2 pathway only (set the rate constant for the type 1 pathway to
zero).

iii. Keep both the pathways open for activation but vary the strength of apoptotic
stimuli (by varying the level of pro-caspase 8 or caspase 8).

One of the advantages of the Monte Carlo simulation approach is that clean experiments can
be carried out in silico, such as selective activation of one of the two pathways of apoptosis
(by simply setting the rate constant for other pathway to zero) to study its signaling behav‐
ior. In silico experiments revealed some of the fundamental regulatory mechanisms in apop‐
tosis biology [65].

Pure type 1 activation: For the type 1 pathway, population averaged (over many cells) acti‐
vation data could capture the fast (seconds – minutes) caspase 3 activation observed for all
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the cells in our simulations. Decreasing strength of stimuli, i.e. decreasing caspase 8 concen‐
trations, leads to slower activation of caspase 3 (Figure 4A). Stochastic fluctuations are start‐
ing to be seen for very low (< nanomolar) caspase 8 concentrations.

Pure type 2 activation: In contrast to type 1 behavior, caspase 3 activation in individual cell
simulations for type 2 showed slow activation with large cell-to-cell stochastic variability.
Such stochastic variability in type 2 apoptosis activation was characterized by all-or-none
type activation (of capsase 3) at the level of single cells with large variability in the activation
time (minutes – hours) (Figure 4B). Stochastic fluctuations in type 2 activation is caused by
(i) Bcl2 inhibition of tBid-Bax reaction and (ii) low probability of apoptosome formation.
When caspase 8 concentration is low, stochastic fluctuations are more pronounced due to
additional stochastic variability arising from the reaction Bid truncation to tBid. Population
average (over many cells) behavior cannot capture the all-or-none type rapid caspase 3 acti‐
vation observed at the level of single cells. Also note, the information of the strength of
apoptotic stimuli is lost at the level of single cell capsase3 activation, but could be captured
by the probability distribution of the time-scale of caspase 3 activation.

 

(A) (B)

Figure 4. Time course of caspase 3 activation, as readout for apoptotic activation, is shown for single cells. Data is
shown for simulation of the pure type 1 activation (4A) and the pure type 2 activation (4B). 1 Monte Carlo step = 10-4

sec. Normalized data is shown for caspase-8 = 1 (left) and caspase-8 = 10 (right). Nano-molar concentration is ob‐
tained by multiplying the number of molecules with 1.67. Data is shown for 10 individual single cell runs. Data is simi‐
lar to our earlier published result (Figure 2) in Biophysical Journal 2008;95: 3559-3562 [65].
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Combined type 1 and 2 activation: Under weak apoptotic stimuli, such as for very low con‐
centrations of active caspase 8, stronger binding affinity between caspase 8 and Bid, com‐
pared with that between caspase 8 and pro-caspase 3 in the type 1 pathway, leads to
selective activation of the type 2 pathway with its characteristic slow activation and large
cell-to-cell variability (as seen in pure type 2 activation). Clearly, the all-or-none type behav‐
ior in caspase 3 activation, and its rapid completion, shows that the type 2 pathway is de‐
signed to amplify an initially weak signaling. However, type 1 activation (accompanied by
partial activation of the type 2 pathway) is observed in our simulations, even for low cas‐
pase 8 concentrations, if the following conditions are met: [1] active caspase 3 can feedback
its activation by directly activating caspase9, (ii) Xiap is inhibited by Smac released in the
type 2 pathway, (iii) rate of multi-molecular complex apoptosome formation is very slow.
How these cellular factors impact the value of caspase 8 at which the type2 → type 1 transi‐
tion occurs (depending on the cell type) needs to be explored further. For example, presence
of apoptosome inhibiting anti-apoptotic proteins in certain cell types (such as neuroglobin in
neural cells [73]) and the cytosolic condition (such as the oxidative condition or the pH level)
would affect the rate of apoptosome formation and hence type 2 activation. For strong apop‐
totic stimuli, large number of available caspase 8 molecules (even after binding with Bid) di‐
rectly binds and activates pro-caspase 3 to active capsase 3 in a fast deterministic manner.
For intermediate strength of apoptotic stimuli, initial slow and gradual activation of capsase
3 through the type 1 pathway can suddenly change to a mode of rapid activation through
the type 2 pathway (once the apoptosome has formed). Time-scale of apoptotic activation, as
emerges from our single cell simulations, is comparable to that observed in biological ex‐
periments. Better estimates can be obtained as quantitative information for the kinetic rate
constants and the expression levels of signaling proteins are gathered.

Thus, in silico experiments reveal a unique system level design mechanism for apoptosis sig‐
naling; weak apoptotic stimuli activates the type 2 pathway in a slow stochastic manner,
whereas under strong stimuli the type 1 pathway gets activated in a fast deterministic man‐
ner. We also used a minimal network based approach, to provide further insight into the
fundamental design mechanism of apoptosis signaling, and to demonstrate robustness of
some of our results [74]. Previously it was thought that DISC (death-inducing-signaling-
complex) formation and caspase 8 activation could lead to activation of either the type 1 or
the type 2 pathway in a cell type intrinsic manner; cells were labeled either as a type 1 cell or
as a type 2 cell depending on their mode of activation [72]. More recent observations, how‐
ever, indicate that both the pathways can be activated irrespective of cell types [75], as ob‐
served in our earlier Monte Carlo studies [65] and clearly elucidated by a minimal network
based analysis [74]. Cell type specificity (in type 1 / type 2 choice) arises from differential
expression of death receptors in different cell types [75], which presumably modulates the
activation level of caspase 8, a key determinant of type2-type1 switch [65,72,74-75]. Whether
variations in the concentration of death ligands, even when the death receptor expressions
are comparable, can determine the mode of activation (type 1 or type 2), needs to be investi‐
gated. Additional complexities (in type 1 / type 2 choice) are generated due to, for example,
variations in cellular protein levels such as the Xiap concentration (depending on cell types
and cellular conditions) [69]. Lipid mediated interactions can also be important in determin‐
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ing the cell type specificity of type 1 / type 2 choice in apoptosis signaling. These additional
complexities are currently being incorporated into our Monte Carlo model. Stochastic type 2
to deterministic type 1 transition has important ramifications for cancer biology and cancer
therapy [76] and will be discussed further in the next section.

6.4. Analysis of single cell simulation data for apoptosis signaling

Probability distributions, such as that for activated caspase 3, are obtained from many runs of
single cell simulations. Interestingly, probability distributions for type 1 and type 2 signaling
show two distinct functional behaviors. For signaling through the type 1 pathway, probability
distribution shows a single peak that shifts towards larger caspase 3 value as time increases.
The value of caspase 3 corresponding to the peak of the probability distribution indicates the
average level of caspase 3 activation. For type 2 signaling, large cell-to-cell variability coupled
with rapid all-or-none type activation of caspase 3 leads to a bi-modal distribution [65].

Assuming a perfect bi-modal distribution for caspase 3, the ratio variance/average for capsase
3 activity can be estimated by the metric C3[1-f(e,t), where C3 is the initial number of pro-cas‐
pase 3 molecules and f(e,t) is the fraction of cells in which caspase 3 has undergone complete
activation within a given time t [77-78]. Another quantitative measure that can be used to as‐
sess the single cell variability in apoptotic activation is cell-to-cell variability in time-to-death.
Such a quantitative measure is also useful in estimating the relative contributions of inherent
stochastic variability and stochastic variability arising from cellular variations in protein lev‐
els. Cellular variability in protein levels can arise due to genetic and/or epigenetic variations.
Stochastic gene expression can also generate cellular variability in protein levels.

7. Applications of Monte Carlo simulation in systems biology and
systems medicine

Systems level approaches can be utilized to study complex biological processes and have been
increasingly used in the recent past. Additional impetus to develop such systems level models
comes from the recent generation of large amount of biological data and an urgent need for
systems level computational models that are capable of analyzing this huge amount of biologi‐
cal data. Monte Carlo models are suitable for handling large number of degrees of freedom in a
system and it is becoming an essential tool in systems biology. Monte Carlo simulations could
capture the following key aspects of a biological process: (i) stochastic variability, (ii) spatial
heterogeneity, and (iii) biological complexity (as demonstrated for the problems discussed in
the previous section). For a class of systems biology problems that do not require considera‐
tion of free energy, instead a coarse-grained phenomenological approach is more appropriate,
suitable kinetic Monte Carlo simulations can be developed for such systems. Examples of such
problems would include multi-cell simulations in a tissue, and, some of the diffusion and traf‐
ficking problems in biology (such as trafficking of immune cells). Probabilistic rate constants
that need to be used in such type of Monte Carlo models can be extracted from biological data.
For problems in systems biology, Monte Carlo technique can also be used for rapidly carrying
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out parametric variation study once the MC model has been calibrated against experimental
data. Such parametric variation analysis is also essential in cases where the kinetic rate con‐
stants are only approximately known.

7.1. Cancer biology and cancer therapy: Insights from Monte Carlo studies

Modeling diseases, as well as designing therapeutic approaches, is an area where systems
level approaches and Monte Carlo simulation will become increasingly important. As a
prominent example, here, we discuss the impact of systems level computational modeling in
cancer biology and cancer therapy. It is now established that a hallmark of cancer is loss of
apoptotic regulation in cancerous cells (along with aberrant growth signaling). Thus it is ex‐
pected that the system level regulatory mechanisms and cell-to-cell stochastic variability in
apoptosis, as emerged from recent studies by us and other labs, will have significant ramifi‐
cations in cancer biology. Major findings from our Monte Carlo modeling of apoptosis and
cancer are summarized below.

Bcl-2 overexpression increases cell-to-cell stochastic variability in apoptotic activation: This
is an example of parametric variation study that can be carried out using Monte Carlo simula‐
tions. Increase in Bcl-2 concentration leads to increasing inhibition of both tBid and Bax, and
leaves only a few number of available reactant molecules for the tBid-Bax reaction; such low re‐
actant concentrations generates stochastic fluctuations and slow activation in the pre-mito‐
chondrial signaling module of the type 2 pathway. In addition, simulation results indicate non-
linear effect of Bcl-2 variation due to its simultaneous inhibition of tBid and Bax through the
tBid-Bax-Bcl2 loop network. Such slow activation of the death pathway under Bcl-2 inhibition,
as well as its non-linear effect, explains apoptosis resistance of cancer cells equipped with high‐
er levels of Bcl-2 proteins [77]. Bcl-2 over-expression has been observed in a variety of cancer
cells and is a marker for poor prognosis [79-80]. Increase in cell-to-cell variability in apoptotic
activation, due to increased expression of Bcl-2, might allow a normal cell (out of many such
cells) that is particularly slow to activate the apoptotic pathway to acquire tumor initiating fea‐
tures. In a similar manner, a cancer cell equipped with higher Bcl-2 level might acquire addi‐
tional mutations to generate a more malignant genetic subclone.

A low probability Bid-Bax reaction can allow selective killing of cancer cells: Finding the
mechanisms for inducing selective apoptotic death of cancer cells, which would leave nor‐
mal cells unharmed, can be key to designing successful anti-cancer therapy. Monte Carlo
models can simulate activation of the apoptotic death pathway, under the action of a chemo‐
therapeutic agent (such as a Bcl-2 inhibitor), for both (i) normal cells and (ii) cancer cells.
Such simulations can provide information regarding specificity (selective killing of cancer
cells); simulation results can also be used to determine the optimal dose for a specific anti-
cancer agent. We have studied the mechanism of BH3 mimetic Bcl-2 inhibitors that are con‐
sidered as potential anti-cancer agents [81-82]. Monte Carlo simulations indicate a low-
probability for the direct Bid-Bax type reaction could allow selective killing of cancer cells,
which are presumably equipped with higher levels of Bid and Bax molecules, under the ac‐
tion of a Bcl-2 inhibitor (Figure 5). Such a low probability Bid-Bax reaction is also a mecha‐
nism for generating cell-to-cell variability in apoptotic activation and highly relevant for
apoptotic death of cancer cells.
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Figure 5. Apoptotic activation, under the action of 3 μm HA14-1 (a BH3 mimetic Bcl-2 protein inhibitor [77-78]) is
shown for normal (left) and cancer (right) cells. Time course of caspase 3 activation, as readout for downstream apop‐
totic activation, is shown for single cells. 1 Monte Carlo step = 10-4 sec. Nano-molar concentration is obtained by multi‐
plying the number of molecules with 1.67. Data is shown for 10 individual single cell runs (only a fraction of cells show
activation within the given simulation time).

Simultaneous inhibition of Bcl-2 and Xiap in cancer therapy: This is an example of apply‐
ing systems level computational approaches in designing cancer therapy. A key challenge
that cancer therapy needs to address is the issue of cell-to-cell stochastic variability in apop‐
totic death of cancer cells. Cell-to-cell variability is linked to the apoptosis resistance of can‐
cer cells and modulated by key anti-apoptotic proteins such as Bcl-2 (pre-mitochondrial)
and Xiap (post-mitochondrial). Thus combinatorial targeting of the apoptotic pathway at
different signaling modules can be a novel strategy in cancer therapy, and, systems level ap‐
proaches can elucidate potential options. We carried out Monte Carlo simulations of apop‐
totic activation for various combinations of Bcl-2 and Xiap inhibitor concentrations. Such a
study can provide us with an estimate of optimal inhibitor concentrations for reducing (i)
cell-to-cell stochastic variability (in the type 2 pathway) and (ii) toxicity to healthy cells [78].

7.2. Systems level Monte Carlo modeling: a tool to determine optimal strategies in cancer
therapy

Monte Carlo simulation is a tool to determine optimal strategies to perturb the apoptotic
network at a system level; controlled Monte Carlo experiments of cancer cell death can be
carried out in silico. The following key issues needs be addressed:

1. How to maximize specificity (maximize selectivity for cancer cells and minimize toxici‐
ty to healthy cells)

2. How to minimize inherent cell-to-cell variability

3. Compare various potential options

Our recent studies indicate that a stochastic to deterministic transition can be achieved selec‐
tively for cancer cells, which are equipped with over-expressed pro-apoptotic proteins, in
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the type 2 pathway of apoptosis. Alternatively, switching the activation from type 2 to type
1 can also lead to deterministic activation of the apoptotic pathway (in cancer cells), as re‐
vealed by our earlier systems level studies of apoptosis signaling. In both cases, inherent
cell-to-cell variability would protect normal cells from harmful toxicity. Cell-to-cell stochas‐
tic fluctuations in the type 2 pathway can also be exploited to protect cells in degenerative
disorders. In cancer therapy, it is also important to compare among various possible options
and the optimal strategy might depend on the cancer type under consideration. For exam‐
ple, type 2 to type 1 transition in TRAIL resistant cancer cells can be achieved by hedgehog
inhibition [76] or possibly by a Xiap inhibitor. Monte Carlo simulations can be carried out
for various possible options to determine the optimal one.

Appendix

Simulation code for 2-dimensional random walk

 

/* diffusion2D.c simulates a random walk in 2 dimensions using Monte Carlo method 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

 

 

#define NUM_RUNS 10000  // number of runs for the random walk (to generate distinct random walk trajectories) 

#define TIME 1000  // Monte Carlo time-step over which the simulation is run 

#define L 1000 // lattice spacings ~ 10 nm  => 100 lattice size = 1000 nm 

#define Molecule_Total 10  // total number of moleucles / particles / agents in the system 

 

 

 

main()       // the main program 

{ 

  

 double r;   

 int nx,ny,mx,my; 

 int count,run,molecule,trial,move,pick;  

  

 int up(int),down(int); 

  

 int coor[L+1][L+1]; 

 int Xcor[Molecule_Total+1],Ycor[Molecule_Total+1]; 

 int Xcorinitial[Molecule_Total+1],Ycorinitial[Molecule_Total+1]; 

  

 int rsquaredisplace[TIME+1],xdisplace[TIME+1],ydisplace[TIME+1]; 

  

 FILE *fp1, *fopen();   // open a file 

  

            srand (time(NULL));  // the seed for the rundom number generator is calculated using the current time 

  

 /* initialize rsquaredisplace to zero */ 

 for (count=1;count<=TIME;count++){ 

  rsquaredisplace[count] = 0; 

  xdisplace[count] = 0; 

  ydisplace[count] = 0;  

 } 

  

  

 for(run=1;run<=NUM_RUNS;run++){  // runs for different realizations of random walks  

  printf("run: %d\n", run);  // print to screen - number of runs 

   

  /*  initially none of the sites are occupied */ 

  for(nx=1;nx<=L;nx++){     

   for(ny=1;ny<=L;ny++){ 

    coor[nx][ny] = 0;  // keep track if a site is occupied 

   } 

  }  
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/* assign initial x and y coordinates to molecules */ 

  molecule = 1; 

  while (molecule <= Molecule_Total){                 

   nx = 1 + rand() % L; 

   ny = 1 + rand() % L; 

    

   if(coor[nx][ny] != 1){  // occupy only when site is open 

    Xcor[molecule] = nx;  

    Ycor[molecule] = ny; 

    Xcorinitial[molecule] = nx; 

    Ycorinitial[molecule] = ny; 

    coor[nx][ny] = 1;  // assign coor[][] = 1 if there is a molecule  

    molecule = molecule + 1; 

   } 

  } 

   

   

 for(count= 1; count<= TIME; count++){   // loop over total time (MC steps)  

    

    

     for(trial=1;trial<= Molecule_Total;trial++){  // In one MC step --> number of attempts to move = number of molecules   

     

     

    pick = 1 + rand() % Molecule_Total; // picking up a molecule randomly    

    /* coordinates of "pick" molecule */ 

    mx = Xcor[pick];    

    my = Ycor[pick];      

     

     

     

    move = 1 + rand() % 4;  // generates a number between 1 and 4 

     

    switch (move) { 

       

    case 1:    // attempt to move down  

       

    if (coor[mx][down(my)] != 1){  // check if down(my) is not already occupied => accept move 

        

       Xcor[pick] = mx; 

       Ycor[pick] = down(my);  

       coor[mx][my] = 0; 

       coor[mx][down(my)] = 1; 

        

      } 

      break; 

 

       

      case 2:   // attempt to move up    

       

      if (coor[mx][up(my)] != 1){  // check if up(my) is not already occupied => accept move 

        

       Xcor[pick] = mx; 

       Ycor[pick] = up(my);  

       coor[mx][my] = 0; 

       coor[mx][up(my)] = 1; 

      } 

      break; 
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         case 3:   // attempt to move left  

       

                     if (coor[down(mx)][my] != 1){  // check if down(mx) is not already occupied => accept move 

        

       Xcor[pick] = down(mx); 

       Ycor[pick] = my; 

       coor[mx][my] = 0; 

       coor[down(mx)][my] = 1; 

      } 

      break;  

 

       

      case 4:   // attempt to move right   

       

      if (coor[up(mx)][my] != 1){  // check if up(mx) is not already occupied => accept move 

        

       Xcor[pick] = up(mx); 

       Ycor[pick] = my;  

       coor[mx][my] = 0; 

       coor[up(mx)][my] = 1;     

      }                    

      break; 

    } 

     

     

     

   } // end loop over trial ~ 1 MC step  

    

    

 

    

/*  data analysis: mean displacement and mean square displacememnt */     

for (molecule=1;molecule<= Molecule_Total;molecule++){      

rsquaredisplace[count] = (Xcor[molecule]-Xcorinitial[molecule])*(Xcor[molecule]-Xcorinitial[molecule]) +  

                                    (Ycor[molecule]-Ycorinitial[molecule])*(Ycor[molecule]-Ycorinitial[molecule]) + rsquaredisplace[count]; 

              xdisplace[count] = (Xcor[molecule] - Xcorinitial[molecule]) + xdisplace[count]; 

  ydisplace[count] = (Ycor[molecule] - Ycorinitial[molecule]) + ydisplace[count];  

   } 

    

    

    

  } // end loop over count ~ total time (MC steps) 

   

   

    } // end loop over run  

  

  

 

  

    /*  writing data to an output file */   

    fp1= fopen("diffuse2D.dat", "w"); 

    for(count=1; count<=TIME; count++){ 

   

fprintf(fp1,"%d %f %f 

%f\n",count,(1.0*rsquaredisplace[count])/(NUM_RUNS*Molecule_Total),(1.0*xdisplace[count])/(NUM_RUNS*Molecule_Total),(1

.0*ydisplace[count])/(NUM_RUNS*Molecule_Total)); 

    } 

    fclose(fp1); 

 

 

  

} 
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/********************************* Function up (down) **************************************/ 

 

int up(m) 

 

{ 

    int u; 

    if (m >= L) 

        u = L; // reflective boundary (no flux)     

    else  

  u = m + 1; 

    return u; 

} 

 

int down(m) 

{ 

    int d; 

    if (m <= 1) 

  d = 1; // reflective boundary (no flux)    

    else 

  d = m - 1;  

    return d; 

} 

 

/**************************************************************************************************/ 

Caspase-8 function (Apoptosis cell signaling simulation)

 
/* Function for handling move when Casp8 is chosen */ 

    void Casp8function(int w){ 

   

 int partner;  

 if (randNum(1) < .5){ // reaction move is chosen 

  if ((*MOLECULES)[w].status == UNBOUND){ //if unbound, then bind to Bid or Caspase3 

   partner = generalBindingMove(w, Bid, Pon_Casp8_Bid, ProCasp3, Pon_Casp8_ProCasp3, 1); 

                /* The function generalBindingMove is for handling binding reaction moves */ 

  

   if (partner==1) { 

    NumCasp8--;    // NumCasp8: counter for number of Caspase8 molecules 

    NumBid--;        // NumBid: number of Bid  

    NumCasp8Bid++; // NumCasp8Bid: number of Caspase8-Bid complexes 

   } else if (partner==2) { 

    NumCasp8--;     // NumCasp8: number of Caspase8 

    NumProCasp3--;   // NumProCasp3: number of ProCaspase3 

    NumCasp8ProCasp3++;  // NumCasp8ProCasp3: number of Caspase8-ProCaspase3 complexes 

   } 

    

  } else if ((*MOLECULES)[w].status == BOUND){ //if bound, then might dissociate or cleaves partner 

   int b = (*MOLECULES)[w].partner[1]; 

    

   if ((*MOLECULES)[b].name == Bid){ //if bound to Bid 

    long double p = randNum(1); 

    if (p < Poff_Casp8_Bid){ //dissociates from Bid  

     NumCasp8++; 

     NumBid++; 

     NumCasp8Bid--; 

     unbindTwoMolecules(w,b); 

                                  /* The function unbindTwoMolecules is for handling unbinding reaction moves */ 
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    } else if (p < (Poff_Casp8_Bid + Pcat_Casp8_Bid )){ //cleaves Bid to tBid 

     (*MOLECULES)[b].name = tBid; 

     NumCasp8++;  

     NumtBid++; 

     NumCasp8Bid--;  

     unbindTwoMolecules(w,b); 

    } 

   } else if ((*MOLECULES)[b].name == ProCasp3){ //if bound to ProCasp3 

    long double p = randNum(1); 

    if (p < Poff_Casp8_ProCasp3){ //dissociates from ProCasp3 

     NumCasp8++; 

     NumProCasp3++; 

     NumCasp8ProCasp3--; 

     unbindTwoMolecules(w,b); 

 

      

    } else if (p < (Poff_Casp8_ProCasp3 + Pcat_Casp8_ProCasp3 )){ //cleaves ProCasp3 to Casp3 

     (*MOLECULES)[b].name = Casp3; 

     NumCasp8ProCasp3--; 

     NumCasp3++; 

     NumCasp8++; 

     Type1++;  // keep track of Type1 activation 

     unbindTwoMolecules(w,b);   

    } 

   } 

  } 

   

  

}else{ // diffusion move is chosen 

  diffusionCytosol(w); 

 } 

} 
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