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1. Introduction

1.1. Flows driven by a constant pressure gradient through a pipe of circular cross section

When the flow of a Newtonian fluid in a pipe of circular cross section is driven solely by a
constant pressure gradient, the resulting velocity distribution is a quadratic function of the
radial distance from the axis of the pipe. The velocity profile of such a flow has, therefore, a
parabolic distribution in which the maximum velocity occurs on the axis of the pipe. A
graphical representation of this type of velocity is shown in Figure 1.

Figure 1. The parabolic velocity profile for flow driven by a constant pressure gradient in a circular pipe

1.2. Flows driven by a sinusoidal pressure gradient through a pipe of circular cross section

Things become more complicated if the pressure gradient varies with time. When, for exam‐
ple, the pressure gradient fluctuates with time in such a way that that gradient can be ex‐
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pressed as a simple sinusoidal function, the velocity profile remains parabolic only at very
low frequencies of fluctuation. At very high frequencies, the location of the maximum veloc‐
ity moves away from the axis of the pipe and towards the wall. The higher the frequency of
oscillations of the pressure gradient, the farther away the point of maximum velocity moves
from the axis of the pipe. Sample plots of velocity profiles that were generated at high fre‐
quencies of fluctuations are shown in the literature by Uchida (1956). Here, Figure 2 is one
such example, where five snapshots of velocity profiles at different times are displayed,
from left to right, within one complete cycle: at the beginning, one-quarter, half-way, three-
quarters of the way, and at the very end of the cycle. The values of the parameters that were
used to generate these plots are summarized below:

- 1
ρK

∂ p
∂ x = cos(nt);   k = n

v R =5;c =  K k 2

8n =3.125 K
n

Where n is the circular frequency, p the pressure,   ρ  the mass density of the fluid, t the time, x
the axial coordinate, R the inside radius of the pipe, u the axial speed of the fluid, v the coeffi‐
cient of kinematic viscosity, k a dimensionless ratio used by Schlichting to denote the magni‐
tude of the frequency of oscillation, and K is a constant that indicates the size of the pressure
gradient.

Figure 2. Sample velocity profiles for flow driven by a sinusoidal pressure gradient in a circular pipe [Uchida]

1.3. The mean velocity squared and Richardson’s annular effect

The higher the frequency of oscillations of the pressure gradient, the farther away the point
of maximum velocity moves from the axis of the pipe. The phenomenon in which the point
of maximum velocity moves away from the axis of the pipe and shifts towards its wall is
known as Richardson’s annular effect. It was demonstrated experimentally by Richardson
(1929), proved analytically by Sexl (1930), and demonstrated to hold for any pressure gradi‐
ent that is periodic with time by Uchida (1956).

When the sinusoidal pressure gradient that drives the flow in a circular pipe has fast oscilla‐
tions, the mean velocity squared computed with respect to time is found to be
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u 2(r )̄ = K 2

2n 2
{1−2 R

r exp − n
2v (R − r) cos n

2v (R − r) + R
r exp −2 n

2v (R − r) } (1)

Where r is the radial distance from the axis of the pipe; and letting y =(R - r) be a new varia‐
ble that represents the distance from the wall of that pipe, a dimensionless distance from

that wall can be defined as η = y n
2v  . Using this distance, one can nondimensionalize the

mean velocity squared as shown below :

u 2(r )̄

( K 2

2n 2 ) = {1−2 R
r exp − n

2v (R − r) cos n
2v (R − r) + R

r exp −2 n
2v (R − r) } (2)

When one is very close to the wall of the pipe, r and R are very close in magnitude and
R
r ≈1 . This causes the expression in Eq. (2) to become

u 2(y )̄

( K 2

2n 2 ) =1−2exp(−η)cosη + exp(−2η). (3)

When the variation of the expression of the mean velocity squared in Eq. (3) is plotted
against the dimensionless distance η, as shown in Figure 3, one can see that the location of
the maximum velocity is not on the axis of the pipe as is the case in steady flow and at very
low oscillations of the pressure gradient. Instead, it occurs near the wall of the pipe at a di‐

mensionless distance η =  y n
2v  = 2.28. This value has been shown to agree with experimen‐

tal data collected by Richardson (1929).

Figure 3. Variation of the mean with respect to time of the velocity squared for periodic pipe flows that are very fast

In this Figure 3, y is the distance from the wall of the pipe and u∞
2 = K 2

2n 2  represents   the mean

with respect to time of the velocity squared at a large distance from the wall.
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2. Richardson’s annular effect in a wind tunnel

Unsteady pulsating flows occur in many situations that have a practical engineering im‐
portance. These include high- speed pulsating flows in reciprocating piston-driven flows,
rotor  blade  aerodynamics  and  turbomachinery.  They  also  arise  in  wind-tunnel  flows.
When  the  velocity  distribution  is  measured  across  the  test  section  of  a  subsonic  wind
tunnel  that  is  driven by a  high speed fan,  it  has  been observed experimentally  that,  in
addition to the effect of the boundary layer that is expected near the wall,  Richardson’s
annular effect can be demonstrated as well.  Indeed, published experimental results from
our laboratory have demonstrated that  Richardson’s  annular  effect  can occur in a  wind
tunnel (Njock Libii, 2011).

The purpose of the remainder of this chapter is to summarize the theoretical basis of the Ri‐
chardson’s annular effect in pipes of circular sections and in rectangular tubes, illustrate its
results graphically, and relate them to what happens in a wind tunnel.

First  Stokes’  second problem is reviewed briefly.  The theory of pulsating flows in pipes
and ducts is  summarized. The anatomy of the shift  in the location of the maximum ve‐
locity  from the  center  to  points  near  the  wall  is  presented  using  series  approximations
and graphical illustrations.

3. Stokes’ second problem

Fundamental studies of fully-developed and periodic pipe and duct flows with pressure
gradients that vary sinusoidally have been done (Sexl, 1930). From such studies, we know
that, when an incompressible and viscous fluid is forced to move under a pulsating pressure
difference in a pipe or a duct, some characteristic features are always observed. Some of
these features are similar to those that are observed to occur in the boundary layer adjacent
to a body that is performing reciprocating harmonic oscillations. These features are related
to the results of a classic problem solved by Stokes, known as Stokes’ second problem,
which gives details of the behavior of the boundary layer in a viscous fluid of kinematic vis‐
cosity,  v , that is bounded by an infinite plane surface that moves back and forth in its own
plane with a simple harmonic oscillation that has a circular frequency,  ω .

Stokes solution shows that, for this type of flow, 1) transverse waves propagate away from
the oscillating surface and into the viscous fluid; 2) the direction of the velocity of these
waves is perpendicular to the direction of propagation; 3) the oscillating fluid layer so gen‐
erated has a phase lag, φ , with respect to the motion of the wall; and 4) that phase lag,

which varies with y, the distance from the wall, is given by, φ =  y
δ   ,  where δ represents a

length scale introduced by Stokes; that length, called the depth of penetration of the wave

into the fluid, is given by δ = ( 2v
ω )1/2 . The thickness of the boundary layer is proportional to

the penetration depth,  δ . The value of the constant of proportionality varies with the point
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that one designates to be the edge of the boundary layer. Thus, For example, if one defines
the edge of the boundary layer to be the point in the flow where the speed inside the boun‐
dary layer become equal to 99% of the speed of flow outside the boundary layer, the con‐
stant of proportionality is 4.6. Then, the thickness of the boundary layer at that point is equal
to 4.6 δ.

4. Pulsating flow through pipes

4.1. Basic equations

The flow of a viscous fluid in a straight pipe of circular cross-section due to a periodic pres‐
sure gradient was examined experimentally and theoretically by Richardson and Tyler
(1929) and theoretically by Sexl (1930). If the pipe is sufficiently long, variations of flow pa‐
rameters along its axis may be neglected and the only component of flow is that along the
axis of the pipe. The Navier-Stokes equations become

∂u
∂ t = -  1

ρ
∂ p
∂ x +  ν( ∂2 u

∂ r2 + 1
r
∂u
∂ r ) (4)

u(r =a,  t)=0 ;and  u( r =0, t)= finite

- 1
ρ
∂ p
∂ x =a function of time (5)

Where u = u(r, t) is the component of velocity in the axial direction x, ∂ p
∂ x  is the pressure gra‐

dient in the axial direction, t is the time, v is the kinematic viscosity of the fluid, r is the radi‐
al distance measured from the axis of the pipe, and a is the inside radius of the pipe. For a
given pressure gradient, one seeks solutions that are finite at r = 0 and satisfy the no-slip
condition u = 0 on the wall of the pipe at all times. We present two cases: First, the case of a
sinusoidal pressure gradient that was first solved by Sexl (1930) and then that of a general
periodic pressure gradient that was first solved by Uchida (1956).

4.2. Case of a sinusoidal pressure gradient: Sexl’s method (1930)

If the pressure gradient is sinusoidal and given the form

∂ p
∂ x =ρCcos(ωt),  (6)

then, the solution is given by the real part of

A Method of Evaluating the Presence of Fan-Blade-Rotation Induced Unsteadiness in Wind Tunnel Experiments
http://dx.doi.org/10.5772/54144

101



u(r , t)=  - i C
ω {1 -

J o 
((-ix)

1
2 r

a
)

J o 
((-ix)

1
2 ) }e iωt (7)

Where Jo is the Bessel function of the first kind and of zero order (Watson,1944) and, here, x
is defined as shown below:

x = ωa 2

v . (8)

For small values of the parameter x, the real part of the velocity u can be written as

u(r , t)=  C
4v (a 2 - r 2) cos(ωt) (9)

and for large values of the parameter x and of ( r
a )2 , the velocity can be represented by

u(r , t)=  C
ω {sin(ωt) - ( a

r )1/2exp(-α) sin ωt - α }; (10)

where

α = ( x
2 )1/2(1 - r

a ). (11)

Furthermore, the mean velocity squared computed with respect to time is found to be

u 2(r )̄ = C 2

2ω 2
{1−2( a

r ) 1
2 exp(−α)cos(α) + ( a

r )exp(−2α)}. (12)

These well-known results indicate that the representation of the velocity changes radically
as one varies the parameter x from very small to very large values. For example, the maxi‐
mum velocity reaches its maximum amplitude on the axis of the pipe when x is very small.
However, when the frequency of fluctuations becomes large, the location of the maximum
velocity shifts away from the axis of the pipe and moves closer and closer to the wall of the
pipe as the parameter increases, Fig. 4. Indeed, in the latter case, the expression for the loca‐
tion of maximum velocity is given by

r =a(1 - 3.22x -1/2).  (13)
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4.3. Case of a general periodic pressure gradient: Uchida’s general theory

The case of a general periodic pressure gradient was solved by Uchida (1956), whose solu‐
tion is summarized below.

Consider a general periodic function that can be expressed using a Fourier series as follows:

- 1
ρ
∂p
∂ x =   ϰ0 + ∑

n=1

∞
 ϰcn cosnt+ ∑

n=1

∞
 ϰsn sinnt , (14)

Where n is the frequency of oscillation and  ϰcn  and  ϰsn  are Fourier coefficients.

In complex form, the solution to Eq. (4) is given by

u =
 ϰ0 

4v (a 2 - r 2) -  ∑
n=1

∞  iϰn 

n 1 -
J o 

(kr i
3
2 )

J o 
(kai

3
2 ) e int (15)

Where

k = n
v

(16)

The total mean velocity U is defined as U =  G
πa 2  , where G, the total mean mass flow, is given by

G = 1
2π ∫

0

2π
dt ∫

0

a
2πurdr =  

πa 4ϰ0 

8v  . (17)

When this expression has been rearranged in order to introduce the mean pressure gradient,
one gets

G = 1
2π ∫

0

2π

dt∫
0

a

2πurdr =
πa 4ϰ0

8μ (− ∂ p
∂ x )̄, (18)

Where (− ∂ p
∂ x )̄=ρϰ0,  is the mean pressure gradient taken over time. Therefore,

U = a 2

8μ (− ∂ p
∂ x )̄. (19)

If one uses U as a velocity scale, the nondimensional expression of the velocity is given by
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u
U =  

us

U + u '

U (20)

with

us

U =2(1 - r 2

a 2 ) (21)

And

u '

U =∑
n=1

∞
 ϰcn  

 ϰ0 
{ 8B

(ka)2 cosnt + 8(1 − A)
(ka)2 sinnt} +  ∑

n=1

∞
 ϰsn  

 ϰ0 
{ 8B

(ka)2 sinnt − 8(1 − A)
(ka)2 cosnt}  ,  

where

A=  ber (ka)ber (kr ) + bei(ka)  bei(kr )
ber 2(ka) + bei 2(kr ) ,  B =  bei(ka)ber (kr ) − ber (ka)  bei(kr )

ber 2(ka) + bei 2(kr )  (a)

And

Jo 
(kri

3
2 )=ber(kr) + ibei(kr) (b)

In which ber and bei are Kelvin functions defined using infinite series as shown below:

ber(z)=  ∑
k=0

∞
( − 1)k ( z

2
)4k

((2k ) !)2 (c)

and

bei(z)=  ∑
k=0

∞
( − 1)k ( z

2
)4k +2

((2k + 1) !)2  .   (d)

(22)

4.4. Asymptotic expressions of the velocity distribution

Two extreme cases were considered by Uchida: the case of very slow pulsations and that of

very fast pulsations, depending on the magnitude of the dimensionless parameter ka = n
v a

Consider very slow pulsations of the pressure gradients. If = n
v a ≪1 , pulsations of the

pressure gradients are very slow. Then, under these conditions and from the behavior of
Kelvin functions, it is reasonable to expect that

berka →1  and beika →0.

Then, the velocity takes the form

u
U =2(1 - r 2

a 2 ) 1
ϰ0 

- 1
ρ
∂ p
∂ x = 1

4μ (a 2 - r 2) - 1
ρ
∂ p
∂ x . (23)

In this case, the velocity distribution is a quadratic function of the radial distance from the
axis of the pipe ; and the corresponding velocity profile is parabolic. This result is similar to
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what is obtained in steady flow. However, the magnitude of the velocity is a periodic func‐
tion of time and is always in phase with the driving pressure gradient.

Consider very fast pulsations of the pressure gradients. If ka = n
v a →∞,  pulsations of the

pressure gradients are very fast. Then, Uchida used asymptotic expansions of ber(ka) and
bei(ka). In this extreme, the expression for the velocity near the center of the pipe is different
from that near the wall of the pipe. So, they are discussed separately.

Near the center of the pipe, ka →∞  and kr →0 , one gets

u
U =

 ϰ0 

4v (a2 - r2) + ∑
n=1

∞  ϰcn 

n cos(nt - π
2 ) +  ∑

n=1

∞  ϰsn 

n sin(nt - π
2 ). (24)

Comparing this to Eq. (14), one sees that when the pulsations are very rapid, fluid near the
axis of the pipe moves with a phase lag of 90o relative the driving pressure gradient and its
amplitude decreases as the frequency of pulsation increases.

Near the wall of the pipe, kr →ka →∞ , and one uses asymptotic expansions of Bessel func‐
tions to get

u
U =2(1− r2

a2 ) +∑
n=1

∞
 ϰcn

 ϰ0 

8
(ka)2 {sin(nt)− a

r exp(− k(a − r)

2
) sin nt− k(a − r)

2
}

+ ∑
n=1

∞
 ϰsn

 ϰ0 

8
(ka)2 {−cos(nt) + a

r exp(− k(a − r)

2
) cos nt− k(a − r)

2
} .

(25)

4.5. Case of a general periodic pressure gradient: Graphical illustrations of Uchida’s
results

Uchida presented graphical illustrations of these results for four different values of the pa‐
rameter ka: 1, 3, 5, and 10.

At each value of the parameter ka and using the angle, nt, as the variable, he plotted twelve
different snapshots of the velocity profiles of the unsteady component of velocity for the fol‐
lowing angles:

nt =00,  300,  600,  900, 1200,  1500,  1800,  2100, 2400,  2700,  3000, 3300.

His plots showed that, as the value of ka was increased, the location of maximum velocities
shifted progressively away from the axis of the pipe and moved towards the wall. At ka = 1,
all maximums of velocity distributions occurred on the axis of the pipe. At ka = 3, two maxi‐
mums of velocity distributions had shifted away from the axis and moved toward the wall
of the pipe. These occurred at nt = 0o and nt = 180o. At ka = 5, half the maximums of velocity
distributions had shifted away from the axis and moved toward the wall of the pipe. These
occurred at nt = 0o, 30 o, 60 o, 180 o, 210 o and 240 o. At ka = 10, all of the maximums of velocity
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distributions had shifted away from the axis and occurred by the wall of the pipe. These re‐
sults are summarized in Table 1 and Uchida’s (1956) plots are reproduced in enlarged for‐
mats in Figures 5(a), 5(b), 6(a), and 6(b), as shown below.

2 1 	 	 	 .	

	 → ∞,
	 → ∞		 	 	 → 0

	 	 a r ∑ 	 	 cos nt 	∑ 	 	 sin nt .
	 → 	 → ∞
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Figure 4. As the frequency of pressure pulsations increases, the point of maximum velocity shifts progressively away
from the axis of the pipe and moves towards its wall (plots of Eq. (2), for increasing values of n).

ka Total maximums Maximums on the axis of the pipe Maximums away from the axis of the pipe

1 12 12 0

3 12 10 2

5 12 6 6

10 12 0 12

Table 1. Data extracted from Uchida’s papers ( his Figures 1, 2, 3, and 4 are shown below).

5. Pulsating flow through rectangular ducts

5.1. Summary of the results of analysis

Yakhot, Arad, and Ben-dor conducted numerical studies of pulsating flows in very long rec‐
tangular ducts, where a and h were the horizontal and the vertical dimensions, respectively,

of the cross-section of the duct, Fig. 7. Letting α = ( ω
2v )1/2 , they performed calculations for

low and high frequency regimes ( 1≤  αh ≤20 ) in rectangular ducts using two different as‐
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pect ratios (a/h =1 and a/h = 10). They presented results for low frequencies ( αh =1 ) and

moderate frequencies ( αh =8 ). They indicated that results for frequencies higher, αh ≥10,

were very similar to those for moderate frequencies. The other conclusions that they came

up with are summarized below.

A Method of Evaluating the Presence of Fan-Blade-Rotation Induced Unsteadiness in Wind Tunnel Experiments
http://dx.doi.org/10.5772/54144

107



Wind Tunnel Designs and Their Diverse Engineering Applications108



Figure 5. (a). Where maximums of velocity distributions occur when the parameter ka = 1. The angle nt is the parame‐
ter; in these plots, nt = 00,  300,  600,  900, 1200,  1500,  1800,  2100, 2400,  2700,  3000, 3300. (b). Where maximums
of velocity distributions occur when the parameter ka = 3. The angle nt is the parameter;
in these plots,   nt = 00,  300,  600,  900, 1200,  1500,  1800,  2100, 2400,  2700,  3000, 3300.
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Figure 6. (a) Where maximums of velocity distributions occur when the parameter ka = 5. The angle nt is the parame‐
ter; intheseplots, nt = 00,  300,  600,  900, 1200,  1500,  1800,  2100, 2400,  2700,  3000, 3300. (b). Where maximums of
velocity distributions occur when the parameter ka = 10. The angle nt is the parameter;
in these plots, nt = 00,  300,  600,  900, 1200,  1500,  1800,  2100, 2400,  2700,  3000, 3300.
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Figure 7. Sketch of the rectangular duct used by Yakhot, Arad and Ben-dor (1999) in their numerical studies.

For low pulsating frequencies, h =1 , flow in a duct of square cross-sectional area, the ve‐
locity  distribution  is  in  phase,  that  is  in  lock  step,  with  the  driving  pressure  gradient.
This was true at low and at high aspect ratios. This result is the same as what happens
in the case of flow between parallel plates. When one compares the amplitudes of the in‐
duced  velocity,  one  finds  that  the  amplitude  of  flow between  flat  plates  is  larger  than
that in a square duct. This is due to the fact that, in a duct the fluid experiences friction
of four sides, whereas in the case of flow between parallel plates, it experiences flow on‐
ly from two sides. When the aspect ratio is increased to a/h = 10, the velocity in the duct
differs only with the velocity between parallel  plates near the side walls.  This is  clearly
due to the effects of viscosity.

For moderately pulsating frequencies, αh =8 , the velocity distribution of the flow in a duct
of square cross- sectional area differs considerably from that obtained at low frequencies.
The shapes of the velocity profiles are different; results indicate that, at certain instants of
time during a complete cycle, the profiles reach maximum values near the wall of the pipe
rather than on its axis of symmetry. This is Richardson’s “annular effect”. The induced ve‐
locity is no longer in phase, that is in lock step, with the driving pressure gradient. Rather,
the velocity is shifted with respect to the driving pressure and the magnitude of the shift de‐
pends on how far away points in the flow space are from the wall. Near the wall, the in‐
duced velocity on the axis of the duct lags behind that in the regions that are near the walls
of the duct. On the axis, the phase shift is 90o. This was true at low and at high aspect ratios.
This result is the same as what happens in the case of flow between parallel plates. When
one compares the amplitudes of the induced velocity, one finds that the amplitude of flow
between flat plates is larger than that in a square duct. This is due to the fact that, in a duct
the fluid experiences friction of four sides, whereas in the case of flow between parallel
plates, it experiences flow only from two sides. When the aspect ratio is increased to a/h =
10, the velocity in the duct differs only with the velocity between parallel plates near the
side walls. This is clearly due to the effects of viscosity.
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5.2. Graphical illustration of the results of analysis by Yakhot, Arad and Ben-dor (1999)

The velocity profiles in pulsating flow at selected instants within one complete period are
shown below. Flow in a duct is compared to flow between parallel plates for different aspect
ratios and frequencies.

Figure 8. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h =1,  α h =1: solid line, x/a = 0.5; dashed, x/a = 0.25; dot-dashed, x/a = 0.1. (c) Flow between
two parallel plates.
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Figure 9. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h =10,  α h=1: solid line, x/a = 0.5; dot, x/a = 0.1; dashed, x/a = 0.025; dot-dashed, x/a = 0.01. (c)
Flow between two parallel plates.

Figure 10. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h =1,  α h=8: solid line, x/a = 0.5; dashed, x/a = 0.25; dot-dashed, x/a = 0.1. (c) Flow between two
parallel plates.
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Figure 11. Velocity profiles in pulsating flow at different instants of one period. (a) Pressure gradient variation with
time. (b) Duct flow, a/h =10,  α h=8: solid line, x/a = 0.5; dashed, x/a = 0.025; dot-dashed, x/a = 0.01. (c) Flow between
two parallel plates.

6. Anatomy of the shift using expansions of general results into power
series

6.1. Series expansions of Kelvin functions

The unsteady part of the solution, which is given by u '

U  , Eq. (22), can be written to show the
pressure gradient explicitly as shown below.

u '

U = ∑
n=1

∞
W (r , a, k ){  ϰ cn 

 ϰ0 
cos(nt - φ) +

 ϰ sn 

 ϰ0 
sin(nt - φ)} (26)

Where

W (r , a, k)= 8B
(ka)2 B 2 + (1 - A)2 1/2 (27)

And tan(φ(r , a, k ))=  1 - A
B

After a considerable amount of algebra using series expansions for the ber and bei functions,
it can be shown that
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W (r , a, k)=2(1 - r 2

a 2 )D(r , a, k ) (28)

Where D(r, a, k) is a dimensionless factor that is defined as shown below

D(r , a, k)= { ∑
n'=0

∞
Fm(x , y)

(ber 2ka + bei 2ka)
}1/2

(29)

Where m = 4n’, with n’ = 0,1,2,3,…, x =ka ,   y = r
a  , and Fm(x, y) denotes a family of polyno‐

mials a sample of which is shown below

F0 =1 (30)

F4 = 4
(4 !)2 ( x

2 )4(1 + 10y 2 + y 4)

F8 = 22
(6 !)2 ( x

2 )8(1 - 14
11 y 2 + 186

11 y4 - 14
11 y 6 + y 8)

F12 = 68
(8 !)2 ( x

2 )12(1 + 66
17 y 2 - 277

17 y4 + 948
17 y 6 - 277

17 y8 + 66
17 y 10+ y12)

F16 = 254
(10 !)2 ( x

2 )16(1 + 154
127 y 2 + 2206

127 y4 - 10142
127 y 6 + 21610

127 y8 - 10142
127 y 10+ 2206

127 y12 + 154
127 y14 + y 16)

F20 = 922
(12 !)2 ( x

2 )20(1 + 1066
461 y 2 - 2685

461 y4 + 41964
461 y 6 - 158412

461 y8 + 268476
461 y 10- 158412

461 y12 + 41964
461 y14 - 2685

461 y 16 + 1066
461 y 18 + y 20)

F24 =
3434
(14!)2 ( x

2 )24(1 +
3238
1717 y 2 +

13040
1717 y 4−

109654
1717 y 6 +

769653
1717 y 8−

2359044
1717 y 10 +

3530268
1717 y 12−

−
2359044

1717 y 14 +
769653

1717 y 16−
109654

1717 y 18 +
13040
1717 y 20 +

3238
1717 y 22 + y 24

)
F28 = 12868

(16 !)2 ( x
2 )28(1 + 25992

12868 y 2 + 24716
12868 y 4 + 337040

12868 y 6− 2663036
12868 y 8 + 13416312

12868 y 10− 34632404
12868 y 12 + 48192480

12868 y 14−

− 34632404
12868 y 16 + 13416312

12868 y 18− 2663036
12868 y 20 + 337040

12868 y 22 + 24716
12868 y 24 + 25992

12868 y 26 + y 28
)

Note, from the definition of w(r, a, k), Eq. (28), that each of these polynomials will be multi‐
plied by the steady velocity. Clearly, this shows that all components that are added to the
velocity due to unsteadiness are essentially various forms of the same steady velocity after it
has been modified by the introduction of time variations. The series of equations shown be‐
low demonstrates this observation:

u
U =  

us

U + u '

U , (31)

us

U =2(1 - r 2

a 2 ), (32)
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u
U =  2(1 - r 2

a 2 ) + ∑
n=1

∞
W (r , a, k ){  ϰ cn 

 ϰ0 
cos(nt - φ) +

 ϰ sn 

 ϰ0 
sin(nt - φ)}, (33)

Using the expression for W (r , a, k) that is shown in Eq. (28), one gets

u
U =  2(1 - r 2

a 2 ) + 2(1 - r 2

a 2 )∑
n=1

∞
D(r , a, k ){  ϰ cn 

 ϰ0 
cos(nt - φ) +

 ϰ sn 

 ϰ0 
sin(nt - φ)}, (34)

After a minor rearrangement of terms, Eq. (34) becomes

u
U =  2(1 - r 2

a 2 ) + 2(1 - r 2

a 2 )∑
n=1

∞ D(r , a, k )
 ϰ0 

{ ϰcn cos(nt - φ) +  ϰsn sin(nt - φ)}. (35)

Since D(r, a, k), in Eq. (35), consists of the functions Fm(x, y),  one concludes that the family
of polynomials Fm(x, y) that is shown in Eq.(30) is what is primarily responsible for the
change in the shape of the velocity profile as the frequency of oscillation increases. There‐
fore, it is those polynomials that cause the location of the maximum velocity to move away
from the axis of the pipe, and hence, bear the essence of the physical interaction between
viscous forces and pressure forces during pulsating motions. This conclusion will be illus‐
trated graphically below.

6.2. Graphical illustrations of the shape of the Fm(x, y) polynomials

Variation in the shapes of the functions Fm(x, y) is illustrated graphically below. It will be

remembered that, in what follows, x =ka = n
v a   ,   y = r

a  , the dimensionless radial distance
from the axis of the pipe; and that

m = 4n’, with n’ = 1, 2, 3, 4, 5, … In Figures 12 and 13, twelve functions Fm(x, y) are plotted
against the radial distance y for various values of the dimensionless parameter x.

2 1 ,																																																																																																																																																																									 32
	2 1 , , 	 		 	 	 		 	 ,																																																															 33

, ,
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	2 1 2 1 , ,	 	 	 	 	 	 .																																												 35
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Figure 12. Each coordinate frame shows plots of three functions Fm(x, y) vs y: F4(x, y), F12(x, y),  and F28(x, y); x is
used as the parameter. Note that larger values of x indicate higher rates of pulsations by the pressure gradient.
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Figure 13. Each coordinate frame shows plots of three functions Fm(x, y) vs. y: F4(x, y), F12(x, y),  and F28(x, y); x is
the parameter. Note that larger values of x indicate higher rates of pulsations by the pressure gradient.

7. Compiled summary of results from several investigators and
conclusions

While conducting experiment on sound waves in resonators, Richardson (1928) measured
velocities across an orifice of circular cross-section and found that the maximum velocity
could occur away from the axis of symmetry and toward the wall. Sexl (1930) proved analyt‐
ically that what Richardson observed could happen. Richardson and Tyler (1929-1930) con‐
firmed these findings with more experiments with a pure periodic flow generated by the
reciprocating motion of a piston. Uchida (1956) studied the case of periodic motions that
were superposed upon a steady Poiseuille flow. An exact solution for the pulsating laminar
flow that is superposed on the steady motion in a circular pipe was presented by Uchida
(1956) under the assumption that that flow was parallel to the axis of the pipe.

The total mean mass of flow in pulsating motion was found to be identical to that given by
Hagen-Poiseuille’s law when the steady pressure gradient used in the Hagen-Poiseuille’s
law was equal to the mean pressure gradient to which the pulsating flow was subjected.

The phase lag of the velocity variation from that of the pressure gradient increases from zero
in the steady flow to 90o in the pulsation of infinite frequency.

Integration of the work needed for changing the kinetic energy of fluid over a complete cy‐
cle yields zero, however, a similar integration of the dissipation of energy by internal fric‐
tion remains finite and an excess amount caused by the components of periodic motion is
added to what is generated by the steady flow alone.

It follows that a given rate of mass flow can be attained in pulsating motion by giving the
same amount of average gradient of pressure as in steady flow. However, in order to main‐
tain this motion in pulsating flow, extra work is necessary over and above what is required
when the flow is steady.
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Recently, Camacho, Martinez, and Rendon (2012) showed that the location of the character‐
istic overshoot of the Richardson's annular effect changes with the kinematic Reynolds num‐
ber in the range of frequencies within the laminar regime. They identified the existence of
transverse damped waves that are similar to those observed in Stokes’ second problem.

All these results were obtained in flows through pipes of circular cross-sections and rectan‐
gular ducts. It is reasonable to expect that they would hold in the flow of air in a wind tun‐
nel. Experimental results indicate that the Richardson’s annular effect does occur in the test
section of a subsonic wind tunnel. That behavior first appears unusual and, indeed, odd.
However, as shown in this chapter, there is considerable experimental and analytical evi‐
dence in the literature that indicates that this behavior is due to high-frequency pulsations of
the pressure gradient. Accordingly, in the case of a subsonic wind tunnel, it is probably due
to the fast rate of rotation of fan blades. Indeed, in our wind tunnel, results from analysis
and those from experiments differed only by about 5.7%.

Nomenclature of the symbols (with units)

α :  a dimensionless ratio that combines the rate of pressure pulsations and the distance from
the wall of the pipe;

η :  a dimensionless distance from the wall of the pipe;

ρ :  the mass density of the fluid ( kg/m3);

μ :  the coefficient of absolute viscosity (N.s/ m2);

v :  the coefficient of kinematic viscosity (m2/s);

ω : denotes the circular frequency of pressure oscillations;

 ϰcn  and  ϰsn  : Fourier coefficients of the pressure gradient;  ϰo  is the steady part of the
pressure gradient (m/s2);

a: the inside radius of a pipe through which an oscillating flow is moving;

c : the magnitude of a reference speed

G: the total mean value of the mass flow, U the total mean value of the velocity

i : the pure imaginary number; it is defined by i2 = -1

Jo :  Bessel function of the first kind and of zero order

k: a dimensionless ratio used by Schlichting to denote the magnitude of the frequency of os‐
cillation

K: a symbol used by Schlichting to indicate the magnitude of the pressure gradient

n: denotes the circular frequency of pressure oscillations (rad/s)
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P: the pressure that drives the flow (N/m2)

∂ p
∂ x  : the pressure gradient in the axial direction of an infinitely long pipe

r: the radial distance measured from the axis of the pipe (m)

R: the inside radius of a pipe of circular cross section (m)

t: time elapsed (s)

u: the axial velocity of the flow (m/s)

us: the steady part of the velocity u (m/s)

u ' : the unsteady part of the velocity u (m/s

U :  the mean speed (m/s) of the velocity u (m/s)

x: a dimensionless ratio that measures the rate of pulsations of the pressure gradient

y: a dimensional distance from the wall of the pipe (m)
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