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1. Introduction

The atmospheric movements can be described by non-linear differential equations that
unfortunately have no analytical solution. The numerical methods to solve the atmospheric
non-linear differential equations have been developed in different stages. During the 50s,
Charney, Fjørtoft and von Neumann (1950) made a 24-hour forecast of 500 hPa geopotential
height using a bidimensional quasi-geostrophic equation. After that, in 1956, Philips showed
the close relation between cyclone dynamics and the global circulation using a 2-layer model.

At the beginning of the 70s, the global circulation models emerged (Lynch, 2006). These models
are based on a set of non-linear differential equations, which are used to approximate the global
atmospheric flow, called primitive equations. During this stage the full primitive equations
were implemented without any quasi-geostrophic approximation (Williamson, 2007).

During the 80s, the regional and mesoscale numerical models appeared (Athens &Warner,
1978; Mesinger et al., 1988). The evolution of the models is a direct consequence of the increase
of computer resources, and the improvement in observational networks and assimilation
methods. This evolution has extended the knowledge on the dynamics and atmospheric
microphysical processes.

The last period of the numerical weather prediction was initiated in the 90s. The atmosphere-
ocean and atmosphere-ocean-soil coupled models, and the spatio-temporal high resolution
models allowed the development of analysis and diagnostic techniques for the weather
forecasting (Mechoso & Arakawa, 2003).
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Until  then,  the  numerical  prediction  models’  philosophy  was  based  on  the  determinis‐
tic  atmospheric  behavior.  That  means,  given an atmospheric  initial  state  its  evolution can
be  numerically  predicted  to  give  a  unique  final  state.  Consequently  the  efforts  of  the
scientific  community  were  focused  on  producing  the  most  accurate  prediction  (Tracton
& Kalnay,  1993).

Nevertheless, the formulation of models requires approximations due to unknown variables
or known process that cannot be explicitly resolved using the spatio-temporal resolutions a
model works with. These processes must be parameterized and this fact generates errors
associated with the parameterization used in the model. Although the model could perfectly
simulate all the atmospheric processes, it would be impossible to determine a realistic initial
state description for all resolutions and in all places using the available observational data
(Daley, 1991). Lorenz (1963) showed that small variations on the model initial conditions do
not produce a single final solution, but a set of different possible solutions. That is why the
predictability of the future atmospheric states is limited in time: the initial condition errors are
amplified as the forecast period grows (Lorenz, 1963, 1969).

The  traditional  deterministic  approach  gave  way  to  a  new  paradigm,  with  richer
information  than  a  single  solution  of  the  future  atmospheric  state.  The  new  paradigm
includes  quantitative  information  about  the  uncertainty  of  the  predictive  process.  The
atmospheric  non-linear  behavior,  consequently  chaotic,  must  be  treated  now  in  a
probabilistic  way (Lorenz,  1963).

The improvement of numerical models will permit a better characterization of the atmospheric
processes but the models will always have some limitations related to the scales of the
simulated processes and the approximations made to solve numerically the equations.
Another limitation of the numerical forecasting methods is the lack of observational data with
high enough resolution to properly describe the initial state.

Nowadays the observational methods, the assimilation strategies and the own characteristics
of the numerical models have inherent limitations that generate uncertainty in the estimation
of the possible future atmospheric states. The uncertainty is amplified when the forecast period
grows and when the resolution increases. Thus, the probabilistic approach seems an ideal
strategy to characterize forecast uncertainty.

The atmospheric state cannot be exactly known. The analysis data always contain an error that
only can be estimated. The inaccurate determination of the real atmospheric state drives to the
existence of a great number of initial conditions compatible with it. A single model only
provides a single solution of the future atmospheric state. The generation of multiple forecasts
starting from slightly different but equally-probable initial conditions can characterize the
uncertainty of the prediction (Leith, 1974).

The  generation  of  equally  probable  forecasts  starting  from  multiple  realistic  initial
conditions introduces the probabilistic  forecasting concept.  A practical  approximation to
probabilistic  forecasting  based  on  meteorological  models  is  the  so  called  ensemble
forecasting.  The  Ensemble  Prediction  Systems  (EPS)  are  used  operationally  in  several
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weather  and  climate  prediction  centres  worldwide.  The  European  Centre  for  Medium-
Range Weather Forecasts  (ECMWF; Molteni  et  al.,  1996)  or  the Meteorological  Service of
Canada  (Pellerin  et  al.,  2003),  among  others,  produce  routinely  ensemble  predictions.
These  predictions  have  been  demonstrated  to  be  extremely  useful  on  decision  making
process.

The EPS is a tool for estimating the time evolution of the probability density function viewed
as an ensemble of individual selected atmospheric states. Each of these different states is
physically plausible. The spread of the states is representative of the prediction error (Toth &
Kalnay, 1997).

Several techniques for constructing the ensemble have been developed and applied. One of
the first methods proposed for generating an ensemble of initial states is the random Monte
Carlo statistical methodology. It was proposed by Leith (1974), Hollingsworth (1980) and
Mullen and Baumhefner (1989), among others.

Perturbative methods that depend on the atmospheric flow are also used. These strategies are
based on the generation of perturbations in the subspaces where the initial condition errors
grow faster. The breeding vectors (Toth & Kalnay, 1993, 1997) or the singular vectors (Buizza
& Palmer, 1995; Buizza, 1997; Hamill et al., 2000) are remarkable examples.

There are other perturbative methods that consider the model sub-grid scale errors by means
of varying model physical parameterizations (Stensrud et al., 1998; Houtekamer & Mitchell,
1998; Andersson et al., 1998) or using stochastic physics (Buizza et al., 1999).

The combination of multiple model integrations initialized by multiple initial conditions
determined by different analysis cycles is another strategy to generate ensembles. Using
different assimilation techniques allows characterizing the uncertainties associated to the
initial condition and the uncertainty associated to each model (Hou et al., 2001; Palmer et al.,
2004). Finally, taking different global models as different initial conditions has been found to
provide better performance than any single model system (Kalnay & Ham, 1989; Wobus &
Kalnay, 1995; Krishnamurti et al., 1999; Evans et al., 2000).

The technique based on the use of multiple limited area models (LAM) and multiple initial
conditions coming from several global models combined with advanced statistical post-
processing techniques (Gneiting & Raftery, 2005a) has been tested in the National Centres for
Environmental Prediction (NCEP; Hamill & Colucci, 1997, 1998; Stensrud et al., 1999; Du and
Tracton, 2001, Wandishin et al., 2001) during the Storm and Mesoscale Ensemble Experiment
(SAMEX; Hou et al., 2001). Such probabilistic predictions have also been generated over the
Pacific Northwest coast (Grimit & Mass, 2002) and over the Northeast coast (Jones et al.,
2007) of the United States.

The  combination  of  multiple  models  and  multiple  analyses  is  part  of  the  operational
suite  of  NCEP  (Du  &  Tracton,  2001)  and  the  basic  idea  of  the  short-range  EPS  of
Washington University  (Grimit  & Mass,  2002)  and the  Agencia  Estatal  de  Meteorología
(AEMET; García-Moya et  al.,  2011).
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2. Atmosphere as a chaotic system

2.1. Lorenz and non-linearity

Two basic properties can dynamically characterize a chaotic system: the sensitivity to initial
conditions and the topologically mixing. Sensitivity to initial conditions implies that infinites‐
imal changes in the system initial trajectory can lead to big changes in its final trajectory. The
Lyapunov exponent (Lyapunov, 1992) gives a measure to this sensitivity to initial conditions
as it quantifies the rate of separation of infinitesimally close trajectories. Generally it cannot be
calculated analytically and one must use numerical techniques. In Krishnamurthy (1993) it is
described how to calculate the Lyapunov exponents of a simple system. The meaning of
topological mixing is that the temporal evolution of meteorological quantities in any given
region of its phase space will eventually overlap with those of any other given region. This
second property is necessary to distinguish between simple unstable systems and chaotic
systems.

The classical example provided by Lorenz (1963) is instructive. For this reason we use it in this
section, to show briefly some concepts of Chaos Theory. It comes from a simplified model of
fluid convection. It consists of a dynamical system with only three degrees of freedom, but it
exhibits most of the properties of other more complex chaotic systems. It is forced and
dissipative (in contrast to Hamiltonian systems which conserve total energy), non-linear (as
its equations contain products of dependent variables) and autonomous (all the coefficients
are time independent). The Lorenz (1963) equations are:

dx
dt =σ(y − x)

dy
dt = rx − y − xz

dz
dt = xy −bz

(1)

where, in this simplified model, x(t) is proportional to the intensity of convection, y(t)
proportional to the maximum temperature difference between up and downward moving
fluid portions and z(t) is proportional to the stratification change due to convection. All
variables are dimensionless, including time. The solution {x(t), y(t), z(t)} is unique provided
that the initial conditions {x0, y0, z0} are given at time t = 0. This means that the system is
theoretically deterministic (given a perfect representation of the initial values or the dependent
variables and a perfect integration of the non-linear system). The parameters {σ, r, b} are
constant within the time integration and different values provide different solutions thus
creating a family of solutions of the dynamical system. Lorenz (1963) chose the values σ = 10,
r = 28 and b = 8/3 which led to a chaotic solution of the system that is sensitive to small changes
in the initial conditions and topological mixing. The dimension of the phase space is equal to
the number of dependent variables (three in this case) whereas the dimension of the subspace
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reached by a given solution can be smaller as is the case of the Lorenz system. This behaviour
can be demonstrated from the divergence of the flow:

∂ ẋ
∂ x +

∂ ẏ
∂ y +

∂ ż
∂ z = − (σ + r + b) (2)

Which means that an original volume in the phase space V contracts in time to Ve-(σ+r+b)t. This
behaviour is related to the existence of a bounded attracting set of zero volume with dimension
smaller than the phase space. An attractor is a set towards which the dynamical system evolves
over time. Geometrically, an attractor can be a point, a curve, a surface or even a complicated
set with a fractal structure known as a strange attractor. A solution of the Lorenz equations
has an initial transient portion and after that it may be settled on a strange attractor. Figure 1
shows exemplarily a numerical solution of the Lorenz system up to t = 100 from with initial
conditions equal to x0 = 0, y0 = 1 and z0 = 0 using a backward Euler scheme for the time stepping
with dt = 0.01.

σ 

 



σ

σ

σ 


  
 

σ

Figure 1. Numerical integration of the Lorenz (1963) system.

As is shown with more detail in next sections the difficulty of weather forecasting is due either
to the sensitivity of the atmosphere evolution to small changes in the initial conditions related
to the analysis error and to the sensitivity of the atmospheric differential equations to small
differences in the numerical schemes used to find a numerical solution or model error. Figure
2 shows the evolution of the Lorenz system for two different but similar initial conditions. The
solutions are very similar up to t = 25 approximately in this case and after that the differences
become larger. After t = 30 the value of the variables x and y cannot be predicted although z
remains more predictable. In general, the time range within which the system remains
predictable, depends on the initial condition, and this characteristic is called the flow depend‐
ency of the predictability of the system.
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σ

Figure 2. Numerical integration of the Lorenz (1963) system for two different and similar initial conditions. In green x0
= 0, y0 = 1 and z0 = 0, in blue the initial conditions are x0 = 0.001, y0 = 1 and z0 = 0.

The effect of model errors can be shown by changing slightly the constant parameters σ, r, b
(Lorenz 1963). In a more complex model, this change would correspond, for example, to a
change in the parameterization of the physical processes. Figure 3 shows the temporal
evolution of the Lorenz system for two different sets of constant parameters. In this case, the
predictability is loose after t = 20 for all the model variables.

σ

Figure 3. Numerical integration of the Lorenz (1963) system for two different and similar parameters. In green s = 10,
r = 28 and b = 8/3, in blue a small value 0.001 is added to the parameters.

In light of these results (Lorenz, 1963), the question about the predictability of the atmosphere
was raised for the first time, which has involved the efforts of the meteorological community
to quantify it over several decades until today.
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2.2. The predictability problem

A rigorous analysis of the chaotic properties of such a complex system as the atmosphere can
be only achieved in simplified contexts. Atmosphere dynamics has been stated as chaotic and
it is well established that there is an effective time barrier beyond which the detailed prediction
of the weather may remain impossible (Lorenz, 1969). Predictability, or the degree to which a
correct forecast can be made, depends on the spatial and temporal scales (from few hours at
the mesoscale to few weeks at the planetary scale) and also on the variable (for instance, surface
wind and temperature, precipitation or cloudiness).

Atmospheric chaos, uncertainty, predictability and instability are related concepts. Due to
the  approximate  simulation  of  atmospheric  processes,  small  errors  in  the  initial  condi‐
tions and model errors are the two main sources of uncertainties that limit the skill of a
single deterministic forecast (Lorenz, 1963). Uncertainty limits the predictability, especial‐
ly  under  unstable  atmospheric  conditions.  The  atmospheric  instabilities  related  to  low
predictability conditions are the baroclinic instability at synoptic scales (Buizza & Palmer,
1995) and inertial and potential instabilities (e.g. deep convection) on the mesoscale, among
others (Hohenegger & Schär, 2007; Zhang, 2005; Roebber & Reuter, 2002; Emanuel, 1979).
This  inherent  limitation  in  predictability  has  led  to  the  concept  and  development  of
ensemble  prediction  systems,  which  provide  probabilistic  forecasts  to  complement  the
traditional deterministic forecasts (Palmer et al., 1992).

3. Ensemble prediction systems

3.1. Uncertainty sources in numerical weather prediction

As indicated before, due to the chaotic nature of weather, there are several uncertainty or error
sources in the Numerical Weather Prediction (NWP) framework that can grow and limit the
predictability (Lorenz, 1963, 1969) of atmospheric flow. Forecast errors can arise due to
inaccuracies in the initial condition atmospheric state estimates or due to imperfect data
assimilation systems (Initial Conditions forecast error source), inadequacies of the NWP
models themselves (Model Formulation forecast error source). Processes that take place at
spatial scales that are shorter than the truncation scale of NWP models must be parameterized
with sometimes inexact approximations thus giving us another source of forecast error
(Parameterization forecast error source). One approach of NWP is to use Limited Area Models
(LAMs) where the lateral conditions come from a global NWP models. This procedure is
another source of forecast error (Lateral Boundary Conditions forecast error source). So far,
the main error sources are: Initial Conditions (IC), Model Formulation, Parameterization and
Lateral Boundary Conditions (LBC) error sources.

To the extent  that  these error  sources  project  onto dynamical  instabilities  of  the chaotic
atmospheric  system,  such  error  will  grow  with  time  and  evolve  into  spatial  structures
favoured by the atmospheric flow of the day. The inherent atmospheric predictability is
thus state-dependent.

Ensemble Forecasting
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To estimate these uncertainties or errors, i.e. the predictability, many operational and scientific
centres produce ensemble forecasts (e.g. NCEP, ECMWF, etc.). The idea of using ensemble
forecasts has been know for many years (Leith, 1974). Since the early 1990s, many centres
generate ensemble forecasts. The methodology that is behind is to run multiple (ensemble)
forecast integrations from slightly perturbed IC (IC forecast error source), using multiple
models or perturbing model formulation (Model Formulation forecast error source). Adding
stochastic physics parameterizations (Ehrendorfer, 1997; Palmer, 2001) or using multiple
boundary conditions (Lateral Boundary Conditions forecast error source) among others
techniques is described below. The discrete distribution of ensemble forecasts can be inter‐
preted as a forecast Probability Density Function (PDF). If an idealized forecast ensemble can
be constructed that properly characterizes all sources of forecast errors, then the forecast PDFs
would be reliable (see section 5) and skilful (sharper than the climatological PDF). No further
information would be needed to make trustworthy forecast-error predictions, since a perfect
PDF is a complete statement of the actual forecast uncertainty.

In practice, estimates of all the forecast-error sources mentioned above are inexact, leading to
PDFs from real ensemble forecasts with substantial errors in both of the first two moments
(mean and variance). These limitations are particularly pronounced for mesoscale prediction
of near-surface weather variables, where large underdispersion results from insufficient
ensemble size, inadequate parameterization of sub-grid scale processes, and incomplete or
inaccurate knowledge of land surface boundary conditions (Eckel & Mass, 2005). Real
ensemble forecast distributions, although generated using incomplete representations of
weather forecast error sources, often represent a substantial portion of the true forecast
uncertainty.

3.1.1. Initial conditions forecast error source

It is clear that the atmospheric state at a given time is not perfectly known; not only the inherent
observational errors alone guarantee this, but also the sparse network of observations world‐
wide that sample the atmosphere only at limited intervals with inexact results. In addition
network density and design can yield errors in regional averages (PaiMazumder & Mölders,
2009). Another contribution to IC forecast error source is the Data Assimilation (DA) system
used. Every DA system is affected by the characteristic errors of both the observations
incorporated in the analysis and of the short-range model forecast, which is typically used as
a background or first guess field to be adjusted by new observations. IC errors, however small,
are exacerbated by the chaotic dynamics of the atmosphere and consequently grow non-
linearly with time.

3.1.2. Model formulation forecast error source

NWP model inadequacy is inevitable given to our inability to represent numerically the
governing atmospheric physical laws in full. Contributions to this forecast-error source can be
found in the model used which is, of course, a simplified scheme of what really happens in
the atmosphere, dynamical formulation, different discretization methods, the numerical
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method employed to integrate the model and the different horizontal and vertical discretiza‐
tion resolutions used.

The model formulation forecast error in conjunction with another forecast error sources such
as parameterizations has been recognized traditionally by operational forecasters in NWP
centres. They usually select a best model of the day when producing their operational forecasts.
This model selection tries to best handle the evolution of the atmosphere depending on the
flow the general situation and the season of the year. The selection is driven by the subjective
knowledge than some models behave better than others in some situations due to their
formulation.

3.1.3. Parameterization forecast error source

There are several parameterized processes in NWP models: those which are taking place at
smaller spatial scales than the truncation scale of the NWP model and are not resolved
explicitly by the model as convection. Another one is introduced in a simplified way due to
computer time limitations like radiation, and finally processes which are not taking into
account in the NWP model dynamic part as microphysics in clouds. All theses processes are
called sub-grid processes. It is assumed that sub-grid processes are in equilibrium with grid
resolved states and so they can be represented statistically from them. A parameterization is
the statistical method used when representing the sub-grid processes. Parameterizations are
always imperfect representation of atmospheric processes so they always include inherent
errors (Tribbia & Baumhefner, 1988; Palmer, 1997). NWP parameterizations have a time and
space scale dependency. At small scales, forecast verification is primarily concerned with the
locations and amounts of precipitation and other sensible weather parameters, which are often
directly affected by the assumptions used to develop the model parameterization schemes for
convection and other processes. Moreover, especially for the higher model resolutions, the
implicit equilibrium assumption of sub-grid processes with model state could break down
being another source of parameterization uncertainty.

3.1.4. Lateral boundary condition forecast error source

The LBC forecast error is only present in LAMs or regional models, which have as inputs lateral
boundary values spatially and temporally interpolated from a coarser resolution grid-point or
spectral model. So the coarser model errors are translated into LAMs as LBC error source. For
instance, a possible configuration for a LAM EPS could include lateral boundary conditions
from an ensemble of global forecasts.

3.2. Techniques used by global models

For many years operational forecasters, particularly medium range forecasters in meteoro‐
logical  services,  have  had  access  to  some  forecast  products  coming  from  global  NWP
centres other than their own. They routinely compare forecasts from different centres to
assess  the  confidence  in  the  forecasts  of  their  own  models,  and  to  determine  possible
alternative forecasts.  This set  of  available forecasts is  often called the Poor Man's  (Ebert,
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2001) ensemble because its production is relatively cheap compared to the cost of develop‐
ing  and  running  a  full  EPS  such  as  the  ECMWF  and  NCEP  ones.  It  is  called  Ad  hoc
ensembles by some other authors. Theses ensembles are cheap and easy to create, but they
are not generated in a controlled and systematic approach. Not only are they not calibrat‐
ed but also some ensemble members may be always quite more skilful than others. The
hypothesis of equiprobability of the ensemble members is less guaranteed than others EPS
which is a major drawback.

Hoffman and Kalnay (1983) proposed a time-lagged method or Lagged Average Forecast (LAF)
method. The time-lagged method uses forecasts from lagged starting times as ensemble
members. These members are easy to construct but they lack any scientific motivation. On the
contrary, LAF perturbations are realistic short-term forecast errors. However, LAF ensemble
forecasting has the disadvantage that most of the times earlier forecasts are considerably less
skilful than later forecasts. This drawback can be partly resolved by either using different
weights for different members of the ensemble or by scaling back the larger errors to a
reasonable size. This procedure is the basis of the Scaled Lagged Average Forecast (SLAF)
technique (Ebisuzaki & Kalnay, 1991).

The multi-model SuperEnsemble technique (Krishnamurti et al., 1999) is a powerful method to
construct EPS. Several different models outputs are put together with appropriate weights to
get a combined estimation of weather parameters. Weights are calculated by square minimi‐
zation in a period that is called training period.

A better solution is to sample the different error sources that were indicated before. Depending
on the sampling technique we obtain different methods: a Monte Carlo approach as proposed
by Leith (1974), Hollingsworth (1980) and Mullen and Baumhefner (1989) among others. In
general, the technique consists of sampling all sources of forecast error, by adding or perturb‐
ing any input variable (analysis, initial conditions, boundary conditions etc.) and whatsoever
meteorological parameter that is not perfectly known. These perturbations can be generated
in different ways. The main limitation of the Monte Carlo approach is the need to perform a
high number of perturbations in order to have a proper description of the initial uncertainty,
which is usually far from the available computational resources. This limitation leads to
reduced sampling by just sampling the leading sources of forecast error due to the complexity
and high dimensionality of the system. Reduced sampling identifies active components that
will dominate forecast error growth.

IC forecast error source have a dominant effect. To sample it several techniques have been
available. One of them is the initial perturbations method, which consists of adding small
perturbations to the initial analysis,  such as NCEP’s breed mode  method (Toth & Kalnay,
1993, 1997; Tracton & Kalnay, 1993). The breed mode method is based on the idea that the
analysis created by the data assimilation scheme used will accumulate growing errors. As
it can be seen in Figure 4 breeding vectors give a sampling of the growing analysis error:
a random perturbation is added to the analysis, evolved in time by integrating the forecast
model,  rescaled and reintroduced as a perturbation.  After several  cycles only the fastest
growing errors remain.
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Figure 4. Breeding technique strategy

An alternative to the breed mode is the ECMWF’s singular vector method (Palmer et al., 1992;
Molteni et al 1996) which tries to identify the dynamically most unstable regions of the
atmosphere by calculating where small initial uncertainties would affect a 48 hour forecast
most rapidly. It needs an adjoint model. Singular vectors give a sampling of the perturbations
that produce the fastest linear growth in the future. There are only a relative small number of
directions in the phase-space of the atmospheric system along which the most important
processes occur. Maximum growth is measured in terms of total energy. The adjoint of the
tangent forward propagator with respect to the total norm is defined, and the singular vectors
(the fastest growing perturbations) are computed by solving an eigenvalue problem. Singular
vector method is schematically described in Figure 5.

In addition to the breeding and singular vector methods there are Ensemble Transform Kalman
Filter technique (ETKF; Bishop et al., 2001; Wang & Bishop, 2003) and Ensemble Data Assimila‐
tion (EDA; Houtekamer, 1996; Buizza, 2008). ETKF is similar to the breeding method except
that the rescaling factor is replaced by a transformation matrix. It produces an improved
ensemble dispersion growth. It is used at the UK Meteorological Office. In EDA, an ensemble
of assimilations is created from different analyses which have been generated by randomly
perturbing the observations in a manner consistent with observation error statistics.

Model forecast error source, i.e. model formulation and parameterization error sources
together, is another component to take into account. To represent model uncertainty several
approaches have been used: the multi-model approach (e.g. DEMETER; ENSEMBLES; TIGGE;
Krishnamurti et al, 1999), multi-parameterizations or multi-physics approach (Houtekamer,
1996), stochastic parameterizations (Buizza et al., 1999; Lin & Neelin, 2002), multi-parameter
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 approach (Murphy et al., 2004), and Stochastic-Kinetic Energy-Backscatter approach (Shutts &
Palmer, 2004; Shutts, 2005).

So, in order to sample model forecast error an ensemble forecasts are produced by using
different numerical models (multi-model approach). The multi-model approach implies
equiprobable members which is not always the case. An alternative method for sampling
model forecast errors is using different physical packages (multi-physics approach). Another
approach is the stochastic parameterization approach applied at ECMWF (Buizza et al., 1999). It
is based upon applying stochastically perturbing the total parameterized tendencies with a
multiplicative noise. The multi-parameter approach tries to take into account the significant
uncertainty in some parameters in NWP models, for instance, by using different values in each
ensemble member.

Finally, the Stochastic-Kinetic Energy-Backscatter approach addresses a missing physical
process, the upscale energy cascade energy from the grid scale to synoptic scales lost due to
the excessive dissipation energy in NWP models.

3.3. Techniques used by limited area models

Not only global models can be used in building EPS, but also Limited Area Models (LAM) can
be used to create LAM EPS, normally used for the short range. Error sources in LAM EPS are
the same as in global EPS, but LAM models require lateral boundary conditions that update
the weather situation regularly throughout the integration. These lateral boundary conditions
introduce a main source of uncertainty in LAM ensembles. Both LBCs and ICs give their
contribution to the spread and skill of the system (Clark et al., 2009). All the techniques
discussed so far can be applied to generate LAM EPS. A very popular generating technique is
the downscaling of global ensemble forecasts. This technique consists of using the selected

Figure 5. Singular vector technique strategy
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global ensemble members (chosen by clustering) as initial and boundary conditions for a
limited area ensemble system. The difficulty is that the perturbations generated from the global
EPS are usually effective only on the medium range and large scales. Therefore they are not
likely optimal for short range ensemble forecasts. Another technique for sampling lateral
boundaries forecast error source is multi-boundary technique. In the multi-boundary technique,
several different global models supply the lateral boundary conditions needed by the LAM
model. One example of the use of the multi-boundary technique is the AEMET Short Range
Ensemble Prediction System (AEMET-SREPS; García-Moya et al., 2011). AEMET-SREPS uses
the multi-boundary method in addition to the multi-model method. It is built by using a set
of LAMs and a set of deterministic global models that supply the initial and boundary
conditions. The system is focused on short-range forecast and has been developed to help in
the forecast of extreme weather events (gales, heavy precipitation and snow storm) and
provides forecasts with good reliability, resolution and discrimination consistently with the
analysis in the large-scale flow.

4. Uncertainty representation and weather forecasting products

4.1. Uncertainty representation

In statistics, uncertainty is represented by means of the Probability Distribution Function
(PDF). Let us consider a random variable x that we do not know, a priori, anything about its
nature. The question is whether we can infer something about it. Let us take n different values
of x that belong to the same population. When we construct the histogram of these values, we
obtain an approximation of its PDF. As an example, we could think of x as the mean monthly
temperature of April at a surface observation station. Then the population would be the mean
monthly temperatures of April at that station. If we restrict us to only the period 1981-2010, then
the n=30 values of x would form the sample space.

The PDF gives us information about the behaviour of the random variable x. For example, let
us take the normal or Gaussian PDF of which the analytical formula is:
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Here σ is the standard deviation and μ is the mean. Figure 6 shows this distribution graphically.
Now we can infer something about the nature of the variable x. From Figure 6 we can say that
there is a value μ around which all the random variables are distributed symmetrically.
Likewise, σ is a measure of the standard deviation of x from its mean. We can think of σ as a
mean error (or uncertainty) we would have if we approximated any possible value of x by μ.
In resume, the PDF gives us a depiction of all the possible values of x and their associated
probabilities of occurrence. This procedure results in an explicit and quantitative way of
representing the uncertainty of a random variable.
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Figure 6. Gaussian PDF with μ = 0 and σ = 1

In the case of a Numerical Weather Prediction (NWP) system there are about 108 different
random variables x, each one corresponding to each degree of freedom of the model. This fact
makes it computationally unfeasible to integrate the Liouville equation (sometimes referred
to as Fokker-Plank equation when random processes are included to account for, for example,
model error) that describes the time evolution of a PDF. A practical way to resolve this problem
is to use an EPS. An ensemble prediction tries to estimate the uncertainty of the forecast by
discretizing the forecast PDF for each model parameter at each grid point in N values corre‐
sponding to the N ensemble members. As an example, Figure 7 presents the PDF of a 60 hours
two metres (2m) temperature forecast of the AEMET-SREPS for the grid point closest to Sevilla,
Spain. This ensemble has 25 members, but in this case, there was one that did not integrate
properly, so N=24. It is easy to see that the more members the ensemble has, the higher is the
resolution of the PDF.

In ensemble prediction, a simplified way of representing the uncertainty of the forecast is the
spread (Toth & Kalnay, 1997); the standard deviation σ (4) of the PDF quantifies how much the
ensemble members deviate, on average, from the mean, and it is often used as a measure of
the spread (Wilks, 2006):
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Where fi is the forecasted variable by member i, and em is the ensemble mean, e.g., the mean
of the N forecasts. This parameter can be calculated on each grid point. In the case of the 2m
temperature forecast (Figure 7) em and the spread are 32.3 and 1.5 oC, respectively. The latter
can be interpreted as an estimate of the error of the deterministic forecast so that the higher
the spread, the more uncertain is the forecast. Other measures of spread, more robust or
resistant, can be alternatively used, e.g. the interquartile range (Wilks, 2006).

4.2. Raw products

Ensembles are composed of members that are deterministic predictions, and allow providing
individual deterministic information (García-Moya et al, 2011). This information can either
help the traditional staff to understand ensembles, and can provide support in the probabilistic
interpretation. Far beyond this, ensembles provide their most useful information when we
look at them as intrinsically probabilistic prediction systems. In this context, most of the
ensemble outputs reflect this probabilistic nature. Probability is a rich and reasonable model
to describe and understand many aspects of the physical world, but the interpretation of
ensemble outputs must be learned and used carefully beyond the straightforward interpreta‐
tion, because (especially for deterministic forecasters) some interpretations can be in conflict with
common sense. Given a grid point with N forecast values x'i (for an ensemble with N members),
we call raw products when only these N values are used straightforward. Three basic examples
of raw products exist.

Figure 7. Histogram of 2m Temperature. AEMET-SREPS H+60 predicted values at the grid point closest to Seville. Valid
time: 30th June 2011, 12 UTC.
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4.2.1. Stamps

The deterministic outputs for all the ensemble members can be plotted as usual meteorological
charts (see for instance Figure 8 with MSLP and T850 for the ECMWF EPS). These usual postage
stamp charts comprise the control forecast (if there is any, top left), the perturbed members
(below) and the corresponding high resolution deterministic forecast (if exists, beside the
control). The difficulty is that the forecaster would have to deal with an amount of information:
51 scenarios in addition to the high resolution deterministic forecast.

4.2.2. Plumes

In a given location, we can provide N forecast values for that place (either by bi-linear
interpolation or some other fine process which could account for height variability). Moreover,
we can plot the evolution with forecast step for all the N members, i.e. we would plot N curves.
Like on the stamp charts, the control forecast can be highlighted and the high-resolution
deterministic forecast can also be plotted (e.g., Figure 9). The difficulty is similar to that one of
the stamps namely the necessity to deal with such an amount of information. For a specific
location and parameter, plumes can help the forecast guidance and, in fact, often provide
information about the uncertainty and general trends.

Figure 8. Postage stamps charts of MSLP and 850 hPa temperature T+108 forecasts (see text). Courtesy of ECMWF (2011).
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Figure 9. days forecast plumes of 850 hPa temperature at Madrid (see text). Courtesy of ECMWF (2011).
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4.2.3. Spaghetti

As a third example, we show the spaghetti charts. For a given (often dynamical) field, it is
rather impossible to overlay N member charts. But picking a selected isoline of interest, we
can plot one line per member and, thus, the whole plot would contain N lines. Typically, the
control is highlighted, and a higher resolution deterministic forecast can be included (e.g.
Figure 10). As plumes, this kind of plot can help the forecaster to provide information about
the uncertainty.

Figure 10. Spaghetti chart of geopotential height (5880-gpm- isoline) for the T+120 forecast at 500 hPa (see text).
Courtesy of ECMWF (2011).

All of these raw outputs share the same shortcoming: the inherent difficulty in the forecast
guidance for handling the huge amount of information they provide. This issue is addressed
using derived probabilistic outputs that compact this information naturally.

4.3. Derived probabilistic products

Probabilistic outputs are derived computationally from the PDF representation, which is
assumed to be provided by the ensemble members. These products reflect the probabilistic
nature of the ensemble, visually and conceptually. They provide explicit, quantitative and
detailed information about uncertainty, and this fact is a real breaking point with respect to
deterministic model products. They address the issue of providing compact information in
this natural way. Ensembles nowadays can provide ideal complementary information to a
higher resolution deterministic model.
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For a given grid point, there are N forecast values x'i for an ensemble with N members. Without
further information about the skill of the members, we assume Laplace principle of equal
probability, dealing in this case with a discrete PDF. An estimate of the forecast probability p
of exceeding a threshold t is given by the well-know formula where the indicator I(x'i) is usually
defined as I(x'i)=1 if x'i > t, I(x'i)=0 otherwise (Ferro 2007b):
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The corresponding inverse is the computation of percentiles, i.e., for a given probability p, what
is the actual forecast value x’ for which p = P(x’). By adding further information, we can improve
the PDF (e.g. by calibration) and the computation would be different. By taking this simple
discrete model, we can compute the probabilities of exceeding thresholds, the percentiles for
given probabilities, the summary statistics (e.g. mean and standard deviation), etc.

4.3.1. Ensemble mean and spread charts

The ensemble mean (the arithmetic mean of all the ensemble members) is not always a feasible
meteorological situation because it is obtained as a result of a statistical operation, not from a
numerical model (Buizza and Palmer, 1997). So, it is strongly discouraging in forecast guidance
to use the ensemble mean without special care, if at all (García-Moya et al, 2011). However,
the ensemble mean is often plotted in charts together with the standard deviation (the latter
as a measure of spread), to help with the understanding of the atmospheric flow (e.g. Figure
11). The standard deviation is sometimes normalized.

Figure 11. MSLP T+00 ensemble mean (contour) and normalized standard deviation (colours) (see text). Courtesy of
ECMWF (2011).
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4.3.2. Probability maps and percentile maps

Given a binary event (e.g. precipitation forecast > 5 mm/6h) we can plot the spatial distribution
of the forecast probabilities that the EPS provides (see Figure 12). Similar plots can be made
for the percentiles. These maps provide the forecasters with useful guidance by showing them
where it is more probable for an event of interest to occur (e.g. representative precipitation
that exceeds 5 mm/6h).

Figure 12. Probability of having accumulated precipitation greater than 1 mm in the interval T+0 to T+24 (see text).
Courtesy of ECMWF (2011).

4.3.3. EPS-grams

Box-plots (Wilks, 2006) and similar graphs give a quick, visual and simple representation of a
distribution of numbers, a discrete PDF. Extending this idea by including the evolution with
forecast time of the main weather parameters at a given location, we obtain plots that are
meteogram based and often called EPS-grams. The building brick is the box-plot: it displays the
median, minimum, maximum, percentiles 25 and 75 and sometimes also percentiles 10 and 90.
Box-plots are displayed for a series of forecast steps. This procedure is typically applied for the
more sensitive parameters to forecast e.g. cloud cover, precipitation, ten metres (10m) wind
speed and 2m temperature (e.g. Figure 13). Special care must be taken with EPS-grams interpre‐
tation (Persson & Grazzini, 2005) by comparing the location point and the nearest grid-points:
distance, land/sea contrast and height must be checked in order to properly use the informa‐
tion that EPS-grams provide. Anyway, the EPS-grams are the most popular and probably useful
plots to forecast the weather in a location by taking into account the uncertainties.
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Figure 13. days EPS-gram at Cedillo del Condado (Spain) (see text). Courtesy of ECMWF (2011).
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4.3.4. Clustering

A natural way of examining the number of atmospheric scenarios that EPS provide (e.g.
stamps) is by similarity: one can gather scenarios in groups that could lead to similar weather
conditions (Ferranti, 2010). This process can be done by eye-ball or can be carried out compu‐
tationally by using a clustering algorithm (Ferranti, 2010) that fits the corresponding mete‐
orological requirements. This procedure is often expensive and requires an extra task of
defining the similarity criterion, but forecast guidance can improve substantially with the use
of clusters. Examples of algorithms used are the Ward algorithm (Ferranti, 2010) and the
tubing; both have been used operationally at AEMET (Figure 14). Here clusters have proved
to be a very useful guidance in medium range forecasts by summarizing the more important
and distinct scenarios (Ferranti, 2010).

Figure 14. day forecast clusters of 500 hPa height and surface pressure (see text). Courtesy of AEMET (2011)

4.3.5. Extreme forecast index

Extreme events are not always severe, but severe events are often extremes. An index of extreme
forecast can be computed using the model climatology as a reference, rather than the climatol‐
ogy of observations (Lalaurette, 2003). When observations are used, the forecast is not really
prone to fall in the tail of the climatological distribution, and this fact is addressed by using
the model climatology. The Extreme Forecast Index (EFI; Lalaurette, 2003) is a quantitative
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measure of how extreme is the EPS forecast when compared with the model climatology. The
EFI can be plotted in a chart (Figure 15), and this chart is especially useful for weather
parameters. Thus the EFI is used by forecasters as an early warning tool to highlight where
severe events could happen.

Figure 15. Extreme Forecast Index for range T+0 to T+24 of 2m temperature forecast (see text). Courtesy of ECMWF (2011).

4.4. Interpretation for weather forecasting

As an example for the application of probabilistic forecasting we present a real case of extreme
winds that is fully described in Escribà et al. (2010). This section is not intended to be a detailed
manual of the utilization of probabilistic products in operational forecasting. More extend and
concise information can be found for example at www.ecmwf.int.

At 00 UTC on 24 January 2009 an explosive cyclogenesis in the Gulf of Vizcaya reached its
maximum intensity with an observed surface pressures less than 970 hPa on its center. During
the cyclone’s path through the south of France strong westerly and north-westerly winds
occurred over the Iberian Peninsula (> 150 km/h). These winds led to eight casualties in
Catalunya, the north-east region of Spain.

In Figure 16 are represented three probabilistic forecasting products, the ensemble mean, the
ensemble spread and the probability of having wind speeds greater than 15 m/s (54 km/h). The
weather parameter analyzed is 10m wind speed. These fields correspond to the H+60 predic‐
tion of the AEMET-SREPS initialized at 00 UTC on 22 January 2009. The ECMWF reanalysis
is also shown as verification.

Even though wind speed values plotted in the maps are not extreme, they do not exceed 20
m/s or 72 km/h, this fact has to be taken carefully because we are representing mean values of
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wind at a forecast time, i.e. a mean over a time interval equal to the last forecast time step of
the forecasting model (which in this case is around 5 minutes). As a first approximation we
can estimate the wind gust (maximum wind) as twice the value of the mean wind (this factor
can be roughly obtained comparing temporal series of mean wind and wind gusts from
observation ground stations). In this case, such an approximation would give us extreme winds
of about 150 km/h, similar to those observed.

The ensemble mean (Figure 16) can be thought as a skilful deterministic forecast that comes
from the ensemble. When we compare it with the verification we can highlight there is a good
agreement in the overall patterns. Looking in more detail we can select three zones where there
is more discrepancy: a.) south of Catalunya (yellow ellipse), b.) Aragon and Valencia (white
ellipse) and c.) south-east of France (green ellipse). It is especially interesting to analyze zone
a.), where the casualties occurred. The question is whether the ensemble can estimate in some
way the error in the prediction; the spread is expected to give information on this.

Figure 16. Ensemble mean (top left), ECMWF reanalysis verification (top right), ensemble spread (bottom left) and
probability forecast of S10m > 15 m/s (bottom right). The probability field is the only one that is not in m/s. Lead time
prediction is H+60 and verification time is 12 UTC of 24 January 2009.
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The ensemble spread gives us the areas of more uncertainty in the prediction and is a measure
of it. For zones a.) and c.) it has values around 5 m/s, which are considerable. In the case of a.),
the spread estimates properly the prediction error, giving valuable information. When making
the forecast, we would say that it is possible to have wind speeds greater than 16 m/s. This is
not the case in zone c.), where the spread is not enough to explain the discrepancy between
the ensemble mean prediction and the verification. In this case, the probabilistic forecast is
badly displaced to the east. In zone b.), a lower spread (around 3 m/s) has also the ability to
describe the prediction error.

Finally, the probability forecast enforces the general forecast by determining the areas of
maximum confidence of occurrence and quantifying this confidence in a number. In this sense,
we can say that the probability of having mean wind speed greater than 15 m/s (54 km/h) or
wind gusts of more than 100 km/h in zone a.) is between 30% and 70%, which is more than the
term possible.

5. Ensemble forecast verification

NWP models must be compared with a good representation of the observed atmosphere. This
process is often called forecast verification, and raises a number of concepts and issues. With
verification, we assess the quality and value of forecasts (Murphy, 1993), by using metrics or
measures often called scores. By providing detailed information about forecast performance,
verification can help in model improvement (developers) and forecast guidance (forecasters).
Comprehensive descriptions of standard verification methods can be found in Wilks, 2006 and
in Jolliffe & Stephenson, 2003), whereas in Candille & Talagrand, 2005 and in Stensrud and
Yussouf, 2007 there is a thorough study of probabilistic forecasts, including ensemble forecasts.

Different frameworks are available for verification. Observations (ob) and forecasts (fc) can be
compared, either whole set to whole set or fc to ob by using their statistical summary properties
(measures-oriented approach), as distributions (distributions-oriented), as features (features-
oriented), etc. In any case, to compare observations and models is like comparing apples and
oranges: they are often different kinds of atmospheric representations, and we need to
transform one or both of them into comparable representations. This step involves non-trivial
issues like interpolation, representativeness, correlation, noise, etc.

An ordinary example of the difficult issue in comparing apples and oranges is the performance
assessment of quantitative precipitation forecasts (QPF) from a deterministic model. European
meteorological offices provide to the ECMWF 24-hour accumulated precipitation reports from
their high-density rain gauges networks. Forecast values are regularly spaced, while obser‐
vations are not. One comparison method is to interpolate forecast values to observation points
(Rodwell, 2010). Special care should be taken with the impact of spatial density of observations
and the potential lack of statistical consistency due to spatial dependence between close ones.
To address these issues, one can compute an observed quantitative precipitation estimate
(QPE) using a simple up-scaling technique (Ghelli & Lalaurette, 2000; Cherubini et al., 2002)
whereby stations are assigned to model grid-boxes and then averaged to produce one value to
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be assigned to the corresponding grid-point. Such a grid value can be for instance a weighted
average, and can be compared to the model precipitation forecast, which is also relative to the
grid-box areal average, as they both refer to the same spatial scales. Whether to choose
interpolation or up-scaling methods it depends on the case (see Figure 17).

Moreover, in the comparison of the performance of QPF from two different forecasting models,
further issues arise. The grid spacing of the two models might be different. If observations are
gridded to the finer resolution, then the coarser model might be penalized. On the other hand,
if observations are gridded to the coarser resolution, the comparison can be fair but the higher
resolution model is not given a chance. How to compare the way in which both models
represent structures at their own scale is a non-trivial issue. PaiMazumder & Mölders (2009)
assessed the impact of network density and design on regional averages using real sites and
model simulations over Russia. They find that generally, the real networks underestimate
regional averages of sea level pressure, wind speed, and precipitation while overestimate 2m
temperature, downward shortwave radiation and soil temperature.

5.1. A first requirement: Deterministic performance of ensemble members

The assessment of the deterministic quality of the ensemble members is a first requirement in
the development of an EPS. When the quality of the ensemble members is similar, then any
member can be weighted equally in the computation of a probabilistic forecasts, i.e. they are
assumed to be equiprobable. Once provided this individual quality, then some other properties
can be considered (see below). In addition, the ensemble mean should show a better deter‐
ministic performance than any individual member in terms of Root Mean Square Error (RMSE)
(Leith, 1974; Murphy, 1988; Whitaker & Loughe, 1998; Ziehmann, 2000).

Figure 17. Interpolation to point (left) versus up-scaling (right)
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As a visual representation, either time-series or evolutions with forecast step for bias and RMSE
are usually depicted for synoptic parameters (e.g. Z500) for each member and also for the
ensemble mean. As an example, Figure 18 shows BIAS and RMSE evolution with forecast
length for the different ensemble members and the ensemble mean.

Figure 18. Evolutions with forecast length of mean sea level pressure (MSLP) BIAS (bottom group) and RMSE (upper
group) computed for each member (thin lines) and for the ensemble mean (thick line). ‘Normal operating’ members
are highlighted (circles) (García-Moya et al., 2011).

5.2. Large scale flow: Statistical consistency with the observations/analysis

As a probabilistic forecast, an EPS must be statistically consistent with the observations in the
large scale flow given the EPS domain is large enough. At this scale, the model analyses of
upper-air dynamical fields (e.g. 500 hPa geopotential height, Z500) can be used for comparison,
by providing a larger sample and covering the whole integration domain, and so by giving no
priority to land areas where the density of observations is higher. Verification against SYNOP/
TEMP observations is expected to give worse but qualitatively similar results. This statistical
consistency can be assessed in several ways; two methods are shown here: the rank histogram
and the spread-error diagram.

On each grid-point, either the analysis or each of the ensemble member values are assumed to
be independent realizations of the same atmospheric process and hence equally probable.
Here, the rank of the analysis is an integer number according to the position of the analysis
value in the sorted list of forecast values. The rank histogram (Anderson, 1996; Hamill &
Colucci, 1997, 1998; Hamill, 2000; Candille & Talagrand, 2005) can be used to check if the
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verifying observation is statistically indistinguishable from the set of forecast values (reliable).
Such a system must show an approximately flat-shaped rank histogram (Figure 19 middle).
Some outliers (“U” shape, Figure 19 bottom left) would indicate sub-dispersion that are typical
in current EPS operational systems, while overdispersion would correspond to the opposite
(inverted “U” shape, Figure 19 bottom right). The bias would produce rank histograms with
positive (negative) or negative (positive) slope (bias) (see Figure 19 top left and top right,
respectively).

Furthermore, the ensemble spread (often measured by the standard deviation with respect to
the ensemble mean or the control forecast if possible) and the error of the ensemble (measured
by the RMSE with respect to the analysis for either the control forecast or the ensemble mean)
should show a linear relationship and a similar growth rate with respect to forecast step (Buizza
& Palmer, 1997; Whitaker & Loughe, 1998). An EPS is expected to sample the uncertainties of
NWP models (ensemble spread), as well as to give explicit and quantitative information about
the predictability of the atmosphere (represented by the ensemble error). According to this, an
ensemble can be statistically consistent (calibrated) or, on the other hand, can be underdisper‐
sive (quite common in operational ensembles) or overdispersive (e.g. Figure 20).

5.3. Weather parameters: Binary events

For the performance assessment of weather parameters (e.g. precipitation, 2m temperature,
10m wind), with larger variability in space and time, the use of observations is encouraged, as
they are not as smooth as upper-air field analyses. In the distributions-oriented framework
(for a detailed description see Joliffe & Stephenson, 2003; Wilks, 2006), the performance of an

Figure 19. Examples of rank histograms (see text).
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EPS can be done measuring its response to a set of binary events (occurrence / non-occurrence,
e.g. to exceed a threshold). The EPS behavior in this context is described by different properties:
reliability, resolution, sharpness and discrimination. Brier (Skill) Score together with ROC
curves provide a framework to give measures to theses properties. Moreover, the benefits of
using a forecasting system can be shown with the so-called relative value, a quantity that
depends on the forecast user's cost/loss ratio. In this framework, the joint distribution of
forecasts and observations gives complete support for the computation of scores.

5.3.1. Formal framework

By considering a binary event X of the parameter x exceeding a threshold t ({X: x>t} e.g. rain
over 5 mm), we compare a forecast probability p (number of member values exceeding t, p =
{0/N, 1/N,... N/N}) and the corresponding a posteriori observation probability p0, which is
usually taken as p0 = {0,1}, depending on whether the event took place or not. However, if
observational uncertainty was considered, then p0 could take any value in the interval [0,1]. In
this probability space, a natural extension of the RMSE is the Brier Score, defined as BS = E
[( p – p0 )²], where E[] is the expectation value over all forecast-observation pairs. BS is nega‐
tively oriented and BS=0 if and only if p=p0 for any pair, while BS=1 indicates the worst possible
forecast.

Figure 20. Spread-error diagrams showing five EPS: one of them consistent (solid black), two of them overdispersive
(x crosses, + crosses) and two of them underdispersive (circles, squares).
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The joint distribution (Murphy, 1988) of forecasts and observations can be represented by two
distributions that describe completely the system performance: g(p) and p’(p), where g(p) is the
forecast probability distribution (relative frequency of forecasts with probability p) and p’(p)
gives the conditional observation distribution (relative frequency of forecasts with probability
p and for which the event did happen). The expectation values can be computed through a
partition in probability space according to the possible forecast probability values, i.e., the
number of members (Santos & Ghelli, 2011):
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The base rate pc=E[p’(p)]=E[Ep[p0]] is the frequency of occurrence of the event. Using these two
distributions, a decomposition of the BS can be done (Jolliffe & Stephenson, 2003; Candille &
Talagrand, 2005):
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the  components  are  meaningful:  Reliability  (Brel)  measures  the  straight  correspondence
between probabilistic forecasts p and conditional observation frequencies p’(p), and can be
improved  by  re-labeling  of  probability  intervals  (a  process  that  should  be  called  re-
labeling  calibration to avoid confusion).  Resolution  (Bres)  gives  a  measure of  variability  of
conditional  observations  p’(p)  around  the  base  rate,  and  cannot  be  improved  by  re-
labeling, thus it gives an upper bound for inherent skill. For a perfectly reliable system the
reliability  component  vanishes  (p=p’(p)  for  all  cases),  and  the  resolution  is  equal  to  the
sharpness,  a  measure of  variability of  the forecast  probability distributions,  or how often
different  forecast  probabilities  occur  without  taking  into  account  the  observations.  The
uncertainty  component  (Bunc)  is  the  variance  of  the  probabilistic  observations  p0  and
corresponds to the value of the BS  using the sample climatology as forecast (i.e.  issuing
always  a  forecast  probability  p=pc  a  system  is  perfectly  reliable  Brel=0,  and  shows  no
resolution Bres=0); it depends only on the observations and is usually taken as a reference
for the Brier Skill Score (BSS), if special care is taken with the interpretation (Mason, 2004).
The same decomposition can be applied to the BSS (Candille & Talagrand, 2005):
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To give a summary of performance measures comprising the response to several thresholds,
the Ranked Probability Score (and the corresponding skill score) can be used, either the discrete
or the continuous version (Hersbach, 2000).

A complementary measure of  ensemble  performance is  the  discrimination  or  ability  of  a
system  to  distinguish  the  ocurrence  or  non-ocurrence  of  a  binary  event  X  given  the
observations according to Signal Detection Theory (Kharin & Zwiers, 2003). The discrimi‐
nation is  related to the hit  rate (H)  and the false alarm rate (F)  for a given base rate pc

(Candille & Talagrand, 2008):
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As a measure of discrimination, the area A under the Relative Operating Characteristics (ROC)
curve (H versus F) is often used, with A=0.5 for the sample climatology (no skill) and A=1 for
a perfect forecast (Santos & Ghelli, 2011). ROC Skill Area (RSA) can be used instead: if A is the
area under the ROC curve, RSA=2A-1 gives values in the interval [-1,1], 1 for a perfect forecast,
0 for no skill and -1 for a potentially perfect forecast after calibration. Discrimination is related
to resolution, but they do not measure exactly the same property and, especially if observa‐
tional uncertainty is present, they can show different and indicative behaviour. While BSS is
potentially insensitive to extreme events, RSA is not (Gutiérrez et al., 2004), whereas RSA can
be insensitive to some kinds of forecast biases (Kharin & Zwiers, 2003).

Another interesting complementary property, beyond performance, is the Economic Relative
Value (RV; Richardson, 2000). By crossing a contingency table (forecast yes/no by occurrence yes/
no of the event) with an expenses matrix (preventive action yes/no by occurrence yes/no, that
includes the cost C of the action and the loss L in case of occurrence), it can be computed the
relative economic reduction (RV) of using the forecast comparing with the sample climatology.
RV depends on the base rate pc and also on C and L, i.e. it depends also on the user.

5.3.2. Visual presentation

The properties described above can be visualized in several ways. Sharpness histogram: g(p)
distribution is put in a histogram along probability intervals. A predicting system with good
sharpness would issue forecast probabilities close to 0 and 1. Sharpness is often plotted as an
inset on the attributes diagram. Attributes diagram: p’(p) distribution is plotted on the Y axis
against probability intervals p on the X axis. Several straight lines are plotted as reference: the
diagonal (representing perfect reliability), the no-resolution line (corresponding to the sample
climatology as forecast), and the no-skill line (forecasts with no skill w.r.t. the climatology, i.e.
B=Bunc). Figure 21 (left) illustrates this. Some examples of forecasting systems are idealized in
Figure 21 (right).
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Figure 21. left) Attributes diagram for an almost perfectly reliable forecasting system, showing the sharpness histo‐
gram; (right) Attributes diagrams for idealized examples of forecasting systems.

Figure 22. Time series for two different systems 24 h accumulated precipitation forecast (T+30 to T+54), of BSS (solid,
dotted) and its components BSSrel (triangles) and BSSres (circles). Santos and Ghelli (2011)

BSS decomposition time series: BSS (and its components BSSrel and BSSres) time series are plotted
in curves. As BSS is positively oriented (the larger the BSS, the better is the performance) and
its components are not, special care must be taken (see Figure 22) (Santos and Ghelli, 2011).
ROC curves: the hit rate (Y axis) is plotted against the false alarm rate (X axis) (see Figure 23
left). Here a deterministic forecast is compared to an EPS. RV envelopes: the RV can be plotted
on the Y axis, the cost-loss ratio C/L on the X axis and provide one curve for a deterministic
model. For an N members ensemble, N curves can be plotted (we can plot RV for any proba‐
bility interval in the partition described above), or eventually, the envelope that covers all the
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N curves. The user can decide on the C/L intervals for optimal use of the forecasting system.
In this sense, an EPS can be also compared with a deterministic model (see Figure 23, right).

Figure 23. Comparison of deterministic (dash) and EPS (solid) precipitation forecast performance, using empirical ROC
curves (left) and relative value envelopes (right).

5.4. Verification issues and prospective

Computational resources, object-oriented programming languages and data-base improve‐
ments give a boost to forecast verification. In the last decades, the forecast verification
community has started to address some important issues that have an impact in the interpre‐
tation of verification scores and introduction of new conceptions. Either EPS specific or not,
some of these issues are of large interest and hence are introduced here.

5.4.1. Pooling versus stratification

To compute statistically significant scores, samples must be large (many fc-ob pairs) and the
corresponding significance tests should be applied (e.g. t-Student). On the other hand, mixing
non-homogeneous sub-samples (e.g. different seasons) can lead to misleading performance
information. In this context, the dimensionality problem (Murphy, 1988) can be a critical
stumble in practice (Candille & Talagrand, 2008): computing completely consistent (from the
strictly mathematical point of view) scores can turn out to be an infeasible task, and this issue
often leads to a practical compromise: large samples are created without mixing different ones,
according to possibilities. E.g.: the splitting of seasonal behavior that could be hidden in the
overall average.

5.4.2. Flow-dependent verification

Flow-dependent sample stratification can improve other traditional ways of stratifying (e.g.
seasonal), and nowadays can be tackled with clustering techniques (Ferranti & Corti, 2010).
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5.4.3. Sampling uncertainty

Given the dimensionality problem and pooling-stratification compromise, the available fc-ob
pairs are, in practice, relatively small samples from the all possible realizations of the model
and observing systems. Thus, the scores computed are only sample measures of the population
quantities, and there is a sampling uncertainty related to this process (PaiMazumder &
Mölders, 2009). Any verification report should include this uncertainty, with error bars,
confidence intervals, etc. (see e.g. Efron & Tibshirani, 1997; Bradley et al., 2008).

5.4.4. Spatial scales of forecasts and observations

Spatial scales are a key point (see examples above). For example, the double penalty (Ebert &
Gallus, 2009) is a well-know related issue. The relatively recent development of new methods
that account for spatial patterns, e.g. CRA (Ebert & Gallus, 2009), MODE (Davis et al., 2009),
SAL (Wernli et al., 2008) are still under research, but show promising results and can lead to
a framework of diagnostic verification (closer to subjective verification in the sense that
provides information that can better help model developers and weather forecasters). For a
comprehensive overview, see (Gilleland et al., 2009).

5.4.5. Extreme and severe weather

Extreme and severe weather are often introduced together, but they are not the same. Extreme
events are rare events, with low base rates and belong to the tail of the corresponding clima‐
tological distributions. Severe events are those that have an impact (human and material) on
society. Severe weather verification must include extra information from outside the mete‐
orological context, whereas verification of extreme events is still in an early stage (Ferro,
2007a; Casati et al., 2008), and some alternative scores are under research, e.g. the Extreme
Dependency Score (EDS; Stephenson et al., 2008; Ghelli & Primo, 2009).

5.4.6. Observational uncertainty

In forecast verification it has been traditionally assumed that the observation error is negligible
when compared with the forecast error. This assumption can be consistent for longer forecast
ranges, when the forecast error is much larger than the observation uncertainty. Several studies
have extended the verification problem to a more general framework, in which observations
are described together with their uncertainty. They show sometimes a surprising result:
traditional scores generally underestimate EPS performance (e.g., Saetra et al., 2004; Candille
& Talagrand, 2008; Santos & Ghelli, 2011).

5.4.7. Ensemble size

Differences in ensemble size can have an impact on performance assessment (e.g. compare a
16 members EPS with a 51 members EPS). The difference in size would, in principle, give better
performance to the larger EPS a fact that should be at least taken into account. This issue is
addressed by various authors (e.g., Buizza & Palmer, 1998; Ferro, 2007b; Ferro et al., 2008).
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6. Statistical post-processing

EPS evidence systematic errors like do the deterministic NWP models. Calibration is the
process of correction of the ensemble PDF to adjust it to the actual (and unknown) forecast
uncertainty. The main point of calibration techniques is to use the information of the former
prediction's skill to correct the current probabilistic forecast.

Different methodologies have been proposed recently to build calibrated probabilistic
forecasts from ensembles, including Bayesian Model Averaging (Raftery et al., 2005), Logistic
Regression (Hamill et al., 2008) and Extended Logistic Regression (Wilks, 2009), Non-homo‐
geneous Gaussian Regression (Gneiting et al., 2005b) and Ensemble Dressing (Roulston &
Smith, 2003; Wang & Bishop, 2005).

6.1. Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) is a statistical post-processing method that generates
calibrated and sharp predictive PDFs from EPS (Raftery et al., 2005). The BMA predictive PDF
of a weather variable is a weighted average of PDFs centred on the individual bias-corrected
forecasts. The weights reproduce the predictive skill of the ensemble member over a training
period.

If the forecast errors are approximately Gaussian distributed such as surface temperature or
sea level pressure, BMA can be applied (e.g. Raftery et al., 2005; Wilson et al., 2007). For non-
Gaussian error distributions using a mixture of skewed PDFs allows to extend the BMA
methodology to this kind of weather parameters; A combination of point mass at zero and a
power-transformed gamma distribution, for instance, can be applied to quantitative precipi‐
tation (Sloughter et al., 2007) and a mixture of gamma distributions with different shapes and
scale parameters can be used to improve wind speed probabilistic forecasts (Sloughter et al.,
2010).

The BMA predictive PDF is a summation of weighted PDFs of each individual ensemble
member (Leamer, 1978; Kass & Raftery, 1995; Hoeting et al., 1999):
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Where fi is the ensemble member deterministic forecast, y represents the forecasted variable,
and i are the characteristic parameters of the ith individual PDF from the ith ensemble member.
Each of these individual PDFs associated to each ensemble member is weighted based on the
ensemble member’s relative performance during the training period. The weights wi are
probabilities, i.e. non-negative and add up to 1. The BMA weights wi and the parameters I are
estimated by maximum likelihood (Wilks, 2006) using the training data. This estimate cannot
be done analytically so an expectation maximization (EM) iterative algorithm is used
(Dempster et al., 1977; McLachlan & Krishnan, 1997).
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Figure 24. CRPS of surface temperature ensemble predictions at 21 ground stations over Canada. Curves correspond
to raw ensemble and the six other ensembles corrected by: Linear regression, BMA, a variation of BMA, and the same
three methods with the bias previously corrected. 40 days are used as training period., From Wilson et al. (2007). See
their article for details. © American Meteorological Society. Reprinted with permission.

Figure 24 illustrates the potentiality of BMA as a method for ensemble calibration. Continuous
ranked probability score (CRPS) performance score (Hersbach, 2000) is represented for various
ensemble predictions of surface temperature. CRPS index is understood to be for a probabilistic
forecast the equivalent of the mean absolute error for a deterministic forecast. The different
curves correspond to the raw ensemble and to the six ensembles calibrated using different
statistical techniques. It is straightforward to see that the ensembles corrected with BMA
perform better than any of the others.

6.2. Logistic Regression (LR) and Extended LR

The logistic regression and extended logistic regression techniques are described in detail in
Wilks (2009). Logistic Regression (LR) approximates the Cumulative Distribution Function
(CDF) of the predicted parameter y by the following equation (Wilks, 2009):
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Where q is a selected prediction threshold and:
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Being {x1, …, xn} the regression predictors and θ = {b0, b1, …, bn} the unknowns to be estimated
during the training process. Equation (11) has a characteristic S shape with values bounded
on the 0 < CDF(q) < 1 interval. The name logistic comes to the fact that the regression equation
is linear on the logistic scale:
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é ù
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(13)

Typical predictors for LR when calibrating ensemble predictions are ensemble mean, ensemble
spread or a function of them (Hamill et al., 2008). As thresholds q, using the representative
climatological quantiles of the meteorological parameter y ensures a statistical uniformity in
the process of regression.

According to Wilks (2009) θ unknowns are generally estimated using maximum likelihood
(Wilks, 2006), but other estimation techniques could give better performance, for example the
minimization of the continuous ranked probability score (Hersbach, 2000).

By construction Equation (13) is fitted separately for every threshold q and this fact involves
several problems. We consider for example the parameter precipitation and two thresholds,
q1 = 2mm and q2 = 10mm. After the training we have two different regression equations for
each threshold, f1(x) and f2(x), which in general are not parallel. The non-parallelism of the
functions implies that for some values of the predictors {x1, …, xn} these curves will cross leading
to the unrealistic result of CDF(q1) > CDF(q2). Another problem arises when we want to estimate
the CDF of a threshold for which regressions have not been fitted. This process requires some
kind of interpolation of CDFs which is not statistically coherent. Finally, the more equations
are to be fitted the more unknowns have to be estimated.

To overcome these problems, Wilks (2009) proposed a new approach to Equation (11) that
consists of including a function g(q) in the exponent which increases with threshold q:
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Thus, a unique regression estimation for any value of q is needed, which implies the parallelism
of the functions f(x) for the different thresholds (the unknowns {b0, b1, …, bn} are always the same).
This approximation is known as Extended Logistic Regression (ELR).

It is important to point out as an advantage that LR (and ELR) has no statistical restriction to
be used with non-Gaussian parameters such as precipitation or wind. At the same time this
technique can be applied to ensembles whose members are non-distinguishable.

As an example of ELR, Schmeits and Kok (2010) calibrated ECMWF ensemble predictions of
precipitation over an area that covers Netherlands (see the article for details). After studying
the performances of different shapes for g(q) and the predictors, they select :
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Being x1 the ensemble mean of the square root of the predicted precipitation. Then the equation
to be regressed is:

( )0 1 2( ) ( )
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Figure 25 represents a reliability diagram which compares the forecast probabilities of having
precipitation lower or equal than 5 mm with the observed frequencies of this event. For a
perfect reliable forecast all points would be in the diagonal, so in this case ELR calibration
clearly improves the performance of the raw forecast.

 

Figure 25. Reliability diagrams of H+126 area mean precipitation forecasts for the raw ensemble (left) and the ELR
calibrated ensemble (right). In this case threshold q = 5 mm. From: Schmeits & Kok (2010). © American Meteorological
Society. Reprinted with permission.

6.3. Non-homogeneous gaussian regression

The non-homogeneous Gaussian Regression (NGR) technique was proposed by Gneiting et
al. (2005b). In its general form, the predictive PDF estimated by NGR is assumed to be a perfect
Gaussian with the mean value being a bias-corrected weighted average of the ensemble
members forecasts and the variance a linear function of the ensemble variance. That is
(Gneiting et al., 2005b):
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Here y is the weather quantity to be predicted, s is the ensemble spread and {x1, …, xk} are the
k ensemble predictions of parameter y. θ = (a, b1, …, bk, c, d) are the unknowns of this expression
that have to be estimated by regression using the training data, which consist in a series of
former forecast-observation pairs. The term non-homogeneous refers to the fact that the
variances of the regression errors are not the same for all the values of {x1, …, xk} (they depend
on s) as it is assumed in linear regression.

This way of representing the predictive PDF allows a natural understanding of the regression
coefficients. Coefficient a is a bias-correction of the ensemble weighted mean. The weights {b1,
…, bk} can be negative but for an easier interpretation Gneiting et al. (2005b) recommended
constraining them to be non-negative which is done during the training process. On one hand
side, they represent the performance of the ensemble members over the training period, with
respect to the other members. On the other hand, they also reflect the correlations between
ensemble members. Gneiting et al. (2005b) showed how a five members ensemble with three
members using the same global data as initial and boundary conditions (so highly correlated)
is automatically reduced to a three members ensemble after NGR calibration leaving only non-
zero weights for the members that use different data as initial conditions. Variance coefficients
c and d are constrained to be non-negative and they are a measure of the spread-skill relation‐
ship. For large values of d NGR variance is correlated to ensemble variance (s2) so a significant
correlation of the spread with the skill of the ensemble weighted mean is obtained. If spread
and skill are independent of each other, d values will be negligible and it is c what represents
the variance of the NGR calibrated mean.

Compared to other techniques (e.g. BMA; Raftery, 2005), NGR has the advantage that can be
applied to ensembles whose members are non-distinguishable, such as the ECMWF ensemble
prediction system (Molteni et al., 1996). In this case, NGR is simplified by constraining the b1

= … = bk coefficients to be equal, which at the same time agrees with the assumption of
equiprobability of members. Now the analytical PDF (17) is reduced to:
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Where xm is the ensemble mean.

Due to the Gaussian shape of the analytical expression (Eq. 17), this technique is expected to
be especially useful for weather parameters that have Gaussian distributions such as temper‐
ature or pressure. Figure 26 represents a real experiment by Hagedorn et al. (2008) where GFS
(Toth & Kalnay, 1997), ECMWF and a multi-model (combining GFS and ECMWF) ensemble
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predictions of surface temperature are calibrated using NGR all else being equal. Continuous
Ranked Probability Skill Score (CRPSS) is used as a performance measure for probabilistic
forecasts (Jolliffe & Stephenson, 2003). The higher its values (closer to 1), the better the
probabilistic forecast will be. When CRPSS reaches 0 it means that the probabilistic forecast
has the same skill than the climatology (Hagedorn et al., 2008; see for details). In this case, it
is clear the benefit of calibrating the ensembles with NGR.

Figure 26. CRPSS of surface temperature forecasts with and without calibration. From: Hargedorn et al. (2008). ©
American Meteorological Society. Reprinted with permission.

A classical and widely extended technique for estimating the θ unknowns is maximum likelihood
(Wilks, 2006). Nevertheless Gneiting et al. (2005b) demonstrated, for NGR probabilistic forecasts
of temperature and surface pressure, that estimating θ by minimization of the continuous ranked
probability score (Hersbach, 2000) gives clearly a better calibration of the PDF.

The adequate length of the training period for an operational approach is not unique. Raftery
et al. (2005) showed that by using the previous 25 days the prediction intervals are the
narrowest maintaining the right coverage of the verification (see the article for details).
However, Wilks and Hamill (2007) used 45 days. An experimental study of the optimal length
for one or more specific locations is desirable.

6.4. Ensemble dressing

The dressing technique is a statistical post-processing technique based on combining each
member of a dynamical ensemble with its own statistical error ensemble.

Climate Change and Regional/Local Responses42



Roulston & Smith (2003) proposed the use of a simple resampling scheme called best member
method: individual members of an ensemble are dressed with an error distribution derived
from the error made by the best member of the ensemble. The best member is defined as the
member that is closer to the verification and the uncertainty of it is the one that is added to the
rest of members. Identification of the best member is performed by means of multivariate
forecasts although only univariate forecasts are dressed. The number of forecast variables
required is estimated by looking at the fraction of the false best members (FBM). These FBM
are defined using a distance on the vector space of the verification. If the N ensemble members
are described as d-dimensional vectors, xi (i=1,…,N) and y is the verification, the normalized
distance is defined as (Roulston and Smith, 2003):
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Where d is the number of forecast variables being considered and k is the standard deviation
of the kth component of the forecast vector. The best member is the one which the minimum
Ri ,d

2  although new additional variables are included. FBMs are the ones whose minimum
distances are not maintained when new variables are added. The fraction of FBMs computed
using the previous historic forecasts allows for a minimum number of variables required to
obtain the best member to dress the dynamical ensemble. The best member error is also
determined from historical ensemble forecasts by computing the differences between the best
member and the corresponding verification.

Wang and Bishop (2005) showed by stochastic simulations that the best-member method can
lead both to underdispersive or overdispersive ensembles. In addition to this, Wilks (2006)
demonstrated that the dressed ensemble cannot be reliable. In order to alleviate these prob‐
lems a new multivariate dressing method based on the second moment constraint is pro‐
posed. Ensemble bias is removed before building training statistics for the dressing kernel
assuming that each ensemble is drawn for stochastic process. To dress the ensemble, statistical
perturbations ε are added to each ensemble member. The covariance matrix Q is defined as
(Wang & Bishop, 2005):

T TQ E Eee=< >= W (20)

Where the columns of E contain the eigenvectors of Q and the diagonal matrix contains the
corresponding eigenvalues. Positive eigenvalues indicate that the ensemble is underdispersive
in the directions of the corresponding eigenvectors and thus dressing is necessary. The Q
matrix can be expressed as a function of the ensemble member forecasts and the verification
values. The new dressing perturbation generator is defined as (Wang & Bishop, 2005):
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Where ei
+, i = 1, 2,..., I, are the eigenvectors corresponding to the positive eigenvalues. The

coefficients ci are univariate random variables generated from a normal distribution with mean
equal to zero and variance equal to the ith positive eigenvalue of Q.

The comparison of the original best-member dressing method with the second moment
constraint dressing method confirms that the spread of the best-member dressed ensemble is
indeed underdispersive, or even becomes overdispersive, depending on factors such as the
undressed ensemble size, how underdispersive the undressed ensemble is and the nature of
the subspace from which the best member is identified. On the other hand, for underdispersive
ensembles, the second moment constraint dressing kernel correction always returns about the
right amount of dispersion.

Although underdispersion is a common characteristic of an EPS, some variables have an
overdispersive behavior (Feddersen & Andersen, 2005). Fortín et al. (2006) proposed to dress
and weight each member differently to improve the reliability of the forecast and to correct
the variable under or overdispersed. This method is very similar to BMA (Raftery et al., 2005)
and today has only been applied to one-dimensional variables.

7. A brief description of some current state-of-the-art ensemble prediction
systems

The Australian Bureau of Meteorology (BoM), Brazilian Centro de Previsao do Tempo e
Estudos Climatico (CPTEC), China Meteorological Administration (CMA), the European
Centre for Medium-Range Weather Forecasting (ECMWF), Japan Meteorological Agency
(JMA), Korea Meteorological Administration (KMA), Meteorological Service of Canada
(MSC), Météo-France (MF), UK Met Office (UKMO) and US National Centres for Environ‐
mental Prediction (NCEP), among others, run ensemble prediction systems.

The ECMWF-EPS is a global ensemble that is optimized for the medium range. It uses the
singular vector technique (Ensemble Data Assimilation is under research and is starting to be
used operationally together with SV) for providing the set of initial perturbations, as well as
stochastic parameterizations to account for model errors. The ECMWF-EPS comprises 51
members with 62 vertical levels and a spectral horizontal resolution of T639.

In the NCEP ensemble the initial perturbations are obtained by the Ensemble Transform with
Rescaling (ETR) technique. It also uses stochastic perturbations to account for model errors. It
runs 20 members with 28 levels and a spectral horizontal resolution of T126.

The MetOffice ensemble, called MOGREPS, works with 24 members. It uses the ETKF
(Ensemble Transform Kalman Filter) technique with scaling of perturbations using radiosonde
and ATOVS observations (Bowler et al., 2008). The horizontal resolution is 0.83 degrees in
longitude and 0.56 in latitude, and the number of vertical levels is 70.

The Japan Meteorological Agency (JMA) ensemble has 51 members. It uses singular vectors
for the calculation of the initial perturbations and stochastic representation of physical
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parameterizations for accounting model error. The number of vertical levels is 60 levels and
the spectral horizontal resolution is T319.

A source of information for studying global ensembles is the TIGGE project, which is a key
component of the THORPEX Interactive Grand Global Ensemble, a World Weather Research

Programme for improving the accuracy of high-impact weather forecasts. In the TIGGE
project, the forecasts of 10 global ensembles are archived, permitting the comparison of
methods and results.

Limited area ensembles are developed for higher resolutions (nowadays from 2 km up to 25
km) and shorter time ranges (from 18 to 72 hours) than those of global ensembles. When a
model can explicitly resolve convection (due to its characteristics and high resolution config‐
uration) it can represent more realistically typical precipitation patterns in the forecast field.
However, convection forecasts (as well as other small scale processes) are very limited by their
deterministic predictability (which is small due to its chaotic behaviour). Therefore, even in
the short forecast range of only 24 hours, the prediction of details in the convection (such as
location and timing of a thunderstorm) are usually very uncertain. Limited area ensembles
can add information to deterministic high resolution forecasts and for this reason many
operational weather centres are developing limited area ensembles.

Limited area ensembles running in operational centres are based on high resolution non-
hydrostatic models, such as ALADIN (developed and maintained by a consortium of 16
National Meteorological Services, led by Météo-France), COSMO (developed by a consortium
of seven NMS, led by Deutscher Wetterdienst), WRF (developed in the United States of
America by NCAR, NOAA and others), HARMONIE (a model which shares code with
ALADIN, developed by a consortium of 10 NMS) and the Unified Model (MetOffice). These
ensembles can have an assimilation cycle which uses a wide class of meteorological observa‐
tions, in some cases including radar data trying to represent as much as possible actual
precipitation processes. They need lateral boundary conditions typically coming from global
ensembles or coarser limited area ensembles.

Just to mention two examples of limited area ensembles, we resume below the characteristics
of the COSMO-DE ensemble (Deutscher Wetterdienst) and the AEMET-SREPS. Other opera‐
tional limited area ensembles are: the Norwegian targeted EPS LAMEPS (Frogner & Iversen,
2002), the Hungarian LAMEPS based on ALADIN (Hágel & Horányi, 2007), the multi-model
GLAMEPS (ALADIN and HIRLAM consortium) and the limited area version of MOGREPS
(MetOffice).

The COSMO-DE Ensemble is based on the convection resolving model COSMO-DE. It
produces 2.8 km grid forecasts up to 18 hours, runs every 3 hours and assimilates estimated
precipitation rates from RADAR.

The AEMET-SREPS uses the multi-model and multi-boundaries techniques for sampling
initial, lateral conditions and model errors. It uses five global models for initial and lateral
conditions and five limited area models running with every lateral and initial conditions
(MM5, UM, HIRLAM, COSMO and HRM) thus producing 25 members. The horizontal
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resolution is 25 km and produces forecasts up to 72 hours twice every day. It covers a wide
area (includes North Atlantic, Europe and North of Africa).

8. Conclusions and future directions

The most reliable and skilful theoretical forecasts from the current observed state of the
atmosphere can be obtained through a Probability Distribution Function (PDF) which
describes a comprehensive set of possible future states. The only practically feasible method‐
ology to assess a forecasted PDF is using an Ensemble Prediction System (EPS), that is, a PDF
sample of different but equally plausible Numerical Weather Prediction (NWP) forecasts (EPS
members). Furthermore from the practical point of view EPS forecasts have been showed to
be more reliable and skilful than a forecast from one single NWP model, even when the latter
has a higher resolution.

This better performance is due to the fact that the set of non-linear equations which describe
the future evolution of the atmosphere have a chaotic behaviour. This means that any uncer‐
tainty in the prediction process like two slightly different initial states could grow and lead to
quite significantly distinct forecasted states. As a consequence, the predictability associated to
any forecasted atmospheric state is always spatially and temporally limited but depending in
each forecast on the uncertainty magnitude and the particular atmospheric situation.

The sources of errors and uncertainties which limit the predictability are mainly due to: a.)
inaccuracies in the initial atmospheric state, estimated from available observations with their
associated observational error and limited representativeness and imperfect assimilation
systems, b.) inadequacies of the NWP models, related to dynamical NWP model formulation
and physical parameterizations and c.) for Limited Area Model (LAM) EPSs, approximations
and errors from Lateral Boundary Conditions. So any reliable and skilful EPS has to take into
consideration all of these uncertainty sources by using different methodologies. Some of these
methodologies are, for instance (and respectively): a.) singular vectors, bred vectors, Ensemble
Transform Kalman Filter (ETKF) and Ensemble Data Assimilation (EDA), b.) multi-model,
multi-physics or multi-parameterizations, multi-parameters and stochastic parameterizations,
and c.) multi-boundaries.

In addition, as any forecasting system, EPS quality and value, that is the overall performance,
has to be evaluated through objective verification, assessing the necessary and complementary
set of properties (with the corresponding tools): consistency (rank histogram), reliability
(spread-error and attributes diagrams), resolution (resolution component of Brier Score),
discrimination (Relative Operating Characteristic curves), sharpness (Sharpness Histogram),
skill (Brier Skill Score) and relative value (Relative Value Diagram). The main goal of verifi‐
cation, apart from assessing EPS forecast performance, is that EPS developers can be leaded
to what and how to improve the EPS.

A number of EPS products, which take into account the forecast probabilities and the predict‐
ability concept, can serve the forecast guidance. The EPS products can be raw ones (e.g. stamps,
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plumes or spaghettis) or derived (e.g. ensemble mean and spread charts, probability and
percentile maps, EPS-grams, clusters and extreme forecast indexes). Before the products
production it would be advisable to calibrate the EPS in order to remove its systematic errors.
Some statistical post-processing techniques for ensemble calibration are Bayesian Model
Averaging, Logistic and Extended Logistic Regression, Non-homogeneous Gaussian Regres‐
sion and Ensemble Dressing.

Regarding to future scenarios, the weather forecast process is expected to improve at all
temporal scales, from the first hours to the climatic scales, and to be done at finer spatial scales,
due to the fact of having more and better observations, better NWP models, increased
supercomputer resources, etc. Even though it is expected a reduction of errors and uncertain‐
ties, they will be always present and limit the predictability. This means that the majority of
ideas and methodologies explained in this chapter are going to be useful for the next generation
of weather forecasting systems, although new ones are expected to be developed. Then some
of the future directions of work are outlined.

From the point  of  view of  the current  experience in EPS development,  the multi-model
and multi-analysis (from independent Global NWP models) approach, has showed to have
better performance than any theoretical methodology based on a single model.  This fact
means that there is not enough knowledge about the different model uncertainties and that
there can even be other unknown sources of error. Anyway, the latter approach is expected
to  be  used  intensively  in  the  next  EPS  generations  and  even  to  overcome  the  former
approach.

On the other hand, the better the EPS performance seems to be, the more number of error
sources are considered and even the more methodologies are used together. Thus, future
EPS  developments  are  going  to  follow  this  line,  partly  because  it  increases  the  spread
counteracting  the  common  EPS  shortcoming,  the  underdispersion.  Anyway  particular
attention  has  to  be  paid  not  to  increase  spuriously  the  EPS  spread,  that  is,  without
increasing the skill.

As it has been mentioned before, other EPS developments will come from having better
assimilation techniques, better generation of initial conditions and better methodologies to
tackle model errors and uncertainties. This fact means that, in a foreseeable future, EPSs will
become more complex.

Finally in the current and the next decade there will be an important increase in the horizontal
and vertical resolutions of the EPSs linked to the NWP model developments for smaller grid
spacing. Thus, spatial resolutions of the next Global and LAM EPSs generations are going to
be, respectively, close to the non-hydrostatic scale (e.g. 8-16 km), and about the meso-gamma
or convection-resolving scale (e.g. 1-4 km). One consequence of this will be that verification
will have to evolve to an objected-oriented way (e.g. SAL or MODE techniques). Because of
uncertainties grow faster as the resolved scales are smaller, due to a more intrinsic chaotic
nature, another consequence will be that the only feasible methodology to forecast the weather
at these scales will be ensemble forecasting.
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