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A desmaterialização da economia é um dos caminhos para a promoção do 
desenvolvimento sustentável na medida em que elimina ou reduz a utilização 
de recursos naturais, fazendo mais com menos. A intensificação dos 
processos tecnológicos é uma forma de desmaterializar a economia. Sistemas 
mais compactos e mais eficientes consomem menos recursos. No caso 
concreto dos sistemas envolvendo processo de troca de calor, a intensificação 
resulta na redução da área de permuta e da quantidade de fluido de trabalho, o 
que para além de outra vantagem que possa apresentar decorrentes da 
miniaturização, é um contributo inegável para a sustentabilidade da sociedade 
através do desenvolvimento científico e tecnológico.   
O desenvolvimento de nanofluidos surge no sentido de dar resposta a estes 
tipo de desafios da sociedade moderna, contribuindo para a inovação de 
produtos e sistemas, dando resposta a problemas colocados ao nível das 
ciências de base. A literatura é unânime na identificação do seu potencial 
como fluidos de permuta, dada a sua elevada condutividade, no entanto a falta 
de rigor subjacente às técnicas de preparação dos mesmos, assim como de 
um conhecimento sistemático das suas propriedades físicas suportado por 
modelos físico-matemáticos devidamente validados levam a que a 
operacionalização industrial esteja longe de ser concretizável. 
Neste trabalho, estudou-se de forma sistemática a condutividade térmica de 
nanofluidos de base aquosa aditivados com nanotubos de carbono, tendo em 
vista a identificação dos mecanismos físicos responsáveis pela condução de 
calor no fluido e o desenvolvimento de um modelo geral que permita com 
segurança determinar esta propriedade com o rigor requerido ao nível da 
engenharia. Para o efeito apresentam-se métodos para uma preparação 
rigorosa e reprodutível deste tipo de nanofluido assim como das metodologias 
consideradas mais importantes para a aferição da sua estabilidade, 
assegurando deste modo o rigor da técnica da sua produção. A estabilidade 
coloidal é estabelecida de forma rigorosa tendo em conta parâmetros 
quantificáveis como a ausência de aglomeração, a separação de fases e a 
deterioração da morfologia das nanopartículas. 
Uma vez assegurado o método de preparação dos nanofluídos, realizou-se 
uma análise paramétrica conducente a uma base de dados obtidos 
experimentalmente que inclui a visão central e globalizante da influência 
relativa dos diferentes fatores de controlo com impacto nas propriedades 
termofísicas. De entre as propriedades termofísicas, este estudo deu particular 
ênfase à condutividade térmica, sendo os fatores de controlo selecionados os 
seguintes: fluido base, temperatura, tamanho da partícula e concentração de 
nanopartículas. Experimentalmente, verificou-se que de entre os fatores de 
controlo estudados, os que maior influência detêm sobre a condutividade 
térmica do nanofluido, são o tamanho e concentração das nanopartículas. 
Com a segurança conferida por uma base de dados sólida e com o 
conhecimento acerca da contribuição relativa de cada fator de controlo no 
processo de transferência de calor, desenvolveu-se e validou-se um modelo 
físico-matemático com um caracter generalista, que permitirá determinar com 
segurança a condutividade térmica de nanofluidos. 
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abstract 

 

The economy dematerialization is a means to promote sustainable 
development as it eliminates or reduces the use of natural resources. Hence, 
the intensification of technological processes is a way to dematerialize the 
economy. More compact and efficient systems require fewer resources. In what 
concerns technological systems involving heat exchange processes, 
intensification results in the reduction of the exchanging area and amount of 
working fluid, which in addition to other advantages inherent to systems’ 
miniaturization, is a direct contribution of the scientific and technological 
development to a more sustainable society. 
The development of nanofluids is a response to such challenges of 
contemporary society, contributing to the innovation of products and systems 
by solving fundamental questions raised at the level of basic sciences. The 
available literature is unanimous identifying nanofluids potential as an 
engineering thermal fluid due to their thermo-physical properties, namely a high 
thermal conductivity. However, the lack of rigorous preparation techniques as 
well as of a systematic knowledge of their thermo-physical properties, 
supported by validated physical-mathematical models, are serious constrains to 
their use in engineering applications. 
In this work, the thermal conductivity of carbon nanotubes, water based 
nanofluids were systematically studied.  The governing physical mechanisms 
for heat conduction in the nanofluid were established as the basic condition for 
the development of a general model able to securely determine this property 
with the precision required in engineering applications. For this purpose the 
methodologies to correctly prepare such nanofluids in a reproducible way as 
well as to measure their long term stability are presented. The colloidal stability 
is accurately established and quantified taking into account parameters such as 
the absence of agglomeration, separation of phases and deterioration of the 
morphology of the nanoparticles.  
A parametric analysis was developed through appropriate DOE methodologies 
in order to build a comprehensive data base of the nanofluid physical properties 
as a function of control factors, previously identified variables considered to 
have the greatest impact on the variability of thermo-physical properties.  
Among the latter, this work gives particular attention to the acquisition of 
thermal conductivity data against the selected control factors: base fluid, 
temperature, size and concentration of nanoparticles. It was verified 
experimentally that amongst these control factors, those that hold the greatest 
influence on the thermal conductivity of the nanofluid are the size and 
concentration of nanoparticles. 
A solid database and the awareness about the relative contribution of each 
mechanism controlling the heat transfer process in nanofluids successfully 
supported the development and validation of a general physical-mathematical 
model to determine the thermal conductivity of nanofluids. 
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1 INTRODUCTION 

1.1 CHAPTER SYNTHESIS 

Nanofluids are suspensions of nanoparticles in conventional base fluids. With the appropriate 

nanoparticle size and volume fraction, nanofluids present an enhancement in the effective heat 

transfer coefficient when comparing with the base fluid. The main objective of this work is to 

develop and characterize carbon nanotube based nanofluids for thermal engineering applications. 

A literature survey focus on recent research developments on nanofluids for thermal applications, 

showed that there are controversial theories to explain measured anomalous thermal conductivity 

enhancement of nanofluids, namely Brownian motion, nanoparticles agglomeration and nano-

layering ordering, thus further work is required to understand and predict nanofluids thermal 

properties. In this Chapter, the research objectives and contribution of the thesis are outlined 

supported by a comprehensive literature review. 

1.2 BACKGROUND AND MOTIVATION 

Sustainable development usually requires system dematerialization, which leads to processes 

intensification and particularly to heat transfer intensification. High performance thermal fluids, 

such as nanofluids, are a practical way to intensify heat transfer processes in compact 

(dematerialized) systems, thus it may be claimed that thermal nanofluids research is a need for 

humankind sustainable development. An example is the continuous advances on electronic devices 

which increased the demand for new engineering solutions to improve the effectiveness of heat 

transfer, mainly in what concerns to compact or miniaturized systems. It is well known that the 

performance of many of these systems or devices strongly depends on their cooling technology. 

Therefore, the intensification of the heat transfer rate in compact cooling systems is a key factor 

for the continuous development of these systems.  

Regarding the Newton’s law of cooling (Equation 1.1), such improvements can be achieved through 

the increase of the temperature difference (∆T), heat exchanger area (A), and convective 

coefficient (h) (INCROPERA et al., 2006). 

Q=h∙A∙∆T 1.1 

with 
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h=
Nu∙k

L
 1.2 

where Q is the heat flow, Nu is the flow Nusselt number, k is the fluid heat transfer conductivity 

and L is a characteristic dimension of the system. 

The increase on temperature difference may be limited by the process or materials constrains. 

Therefore, a common strategy is through the maximization of the exchange surface area (for a 

given geometry and boundary conditions). However, this maximization generally leads to the 

increase of the overall volume of the heat exchanger, that may be limited by miniaturization or 

intensification constrains. Some new technologies in this field are being developed, e.g. the 

microchannel heat exchangers with improved surface-to-volume ratio, phase change devices such 

as heat pipes, vortex generators, among others (KHAN et al., 2011, MOHAMMED et al., 2011, 

SIDDIQUE et al., 2010).  

Another method is through the increase of the heat transfer coefficient of the operant fluid. This is 

usually achieved by a significant increase of fluid velocity, acting on the Nusselt number (Nu), which 

produces a rise on the required pumping power. However, the poor thermal properties of 

conventional working fluids (e.g. water, ethylene glycol and a typical dielectric fluid, such as 

polyalphaolefin) are still major barriers for the innovation on the geometry of heat exchangers and 

their miniaturization. In Table 1.1, thermo-physical properties of conventional working fluids are 

presented. 

Table 1.1: Thermo-physical properties of water and ethylene glycol at room temperature (ASHRAE, 2005, INCROPERA et 
al., 2006). 

Thermo-physical property Water Ethylene glycol Polyalphaolefin 

Thermal conductivity [W/m·K] 0.613 0.252 0.145 

Dynamic viscosity [Pa·s] 0.001 0.016 0.999 

Density [g/cm³] 0.997 1.114 0.890 

Specific heat capacity [kJ/kg·K] 4.179 2.415 1.868 

An additional strategy for heat transfer intensification is through increasing the thermo-physical 

properties of conventional fluids, to enhance their convective coefficient, independently of the 

fluid flow characteristics. It is a fact that fluids present considerably lower thermal conductivity 

than solid materials, as can be depicted from Figure 1.1. It seems quite evident that the mixture of 

conductive solid particles in conventional fluids may improve the conduction of the suspension. 
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Figure 1.1: Thermal conductivities of common solids and liquids, at room temperature (EASTMAN et al., 2004). 

Theoretical and experimental studies on increasing conduction properties of liquids, by suspending 

millimetre or micrometre sized particles, have been conducted by Maxwell more than a century 

ago. From his work emerged the effective medium theory (EMT), the classical theory, suggesting 

the thermal diffusion in both phases as the main mechanism governing the thermal conductivity 

enhancement (MAXWELL, 1873). 

As the theory of Maxwell only reflects on very dilute suspensions of non-interacting spherical 

particles, several models based on the EMT were proposed by different authors. These upgraded 

classical models add to the EMT the effect produced by the particle shape, their possible 

interaction for higher concentrations, and a thermal interface resistance at the solid particles 

surface (BRUGGEMAN, 1935, DAVIS, 1986, FRICKE, 1924, HAMILTON et al., 1962, HASHIN et al., 

1962, HASSELMAN et al., 1987, JEFFREY, 1973). 

However, the incorporation of micro sized particles present a rapid sedimentation due to their high 

volume or size. This causes clogging of the flow channels, surface abrasion, increased pressure 

drop, and a fast decay of the engineered thermo-physical properties(HAMILTON et al., 1962, 

MAXWELL, 1873).  

In 1995, Choi et al. reported that an innovative class of heat transfer fluids could be engineered by 

suspending nanoparticles in conventional fluids, appearing for the first time the word nanofluid. 

They reported a dispersion of metallic nanoparticles in the base fluid with exciting improvements 

on the effective thermal conductivity at very low concentrations (CHOI et al., 1995). This is an 

important issue, since a small amount of particles produces a relatively low enhancement on the 

viscosity, leading to minor pressure drop penalty. Since then, theoretical and experimental 
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researches on nanofluids have gained considerable interest. Some of the advantages announced 

for the application of nanofluids include the following (DING et al., 2006): 

1. Increased thermal conductivity (probably higher than that predicted through classical 

theories); 

2. Possibility to achieve good stability conditions; 

3. Low pressure drop penalty; 

4. Low probability of heat exchange surface abrasion; 

5. Possibility to be introduced in current thermal systems technologies. 

Among the thermo-physical properties of nanofluids, thermal conductivity is, perhaps, the most 

studied over the past years. This is referred by several researchers as anomalously high, and not 

described by the EMT (CHOI et al., 2001, EASTMAN et al., 2001). Several theories have been 

recently proposed in an attempt to model the thermal conductivity for these next-generation 

engineering fluids, but, apparently, without success (LEE et al., 2010). As expected, divergences on 

the proposed theories resulted on the publication of several predictive models with different 

premises, causing unrelated results, and lack of confidence on the effective thermo-physical 

properties predicted. 

Particles at nanoscale may exhibit physical properties different from those of the corresponding 

bulk solids.  In addition, chemical composition, size, shape and surface characteristics also play an 

important role on their effect on the respective nanofluid physical properties. At the nanoscale, the 

percentage of atoms at the surface of the material becomes significant, presenting a high surface-

to-volume ratio. This provides a superior thermal, mechanical, optical, magnetic, and electric 

properties when comparing to those of the corresponding  bulk solids (DUNCAN et al., 1989, XUAN 

et al., 2000).  Furthermore, a strong interaction of the surface of non-agglomerated nanoparticles 

with the solvent may overcome density differences, making it possible to produce stable 

suspensions (HILDING et al., 2003, NASIRI et al., 2011).  

For these reasons, it is expected that nanofluids come to be a new class of heat transfer fluids. 

These are formed by dispersed nanoparticles in conventional fluids, and present significant 

improvements in the effective thermo-physical properties comparing with those of the base fluid. 

A stable suspension of nanoparticles in a conventional fluid significantly reduces the severe 

clogging problems evidenced using micrometre particles (CHOI, 1998). A successful employment of 

nanofluids will support the current trend toward component miniaturization and sustainable 



 
5 

 

development by enabling the design of smaller and lighter heat exchangers, and improving the 

energy efficiency in industrial processes and systems development. 

1.3 STATEMENT OF THE PROBLEM 

At present, the known literature does not present a consensual and robust model capable of 

predicting the thermal conductivity of a generic nanofluid with an acceptable level of accuracy for 

engineering purposes. Furthermore, from the experimental results of many researchers, it is 

known that the thermal conductivity of nanofluids may depend on several parameters, including 

the nanoparticles geometry and spatial distribution, their volume fraction, base fluid type, and 

temperature. However, given the lack of an experimental parametric assessment to this property, 

the need for further work into this promising research field is emphasised.  

A comprehensive experimental research programme, supported by a well-designed parametric 

study is a pre-condition to experimentally identify the mechanisms responsible for heat conduction 

phenomena in nanofluids, being the basis for the definition and validation of a general physical 

model able to assess thermal conductivity of nanofluids.  

It is of utmost importance the availability of reliable predictive models of nanofluids physical 

properties, namely for thermal conductivity, in order to support their introduction towards 

industrial applications. Such models are also essential to accelerate the production of nanofluids 

without the need of a strong support of experimental work. 

A reliable predictive model of nanofluids thermo-physical properties is a fundamental requirement 

to support the engineering and integration of nanofluids in the future energy systems. 

1.4 THESIS OBJECTIVES AND RESEARCH QUESTIONS 

The main objective of this work is to develop and characterize carbon nanotubes based nanofluids 

useful for thermal engineering applications.  

The available literature reports that the addition of conductive nanoparticles to conventional fluids 

produces significant increases in their heat conduction capacity. However, sample preparation is 

not an easy or straight-forward task, and requires the application of specific techniques to ensure 

acceptable stability levels. This feature is recognized by the scientific community as essential to 

ensure the quality of the thermo-physical properties' assessment. Therefore, the development of 
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an adequate methodology to produce carbon nanotubes based nanofluids with confirmed long 

term stability is a primary objective of this work 

In addition, it is intended to identify the inherent mechanisms responsible for heat conduction in 

nanofluids, and a physical predictive model for the effective thermal conductivity will also be 

developed and experimentally validated. To this end, on a first analysis, the nanofluids will be 

designed and tailored through the use of available theoretical models. Thermal characterization of 

nanofluids will be achieved through experimental parametric analysis where special attention will 

be given to the base fluid type, nanoparticles size and geometry, volume fraction of nanoparticles, 

and temperature.  

The proposed research work contributes to the worldwide scientific knowledge answering to the 

following questions:  

1. What are the stability conditions to achieve long-term CNT based nanofluids for thermal 

applications? 

2. What are the most important inherent physical mechanisms responsible for the effective 

thermal conductivity improvement showed by such CNT based nanofluids? 

3. Is it possible to predict the thermal conductivity of CNTs based nanofluids through a 

general physical-mathematical model?  

Therefore, the ultimate aim of this research work is the development and validation of a physical 

based mathematical model representative of CNTs based nanofluids thermal conductivity as a 

function of the different parameters affecting this thermal property. The acquired experimental 

data and knowledge regarding the heat transfer mechanisms in nanofluids will contribute to their 

dissemination in engineering applications, both at the fundamental and engineering levels. 

1.5 LITERATURE REVIEW 

In the following Sections, it is presented a literature survey of the subjects in the preparation of 

nanofluids and their stability, and the most important researches on their thermal conductivity 

behaviour. 

1.5.1 PREPARATION OF NANOFLUIDS 

As previously stated, nanofluids are suspensions of nanoparticles in conventional thermal base 

fluids. With the appropriate nanoparticle size and volume fraction, they can show an enhancement 
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in the effective heat transfer coefficient of the mixture (CHOI et al., 2001, CHOI et al., 1995, 

EASTMAN et al., 1997, EASTMAN et al., 2001).  

Several nanoparticles have been documented in the literature for the preparation of nanofluids for 

thermal management. Among them, the most common are copper (Cu), cupric oxide (CuO), 

alumina (Al₂O₃), gold (Au), iron (Fe), titanium dioxide (TiO₂), silicon dioxide (SiO₂), and carbon 

nanotubes (CNTs). The typically studied base fluids are the distilled water (DW), ethylene glycol 

(EG), and engine oil (EO). 

CNTs are allotropes of carbon with cylindrical nanostructure, exhibiting extraordinary strength and 

unique electrical and thermal properties (IIJIMA, 1991). These are usually categorized as single-

walled nanotubes (SWCNTs) and multi-walled nanotubes (MWCNTs), as schematically represent in 

Figure 1.2. Since their discovery in 1991, research on growth, characterization, and application 

development has exploded (MEYYAPPAN, 2004). A well-known CNTs synthesis is the catalytic 

chemical vapour deposition (CCVD). Through this method, it is possible to synthesize CNTs with 

controlled lengths and diameters, respectively through the manipulation of the chemical reaction 

time, and on the molecular entity used in the synthesis process. Furthermore, this method also 

enables the production of high quantities of pure CNTs (JOSE-YACAMAN et al., 1993). Other 

synthesis approaches have been extensively researched, including arc-discharge, laser ablation, 

pyrolysis and enhanced plasma vapour deposition. The arc-discharge technique is usually applied 

for the production of CNTs with significantly lower diameters, as the SWCNTs, despite being an 

expensive technique due to smaller production quantities (HERNADI et al., 1996, KEIDAR et al., 

2004, MERCHAN-MERCHAN et al., 2010, SCHNITZLER et al., 2008). 

 
 

a) b) 

Figure 1.2: Schematic representation of a SWCNT a) and a MWCNT b). 
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The methods for nanofluids production are generally summarized into two categories, one-step 

approach and two-step method. The first involves the formation of the nanoparticles from 

molecular entities directly within the base fluid. The two-step approach consists on the 

fragmentation of massive particles into smaller ones, being then dispersed in a second process step 

(DAS et al., 2008, GOPALAKRISHNAN, 1995, RAAB et al., 2011).  

1.5.1.1 ONE-STEP METHOD 

The one-step method consists in the formation of nanofluids through physical or chemical 

reactions. In this, the nanoparticles are created directly within the base fluid, i.e. the nanoparticles 

are simultaneously produced and dispersed in the fluid. Therefore, it is avoided the process of 

drying, storage, and transport, thereby minimizing agglomeration of the nanoparticles (LI et al., 

2009). 

Eastman et al. has established a physical method in which Cu vapour was directly condensed into 

nanoparticles by contact with a flowing low-vapour-pressure liquid, producing stable CuO-DW and 

Cu-EG nanofluids (EASTMAN et al., 1997, EASTMAN et al., 2001). In 2004, Zhu et al. presented a 

method consisting on microwave irradiation, through which obtained a non-agglomerated and 

stable Cu-EG nanofluid by the hydrothermal chemical reduction of salts (ZHU et al., 2004). 

Nanofluids stable for over a month, consisting of monodispersed silver nanoparticles on mineral oil 

were also prepared by this method (BÖNNEMANN et al., 2005). Another method, based on a 

vacuum submerged arc nanoparticle synthesis has been applied to produce nanofluid with non-

agglomerated nanoparticles of different shapes. Lo et al. prepared CuO, Cu2O, and Cu based 

nanofluids with this technique (LO et al., 2005). Yu et al. presented another one-step method for 

the preparation of graphene oxide colloids through a phase transfer approach (YU et al., 2011). 

CNTs based nanofluids may also be obtained via a one-step technique, namely through the carbon 

plasma-discharge directly in water (HSIN et al., 2001). 

The major advantage of the one-step approach relies in the nanoparticles agglomeration 

minimization. This is essential to ensure better stability of the sample. However, this technique has 

limitations on the sample size, making this method expensive for mass production. Particle size 

control is also an issue when employing this technique. Furthermore, usually some residual 

reactants are left in the nanofluids due to incomplete reaction. These are noise effects that prevent 

an accurate characterization of the thermo-physical properties and, moreover, may limit the 

applicability of the nanofluids (LEE et al., 2010). 
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1.5.1.2 TWO-STEP METHOD 

In the two-step method, the preparation of nanofluids is processed by suspending previously 

synthetized nanoparticles, into base fluids in a second processing step. Since this method requires 

the isolate preparation of nanoparticles, agglomeration may take place in both steps, i.e. 

nanoparticle synthesis and/or dispersion step.  Therefore, to avoid agglomeration, it is necessary 

an earlier separation of the nanoparticles. This can be achieved through physical or chemical 

techniques (DAS et al., 2008).  

Commonly, the first step is designated by nanoparticles stabilization, and the second by 

nanoparticles dispersion. When used, nanoparticles stabilization requires the application of specific 

techniques, described in the following Section.  On the other hand, nanoparticles dispersion is, 

generally attained by the application of low periods of ultrasonication and/or magnetic-stirrer 

mixing. (DAS et al., 2008). 

Compared with the one-step method, this approach has been more commonly used by researchers 

in the nanofluid field. Since the nano-powder synthesis techniques have already been scaled up to 

industrial production levels, the two-step method is seen as the most economical to produce 

nanofluids in large scale. The major disadvantage of this method is that the addition of dispersants 

or stabilizers, used for colloidal stability improvement, may affect the thermal conductivity of the 

nanofluid. CNTs nanofluids are typically tailored via the two-step method (NASIRI et al., 2011). 

1.5.2 NANOFLUIDS STABILITY 

The production of a stable suspension of nanoparticles is still a technical challenge. The high 

surface-to-volume ratio of the nanoparticles induces strong van der Waals interparticle 

interactions (CAO, 2004, GHADIMI et al., 2011a, MEYYAPPAN, 2004). These interactions, associated 

with the Brownian movement, cause the aggregation of the nanoparticles, which begin to behave 

as micrometre particles. This will result in the settlement and clogging of the channels, but also in 

the decreasing of the thermal conductivity of the nanofluid (FEDELE et al., 2011, MEIBODI et al., 

2010). Therefore, the research on nanofluids stability is of major importance for their thermo-

physical properties assessment. 
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1.5.2.1 MODES OF NANOPARTICLES STABILIZATION 

Particle agglomeration may be prevented by balancing the interparticle attractive forces through 

electrostatic or steric repulsion (BOTHA, 2007, MISSANA et al., 2000, POPA et al., 2010).  

Electrostatic repulsions may be induced through physical methods, such as ultrasonication, ball 

milling or high speed shearing (DAS et al., 2003a, DAS et al., 2003b, EASTMAN et al., 1997, XUAN et 

al., 2000). These methods induce electric charges on the nanoparticle surface, guaranteeing kinetic 

stability. However, these are recognized by the destruction that they cause to the nanoparticles. 

For instance, when subjecting CNTs to high ultrasonication periods, their average length could be 

reduced by 65%. Moreover, ball-milling and high-speed shear cause the opening of CNT the 

sidewalls. Shorter CNTs are less suitable to entangle (HILDING et al., 2003). 

On the other hand, steric repulsions may be employed through chemical methods. These include 

both surfactants and covalent functionalization techniques, that cause a hydrophobic-to-

hydrophilic conversion of the surface of the nanoparticles (GHADIMI et al., 2011b, JIN et al., 2009, 

WONG et al., 2002, XUAN et al., 2000). It should be noted that both methods may change the pH 

value of the samples.  

Surfactants, or dispersants, are easy and economic methods for nanoparticles stabilization 

enhancing the stability of nanofluids. These are positioned at the interface of the two phases, 

inducing a higher degree of continuity between the nanoparticles and fluid, therefore, improving 

the nanoparticles wettability (VAISMAN et al., 2006). Although surfactant additions are an effective 

way to improve the stability of nanofluids, it use might cause several problems. Their use 

influences the final properties of the mixture as it forms an interfacial layer between the two 

phases that may limit the thermal conductivity enhancement (CHEN et al., 2008, NASIRI et al., 

2011). Furthermore, nanofluids are subjected to heat and cooling routine processes, leading to the 

degradation of the dispersant or the formation of foams (NASIRI et al., 2011). Nguyen et al. found 

that the viscosity of nanofluids may have hysteresis behaviour, possibly by the surfactant 

degradation which culminates in the agglomeration of the nanoparticles (NGUYEN et al., 2007). 

The use of covalent functionalized nanoparticles, a surfactant-free technique for nanoparticle 

stabilization, is a promising approach to produce nanofluids. The most common covalent 

functionalization techniques are the oxidative treatments which are capable of to attach to the 

nanoparticles surface, oxygenating functional groups such as carboxylic and alcohol groups. This 



 
11 

 

may be achieved through chemical treatment, such as boiling nitric and sulphuric acid, or through a 

dielectric barrier discharge plasma. The carboxylic groups (COOH) behave as weak acids and 

possess ion-exchange properties, having both hydrogen acceptors and hydrogen donors. This will 

improve the CNTs wettability, due to a more hydrophilic surface structure, and reduce 

agglomeration by increasing the electrostatic repulsions that counter-balance with the Van der 

Waals attraction forces. However, this will also change the isoelectric point (pH) of the dispersion, 

producing a pH value lower than that of the base fluid. Moreover, both carboxyl and alcohol groups 

have polar properties, contributing for the solubility of the CNTs in polar solvents, such as distilled 

water and ethylene glycol (ESUMI et al., 1996, NASEH et al., 2010, XIE et al., 2011, XIE et al., 2003). 

Despite being a common method to enhance their stability in base fluids, chemical treatment may 

cause the shortening of the CNTs. The length reduction of the CNTs depends on the extent and 

intensity of the reaction, and the new size distribution should always be determined after the 

functionalization procedure by scanning electron microscope (SEM) or transmission electron 

microscopy (TEM) in order to characterize the resulting CNTs (BALASUBRAMANIAN et al., 2005, 

BANERJEE et al., 2005, NASEH et al., 2010, WEPASNICK et al., 2010, YUDIANTI et al., 2011). 

1.5.2.2 METHODS FOR STABILITY ASSESSMENT 

The simplest and consistent method to evaluate the colloidal stability of nanofluids is the phase 

separation rate measurement. In this, the concentration of the nanoparticles is obtained through a 

specific experimental apparatus, considering the stability point when the concentration keeps 

constant. To test the concentration variation of the nanoparticles, sedimentation photograph, and 

UV-visible spectrophotometry were typically used. 

The sedimentation photograph method consists of a set of cameras that photograph the 

nanofluids, registering the sedimentation of the nanoparticles with the time (LI et al., 2007, 

LISUNOVA et al., 2006).  

UV-visible spectrophotometer measures the absorption or transmittance percentage of a solution 

or dispersion. The absorption is the ratio of the radiant flux absorbed by the nanoparticles, which is 

proportional to the concentration, as stated by the Beer-Lambert law (INGLE et al., 1988, RUSSEL et 

al., 1989).  The variation of nanoparticles concentration with time can be obtained by the 

measurement of the absorption of nanofluids, if the nanoparticles have characteristic absorption 

bands in the wavelength 190-1100nm. This is a reliable method to evaluate quantitatively the 
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stability and concentration of nanofluids. However, the major disadvantage of this method is the 

long periods of measuring time required (INGLE et al., 1988, RUSSEL et al., 1989). 

Another method to assess the colloidal stability of nanofluids is the Zeta potential analysis. This 

measures the repulsions, or zeta potential of charged particles. Since colloidal systems are 

stabilized by repulsion, the larger the repulsive forces between particles, the less likely they will be 

to come together and form an aggregate. In general, nanofluids with high absolute zeta potential 

(>25mV) are stabilized, while nanofluids with lower absolute zeta potential (<25mV) tend to 

coagulate or flocculate (LI et al., 2007, RUSSEL et al., 1989). 

1.5.3 THERMAL CONDUCTIVITY 

Among the thermo-physical properties of nanofluids, the thermal conductivity is that gathering 

more attention from the research community. Experimental studies to the thermal conductivity 

enhancement of nanofluids have been carried out during the past years. The results achieved are 

described as anomalously higher than the predicted by the classical models. This extraordinary 

property contributed the exponential interest in experimental and theoretical research on 

nanofluids observed in the past few years.  

The classical understanding of the thermal conductivity of mixtures originates from the effective 

medium theory (EMT), which normally involves only the particle shape, volume fraction, both 

conductivity of the pure materials that compose the mixture, and the Kapitza resistance 

(BRUGGEMAN, 1935, DAVIS, 1986, HAMILTON et al., 1962, HASHIN et al., 1962, HASSELMAN et al., 

1987, JEFFREY, 1973). Although this method can give good effective thermal conductivity 

predictions for micrometre or lager-size solid/fluid mixtures, it was reported that may fail for 

nanosized particles.  

1.5.3.1 MEASUREMENT METHODS 

The measurement of the thermal conductivity of liquids or solutions may be a difficult task, since it 

is necessary to establish a steady one-dimensional temperature field. To overcome this, several 

techniques have been presented and applied in the measurement of this property in nanofluids. 

The techniques for measuring the thermal conductivity can be classified into two broad categories, 

the steady-state and transient. 
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 The steady-state method performs a measurement when the temperature of the material 

measured does not change with time. The disadvantages of steady-state methods are that the heat 

lost cannot be quantified and may give a considerable inaccuracy. Also, the free convection may 

set in, giving higher apparent values of the thermal conductivity. Many researchers have reported 

experimental studies with steady-state parallel plate method. For instance, Wang et al., measured 

the thermal conductivity of Al2O3 in DW, EG and EO with steady-state parallel plate, registering a 

12% enhancement with an absolute error less than 3% (WANG et al., 1999). 

The transient techniques are preferred over the steady-state ones, since they minimize the effects 

of radiation, free convection and heat losses. Among the various methods available, highlights the 

transient hot-wire technique (THW), and temperature oscillation technique. 

The THW, the most widely used method, consist of a thin metallic wire used as both a heater 

source and a temperature sensor inside of the electrically non-conducting liquid. The system 

normally involves a high thermal conductive wire, suspended symmetrically in a liquid in a vertical 

cylindrical container. The wire is heated by sending a current through it, and the temperature 

increase of the fluid, measured by the same wire, depends on the liquid thermal conductivity, 

which is easily calculated from the temperature-time profile of the wire. To the common sense 

based on the equation of Fourier, the higher the thermal conductivity, the lower the temperature 

rise will be detected. In this method, the effect of free convection along the wire is minimized 

through very short timeframe measurements, increasing the accuracy of the apparatus. Both 

theory and application of the modern THW technique were developed by Castro et al., Kestin et al., 

and Roder (CASTRO et al., 1976, KESTIN et al., 1978, RODER, 1981). The main drawback of this 

technique is the requirement for a chemical wire coating for measurements in electrically 

conductive fluids (NAGASAKA et al., 1981, PENAS et al., 2008).  

In electrically conductive fluids, the electrical current flows through these, and the heat generation 

of the wire becomes ambiguous. Therefore, traditional THWs are unsuitable for measuring 

nanofluids composed of metal nanoparticles, since it is expected that these nanofluids become 

electrically conductive.  Eastman et al. used a coated transient hot wire (C-THW)  to measure the 

thermal conductivity of a Cu-EG reporting an enhancement up to 40%, and reproducing literature 

values for the base fluid with an absolute deviation less than 1.5% (EASTMAN et al., 2001).  

This method is widely used by the research community of nanofluids, through the commercial 

analysers KD2 and KD2-Pro, which have acceptable accuracy. Furthermore, these analysers have 
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the hot wire encapsulated in a needle, allowing the measurement of electrically conductive fluids 

(BUONGIORNO et al., 2009, DECAGONDEVICES, 2013). 

The temperature oscillation method is based on the propagation of a temperature oscillation inside 

a cylindrical liquid volume. Assuming that the nanofluid is isotropic and the thermo-physical 

properties are uniform and constant with time, it is possible to accurately measure the thermal 

diffusivity and thermal conductivity. Das et al. measured the thermal conductivity and thermal 

diffusivity of Al2O3 and CuO suspension in DW with this method. The results highlight a thermal 

conductivity enhancement of 2% to 36% with a maximum uncertainty of 2.11% (DAS et al., 2003b).  

1.5.3.2 EXPERIMENTAL STUDIES 

As mentioned above, there are several types of nanoparticles used in the investigations of 

nanofluids. These can be categorized through their physical properties, metallic, metallic oxide, and 

non-metallic, or through their shape, (quasi-)spherical and non-spherical (or elongated). The latter 

categorization lies upon the EMT, which describes the thermal conductivity as a function of the 

conductivity of the pure materials who compose the mixture, and shape of the dispersed particles. 

According to these models, particles with higher conductivity and non-spherical shape, lead to a 

greater increase in the effective conductivity (BRUGGEMAN, 1935, DAVIS, 1986, HAMILTON et al., 

1962, HASHIN et al., 1962, HASSELMAN et al., 1987, JEFFREY, 1973).  

Nanofluids based on (quasi-)spherical nanoparticles 

Copper and aluminium are common metal materials known for their high thermal conductivity. 

However, the heat transfer capacity is significantly reduced with their oxidation (e.g. cupric oxide 

and alumina), as it can be depicted from Figure 1.1. Usually, these nanoparticles are considered as 

quasi-spheres. Due to being less expensive, these have been the most studied nanoparticles. In 

Table 1.2, it is presented a summary of the highest effective thermal conductivity enhancement 

reported by several authors, for cupric, cupric oxide and alumina nanoparticles (as mentioned, 

these are generally categorized as quasi-spherical). 

. 
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Table 1.2: Summary of experimental studies of thermal conductivity in metal and metal oxide spherical particles based 
nanofluids. 

Researchers Particle 
Base 
fluid 

Measurement 
method 

Stabilization and 
dispersion method 

ϕ 
keff

kbf
 

(EASTMAN et al., 1997) CuO DW C-THW vacuum evaporation 5.0% 1.60 

(WANG et al., 1999) Al₂O₃ DW steady-state ultrasonication 3.0% 1.12 

(WANG et al., 1999) Al₂O₃ EG steady-state ultrasonication 8.0% 1.40 

(WANG et al., 1999) CuO DW steady-state ultrasonication 9% 1.34 

(WANG et al., 1999) CuO EG steady-state ultrasonication 15% 1.55 

(XUAN et al., 2000) CuO DW C-THW surfactant 5.0% 1.56 

(XUAN et al., 2000) Cu EO C-THW surfactant 5.0% 1.28 

(EASTMAN et al., 1997) Cu EG C-THW one-step 1.0% 1.40 

(XIE et al., 2002) Al₂O₃ DW C-THW ultrasonication 5.0% 1.20 

(XIE et al., 2002) Al₂O₃ EG C-THW ultrasonication 5.0% 1.29 

(DAS et al., 2003b) Al₂O₃ DW T. oscillation surfactant 4.0% 1.10 

(DAS et al., 2003b) CuO DW T. oscillation surfactant 4.0% 1.16 

(LI et al., 2006) Al₂O₃ DW steady-state ultrasonication 10% 1.30 

(LI et al., 2006) CuO DW steady-state ultrasonication 10% 1.52 

(VENERUS et al., 2006) Al₂O₃ DW optical surfactant 2.5% 1.50 

(HWANG et al., 2006b) CuO DW C-THW surfactant 1.0% 1.05 

(HWANG et al., 2006b) CuO EG C-THW surfactant 1.0% 1.09 

(LIU et al., 2006) Cu DW C-THW c. functionalization 0.2% 1.24 

(ZHANG et al., 2006) Al₂O₃ DW C-THW ultrasonication 15% 1.20 

(YOO et al., 2007) Al₂O₃ DW C-THW ultrasonication 1.0% 1.04 

(LEE et al., 2008) Al₂O₃ DW C-THW ultrasonication 0.3% 1.44 

(OH et al., 2008) Al₂O₃ DW C-THW surfactant 4.0% 1.13 

(OH et al., 2008) Al₂O₃ EG C-THW surfactant 4.0% 1.10 

(YU et al., 2010) Cu EG C-THW ultrasonication 0.5% 1.46 

Many of the researchers that studied these particles reported an almost linear increase of the heat 

conductivity with the volume fraction (EASTMAN et al., 2001, LEE et al., 2008, OH et al., 2008, 

WANG et al., 1999, XIE et al., 2002, XUAN et al., 2000, YOO et al., 2007). In contrast, other 

researchers observed a non-linear thermal conductivity enhancement with the volume fraction 

rise, describing it as an anomalous behaviour (LI et al., 2006, ZHANG et al., 2006).  

Some anomalous behaviours when comparing to the EMT were also reported. Wang et al. 

measured the thermal conductivity of Al2O3 and CuO nanoparticles dispersed in distilled water 

(DW), ethylene glycol (EG) and engine oil (EO). The increase was different for each base fluid, 

suggesting a dependency on the base fluid thermo-physical properties. They suggested that the 

Brownian motion of the nanoparticles, which is higher for fewer viscous fluids, may describe the 
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observed results (WANG et al., 1999). Xuan et al. studied the thermal conductivity enhancement of 

Cu nanofluids dispersed through the application of surfactants, reporting a maximum increase of 

56% for volume fractions of 5%. In this study, the results demonstrated a dependency on the base 

fluid and size of the nanoparticles, being suggested once again the Brownian motion may be a 

relevant factor affecting the heat conductivity enhancement (XUAN et al., 2000). Other authors 

also suggested this particle random motion to explain some of the anomalous behaviour observed 

regarding heat conductivity enhancement (LI et al., 2006, PATEL et al., 2003, YU et al., 2010, 

ZHANG et al., 2006).  

Keblinski et al. stated that the thermal conductivity enhancement could also be explained by the 

fluid nano-layer at the liquid-particle interface, the thermal property of the nanoparticle and 

nanoparticle clustering (EASTMAN et al., 2004, KEBLINSKI et al., 2002). In the following sections, 

these heat conduction mechanisms will be described in detail. 

Xie et al. investigated the effects of pH value of the suspensions, the specific surface area of the 

nanoparticles and the thermal conductivity of the base fluid on the resulting nanofluid heat 

conductivity. The observed enhancement seemed to increase with the decrease of pH values, and 

with the increase of nanoparticles specific surface area. Moreover, the enhancement appeared to 

be higher for less conductive base fluids, a contrasting behaviour from the results observed by 

Wang et al. and Xuan et al. (XIE et al., 2002). The pH values of the samples are associated with the 

interface particle-base fluid bonding, suggesting that a strengthen interface provides higher 

enhancement on the thermal conductivity (GHADIMI et al., 2011b, JIN et al., 2009, LEE et al., 2006). 

Das et al. investigated the influence of the temperature on the enhancement of thermal 

conductivity of nanofluids of Al2O3 and CuO. The experimental results shown that the thermal 

conductivity rise with an increase on temperature (DAS et al., 2003b). This behaviour was also 

observed by other researchers (LI et al., 2006, YU et al., 2010, ZHANG et al., 2006). In contrast to 

these results, Venerus et al. measured the thermal conductivity of Al2O3-DW nanofluids, reporting 

no anomalous enhancement, since the observed results comply with the EMT (VENERUS et al., 

2006).  

In order to demystify the reported intriguing observations, several worldwide researchers 

participated on an international benchmark project designated as the International Nanofluid 

Property Benchmark Exercise (INPBE). Each group synthesized nanofluids of metal and metal oxide 

nanoparticles, according to a given dispersion methodology. The samples were then measured 
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through different approaches, and after data normalization, they stated that these were within the 

suggested upper and lower bounds of the EMT (BUONGIORNO et al., 2009). Nevertheless, the 

results do not disclose the mechanisms that govern the heat conduction in nanofluids, since the 

dispersion methodology was kept constant through the groups and, therefore, it is not expected a 

relevant divergence of the results. Furthermore, no predictive model was validated and the 

considered bonds of the EMT are referred to a perfect interfacial thermal resistance (0 m2K W⁄ ) 

and the existence of a thermal resistance of 10-7 m2K W⁄ . As it will be shown in the next Chapter, 

these bonds provide a large interval where the results can certainly fit. In addition, other 

researchers found that nanofluids produced with such nanoparticles show a heat conductivity 

within EMT boundaries (CHERKASOVA, 2009, EAPEN et al., 2007, EAPEN et al., 2010, KEBLINSKI et 

al., 2008).  

Nanofluids based on carbon nanotubes (non-spherical or elongated nanoparticles) 

Some authors experimentally compared the effective thermal conductivity of nanofluids based on 

spherical particles with ones based on CNTs (CHOI et al., 2001, EASTMAN et al., 2001, HWANG et 

al., 2006b, LIU et al., 2011, ZHANG et al., 2006). The results, summarized in Table 1.3, showed that 

CNTs produce higher enhancements on the conductivity when compared with the other particles. 

Table 1.3: Comparison of the thermal conductivity experimentally observed between spherical particles and CNTs. 

Researchers Particle Base fluid ϕ 
keff

kbf
 

(EASTMAN et al., 2001) Cu EG 1% 1.40 

(CHOI et al., 2001) MWCNT EO 1% 2.50 

(ZHANG et al., 2006) Al₂O₃ DW 15% 1.20 

(ZHANG et al., 2006) MWCNT DW 0.9% 1.40 

(HWANG et al., 2006b) CuO DW 1% 1.05 

(HWANG et al., 2006b) MWCNT DW 0.5% 1.07 

Such results may be explained by CNTs thermal conductivity, which has been reported as ballistic, 

and to the elongated shape of them, which according to the EMT produces higher enhancements 

(HAMILTON et al., 1962, HONE, 2002). These suggestions have been raising the interest on these 

nanoparticles for the production of nanofluids. In Table 1.4, it is presented a summary of the 

highest effective thermal conductivity reported in the literature, for CNTs based nanofluids. 
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Table 1.4: Summary of experimental studies of thermal conductivity in CNTs based nanofluids. 

Researchers 
Base 
fluid 

Measurement Method 
Stabilization and 

dispersion method 
ϕ 

keff

kbf
 

(CHOI et al., 2001) EO C-THW not specified 1.0% 2.50 

(XIE et al., 2003) DW C-THW c. functionalization 1.0% 1.08 

(XIE et al., 2003) EG C-THW c. functionalization 1.0% 1.12 

(XIE et al., 2003) EO C-THW c. functionalization 1.0% 1.20 

(ASSAEL et al., 2005) DW C-THW surfactant 0.6% 1.34 

(HWANG et al., 2006a) DW C-THW ultrasonication 1.0% 1.11 

(HWANG et al., 2006a) EG C-THW ultrasonication 1.0% 1.30 

(LIU et al., 2005) EG C-THW ultrasonication 1.0% 1.12 

(LIU et al., 2005) EO C-THW ultrasonication 2.0% 1.30 

(HWANG et al., 2006b) DW C-THW surfactant 1% 1.07 

(HWANG et al., 2006b) EO C-THW surfactant 0.5% 1.09 

(ZHANG et al., 2006) DW C-THW surfactant 0.9% 1.40 

(DING et al., 2006) DW C-THW surfactant 1.0% 1.80 

(HWANG et al., 2007) DW C-THW ultrasonication 1.0% 1.07 

(HWANG et al., 2007) EO C-THW ultrasonication 0.5% 1.08 

(CHEN et al., 2008) EG C-THW c. functionalization 1.0% 1.18 

(WEITING et al., 2009) R113 transient plane source ultrasonication 0.2% 1.35 

(WEITING et al., 2009) DW transient plane source ultrasonication 0.2% 1.13 

(XIE et al., 2009) EG C-THW c. functionalization 1.0% 1.27 

(GARG et al., 2009) DW C-THW surfactant 1.0% 1.20 

(NASIRI et al., 2011) DW C-THW c. functionalization 0.3% 1.10 

(NASIRI et al., 2011) DW C-THW surfactant 0.3% 1.05 

(HARISH et al., 2012) EG C-THW surfactant 0.3% 1.15 

In general, all authors have reported a non-linear thermal conductivity enhancement with CNTs 

volume fraction, describing it as an anomalous behaviour (CHOI et al., 2001, DING et al., 2006, 

HARISH et al., 2012, LIU et al., 2005, WEITING et al., 2009, XIE et al., 2003, ZHANG et al., 2006). 

Still, some authors have reported this trend as almost linear (CHEN et al., 2008, HWANG et al., 

2006a). 

A large number of mechanisms have been proposed to clarify the anomalous thermal conductivity 

improvement of CNTs based nanofluids. It is described by the literature that the performance of 

the nanofluid critically depends upon size, volume fraction, and aspect ratio of the nanoparticles 

(CHOI et al., 2001, NAN et al., 2003, SHENOGIN et al., 2004b). In 2001, Choi et al. produced the first 

MWCNTs suspension, reporting an unusual thermal conductivity enhancement of more than 150% 

for 1%vol., suggesting the formation of a solid-like structure of the liquid at the interface that 
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enhances the heat conduction through the mixture, as previously stated for spherical particles 

suspensions (CHOI et al., 2001). This was also suggested by Xie et al., which dispersed MWCNTs in 

DW and EG. It was as well verified that the size and shape of the nanotubes play key roles in the 

non-linear enhancement with volume fraction raising (XIE et al., 2003).  

Zhang et al. studied the effect of temperature on the thermal conductivity of MWCNTs based 

nanofluids. In this study, it was found that the conductivity of nanofluids has the same slope of the 

base fluid conductivity with temperature (ZHANG et al., 2006). However, other authors have 

observed a temperature dependence of the thermal conductivity, suggesting that this may be 

explained by the increased Brownian movement of the nanoparticles (AMROLLAHI et al., 2008, 

GARG et al., 2009, LIU et al., 2005, NASIRI et al., 2011, WEITING et al., 2009, XIE et al., 2009).  

Some authors also claim that the elongated geometry of CNTs allows the easily formation of local 

percolation structures, due to aggregation, even for lower volume fractions (BIERCUK et al., 2002, 

DENG et al., 2009, SHENOGINA et al., 2005, ZHONG et al., 2006). It should be noted that, 

percolation theory describes the degree of connectivity of chaotic systems, like suspensions of 

nanoparticles. This predicts the existence of a critical particle concentration threshold, 

characterized by the formation of a spanning cluster, even if exists some isolated nanoparticles 

(STAUFFER, 1979). Therefore, due to the higher aspect ratio of the CNT, a decreased percolation 

threshold is highly probable, originating a continuous phase even for the dispersed solid phase. 

Nevertheless, Cahill’s research group and others researchers proved experimentally the existence 

of a thermal discontinuity even at volume fractions above percolation threshold (BIERCUK et al., 

2002, HUXTABLE et al., 2003). This thermal discontinuity was attributed to a thermal resistance at 

the interface, known as Kapitza resistance, described in the following Section. 

1.5.3.3 ANOMALOUS HEAT CONDUCTION ENHANCEMENT MECHANISMS 

As previously stated, several authors reported unexplained or anomalous effective thermal 

conductivity enhancements on nanofluids. As result, different theories have been proposed to 

describe the observed experimental results. From these, it may be highlighted the Brownian 

motion, the nano-layer structure and the nanoparticles clustering or aggregation.  

 

Table 1.5 presents a summary of the main researcher works proposing these alternative 

mechanisms to explain the anomalous effective thermal conductivity observed. 
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Table 1.5: Resume of the proposed mechanism and respective researches. 

Proposed Mechanism Researchers 

Brownian motion (DAS et al., 2003b, DING et al., 2007, JANG et al., 

2004, KEBLINSKI et al., 2008, KOO et al., 2004, 

KUMAR et al., 2004, LI et al., 2006, LIU et al., 

2005, PATEL et al., 2003, PATEL et al., 2005, 

PRASHER et al., 2005, WANG et al., 1999, XIE et 

al., 2002, YU et al., 2003, YU et al., 2010) 

Nano-layer structure (CHEN et al., 2008, CHOI et al., 2001, DING et al., 

2006, DING et al., 2007, EASTMAN et al., 2004, 

EVANS et al., 2008, HONG et al., 2005, KEBLINSKI 

et al., 2002, PATEL et al., 2003, XIE et al., 2005, 

XIE et al., 2003, XIE et al., 2002, XUE et al., 2003, 

YU et al., 2003) 

Nanoparticle aggregation/percolation (CHOI et al., 2001, EVANS et al., 2008, LI et al., 

2007, PRASHER et al., 2006, WANG et al., 1999, 

WANG et al., 2003b, XIE et al., 2002, XUAN et al., 

2003, ZHU et al., 2004) 

Brownian motion 

As seen, one of the intriguing behaviours reported by several researchers is the strong 

temperature dependence of the effective thermal conductivity of nanofluids, which has been 

attributed to the Brownian motion of the nanoparticles (AMROLLAHI et al., 2008, DAS et al., 2003b, 

GARG et al., 2009, LI et al., 2006, LIU et al., 2005, NASIRI et al., 2011, WANG et al., 1999, WEITING 

et al., 2009, XIE et al., 2009). The contribution of the Brownian motion to increase heat conduction 

in nanofluids can be classified into two categories: (1) collisions between Brownian particles, and 

(2) Nanoscale convection induced by the Brownian particles. 

Regarding collisions, the developed theory states that during the Brownian diffusion of the 

particles, it is produced interparticle collisions. When two particles collide, the solid-solid heat 

transfer mode could increase the effective thermal conductivity of the nanofluids. This mechanism 

is particularly interesting because it helps explain the experimental observations that suggest an 

increase in thermal conductivity with temperature. It is expected that with a rise on temperature, 

i.e. with a higher Brownian diffusion of the particles, the number or collisions increase, resulting in 

a higher heat conduction enhancement. 
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Keblinski et al. analytically estimated the characteristic time scale of the Brownian diffusion and 

compared with that of thermal diffusion of the fluid. The results suggested that the thermal 

diffusion is much faster than the Brownian diffusion, even for extremely small particles. Thus, they 

proposed that the Brownian motion may be neglected (EASTMAN et al., 2004, KEBLINSKI et al., 

2002). 

Later, Jang et al. and Prasher et al. suggested that during Brownian diffusion of the particles, 

nanoscale convention may occur, enhancing the thermal conductivity of the nanofluids. This was a 

mechanism neglected in the study of Keblinski et al.. Through the comparison of the time scale of 

the Brownian diffusion with that of convection during Brownian motion, they found that the effect 

of convection may be almost instantaneously when compared with the diffusion of the 

nanoparticles (JANG et al., 2004, PRASHER et al., 2006). Jang et al. and Prasher et al. also 

developed an effective thermal conductivity model, considering this heat conduction mechanism 

(see Section 1.5.3.4). 

Nevertheless, some researchers observed that the dependence of thermal conductivity 

enhancement on temperature is negligible, since they simple follow the temperature behaviour of 

the base fluid. This suggest that the Brownian motion plays a negligible role in the heat conduction 

enhancement in nanofluids (EVANS et al., 2008, KEBLINSKI et al., 2008, KOUSHKI et al., 2013, 

ZHANG et al., 2006). 

Nano-layer structure 

The molecular-level layering theory states that the molecules of a liquid near a solid surface 

become more organized than the bulk liquid, forming a solid-like layer structure. This solid-like 

layer can extent up to several molecular distances, for sufficient strong interaction between the 

atoms of the liquid and the solid surface. These structural changes of the liquid have been shown 

to have significant effects on various properties, such as thermal transport and viscosity (SNOOK et 

al., 1978). 

It is known that phonons are responsible for the highly efficient heat transfer mechanism in solids. 

They have the ability to travel over long distances before being scattered, known as phonon mean 

free path. Therefore, the formation of the solid-like layer may produce an enhancement on the 

heat conduction through the liquid near the solid particle.  
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In 2003, Yu et al. proposed that this nano-layer structure act as a thermal bridge between the 

nanoparticles and the bulk liquid (YU et al., 2003). Based on this mechanism, they developed two 

models, for spherical and non-spherical particles. Since then, many other models were developed 

taking into account the effect of this mechanism (see Section 1.5.3.4). 

Nevertheless, through non-equilibrium molecular dynamics, Xue et al. verified that the nano-layer 

solid structure does not produce impact on the effective thermal conductivity enhancement (XUE 

et al., 2004). In addition, Evans et al. studied the thermal conductivity of ordered molecular water 

through molecular dynamics, suggesting a minor effect for typical molecule ordering that probably 

might be observed in nanofluids. The study also suggests that a significant enhancement is only 

possible in crystalline order, such as ice. They stated that the latter is unlikely to be induced by the 

hydrophilic surfaces of nanofluids, since this are only formed, at room temperature, with very high 

electrical fields (EVANS et al., 2007). 

Nanoparticle aggregation/percolation 

The nanoparticles aggregation is another proposed mechanism to explain the anomalous thermal 

conductivity enhancement of nanofluids. This theory assumes that the nanoparticles clusters form 

local percolation-like paths with lower thermal resistance, increasing the overall thermal 

conductivity and viscosity of nanofluids (KEBLINSKI et al., 2002, PRASHER et al., 2006, WANG et al., 

2003a). However, according to Xuan et al., the aggregation of the nanoparticles may also produce a 

negative impact on the enhancement of the thermal conductivity, since the Brownian motion will 

be slower (XUAN et al., 2003). 

Regarding non-spherical particles, such as CNTs, several authors suggested that the elongated 

geometry of CNTs allows the easily formation of a continuous solid network structures, or 

percolation structure, even for lower volume fraction (BIERCUK et al., 2002, DENG et al., 2009, 

KYRYLYUK et al., 2008, SHENOGINA et al., 2005, ZHONG et al., 2006). Through the measurement of 

the effective electrical conductivity, Biercuk et al. found experimentally that the CNTs have an 

extremely low percolation threshold. However, the results shown that, for the same volume 

fraction, the thermal conductivity presents discontinuity in the dispersed phase (BIERCUK et al., 

2002). These results can be explained by a thermal resistance at the solid-medium boundary, also 

known as Kapitza resistance. 
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In 1941, Kapitza found an interfacial thermal resistance when heat flows from a solid to a fluid 

medium, which became known as Kapitza resistance. For instance, consider a particle suspended in 

a liquid medium subjected to a given heat flux. In the case of a perfect interface, the temperature 

of the particle is equal to that of the liquid, at the particle surface. However, according to Kapitza, 

there is an interfacial thermal resistance that leads to a finite temperature discontinuity at the 

surface of the particle, limiting the effective thermal conductivity enhancement. This heat barrier is 

associated with the differences among the phonon spectra of the two phases. This resistance exists 

even at atomically perfect interfaces and differs from contact resistance (KAPITZA, 1941).  

Huxtable et al. experimentally verified the magnitude of these Kapitza resistances in CNTs based 

composites. They measured the Kapitza resistance of sodium dodecyl sulphate encapsulated 

SWCNT suspensions in heavy water, through a transient absorption method. The results alluded 

that the thermal resistance of the interface solid-solid is a factor of order ≈2 higher than that of the 

medium-solid interface. They also argued that the Kapitza resistance does not depend critically on 

the surfactant, as long as this is not covalently bonded to the CNTs (HUXTABLE et al., 2003).  

Later, through molecular dynamics simulation, various authors have shown that the Kapitza 

resistance depends on the strength of the bonds between the medium and the CNTs (SHENOGIN et 

al., 2004a, SHENOGINA et al., 2005, XUE et al., 2003). Furthermore, Shenogin et al. suggested that 

functionalization also drop the thermal conductivity of the CNTs (SHENOGIN et al., 2004a). Other 

researchers also suggested that an increase in the degree of functionalization of the CNTs reduce 

the thermal resistance of the interface (CLANCY et al., 2006, HAIBO et al., 2007, ZHONG et al., 

2006). More recently, Nasiri et al. experimentally confirmed these results by comparing the 

effective thermal conductivity of CNTs suspensions dispersed by surfactants and covalent 

functionalization techniques. The samples dispersed by covalent functionalization techniques 

presented the higher enhancement of thermal conductivity (NASIRI et al., 2011). 

1.5.3.4 THEORETICAL STUDIES 

Throughout the years, several models were developed to predict the results observed 

experimentally. In this document, these are categorized by classic models, models for nanofluids of 

spherical nanoparticles, and models for nanofluids of non-spherical particles. This categorization 

lies in the ability of the models to predict the effect of the nanoparticles size and shape, since all of 

them predict the influence of the both thermal conductivities of the pure materials that form the 

mixture. 
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Classical models 

The classical models are generally characterized as static models, with the assumption of 

motionless particles and heat conduction (diffusion) in both continuous matrix phase and dispersed 

phase. The input parameters for these models are the volume fraction, shape and size of the 

particles and, only for concentrated suspensions, the particle-particle interaction. 

The simplest model based on the EMT was developed by Maxwell. The model considers a 

heterogeneous system consisting of a diluted suspension of non-thermally interacting spherical 

particles (MAXWELL, 1873). The effective thermal conductivity can be expressed as: 

keff=
kp+2kbf+2ϕ(kp-kbf)

kp+2kbf-ϕ(kp-kbf)
∙kbf 1.3 

The main limitation of the Maxwell model is that it only predicts the conductivity of suspensions 

with low volume fractions, an essential premise to ensure that the particles do not thermally 

interact. To address this constraint, Bruggeman proposed an iterative model that predicts the 

thermal conductivity for thermally interacting particles. For low volume fractions, the predictions 

from the Bruggeman model and the Maxwell model are identical (BRUGGEMAN, 1935). However, 

they show discrepancies for higher volume fractions.  The model of Bruggeman is given by: 

(
kp-keff

kp-kbf
) ∙(

kbf

keff
)

1
3

=(1- ϕ) 1.4 

Nevertheless, these two models do not account for the effects of particle shape. The first model for 

effective thermal conductivity prediction for non-spherical particles was derived by Fricke, using a 

method similar to Maxwell’s approach (FRICKE, 1924, 1925). The model predicts the effective 

thermal conductivity of suspensions of thermally non-interacting and randomly oriented spheroidal 

particles. The model can be expressed as: 

keff=
kp+(N-1)kbf-ϕ(N-1)(kbf-kp)

kp+(N-1)kbf -ϕ(kp-kbf)
∙kbf 1.5 

where N is a dimensionless parameter that depends on the shape particles and upon the ratio of 

the conductivities of the two phases. 

Later, Hamilton and Crosser proposed a simple equation for N, that could be applied to other 

shapes (HAMILTON et al., 1962). The Hamilton and Crosser shape factor can be written as: 
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N=
3

χ
 

1.6 

where χ is the sphericity of the particle and is defined as the ratio of the surface area of an 

equivalent sphere, to the real surface area of the particle. When χ=1, the Fricke’s model is reduced 

to the Maxwell’s model (HAMILTON et al., 1962). 

Based on the assumption that the effective thermal conductivity depends on other parameters 

rather than volume fraction and both thermal conductivity of the materials that compose the 

mixture, Hashin and Shtrikman derived theoretical bounds for the effective thermal conductivity of 

mixtures (HASHIN et al., 1962): 

kbf∙(
kp+2kbf+2ϕ(kp-kbf)

kp+2kbf-ϕ(kp-kbf)
) ≤keff≤kbf∙ (1+

3(1-ϕ)(kp-kbf)

3kp+ϕ(kp-kbf)
) 1.7 

According to the authors, the heterogeneous systems that meet the EMT exhibit thermal 

conductivity ranging within this interval. 

As mentioned in the Section 1.5.3.3, in 1941, Kapitza founded the interfacial thermal resistance in 

suspensions of solid particles (KAPITZA, 1941). Taking this thermal boundary resistance into 

account, Hasselman and Johnson derived an expression for the effective thermal conductivity of 

suspensions (HASSELMAN et al., 1987). They found that the effective thermal conductivity depends 

on the volume fraction, and size and shape of the dispersed particles. The resulting expression for 

spherical particles can be arranged as: 

keff=
kp∙(1+2κK)+2kbf+2ϕ(kp(1-κK)-kbf)

kp∙(1+2κK)+2kbf -ϕ(kp(1-κK)-kbf)
∙kbf 1.8 

and for non-spherical particles can be expressed as: 

keff=
kp∙(1+2κK)+(N-1)∙kbf+(N-1)∙ϕ∙(kp∙(1-κK)+kbf)

kp∙(1+2κK)+(N-1)∙kbf-ϕ(kp∙(1-κK)-kbf)
∙kbf 1.9 

where κK is a dimensionless parameter defined as: 

κK=
aK

ap
 1.10 
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where aK is the Kapitza radius, or the equivalent thickness of the base fluid, with the same thermal 

conductivity, over which is caused the equivalent temperature drop at the interface. This is defined 

as: 

aK=RK∙kbf 1.11 

As observed in the previous Section, other heat transfer mechanism were suggested for nanofluids, 

namely the Brownian motion, liquid layering at the liquid-particle interface, and the effects of 

particle clustering. Such considerations were subsequently employed in several theoretical models, 

formulated for nanofluids. 

Models for nanofluids of spherical nanoparticles 

Wang et al. proposed a fractal model in order to predict the thermal conductivity of nanofluids. 

This model, based on the EMT and the fractal theory, seeks to introduce into the model of Maxwell 

the effect of the nanoparticles clustering or agglomeration. The fractal theory describes the 

disorder and stochastic process of clustering and polarization of nanoparticles within the 

mesoscale limit. The thermal conductivity can be calculated as (WANG et al., 2003a): 

keff=

(1-ϕ)+3ϕ ∫
kcl(acl)n(acl)
kcl(r)+∙2kbf

∙dacl
∞

0

(1-ϕ)+3ϕ ∫
kbf(acl)n∙(acl)

kcl(acl)+2∙kbf
∙dacl

∞

0

 1.12 

where  n(acl) is the radius distribution function. 

Xuan et al. introduced to the model of Maxwell the Brownian motion of the suspended 

nanoparticles and clusters. Through this, the authors state that the effective thermal conductivity 

dependency on the temperature could be predicted. The model is given by (XUAN et al., 2003): 

keff=
kp+2kbf+2(kp-kbf)∙ϕ

kp+2kbf-(kp-kbf)∙ϕ
∙kbf+

ρp∙ϕ∙cv,p

2
∙√

kB∙T

3π∙acl∙μbf

 1.13 

The author claims that the model predictions provide a good agreement with the experimental 

results. However, the model may be wrong, since the second term of the equation has incorrect 

units. 

Yu et al. proposed a modification to the model of Maxwell, assuming that the base fluid molecules 

nearly to the solid surface of the nanoparticles form solid-like layered structures. Hence, the nano-
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layer works as a thermal bridge or thermal barrier between a solid nanoparticle and a bulk liquid. 

The expression resulted was (YU et al., 2003): 

keff=
kpe+2kbf+2(kp-kbf)∙(1+ϱ)3∙ϕ

kpe+2kbf-(kp-kbf)∙(1+ϱ)3∙ϕ
∙kbf 1.14 

where kpe can be expressed as: 

kpe=
[2(1-γ)+(1+ϱ)3∙(1+2γ)]∙γ

-(1-γ)+(1+ϱ)3∙(1+2γ)
∙kp 1.15 

where γ= klayer kp⁄ , and ϱ= δ ap⁄ . 

The thickness of the nano-layer at the nanoparticle/liquid interface can be calculated according to 

Hashimoto et al. (HASHIMOTO et al., 1974): 

 δ=√2π∙σTB 1.16 

where σTB≈0.2~0.8 nm, is the thermal boundary layer diffusiveness. 

Jang et al. modelled the conductivity considering four modes of energy transfer, the thermal 

diffusion in the base fluid and nanoparticles, the collision between nanoparticles due to Brownian 

motion, and the nanoscale convection caused by the same random motion of the nanoparticles 

(JANG et al., 2004). They concluded that the contribution of the collisions between nanoparticles is 

negligible when compared to the contribution of the remaining modes. The resulting expression 

was: 

keff=kbf∙(1-ϕ)+kp∙ϕ+3cp

dbf

dp
∙kbf∙Rep

2∙Pr∙ϕ 
1.17 

where dbf is the diameter of the base fluid molecules. 

Another model based on the nanoscale convection of the nanoparticles was proposed by Kumar et 

al. (KUMAR et al., 2004). The model is given by: 

keff=(1+C∙(
2kB∙T

π∙μ∙dp
2) ∙

ϕ∙abf

kbf∙(1-ϕ)∙ap
) ∙kbf 1.18 

where C is a constant of adjustment. 
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Furthermore, also Koo et al. postulated that the enhancement of the thermal conductivity is mainly 

due to Brownian motion. They introduced to the EMT of Maxwell this mechanism, obtaining a 

model expressed as (KOO et al., 2004): 

keff=
kp+2kbf+2(kp-kbf)∙ϕ

kp+2kbf-(kp-kbf)∙ϕ
∙kbf+ [(5×104)∙ϖ∙ϕ∙ρp∙cv,p∙√

kB∙T

ρp∙dp
∙f(T,ϕ, …)] 1.19 

where ϖ is the fraction of the base fluid volume that moves with the particle, and f(T,ϕ, …) is a 

fraction function that can only be determined from experimental data, i.e. through experimental 

data fitting. 

Xie et al. developed another analytical expression considering the nano-layer structure at the 

interface with linear thermal conductivity distribution. This model takes into account the effects of 

nano-layer thickness, nanoparticles size, volume fraction, and thermal conductivities of both 

nanoparticles and base fluid (XIE et al., 2005): 

keff=(1+3θ∙(1-ϕ)+
3θ2∙ϕ2

1-θ∙ϕ
) ∙kbf 1.20 

where θ is a relation function between the thermal conductivity of both nanoparticles and 

nanofluid (XIE et al., 2005). They found that the obtained theoretical results were in agreement 

with only some of the experimental data, suggesting that nano-layer formation may not be the only 

mechanism responsible for the thermal conductivity enhancement. 

Later, Yajie et al. upgraded the model of Xie et al. (XIE et al., 2005), introducing the effect of the 

Brownian motion on the thermal conductivity. The model is given by (YAJIE et al., 2005): 

keff=(1+f(Pe)+3θ∙(1-ϕ)+
3θ2∙ϕ2

1-θ∙ϕ
) ∙kbf 1.21 

where f(Pe) is an empirical function that reflects the nanoscale convention of the particles during 

their Brownian diffusion. 

Prasher et al. suggested that the effective thermal conductivity enhancement originates from the 

Brownian motion of the nanoparticles. Though an order-of-magnitude analysis, they deduced that 

the nanoscale convection is more active than the Brownian collision. From these study, they 

proposed the following model (PRASHER et al., 2005): 
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keff=
kp+2kbf+2ϕ(kp-kbf)

kp+2kbf-ϕ(kp-kbf)
∙kbf+A ∙Rem∙ Pr0.333 ∙ϕ 1.22 

where A and m are empirical constants determined through experimental data. For larger particles, 

Re becomes 0 and the model is reduced to the EMT of Maxwell. 

One year later, Prasher et al. considered the nanoparticle aggregation as a governing factor for the 

thermal conductivity enhancement. The nanoparticles aggregates are considered as a new particle 

composed by primary particles with an equivalent radius acl that enhances the heat conduction 

through the percolation structure. They reformulated their model as follows (PRASHER et al., 

2006): 

keff=
kcl+2∙kbf+2ϕcl(kcl-kbf)

kcl+2∙kbf-ϕcl(kcl-kbf)
∙kbf+A∙ Rem ∙Pr0.333∙ ϕ 1.23 

Another model based on the nano-layer structure at the interface solid particle-liquid was 

developed by Murshed et al. (MURSHED et al., 2008). This model can be expressed as: 

keff=
(kp-klayer)∙ϕ∙klayer∙[ψ1

3-ψ3+1]+(kp+klayer)∙ψ1
3∙[ϕ∙ψ∙3(klayer-kbf)+kbf]

ψ1
3∙(kp+klayer)-(kp-klayer)∙ϕ∙[ψ1

3+ψ3-1]
 1.24 

where ψ=1+γ  and ψ1=1+ γ 2⁄ . 

Later, Murshed et al. introduced to its model the effect of the Brownian motion of the particle, 

particle surface chemistry, and interaction potential (MURSHED et al., 2009). The updated model 

can be expressed as: 

keff= [
ϕ∙ω∙(kp-ω∙kbf)∙[2ψ1

3-ψ3+1]+(kp+2ω∙kbf)∙ψ1
3[ϕ∙ψ∙3(ω-1)+1]

ψ1
3∙(kp+2ω∙kbf)-(kp-ω∙kbf)∙ϕ∙[ψ1

3+ψ3-1]
] ∙kbf 

+[ϕ2∙ψ6∙kbf∙(3∙Λ2+
3Λ2

4
+

9Λ3

16

kcl+2kbf

2kcl+3kbf
+

3Λ4

26 +…)] 

+ [
1

2
∙ρcl∙cpcl

∙Ls(√
3kB∙T(1-1.5ψ3∙ϕ)

2π∙ρcp∙ψ3∙ap
3

+
GT

6π∙ψ∙ap∙Ls
)] 

1.25 

where GT is the total interparticle interaction, ω is an empirical parameter that depends on the 

orderliness of the fluid molecules in the interface and is given by: 
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ω=
klayer

kbf
 1.26 

and,  

Λ=
kcl-kbf

kcl+2kbf
 1.27 

kcl=
2(kp-klayer)+ψ3∙(kp+2klayer)

(klayer-kp)+ψ3∙(kp-2klayer)
∙klayer 1.28 

Wei et al. developed another non-based EMT model, considering the effect of the nano-layer 

structure at the interface and the contribution of the Brownian motion of the particles (WEI et al., 

2012). The model can be expressed as: 

keff=kbf+
3ϕ∙q∙P/P0

1-ϕ∙q∙P/P0
 1.29 

where q is a dipole factor, P and P0 are the total dipole moment of the spherical particles (WEI et 

al., 2012). 

More recently, Xiao et al. proposed a predictive model based on dimensionless parameters. 

According to the authors, the models predict the effect of the Brownian motion of the particles 

and their respective interaction, and the nano-layer structure at the interfaces (XIAO et al., 2013).  

The model is given by: 

keff=kc+ks 1.30 

where kc is the thermal conductivity by heat convection caused by the Brownian motion of the 

particles, and ks is the thermal conductivity by stationary nanoparticles in the base fluid, which is 

identical to the Maxwell model (XIAO et al., 2013). 

Models for nanofluids of non-spherical or elongated particles 

As seen, Fricke, and Hamilton and Crosser proved the influence of the particle geometry on the 

thermal conductivity enhancement of suspensions. Therefore, for suspensions of non-spherical 

nanoparticles, it is required alternative formulations to the previously presented. The most studied 

non-spherical nanoparticles are the CNTs. These have a tubular shape, usually depicted as 

cylindrical with high aspect ratio. 
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In 2003, Nan et al. proposed a predictive model, based on the multiple scattering theory and the 

EMT, for CNTs based composites (NAN et al., 2003). In this, the enhancement of the nanofluids 

thermal conductivity is considered to be only related to the ballistic thermal conductivity of the 

CNTs, and the model over predicted the experimental results available in the literature. One year 

later, Nan et al. updated the model, introducing the limitation on the thermal conductivity 

enhancement due to the interfacial resistance. The model, described as a more generalist EMT, can 

be expressed as (NAN et al., 2004): 

keff=
3+ϕ(2βxx∙(1-Lxx)+βzz∙(1-Lzz))

3-ϕ(2βxx∙Lxx+βzz∙Lzz)
∙kbf 

1.31 

where 

βxx= 
kxx

eq-kbf

kbf+Lxx∙(kxx
eq-kbf)

 1.32 

βzz=
kzz

eq-kbf

kbf+Lzz∙(kzz
eq-kbf)

 1.33 

The parameters kxx
eq and kzz

eq are, respectively, the equivalent thermal conductivities along 

transverse (xx') and longitudinal (zz') axes of a carbon nanotube coated with a thin interfacial 

thermal barrier layer (Kapitza resistance) and can be expressed as: 

kxx
eq=

kp

1+
2ak
dp

∙
kp

kbf

 1.34 

kzz
eq=

kp

1+
2ak
lp

∙
kp

kbf

 1.35 

The parameters Lxx and Lzz are the depolarization factors of the particles that reacts as shape factor 

(LANDAU et al., 1984). According to Huxtable et al., Rk is 8×10-8 K m2 W⁄ , for CNTs dispersed in 

heavy water (HUXTABLE et al., 2003). The axis (zz') represents the longitudinal axis of the CNTs, 

and axes (xx') and (yy') are the other two axes of the CNTs (NAN et al., 2004). 

Xue developed a model that accounts for the effect of the stochastic space distribution of very 

elongated particles and the nano-layer structure at the particle-medium interface (XUE, 2003). Xue 

introduced to the effective medium theory of Largarkov et al. a complex nanoparticle composed by 
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a particle inside an elliptical shell with a different thermal conductivity and with a specific thickness 

(LAGARKOV et al., 1996). The model can be expressed as: 

9 (1-
ϕ

λ
) ∙

keff-kbf

2keff-kbf
+

ϕ

λ
∙ [ 

keff-kc,z

keff+Lzz∙(kc,z-keff)
+4∙

keff-kc,x

2keff+(1-Lzz)∙(kc,x-keff)
] =0 1.36 

Where λ is the volume fraction of the complex nanoparticles, and kc,x and kc,z are the effective 

dielectric constant along the axis. 

Yu et al. extended Equation 1.14, a model for spherical particles that accounts with the nanoscale 

layer that improves the thermal conductivity, to non-spherical particles. In this model, the nano-

layer is modulated as a confocal ellipsoid with a solid particle (YU et al., 2004).  This model can be 

written as: 

keff=(1+
3φ-1.55∙ϕe∙YC

1-ϕe∙YC
) ∙kbf 1.37 

where the parameter YC is defined as 

 YC=
1

3
∙ ∑

(kpj-kbf)

kpj+(m-1)∙kbf
j=a,b,c

 1.38 

And ϕe is the equivalent volume concentration of the complex ellipsoids, kpj is the equivalent 

thermal conductivities along the axes of the complex ellipsoid, and m is a generalized empirical 

shape factor (YU et al., 2004). 

In 2005, Xue presented another model for CNT based composites. Based on Maxwell model, Xue 

suggested that the model is capable to account the stochastic space distribution of the very large 

axial ratio of the CNT based composites (XUE, 2005). This model can be expressed as: 

keff=

1-ϕ+2ϕ
kp

kp-kbf
∙ln

kp+kbf

2kbf

1-ϕ+2ϕ
kbf

kp-kbf
∙ln

kp+kbf

2kbf

∙kbf 
1.39 

The difference between this model and the Hamilton and Crosser model is the consideration of the 

stochastic space distribution of the very elongated nanoparticles, as mentioned earlier. However, 

the model only predicts the increase of effective thermal conductivity with volume fraction 
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increment.  Moreover, the relative dependence of effective thermal conductivity on the particles 

aspect ratio seems to be somehow neglected in this model. 

In 2006, Gao et al. proposed an improvement, to the model of Nan et al. (NAN et al., 2003), 

through the principle of Bruggeman for higher volumes (GAO et al., 2006). In this model, the effect 

of the Kapitza resistance is considered through the adjustment of the anisotropic thermal 

conductivity of the particles. Later, Ordóñez-Miranda et al. proposed a similar model, with the 

same premises, for coated particles  (ORDÓÑEZ-MIRANDA et al., 2010).  

In 2007, Sabbaghzadeh et al. proposed a model for non-spherical particles that include the effect 

of the Brownian motion of the particles, the nano-layer structure at the interface, and 

agglomeration formation. The model is given by (SABBAGHZADEH et al., 2007): 

keff=kbf∙(1-ϕ∙(1+tnl))+ϕ∙(kp+klayer∙tnl)+
ϕ∙(1+tnl)∙dbf

Pr∙dcl
∙(0.35+0.56∙Re0.52)∙Pr

0.3∙kbf 1.40 

where tnl is a parameter that represent the thickness of the nano-layer structure, and dcl is the 

equivalent diameter of the cluster. 

In line with the Equation 1.24, Murshed et al. proposed a model for the effective thermal 

conductivity of nanofluids of cylindrical nanoparticles through the considering the effect of the 

nanoscale layer at the solid particle/liquid interface (MURSHED et al., 2008). The model can be 

expressed as: 

keff=
(kp-klayer)∙ϕklayer∙[ψ1

2-ψ2+1]+(kp+klayer)∙ψ1
2∙[ϕ∙ψ2(klayer-kbf)+kbf]

ψ1
2∙(kp+klayer)-(kp-klayer)∙ϕ∙[ψ1

2+ψ2-1]
 1.41 

Sastry et al. proposed a predictive model, non-based on the EMT, for the effective thermal 

conductivity of CNTs based nanofluids. The model considers that the Brownian motion causes a 

random orientation on the well dispersed CNTs and is formed a chain where the heat could also be 

transferred by the solid phase and, therefore, by the corresponding thermal resistance network, as 

can be depicted from Figure 1.3 (SASTRY et al., 2008).  
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Figure 1.3: Adapted thermal resistance network idealized by Sastry et al. (SASTRY et al., 2008). 

A CNTs suspension inside of a control volume  Lcell
3   with cross section Acell is considered, and the 

effective thermal conductivity is expressed as: 

keff=
Lcell

Rnet∙Acell
 

1.42 

where Rnet is the resistance network of the suspension and is expressed as: 

Rnet=∑[

RCNT i,P+2RC

M ∙RF i,P

RCNT i,P+2RC

M
+RF i,P

]

n

i=1

 
1.43 

M represents the total number of parallel chains (Figure 1.3) and can be calculated as: 

M=
4ϕ∙Lcell

3

π∙dp
2∙lp ∙B

 1.44 

and B represents the number of carbon nanotubes connections in a chain, which is 1 in the Sastry 

et al. model. 

RCNT is the individual resistance of the CNT, RC is the resistance between the CNTs and the 

interfacial liquid between two CNTs (Kapitza resistance), and RFP is the resistance in the parallel 

liquid path: 

RCNT i,P=
li,P

kp∙Acs
 1.45 

RC=
1

G∙dp
2 1.46 

RFi,P=
li,P∙sinφi∙cosθi

kbf∙Acell
 1.47 
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where Acs is the CNTs cross section, the φ and θ are the azimuth and colatitude angles, 

respectively, of the CNT i.  

In Sastry et al. model, the percolation was implemented by considering one collision per CNT, 

which may not be true, since the probability of interparticle collisions, increases with the rise in 

volume fraction and aspect ratio. Koo et al. improved the work of Sastry et al. by considering an 

empirical factor that describes the number of collision per CNT, based on the excluded volume 

theory (Appendix A): 

 B =2ϕ∙(
lp
dp
) 

1.48 

With this consideration, the authors claim that the non-linear variation of the effective thermal 

conductivity with CNTs volume fraction could be predicted. This empirical factor is applied for 

calculating the number of random variables that have to be derived for each CNT in the chain, in 

order to calculate the maximum length between two contact points on a CNT. Then, the overall 

solid path length will be reduced with volume fraction and/or aspect ratio rising (KOO et al., 2008). 

Deng et al. presented a simple analytical model for CNTs based composites that include the 

influence of volume fraction, anisotropic thermal conductivities, aspect ratio, non-straightness,  

thermally interparticle interaction, and Kapitza resistance of the CNTs (DENG et al., 2007). They 

considered that the high thermal anisotropy phenomenon of CNTs induces nearly perfect one-

dimensional thermal cables with negligibly small thermal flux losses during long distance thermal 

conduction (HONE, 2002). This could be described as: 

kxx
eq

kzz
eq≪1 1.49 

The Deng et al. model could be expressed as: 

keff=kbf∙

(

 
 

1+
η∙∅

3kbf

η∙kzz
eq +

3H∙η∙lp
dp

)

 
 

 

1.50 

where H is a parameter that the influence of the aspect ratio of the CNTs: 
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 H=
1

(
lp
dp
)

2

-1

∙

[
 
 
 
 
 lp

dp

√(
lp
dp
)

2

-1

∙ ln(
lp
dp

+√(
lp
dp
)

2

-1) -1

]
 
 
 
 
 

 

1.51 

and η represents the influence of the non-straightness of the CNTs: 

η=
lp

ce

lp
 1.52 

where lp
ce is the distance between the two ends of the non-straight CNTs. 

The Deng et al. model suggests that using CNTs with higher aspect ratio and straightness ratios was 

an efficient means to get much better thermal conductivity enhancements. Furthermore, they 

state that the non-linear behaviour on the enhancements versus CNTs volume fraction can be 

attributed to the interaction effect among CNTs (DENG et al., 2009).  

In 2009, Gensheng et al. used the model of Jang et al. (Equation 1.17), developed for spherical 

nanoparticles, to predict the thermal conductivity of CNTs based nanofluids. The Jang et al. model, 

which considers the contribution of the nano-layer structure at the interface, was updated to 

account for the nanoparticle shape, through the introduction of an equivalent thermal conductivity 

for the non-spherical particle, given by (GENSHENG et al., 2009): 

kp
eq=kp∙

0.75∙dp

lp
 

0.75∙dp

lp
+1

 
1.53 

Ordónez-Miranda et al. proposed a model that introduces the effect of the energy carriers to the 

model of the Nan et al., (ORDONEZ-MIRANDA et al., 2012b, 2011). The authors attempted to 

develop a generic model, considering particles with complex thermal conductivities, according to 

the kinetic theory. However, the behaviour of these energy carriers across the interface still is a 

theoretical challenge, being necessary various empirical parameters to be adjusted. Despite that, 

the authors, proposed an generalized EMT model trough the introduction of the principle of 

Bruggeman (ORDONEZ-MIRANDA et al., 2012a). The latter can be expressed as: 
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(

keff

kbf
com-α⁄

1-α
) ∙(

kbf
com

keff
)

1
2 

=(1- ϕ) 
1.54 

where kbf
com is the complex thermal conductivity of the base fluid, which take in consideration the 

effect of the energy carriers, and α is a function of kbf
com and the complex thermal conductivity of 

the particles, energy carriers and particle radius (ORDONEZ-MIRANDA et al., 2012a). 

Thermal conductivity models summary 

During the conducted survey, it was found many theories developed to explain the effective 

thermal conductivity enhancement of nanofluids. In addition to those provided by the classical 

theories, the authors highlighted the Brownian motion of the particles, diffusion and nanoscale 

convention, the nano-layer structure at the solid-liquid interface and the nanoparticles 

agglomeration. In the Table 1.6 it is summarized the derived predictive models and their respective 

mechanisms that underlie. 

Table 1.6: Summary of the effective thermal conductivity models and respective proposed mechanisms. 

Authors 
Thermal 

interaction 
Nanoparticle 

shape 
Kapitza 

Resistance 
Brownian 

motion 
Nano-layer 
structure 

Agglomer
ation 

(MAXWELL, 
1873) 

      

(FRICKE, 
1925) 

 X     

(BRUGGEMA
N, 1935) 

X      

(HAMILTON 
et al., 1962) 

 X     

(HASHIN et 
al., 1962) 

      

(HASSELMAN 
et al., 1987) 

 X X    

(WANG et al., 
2003a) 

     X 

(YU et al., 

2003) 

    X  

(XUAN et al., 
2003) 

    X  

(XUE, 2003) X X   X  

(JANG et al., 
2004) 

   X   

(KUMAR et 
al., 2004) 

  X    

(KOO et al., 
2004) 

   X   

(NAN et al., 
2004) 

 X X    
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Authors 
Thermal 

interaction 
Nanoparticle 

shape 
Kapitza 

Resistance 
Brownian 

motion 
Nano-layer 
structure 

Agglomer
ation 

(YU et al., 
2004) 

 X   X  

(XIE et al., 
2005) 

    X  

(XUE, 2005) X      

(YAJIE et al., 
2005) 

   X X  

(PRASHER et 
al., 2005) 

   X   

(PRASHER et 
al., 2006) 

   X  X 

(GAO et al., 
2006) 

X X     

(SABBAGHZA
DEH et al., 
2007) 

 X  X X X 

(MURSHED 
et al., 2008) 

 X   X  

(SASTRY et 
al., 2008) 

 X X   X 

(KOO et al., 
2008) 

 X X   X 

(MURSHED 
et al., 2009) 

  X X X X 

(DENG et al., 
2009) 

  X   X 

(GENSHENG 
et al., 2009) 

 X   X  

(ORDÓÑEZ-
MIRANDA et 
al., 2010) 

X X     

(ORDONEZ-
MIRANDA et 
al., 2012a) 

X X X  X  

(WEI et al., 
2012) 

   X X  

(XIAO et al., 
2013) 

   X X X 

1.6 THESIS CONTRIBUTION 

The increasing demand for sustainable energy systems and the constant miniaturization of 

electronic devices has introduced new challenges in the development for cooling systems with 

enhanced effectiveness. Several efforts have been developed for the enhancement of heat 

exchanger devices. However, the low capacity for heat conduction of conventional fluids still is a 

limiting factor. In past few years, it has been claimed that it is possible to produce fluids with 

improved thermo-physical properties, through the suspension of specific nanoparticles. Such next-

generation thermal fluids have been designated as nanofluids.  
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Several authors reported anomalous thermal conductivity enhancements in nanofluids, as these 

cannot be described by the classical physical theories. As expected, the search for possible 

theoretical explanations for these improvements led to a growing scientific interest in nanofluids 

(see Section 1.5.3.3). However, divergences on proposed theories resulted in the publication of 

several predictive models with different premises, causing unrelated effects and an unacceptable 

level of discrepancy. 

Possible reasons behind these differences might be the aggregation of the nanoparticles that 

usually is uncontrolled and not characterized in both experimental and numerical studies, and the 

unknown nanoparticles size distribution, since the researchers rarely report on the size distribution 

of the nanoparticles (or aggregates) and rely upon the manufacturer, even after processing this. 

Furthermore, these announced discrepancies might be induced through the different methods for 

the nanofluids preparation that form distinct morphological structures, which may provide 

inaccuracy to the cross-comparison among the reported observations (SIDDIQUE et al., 2010). In 

general, the particles geometry and phase distribution were not full characterized in most 

nanofluids experiments, discouraging the cross-comparison among the several authors, and 

respective validation of the theoretical predictive models. It has been found out that the type of 

nanoparticle and its geometry, as well as the method of synthesis and particle dispersion, induces 

distinct effects on the heat conduction capacity improvements of the mixture (GE et al., 2006, 

KHANAFER et al., 2011, NASEH et al., 2010). In addition, in order to ensure successful application of 

nanofluids, their respective thermo-physical properties may stand for long periods, and this is 

definitely related to their colloidal stability.  

The conducted bibliography survey revealed that it is broadly accepted that MWCNTs are the most 

promising nanoparticle for thermal conductivity enhancement. Such behaviour may be explained 

by their reported thermal conductivity and spatial distribution induced by their elongated 

geometry, making them the most promising for industrial applications since its volume fraction 

could be slighter, as it can be depicted from Figure 1.4. This is a fundamental feature to avoid an 

undesired increase of the fluid viscosity as well as to decrease, their production cost. 
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Figure 1.4: Summary of the experimental data available on the open literature for nanofluids. 

In addition, measuring the thermal conductivity of liquids is a very difficult task, since it is necessary 

to ensure a set of conditions that prevent overestimated readings. This problem is even more 

serious when dealing with dispersions, since the degree of homogeneity among them may cause a 

high degree of uncertainty. As such, it is necessary to define the morphological conditions of the 

nanofluids and ensure that these are constant for all the samples subjected to the experimental 

measurements, enabling, therefore, their cross-comparison. 

Therefore, this research aims to contribute to the nanofluids research, by the experimental and 

theoretical characterization of the thermal conductivity of long-term MWCNTs based nanofluids 

that meet the stability requirements towards industrial application as next-generation thermal 

fluids. To this end, long-term thermal nanofluids are defined in detail and samples are properly 

characterized, enabling a better and more coherent reading of the inherent thermo-physical 

mechanisms governing the heat conduction in nanofluids. A physical predictive model for the 

thermal conductivity is also developed and experimentally validated. It is expected that the 

acquired experimental and theoretical results contribute to present scientific knowledge as well as 

a support for future work, both at fundamental and engineering level. 

1.7 THESIS ORGANIZATION 

 In Chapter 1 the objectives and contribution of the thesis are postulated.  Additionally, and 

supporting the later, a comprehensive literature review on the synthesis and heat transport 

properties of nanofluids, including experimental data and theoretical models, is presented. In 

Chapter 2, the classical mechanisms responsible for the enhancement of the thermal conductivity 
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of dispersion are revised in detail, and based on these, a novel physical predictive model is 

proposed.  

Chapter 3 presents a methodology for the production of long-term nanofluids based on well-

established theories. In addition, this Chapter also deals with the methods and materials that were 

used to prepare and characterize stability of the nanofluid samples. In Chapter 4 it is discussed the 

obtained experimental thermal conductivity results and the predictive model is experimentally 

validated. Finally, Chapter 5 summarizes the major results obtained and some recommendations 

for future research are provided. 

1.8 CHAPTER CONCLUSIONS  

The conducted literature survey revealed that the dispersion of specific nanoparticles in 

conventional fluids results in a thermal conductivity enhancement of the base fluid, usually 

described as anomalously high. This is a result of the apparently unpredictable effect of the 

nanoparticles on the nanofluid heat conduction enhancement, namely through the classical theory, 

i.e. the effective medium theory. Still, some researchers found that the thermal conductivity of 

these nanofluids may lie within the bounds of the effective medium theory. Such lack of agreement 

between the experimental observations suggests the need of a well-designed experimental 

parametric study to identify the intrinsic mechanisms affecting the heat transfer rate in these 

fluids. Moreover, it is important to redefine the term nanofluid at least for thermal energy 

transport, and ensure constant measurement conditions in an attempt to improve the cross-

comparison conditions and respective results. A huge variety of theories were proposed to predict 

the effective thermal conductivity of nanofluids, apparently without success regarding their 

generalization. 
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2 MODELLING THERMAL CONDUCTIVITY OF DISPERSIONS 

2.1 CHAPTER SYNTHESIS 

In this Chapter, the classical mathematical formulation to predict the effective thermal conductivity 

of perfectly stable dispersions is verified. The various morphological structures that such 

dispersions could present, namely diluted structure, non-diluted structure, and percolation-like 

structure are described. The formation of these morphological structures depends on the dispersed 

particle geometry and volume fraction. The transition through these arrangements provides 

strongly impact on the effective thermal conductivity of the mixture, as suggested by the classical 

predictive models. Based on these classical theories, a predictive model for the thermal 

conductivity of interactive elongated nanoparticles is proposed. The latter, designated as extended 

differential effective medium theory, takes into consideration the particle geometry and spatial 

distribution, Kapitza resistance, and interparticle thermal interaction. 

2.2 THERMAL CONDUCTIVITY OF DISPERSIONS 

It should be noted the difference between the term solution and dispersion. The term solution is 

referred in the colloid science to thermodynamically stable mixtures, i.e. mixtures produced 

spontaneously when the solute and the solvent are brought together. The addition of energy to a 

solution will accelerate the mixture process. Without chemical or temperature changes, a solution 

is stable indefinitely. Conversely, dispersions are kinetically stable, requiring energy input to be 

produced and, if allowed to stand long enough, the reverse process occurs spontaneously. As 

envisaged in thermodynamics, these spontaneous processes occur in the direction of decreasing 

Gibbs free energy ∆G (HIEMENZ, 1977). Therefore, it is seems evident that a mixture of solid 

particles in a base fluid may be considered as a dispersion. 

It is distinguishable that the effective thermal conductivity of dispersions strongly depend upon the 

thermo-physical properties and spatial distribution of both phases from which are composed. The 

spatial distribution (the general arrangement of all the phases with respect to each other) can 

present three distinct geometric morphologies depending on their volume fraction, and on the 

geometry of the dispersed phase, as described by the excluded volume theory (EVT), defined in 

detail in the Appendix A. The three geometrical morphologies are the diluted structure, non-diluted 

structure, and percolation-like structure, as showed in Figure 2.1. 
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a) b) c) 

Figure 2.1: Schematic microstructure evolution of spherical particles dispersions: a) diluted structure; b) non-diluted 
structure; c) percolation-like structure. 

From the analysis of the previous Figure, it becomes clear that the evolution through the 

arrangements modifies the effective thermal conductivity of the mixture observed at the macro 

scale in distinct ways, especially for the non-diluted structure and percolation-like structure where 

the interparticle interaction cannot be neglected since, as it will be seen in the Section 2.3, they 

may provide an higher enhancement on this property. 

Percolation theory describes the degree of connectivity of chaotic systems, like dispersions. 

Suppose p is a variable that defines the average degree of connectivity between particles. For p=0, 

all the particles inside of a control volume are totally isolated from each other’s. In contrast, 

for p=1, all the particles are connected to some maximum number of neighbouring particles. The 

percolation threshold is the critical p, or pc, that describes the minimum degree of interparticle 

connections that forms a spanning cluster that connects both sides of the representative control 

volume (STAUFFER, 1979). The volume fraction at the percolation threshold is generally 

represented as ϕc, and determines the transition from non-diluted structure to percolation-like 

structure. 

Balberg et al. found that the EVT is particularly efficient to ascertain the transition to the 

percolation-like structure, especially in systems where the dispersed particles are elongated with 

high aspect ratio (BALBERG et al., 1984a). The excluded volume of a particle is the volume around 

an object which the centre of another similar is not allowed to enter if overlapping of the two 

objects is to be avoided (EVT described in detail in Appendix A). According to the EVT,  ϕc 

decreases when the geometry of the dispersed phase changes from spherical to elongate. In Figure 

2.2 is illustrated the efficiently spatial distribution of elongated particles when compared to 

dispersion of spherical particles, for the same volume fraction.  
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Figure 2.2: Illustration of the spatial distribution for a fixed volume fraction of spherical particles a), and elongated 
particle b). 

The classical predictive models for the thermal conductivity of dispersions are based on the 

effective medium theory (EMT). The EMT is a set of physical models that meant to describe the 

macroscopic properties of composites, based on the individual properties of the materials that 

constitute them. These models are commonly used for the prediction of several properties, such as 

optical, magnetic, diffusion, electrical and thermal conductivity, among others (CHOY, 1999).  

As verified in the literature review, the thermal conductivity predictive models of dispersions can 

be catalogued by the geometry of the dispersion phase. Of these, the simplest models are those 

that simplify the model through the consideration that the mixture is composed by spherical 

particles. 

2.3 THERMAL CONDUCTIVITY OF SPHERICAL DISPERSIONS 

Maxwell was a pioneer in the development of an EMT model for the conductivity of composites. 

The original expression was derived for the electrical conductivity and later was extended to the 

thermal conductivity, since both are governed by similar equations (MAXWELL, 1873). There is 

considerable experimental evidence on the validity of the Maxwell model for thermal 

conductivities for non-nanoscale particles suspension, at very small volume fractions that yield a 

diluted structure (see Figure 2.1). Moreover, the Brownian diffusion of the particles is neglected, 

i.e. it is assumed that the system is homogeneous and static, or motionless. 

2.3.1 EFFECTIVE MEDIUM THEORY OF MAXWELL 

To derive the Maxwell’s effective thermal conductivity model for nanofluids, it is considered that a 

sphere of diameter dp is immersed in an infinite base fluid subjected to a uniform heat flux, as 

shown in Figure 2.3. 
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Figure 2.3: Spherical particle dispersed in an infinite base fluid and subjected to a uniform heat flux. 

The temperature-field distribution inside the particle Tp and in the infinite medium Tbf can be 

expressed as (HASSELMAN et al., 1987): 

Tp=A ∙r ∙cosθ 2.1 

Tbf=(∇T) ∙r ∙cosθ+
B

r2
∙ cosθ 2.2 

where ∇T is the temperature gradient at large distances away from the sphere, r and θ are the 

usual spherical coordinates, and A and B are constants to be solved. The second term of the 

Equation 2.2 represents the thermal disturbance, or thermal interaction, induced by the presence 

of the particle, which is vanished as r → +∞.  

To find the solution for the unknowns A and B, Equation 2.1 and 2.2 are subjected to the following 

boundary conditions at the surface of the sphere, i.e.  r= dp 2⁄ : 

1) Tp=Tbf 2.3 

2) kp∙
∂Tp

∂r
=kbf∙

∂Tbf

∂r
 2.4 

That is, the temperature of the fluid and particle are equal at the surface. It should be noted that 

this implies a perfect interface, i.e. the absence of an interfacial resistance. In line, the second 

boundary conditions imply that the heat flux is constant at the surface. Solving for the boundary 

conditions, A and B are solved to: 

 A=
3(∇T)kbf

kp+2kbf
 2.5 
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 B=
(∇T)dp

3(kbf-kp)

8( kp+2kbf)
 2.6 

Introducing Equation 2.6 into Equation 2.2, the temperature of the base fluid at any point outside 

the particle is: 

Tbf=(∇T)r∙cosθ(1+
dp

3(kbf-kp)

8r3( kp+2∙kbf)
) 2.7 

Through the same perspective, the temperature at any point inside the particle is: 

Tp=
3(∇T)kbf

kp+2kbf
∙r∙cosθ 2.8 

Considering a monodispersion of N spherical particles with an average interparticle distance long 

enough to ensure no thermal interaction, the temperature of the base fluid (Equation 2.7) 

becomes: 

Tbf=∑(∇T)ri∙cosθ(1+
N∙dp

3(kbf-kp)

8∙ri
3( kp+2kbf)

)

N

i=1

 2.9 

Assuming that the same N particles are equivalent to one large imaginary sphere of diameter deff, 

that exhibit an effective thermal conductivity keff, the temperature outside the sphere will be 

similar to the Equation 2.9,  and is given by: 

Tbf=(∇T)r∙cosθ(1+
deff

3 (kbf-keff)

8r3( keff+2kbf)
) 2.10 

Solving the equality of Equation 2.9 and 2.10, and considering ϕ= N∙dp
3 dbf

3⁄ , the effective medium 

theory of Maxwell is obtained. This is expressed in the Equation 1.3. 

keff=
kp+2kbf+2ϕ(kp-kbf)

kp+2kbf-ϕ(kp-kbf)
∙kbf (Equation 1.3) 

In Figure 2.4 is a comparison of effective thermal conductivity enhancement ratio keff kbf⁄ , 

predicted through the EMT of Maxwell. As expected, the effective thermal conductivity 

enhancement ratio increases with the rise on volume fraction and ratio of thermal conductivity of 

the particles and base fluid. 
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Figure 2.4: Effective thermal conductivity enhancement ratio predicted through the EMT of Maxwell. 

Nevertheless, the previous Figure suggested that the effective thermal conductivity enhancement 

as an upper and lower saturation for kp/kbf. Therefore, in Figure 2.5, it is represented the effective 

thermal conductivity enhancement ratio with kp/kbf, for a volume fraction of 10%. The latter 

suggest a lower and an upper saturation point near 0.1 and 100, respectively. 

 
Figure 2.5: Effective thermal conductivity enhancement ratio for a dispersion of particles with ɸ=10% predicted through 

the EMT of Maxwell, for different kp/kbf. 

2.3.2 DIFFERENTIAL EFFECTIVE MEDIUM THEORY OF BRUGGEMAN 

Nevertheless, for a given volume fraction, far below the percolation threshold, the particles 

become to be affected by the disturbance of the temperature field induced by the conducting 

neighbouring particles. Such behaviour is noticed from the transition to non-diluted structure 

arrangements. In these arrangements, the interparticle distance is dramatically reduced, inducing a 

thermal disturbance on the medium, due to their distinct thermal conductivity to the base fluid. It 

is distinguishable that this disturbance may interact with the surrounding particles. In Figure 2.6, is 

represented the temperature gradient of a medium with two dispersed particles with higher 
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thermal conductivity. As it can be depicted, through the decrease of the interparticle distance, the 

temperature gradient is increased. That is, the temperature felt by the particle at right is higher 

with decreasing the interparticle distance, causing higher temperatures over longer distances. This 

mechanism is herein designated as thermal interparticle interaction. 

 

T₀ 

 

T₁ 

Figure 2.6: Schematic representation of a thermal interparticle interaction of two neighbouring particles (T₀>T₁). 

To meet the limitation of the EMT of Maxwell, Bruggeman proposed an iterative principle, known 

as differential effective medium theory (DEMT)  (BRUGGEMAN, 1935, MINKOWYCZ et al., 2012, 

TORQUATO, 2002). Through this, it is possible to estimate the effective thermal conductivity of a 

two-component mixture at higher particle volume fraction that meet both non-diluted and 

percolation-like structure. 

According to Bruggeman, the effective thermal conductivity of a dispersion may be given by: 

keff(ϕ)=kbf∙[1+f1(kbf,kp,P)∙ϕ+f2(kbf,kp,P)∙ϕ2+…] 2.11 

where f1 and f2 are dimensionless functions of both thermal conductivity of the base fluid and the 

particles, and other properties P, like particle size, shape, orientation, and others. The 

dimensionless function f1 determines the behaviour of the effective thermal conductivity in the 

dilute limit, and f2 takes into account the first-order correction to the dilute limit and the 

contribution of interparticle interactions. Furthermore, higher-order coefficients of ϕ represent 

strongly related interparticle interactions (BRUGGEMAN, 1935, TORQUATO, 2002). 

Through an integration-embedding principle, keff(ϕ+∆ϕ), the thermal effect of particles added 

before is taken into account at the next iteration step. That is, in every iterative step, it is 

considered that the thermal conductivity of the base fluid is equal to the effective thermal 
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conductivity of a dispersion with less particle volume fraction of the previous step, i.e. for 

ϕ=0⟶ keff=kbf and for ϕ+∆ϕ⟶ keff+∆keff, as schematically represented in the Figure 2.7. Through 

this, the Bruggeman approach considers a dilute dispersion and, therefore, the coefficient of order 

ϕ2 and above are neglected. 

 

Figure 2.7: Schematic view of the integration-embedding principle of Bruggeman. 

Under such conditions, low increment ∆keff of the DEMT of Bruggeman is be expressed as: 

 ∆keff=
k∙f1(kbf,kp,P)

(1-ϕ)
∙∆ϕ 2.12 

Integrating Equation 2.12 for the limits kbf and keff, and for the limits 0 and ϕ, the Equation is 

reduced to: 

∫
dk

k ∙f1(kbf,kp,P)
=∫

dϕ

1-ϕ

ϕ

0

keff

kbf

 2.13 

From these assumptions, it is established that the effective thermal conductivity of dispersions 

with arbitrary volume fractions can be derived from their diluted structure. Therefore, a prediction 

model valid for low volume fractions may be used to generate a new formula for high volume 

fractions.  

Simplifying the EMT of Maxwell (Equation 1.3) to: 

keff=kbf∙ [1+
3(kp-kbf) 

kp+2kbf-ϕ(kp-kbf) 
∙ϕ] 2.14 

the dimensional function f1 of first order of ϕ, become: 

  f1(kbf,kp,P)=
3(kp-kbf)

kp+2kbf
 2.15 

Replacing Equation 2.15 into Equation 2.13, and substituting kbf for k, the integration process is 

reduced to: 
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[
1

3
ln(k) - ln(kp-k)]|

kbf

keff

=- ln(1-ϕ) 2.16 

From this, the Bruggeman model for dispersion of spherical particles, with negligible Kapitza 

resistance can be simplified to Equation 1.4: 

(
kp-keff

kp-kbf
) ∙(

kbf

keff
)

1
3

=(1- ϕ) (Equation 1.4) 

According to the Bruggeman approach, thermal interparticle interaction affects the effective 

thermal conductivity enhancement of dispersions of spherical particles, at volume fractions above 

~15%, as can be depicted from Figure 2.8. Above this volume fraction, the thermal conductivity 

presents an exponential-like enhancement. Moreover, the thermal conductivity enhancements 

ratio for volume fractions below ~15% match with the ones calculated through the Maxwell model  

(BRUGGEMAN, 1935). 

 

Figure 2.8: Predicted thermal conductivity enhancement ratio through the Maxwell and Bruggeman model, for 
kp/kbf=100. 

It is expected a dependence of the effective thermal conductivity, predicted by the DEMT of 

Bruggeman, with the volume fraction and ratio of the thermal conductivity of particles and base 

fluid. In line with the results presented in Figure 2.4, such dependence is represented in Figure 2.9. 

In addition, It is noticed a convergence of the results with those predicted by the EMT of Maxwell 

for the volume fractions below 15%. 

1

2

3

4

5

6

7

8

0% 10% 20% 30% 40% 50%

k e
ff
/k

b
f

ɸ

MAXWELL, 1873

BRUGGEMAN, 1935



52 
 

 

 

Figure 2.9: Effective thermal conductivity enhancement ratio predicted through the DEMT of Bruggeman. 

As seen in the Maxwell model, the Bruggeman model presents a lower and upper limit saturation 

dependence with kp/kbf, of 0.1 and 100, respectively. Such behaviour can be depicted in Figure 

2.10. 

 

Figure 2.10: Effective thermal conductivity enhancement ratio for a dispersion of particles with ɸ=10% predicted through 
the DEMT of Bruggeman, for different kp/kbf. 

The results shown so far suggests that the thermal interparticle interaction only contribute for the 

effective thermal conductivity enhancement at higher particles volume fractions (>15%). In fact, 

regarding thermal nanofluids, such concentrations may be undesired due to a higher probability of 

unstable dispersions and/or greater effective viscosity. Nevertheless, as previously verified in 

Figure 2.2, it is expected a higher degree of interparticle interaction, even at very low volume 

fractions, for the MWCNTs based nanofluids due to the elongated aspect of the nanoparticles. 
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2.4 THERMAL CONDUCTIVITY ACROSS THE INTERFACE PARTICLE-MEDIUM 

As mentioned, percolation theory suggests the existence of a critical volume fraction ϕc, also 

known as percolation threshold, from which the dispersed phase forms a spanning cluster that 

connects both sides of the control volume (STAUFFER, 1979). This critical volume fraction points 

out the transition to the percolation-like structure arrangement, represented in Figure 2.1. 

The transition to percolation-like structure suggests a dramatic change in the conductivity 

properties of the dispersion, especially when the conductivity ratio between the two phases is 

high. For instance, regarding nanocomposites, Biercuk et al. found experimentally that the 

MWCNTs have an extremely low percolation threshold, due to their elongated geometry (BIERCUK 

et al., 2002). They measure the electrical conductivity of MWCNTs in epoxy composites at various 

volume fractions. The results revealed a suddenly jump (discontinuity), in the order of 10⁴, for 

volume fractions above 0.1%.  These results were attributed to the transition to the percolation-like 

structure, from where the conduction of electricity is more effectively. Nevertheless, the same 

samples were subjected to the measurement of the effective thermal conductivity, and the results 

showed a continuous enhancement, i.e. without the percolation transition effect. These 

observations were attributed to a thermal discontinuity at the interface of the particles, also 

known as Kapitza resistance. 

The Kapitza resistance is a well-known thermal resistance at the interface of two materials. 

According to Kapitza, the temperature at the particle-medium interface undergoes a change 

proportional to the normal component of the heat flux through the interface qinterface, as follows 

(CHERKASOVA, 2009, KAPITZA, 1941): 

Tp-Tmedium=-RK∙ qinterface 2.17 

Due to the relatively good contact between liquid and solid materials, the Kapitza resistance is 

rather low compared to the resistance of solid-solid interfaces. This resistance is associated with 

the differences in electronic and phonon spectra of the two materials. Therefore, this exists even at 

atomically perfect interfaces and differs from contact resistance (KAPITZA, 1941, SWARTZ et al., 

1989).  

In solids, thermal energy can be carried by electrons and lattice vibrations (phonons). In metals, the 

thermal energy is dominantly carried through electrons while non-metals is dominantly through 

phonons (CAHILL et al., 2003, CAHILL et al., 2001, HOPKINS, 2013, HOPKINS et al., 2011). Given the 
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interruption of the crystalline lattice at the interface solid-medium, a thermal resistance is 

produced. The phonons traverse a certain distance before scattering and losing their thermal 

energy, establishing a temperature gradient, the mean free path.  At room temperature, the mean 

free path may range from 1 to 100 nm (CAHILL et al., 2003). For nanoparticles of same order of the 

mean free path, it seems that additional scattering events arise and the phonon thermal 

conductivity is greatly reduced. Therefore, in nano-systems the thermal transport across the 

interface may dictate the overall thermal conductivity. The thermal conductance across the 

interface is, therefore, intimately related to the characteristics of the interface in addition to the 

fundamental atomistic properties of the materials comprising the interface itself (HOPKINS et al., 

2011). However, the fundamental mechanisms driving these electron and phonon interaction at 

this scale are still a challengeable subject and are not clear yet.  

Another interesting theory to describe the heat transfer across the interface is the molecular-level 

layering concept. This states that the molecules from a liquid near a solid surface (such as a 

nanoparticle surface) become more organized than the remaining, forming a solid-like layer 

structure (not crystalized) (SNOOK et al., 1978). As revealed in the previous Chapter, several 

authors suggested that these ordered structures provide a thermal bridge effect that enhances the 

heat conduction in nanofluids, due to phonon effects on these solid structures. Somehow, this 

theory may contradict the effect of Kapitza resistance, since it is expect that the one provides and 

enhancement and the other a penalty in the heat conduction phenomena. 

In fact, many metals exhibit no penalty in their thermal conductivity upon melting. Despite the 

transition from crystalline to the non-crystalline suggests no effect on the thermal conductivity, a 

significant contribution to the heat transport in metals (both crystalline and molten metals) is due 

to electrons rather than phonons (POIRIER et al., 1994). In contrast, the thermal conductivity of 

liquid water, at the melting point, is almost 4 times smaller than that of the ice (LIDE, 2004). This 

suggests that, for non-metal materials, the crystalline ordering may have a significant effect on the 

thermal conductivity since, as seen, the contribution of electrons to the heat transport is not the 

dominant one. 

This behaviour was verified, through non-equilibrium molecular dynamic simulations, by several 

authors (EVANS et al., 2007, XUE et al., 2004). The results suggested, that in liquid water, the 

thermal conductivity present a significant enhancement only for crystalline ordered structures. For 

water molecules near a solid surface, it was verified the formation of the ordered structures, 
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however, with imperfections that provide scattering sites for the heat carrying phonons. Moreover, 

such imperfections can also be observed for hydrophilic surfaces, since only very high electrical 

fields diminished these. Likewise, the dynamic behaviour of the particles, caused by the incessant 

Brownian motion may also contribute to a higher formation of the mentioned imperfections that 

scatter the heat transfer at the interface.  

Therefore, it seems quite evident that the Kapitza resistance may be the dominant heat transfer 

mechanism at the interfaces. Even so, the fundamental mechanisms driving the Kapitza resistance 

are still a challengeable subject and are not clear yet. Due to the requirement of a more detailed 

understanding of heat conduction at these interfaces, than that achievable through the Fourier’ 

law, many theoretical models were developed to quantitatively analyse the Kapitza resistance 

based on the statistical mechanics equation of Boltzmann. However, it should be reminded that in 

these equations the electrons and phonons are treated as particles, suggesting the requirement for 

different theoretical approaches. 

For the moment, the theoretical models developed include the acoustic and diffusive mismatch 

models, (AMM) and (DMM) respectively (KHALATNIKOV et al., 1973, SWARTZ et al., 1989), lattice 

dynamics models (CHEN, 1998, STONER et al., 1993, YOUNG et al., 1989, ZHAO et al., 2002) and, 

more recently, molecular dynamics models (CHOI et al., 2004, SHENOGIN et al., 2004a, SHENOGIN 

et al., 2004b, SHENOGINA et al., 2005, XUE et al., 2003, ZHONG et al., 2006). Nevertheless, the 

models underestimate the few experimental data available, except for extremely low 

temperatures. This may be explained by other dominant mechanisms for thermal energy exchange 

across the interface, such as surface wettability, inclusions, energy carrier scattering with 

interfaces, among others (BAYRLE et al., 1989, HUXTABLE et al., 2003, KIM et al., 2008a, POLLACK, 

1969, SHENOGIN et al., 2004b).  

The effective thermal conductivity enhancement limitation, as a result of the Kapitza resistance, 

becomes even more important for nano-systems due to the high density of interfaces and 

nanoparticles sizes order. At the nanoscale, the surface-to-volume ratio is higher than that at 

microscale, increasing the density of interfaces. Therefore, the effective thermal conductivity of 

nanofluids may have to be modelled at molecular level theories, which would establish a significant 

breakthrough in the perception of the actual heat transfer mechanisms across the interface. 

Nevertheless, given the lack of fundamental theories to describe the nature of the heat transfer 



56 
 

 

across the interface solid-medium at the nanoscale, the available models should be improved and 

adjusted meanwhile. 

Cahill’s research group measured the transient changes in the optical absorption of MWCNTs 

suspensions in heavy water stabilized with sodium dodecyl-sulphate surfactant. These transient 

changes are a result of the temperature change in the MWCNTs. Using the time constant 

associated with the optical absorption decay and the heat capacity of the CNTs, they computed the 

Kapitza resistance to ≈8×10-8 K m2 W⁄  (HUXTABLE et al., 2003). Later, through molecular dynamics 

simulations, they predicted this Kapitza resistance as ≈4×10-8 K m2 W⁄ , an half of the experimental 

measurements. They speculated that a possible reason for the discrepancy is the fact that in their 

molecular dynamics simulations all phonons are excited at all temperatures, while in the 

experiments a significant portion of the modes is not excited due to quantum effects (SHENOGIN 

et al., 2004b). 

Furthermore, they reported that the magnitude of RK may range from 0.8×10-8 K m2 W⁄  to 

2×10-7 K m2 W⁄  for nano-systems (CAHILL et al., 2001, WILSON et al., 2002), depending on both 

thermo-physical properties of the phases and degree of interaction (interface bonding). Through 

molecular dynamic simulation, they found that hydrophilic interfaces presents 2-3 times lower 

Kapitza resistance than hydrophobic interfaces (GE et al., 2006). Lee suggests that the hydrophilic 

compounds, generally oxides groups, attract and bind the counter ions with opposite polarity of 

the liquid. Since the ions of the hydrophilic groups are often hydrated, they will associate with the 

water molecules at the interface, forming liquid columns that reduce the Kapitza resistance (LEE, 

2007). Perhaps, this liquid columns can be regarded as a nano-layer ordering, with less 

imperfections than that formed near a hydrophobic surface, reducing, therefore, the magnitude of 

the Kapitza resistance. 

The nanoparticles are also typically wetted by the base fluid resulting in not direct contact between 

them. Also, the small contact area will result in a large solid-solid contact resistance. Zhong et al. 

found that the interfacial thermal resistance at the solid-solid contact could be increased in a factor 

of order 4 with an intimate contact (ZHONG et al., 2006). In contrast, Cahill’s research group 

suggested that this resistance at the solid-solid contact is increased by a factor of 2 (HUXTABLE et 

al., 2003). 
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Another usual form to characterize the Kapitza resistance is through the Kapitza length, aK 

(Equation 1.11, in section 1.5.3.4). According to the Fourier’s law, this represents the equivalent 

thickness of the medium, with the same thermal conductivity, over which is caused the equivalent 

temperature drop at the interface. In general, for aK smaller than the particle size, the effective 

thermal conductivity increases with the rise on volume fraction. Conversely, when aK is large than 

the particle size, the effective thermal conductivity decreases with the rise on volume fraction. 

As previously seen, both Maxwell and Bruggeman models assume perfect temperature continuity 

at the solid-liquid interface, which contradicts the Kapitza theory. For this reason, Benveniste et al. 

(BENVENISTE, 1987, BENVENISTE et al., 1986) modified the Maxwell and Bruggeman models, 

replacing kp by an equivalent thermal conductivity of a complex particle with an interfacial layer 

keq: 

keq=
kp

1+
2RK∙kp

dp

 
2.18 

It is expected that the thermal interparticle interaction strongly depend on the magnitude of RK, 

since this lower the heat conduction of each dispersed particle. In Figure 2.11 is plotted the 

effective thermal conductivity enhancement predicted through the models of Maxwell and 

Bruggeman, modified by the principle of Benveniste et al.. In this, it was considered a spherical 

nanoparticle with 100 nm diameter and a thermal conductivity ratio of 500. As expected, a system 

with a Kapitza resistance equal to the lower bound of the Cahill’s research group (~1×10-8 K m2 W⁄ ) 

presents a further enhancement induced by the thermal interparticle interaction. Moreover, for 

this magnitude, the Bruggeman model predicts thermal interparticle interaction above ~10% 

volume fractions, in contrast to the ~15% for the perfect interface. However, in contrast with the 

lower bound, for the Kapitza resistance of 1×107 K m2 W⁄  it is observed a degradation of the effect 

induced by the thermal interparticle interaction, a undesired effect in what heat exchange 

enhancement concerns. Even so, it should be reminded that the Cahill’s research group suggested 

a Kapitza resistance of ≈8×10-8 K m2 W⁄  for MWCNTs dispersions. Furthermore, in this, it is 

expected a higher degree of interparticle interaction at lower volume fraction. 
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Figure 2.11: Effect of the Kapitza resistance on thermal conductivity enhancement ratio, predicted through modified 
Maxwell and Bruggeman models for kp/kbf =500 (modified to take into account the Kapitza resistance). 

2.5 THERMAL CONDUCTIVITY OF NON-SPHERICAL DISPERSIONS 

As earlier verified by Fricke, and Hamilton and Crosser, the shape of the particles is also a key 

factor for the magnitude of the effective thermal conductivity of dispersions (FRICKE, 1925, 

HAMILTON et al., 1962). Recently, Nan et al. proposed an interesting model, based on the multiple 

scattering theory, that could be regarded as an upgrade to the Maxwell model for non-spherical 

particles dispersions (NAN et al., 2003).  

2.5.1 EFFECTIVE MEDIUM APPROACH OF NAN ET AL. 

The effective medium approach of Nan et al. considers a statistically homogeneous dispersion of 

randomly oriented ellipsoidal particles. Since the model presents a greater degree of spatial 

inhomogeneity to the problem, they used the Green function, a solving function for 

inhomogeneous differential equations, to compute the heat conduction through the effective 

medium (NAN et al., 2003, NAN, 1993, NAN et al., 1997).  

The boundary conditions for the model derivation were similar to that of Maxwell’s effective 

medium approach (Equation 2.3 and 2.4). With this, the interfacial resistance is neglected, 

simplifying the derivation of the model. Despite considering the spatial distribution of the 

elongated particles, the model neglects the thermal interparticle interaction. This allowed 

obtaining a simpler model, only valid for diluted structures, schematically represented in Figure 

2.12, in a similar way to the represented in Figure 2.1 for spherical particles dispersions. 
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a) b) c) 

Figure 2.12: Schematic microstructure evolution of elongated particles dispersions: a) diluted structure; b) non-diluted 
structure; c) percolation-like structure. 

The computed Nan et al. model, for a dilute suspension of randomly oriented spheroidal particles 

with perfect interfacial surface and thermal interaction negligible is given by Equation 1.31. 

Moreover, the model also enables to predict the effective thermal conductivity of cylindrical or 

elongated particles dispersions, through the approximation of this to a very elongated spheroidal 

particle. 

keff=
3+ϕ(2βxx(1-Lxx)+βzz(1-Lzz))

3-ϕ(2βxx∙Lxx+βzz∙Lzz)
∙kbf (Equation 1.31) 

where Lxx and Lzz are depolarization factors and, 

βxx= 
kxx-kbf

kbf+Lxx(kxx-kbf)
 (Equation 1.32) 

βzz=
kzz-kbf

kbf+Lzz(kzz-kbf)
 (Equation 1.33) 

As mentioned before, the model was, at first, derived assuming a perfect interface particles-

medium. Later, Nan et al. introduced the effect of the Kapitza resistance through the consideration 

of equivalent resistance that substitute the parameters kxx, and kzz, as previously suggested by 

Benveniste et al. (NAN et al., 2004).  

Considering suspension of cylindrical or elongated particles with diameter dp and length lp, the kxx
eq, 

and kzz
eq can be derived through the mixture rule for a simple series of resistance, i.e. the equivalent 

resistance method, as can be depicted in the Figure 2.13. 
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Figure 2.13: Schematic illustration of the equivalent thermal resistance along the 33 axis, of a cylindrical or elongated 
particle with an interfacial thermal resistance. 

The equivalent thermal resistance can be derived trough the following equations (INCROPERA et 

al., 2006): 

(xx') 

Reqxx
=

dp

kxx
eq =RK+

dp

kpxx

+RK 2.19 

⟹ kxx
eq=

1

1
kpxx

+
2RK
dp

=
kpxx

1+
2ak
dp

∙
kpxx

kbf

 
2.20 

and, 

(zz') 

Reqzz
=

lp

kzz
eq =RK+

lp

kpzz

+RK 2.21 

⟹ kzz
eq=

1

1
kpzz

+
2RK
lp

=
kpzz

1+
2ak
lp

∙
kpzz

kbf

 
2.22 

where ak=RK∙kbf as stated in Equation 1.11.  

The depolarization factors, Lxx and Lyy from Equation 1.32 and 1.33, are functions of the shape and 

degree of homogenization of the particles (LANDAU et al., 1984). They describe the influence of 

the geometrical shape and orientation on the temperature gradient or disturbance in the medium. 

These can be obtained by the following expressions: 

Lxx=Lyy=

{
  
 

  
 (lp dp⁄ )

2

2 ((lp dp⁄ )
2
-1)

-
(lp dp⁄ )

2 ((lp dp⁄ )
2
-1)

3 2⁄
∙cosh-1(lp dp⁄ ),   (lp dp⁄ )>1  

(lp dp⁄ )
2

2 ((lp dp⁄ )
2
-1)

+
(lp dp⁄ )

2 ((lp dp⁄ )
2
-1)

3 2⁄
∙cos-1(lp dp⁄ ) ,   (lp dp⁄ )<1

 2.23 



 
61 

 

Lzz=1-Lxx-Lyy=1-2Lxx 
2.24 

Nevertheless, in the case of very elongated particles (lp/dp>10), they can be simplified to Lxx= 1 2⁄  

and Lzz=0 (LANDAU et al., 1984). This behaviour can be depicted from Figure 2.14, in which is 

represented the depolarization factor Lxx varying with the nanoparticle aspect ratio (lp/dp). 

 

Figure 2.14: Depolarization factor Lxx of elongated nanoparticles of different aspect ratio (lp/dp). 

Through this, the effective medium approach of Nan et al. for suspensions of very elongated 

particles could be reduced to (NAN et al., 2004): 

keff=

3+ϕ∙(
2(kxx

eq-kbf)

kxx
eq+kbf

+
kzz

eq

kbf
-1)

3-ϕ∙
2(kxx

eq-kbf)

kxx
eq+kbf

∙kbf 2.25 

The effective medium approach of Nan et al. is considered the more generalist of the EMT. This is 

based on the same heat conduction mechanism and boundary conditions devised by Maxwell, with 

the addition of the effect of the Kapitza resistance and the particle shape. For spherical particles, all 

the depolarization factors are equal to 1 3⁄ , and the model coincides with the Maxwell equation 

(Equation 1.3). However, it should be reminded that this model neglects the thermal interparticle 

interaction.  

In Figure 2.15, it is performed an assessment between the calculated thermal conductivity 

enhancement ratio for dispersions of spherical particles, (lp/dp)=1, and isotropic elongated particles 

with an aspect ratio of 100, (lp/dp)=100. In this Figure, it was considered a perfect interparticle 
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interface, i.e. RK=0 K m2 W⁄ . As can be seen, for dispersion of large aspect ratio particles, the 

predicted thermal conductivity enhancement ratio can dramatically exceed that of spherical 

particles. 

 

Figure 2.15: Comparison of the predicted thermal conductivity enhancement ratio for spherical particles and very 
elongated particles (lp/dp)=100, for kp/kbf =50 and RK=0. 

Moreover, the model suggests that the effective thermal conductivity present distinct saturation 

behaviour with the ratio of the thermal conductivities of both materials, kp/kbf, with the variation of 

the aspect ratio, as can be observed in Figure 2.16. It should however be noted, that in this Figure 

was considered the lower bound of the Kapitza resistance suggested by Cahill’s research group.  

 

Figure 2.16: Effect of kp/kbf on the calculated thermal conductivity enhancement for elongated particles with RK=10¯⁸ 

K m2 W⁄  and ɸ=1%.  
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It is expected a variation of the magnitude of the variables, with the variation of the Kapitza. As was 

verified by Cahill’s research group, the Kapitza resistance may range from 0.8×10-8 K m2 W⁄  to 

2×10-7 K m2 W⁄ , for nanoparticles dispersed in conventional fluids. In Figure 2.17 is shown the 

effect of the Kapitza resistance on the enhancement of the effective thermal conductivity for 

various kp/kbf. As expected, the Kapitza resistance presents a strong impact, diminishing the ratio of 

the kp/kbf, for their upper bound. 

 

Figure 2.17: Effective thermal conductivity enhancement ratio for a dispersion of particles with ɸ=1% and lp/dp=50, 

predicted through the model of Nan et al., for different kp/kbf, in the range of Kapitza resistances of the Cahill’s group. 

Figure 2.18 presents an evaluation of the Kapitza resistance effect of dispersions of different aspect 

ratio elongated particles, when kp/kbf=500. The results clearly show that the increase of the 

nanoparticle aspect ratio induces a higher enhancement in the effective thermal conductivity; 

however, this is strongly limited with the increase of the Kapitza resistance. 

 

Figure 2.18: Effect of the Kapitza resistance on the calculated thermal conductivity enhancement ratio for elongated 
particles of different aspect ratio (kp/kbf =500). 

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.1 1 10 100 1000 10000 100000

k e
ff
/k

b
f

kp/kbf

Rκ=1E-8

Rκ=1E-7

Rκ=2E-7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0% 1% 2% 3% 4% 5%

k e
ff
/k

b
f

ɸ

lᵨ/dᵨ=10 - Rκ=1E-8

lᵨ/dᵨ=10 - Rκ=2E-7

lᵨ/dᵨ=50 - Rκ=1E-8

lᵨ/dᵨ=50 - Rκ=2E-7

lᵨ/dᵨ=100 - Rκ=1E-8

lᵨ/dᵨ=100 - Rκ=2E-7



64 
 

 

2.5.2 AN EXTENDED DIFFERENTIAL EFFECTIVE MEDIUM THEORY – THE PROPOSED MODEL 

As verified, Nan et al. model suggests that the transition from spherical to non-spherical particles 

induces a strong enhancement on the effective thermal conductivity of dispersions (Figure 2.15). 

Nevertheless, the model was developed considering that the dispersed nanoparticles present a 

spatial distribution classified as a diluted structure, with negligible thermal interparticle interaction. 

Although, as verified by Biercuk et al., MWCNTs have the ability to easily interact, even at low 

volume fractions (BIERCUK et al., 2002).  

Since the thermal interparticle interaction is observed at concentrations below the percolation 

threshold, it is expected that this become more pronounced in suspensions of MWCNTs, as they 

are very elongated nanoparticles. Despite the limitation due to the high Kapitza resistance 

announced by Cahill’s research group (CAHILL et al., 2001, WILSON et al., 2002), Nan et al. model 

can be improved to take into account the interparticle interaction. Therefore, in this study it is 

proposed a variation of the differential effective medium theory (DEMT) based on Nan et al. model 

to predict the effective thermal conductivity of elongated particles at any volume fraction. This 

proposed model was designated as extended differential effective medium theory (EDEMT) model. 

For this purpose, the model of Nan et al., represented in Equation 1.31, was rearranged in order to 

meet the Equation 2.11 of Bruggeman. The resulting expression was: 

keff=kbf∙ [1+
ϕ∙(2βxx+βzz)

3-ϕ∙(2βxx∙Lxx+βzz∙Lzz)
] 2.26 

From Equation 2.26, it comes that the first order dimensionless coefficient  f1(kbf,kp,P) can be 

expressed as: 

  f1(kbf,kp,P)=
2βxx+βzz

3
 2.27 

Through the substitution of βxx and βzz for Equation 1.32 and 1.33, respectively,  f1(kbf,kp,P) 

becomes: 

  f1(kbf,kp,P)=
2(kxx-kbf)∙ (kbf+Lzz∙(kzz-kbf)) +(kzz-kbf)∙ (kbf+Lxx∙(kxx-kbf))

3 (kbf+Lzz∙(kzz-kbf)) (kbf+Lxx∙(kxx-kbf))
 2.28 

Nevertheless, given the complexity of the obtained function, and since it is intended to integrate 

the function in order to kbf,  f1(kbf,kp,P) was simplified through the incorporation of constant 
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variables for the remaining parameters. The resulting simplified dimensionless function of first 

order, of the integration-embedding principle of Bruggeman, can be expressed as: 

 f1(kbf,kp,P)=
kbf

2 ∙C1+kbf∙ C2+C3

3(kbf
2∙ C4+kbf∙ C5+C6)

 2.29 

where, 

C1=Lxx+2Lzz-3 2.30 

C2=kxx
eq∙(2-Lxx-2∙Lzz)+kzz

eq∙(1-Lxx-2Lzz) 2.31 

C3=kxx
eq ∙kzz

eq∙(Lxx+2Lzz) 2.32 

C4=-Lxx-Lzz+Lxx∙Lzz+1 2.33 

C5=(kxx
eq+kzz

eq)∙(Lxx-Lxx∙Lzz) 2.34 

C6=kxx
eq∙Lxx∙kzz

eq∙Lzz 2.35 

and  Lxx and Lzz for elongated particles are given by Equation 2.23 and 2.24, respectively. 

Replacing Equation 2.29 into Equation 2.13, and substituting kbf for k, the integration process is 

reduced to: 

[ln(kE1)+ ln((2C1∙k+A+C2)
E2) + ln((-2C1∙k+A-C2)

E3)]|
kbf

keff
=- ln(1-ϕ) 2.36 

From this, the proposed DEMT for dispersions of non-spherical particles is derived: 

(
keff

kbf
)

E1

∙(
2C1∙keff+A+C2

2C1∙kbf+A+C2
)

E2

∙(
2C1∙keff -A+C2

2C1∙kbf -A+C2
)

E3

=(1-ϕ) 2.37 

where,  

 A=√C2
2-4∙C1∙C3 2.38 

B=6C4∙C2
2+6C1(2C6∙C1-2C4∙C3-C5∙C2) 2.39 

E1=-
3C6

C3
 2.40 

E2=
-6C4∙C2∙A+6C5∙C1∙A-B

2A∙C1∙(A+C2)
 2.41 

E3=
6C4∙C2∙A-6C5∙C1∙A-B

2A∙C1∙(A-C2)
 2.42 
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According to the theory, it is expected that the proposed model enable to predict the effective 

thermal conductivity of elongated particles dispersions, independently of the structural 

arrangement or degree of spatial distribution of the dispersed phase. The impact of the shape of 

the particles is reflected through the depolarization factors (Equation 2.23 and 2.24) and in the 

anisotropic equivalent thermal conductivities (Equation 2.20 and 2.22) of the particles, which 

depends on their average diameter and length distribution. 

Nevertheless, for very elongated particles (lp/dp>10), the depolarization factors Lxx and Lyy 

converge to 0.5, and Lzz to 0. This convergence was previously represented in the Figure 2.14. 

Assuming this, it is possible to simply the proposed model for very elongated cylinders. The 

simplified constant variables of the model Ci, for very elongated cylinders can be expressed as: 

C1= -5
2⁄  2.43 

C2=
(3kxx

eq+kzz
eq)

2
 2.44 

C3=
kxx

eq kzz
eq

2
 2.45 

C4= 1
2⁄  2.46 

C5=
kxx

eq

2
 2.47 

C6=0 2.48 

In addition, the model also enables to be reduced to spherical particles through the consideration 

of Lxx=Lyy=Lzz= 1 3⁄ . In such case, the model is reduced to the DEMT of Bruggeman, with imperfect 

interface as suggested by Benveniste et al., and the constant variables of the model, Ci become: 

C1=-2 2.49 

C2=kxx
eq=kp 2.50 

C3=kxx
eq ∙kzz

eq=kp
2 2.51 

C4= 4
9⁄  2.52 

C5=
2(kxx

eq+kzz
eq)

9
=

4kp

9
 2.53 

C6=
kxx

eq ∙kzz
eq

9
=

kp
2

9
 2.54 

In summary, the novel proposed model accounts for the geometry of the dispersed particles, their 

volume fraction, Kapitza resistance and interparticle interaction. In Figure 2.19, it is shown the 



 
67 

 

effect of the Kapitza resistance on the enhancement of the effective thermal conductivity for 

various kp/kbf. As expected, the Kapitza resistance presents a strong impact, diminishing the ratio of 

the kp/kbf, for their upper bound. 

 

Figure 2.19: Effective thermal conductivity enhancement ratio for a dispersion of particles with ɸ=1% and lp/dp=50, 

predicted through the proposed model, for different kp/kbf, in the range of Kapitza resistances of the Cahill’s group. 

Figure 2.20, presents the predicted ratio of thermal conductivity enhancement through the Nan et 

al. model and through the proposed EDEMT model. In this analysis, it was considered that the 

dispersed particles have an aspect ratio (lp/dp) of 100, and a particle-base fluid thermal 

conductivity ratio (kp kbf⁄ ) of 3000. As expected, the predicted thermal conductivity strongly 

depends on the Kapitza resistance magnitude. In addition, it is observed that the effect of the 

interparticle interaction is more intense for lower Kapitza resistance. The saturation point seems to 

be nearly 2×10-7 K m2 W⁄ . 

Moreover, it should be noted that Cahill’s research group (HUXTABLE et al., 2003) experimentally 

measured the Kapitza resistance of MWCNTs dispersed in heavy water, reporting 8×10-8 K m2 W⁄ . 

As can be depicted in Figure 2.20, the proposed model suggest an enhancement on the effective 

thermal conductivity caused by the thermal interparticle interaction for this Kapitza resistance 

value. 
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Figure 2.20: Predicted thermal conductivity enhancement ratio through the Nan et al. and the proposed model, for 
kp kbf⁄ =3000, and lp/dp=100. 

The effect of the nanoparticle aspect ratio on the effective thermal conductivity ratio enhancement 

is represented In Figure 2.21. As can be depicted, it is expected a higher thermal interparticle 

interaction effect on the observed conductivity, for the typical Kapitza resistance observed at the 

nanoscale. 

 

Figure 2.21: Effect of the particles aspect ratio on the thermal conductivity enhancement predicted by the Nan et al. and 
the proposed model (kp kbf⁄  of 3000 and ɸ=1%). 

It is important to note that the proposed EDEMT model is valid for statistically homogeneous 

dispersion, with negligible nanoparticles sedimentation and agglomeration.  

2.6 CHAPTER CONCLUSIONS 

It was verified that the dispersion of non-agglomerated particles in a medium can present distinct 

microstructural arrangements, depending upon the geometry of the particle and respective 

volume fraction. These arrangements can be categorized as diluted structure, non-diluted structure, 
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and percolation-like structure. The transition through these arrangements provides strong impact 

on the effectiveness of heat conduction of the mixture. Taking these morphological arrangements 

into consideration, it was presented an overview on the classical predictive model for the effective 

thermal conductivity. The conventional understanding of the thermal conductivity of mixtures 

originates from the effective medium theory (EMT) of Maxwell, which reflects on very dilute 

suspensions of non-thermally interacting spherical particles. Later, Bruggeman proposed the 

differential effective medium theory (DEMT), enabling to reflect on the interparticle thermal 

interaction, observed for higher volume fractions. It was also verified that the mathematical 

formulation of Nan et al., in line with the EMT of Maxwell, is valid for very dilute suspensions of 

non-thermally interacting, yet for non-spherical particles. Given the lack of predictive models for 

non-spherical particles dispersions that could interact thermally, it is proposed a predictive model 

(EDEMT), through a similar differential principle of Bruggeman, but including the shape of the 

particle, and the Kapitza resistance (interfacial thermal resistance). 
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3 LONG-TERM MWCNTS BASED NANOFLUIDS ENGINEERING 

3.1 CHAPTER SYNTHESIS  

In this Chapter, it is defined in detail the term nanofluid, according to their final applicability. Since 

nanofluids are dispersion of nanoparticles in conventional fluids, they can present several forms of 

instabilities, such as aggregation, sedimentation, and/or disintegration of their solid particle 

structure (e.g. reduction of the size distribution with variation of the temperature). Therefore, the 

proposed nanofluids to be developed must prevent these instability phenomena. To address these 

conditions, a methodology for the preparation of the defined long-term nanofluids is proposed. It 

is also presented the experimental and numerical apparatus to verify the morphological structure, 

or spatial distribution, and assess the defined stability conditions. The sizes' distribution of the 

dispersed MWCNTs is preformed through intensive analysis to SEM images. Thermo-gravimetric 

analysis revealed that may exist slight structural damages on the functionalized MWCNTs, 

nevertheless, negligible for the test temperatures. The Zeta potential measurements and analytical 

centrifuge revealed negligible probability of agglomeration, thus phase separation rate is hindered 

and shows high resistance to centrifugal force fields. It is also proposed a numerical model that 

enables to assess the dynamical interparticle interaction of stable dispersion of CNTs. 

3.2 LONG-TERM NANOFLUIDS ENGINEERING 

Thermal nanofluids are dispersions of solid nanoparticles in conventional liquids, with the purpose 

to improve the thermal conductivity of the mixture. Nanofluids can be considered as colloids, since 

the dispersed phase is composed of individual particles with dimensions ranging from 10ˉ¹⁰ m to 

10ˉ⁶ m. Conventionally, the liquid and the particles are respectively designated as continuous 

phase and dispersed phase. Sometimes, colloids have the appearance of solutions since their 

dispersed phase is difficult to identify. 

The literature abounds with studies on several nanoparticles to be used on nanofluids engineering. 

Among those, MWCNTs are continuously, both experimentally and theoretically, referred to as the 

most promising nanoparticle as to thermal properties are concerned. This might be explained by 

their increased thermal conductivity and high elongated shape. The latter enables a higher degree 

of spatial distribution that improves the effective thermal conductivity enhancement, as suggested 

by the classical models described in detail in Chapter 2.  
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It appear, therefore, that MWCNTs are the best suited nanoparticle for thermal nanofluids 

engineering. As elucidated in the Chapter 1, in this study it is intended the development and 

thermal characterization of MWCNTs based nanofluids, for the heat exchange intensification of 

energy systems. Nevertheless, for a proper preparation of nanofluids, it is of utmost importance to 

define the nanofluids final purpose and applicability, to better understand what the thermo-

physical characteristics desired for that are.  

As previously envisaged, the production of thermal nanofluids with improved thermo-physical 

properties, will enable the design of smaller and lighter heat exchangers, and improve the energy 

efficiency in industrial processes and systems. In order to ensure that nanofluids become the next-

generation heat transfer fluids for these systems, it is of utmost importance that their engineered 

thermo-physical properties remain constant, or with negligible variation, over time. Therefore, the 

term stability must describe the quality of the effective thermo-physical properties being free from 

change or variation, which strongly depends on the behaviour and spatial distribution of both 

phases over a desired period.  

More importantly, it is imperative that the produced nanofluids present good stability, in order to 

reduce eventual noise factors, ensuring repeatability of the results and, therefore, a better 

inference on the experimental results that will be taken. This is also assumed as imperative for the 

development and validation of the reliable predictive model for the effective thermal conductivity 

of nanofluids. It is strongly necessary to ensure constant morphological arrangements (described in 

the Chapter 2), homogeneity, during the several experimental measurements, in order to be 

possible for their cross-comparison. 

3.2.1 STABILITY OF DISPERSIONS 

The manners and rate through which the two-phase separation occurs in a dispersion during a 

desired period, leads to the typical assignment of unstable or stable dispersion. Therefore, these 

terms may be meaningless unless the process to which they are applied has been clearly defined. 

For instance, a protein molecule may undergo hydrolysis to alter the size, shape, and the solubility 

of the molecule. Despite being stable with respect to phase separation, the mixture is unstable 

with respect to chemical change (HIEMENZ, 1977).  

Regarding nanofluids, typical forms of instability usually reported are the aggregation and phase 

separation (or sedimentation). It is quite possible for a nanofluid to be unstable with respect to 
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sedimentation and stable with respect to aggregation, and vice-versa. Nevertheless, as it will be 

proposed ahead, another form of instability may be the degradation of the size distribution of the 

nanoparticles over time. The latter, as previously envisaged in Chapter 2, may strongly affect the 

spatial distribution degree of the nanoparticles in the medium. 

3.2.1.1 AGGREGATION 

Particles in dispersion may adhere together and form aggregates of increased size. The rate of 

aggregation is in general determined by the frequency of interparticle collisions and the probability 

of cohesion. The frequency of interparticle collisions depend on the intensity of the random walk of 

the solid particles and, according to the excluded volume theory (EVT), on their size, shape and 

concentration (HIEMENZ, 1977, RUSSEL et al., 1989).  

The random walk of the particles is the stochastic Brownian motion, caused by the impact of the 

base fluid molecules on the surface of the particles. This was discovered by Robert Brown in 1828, 

and physically described in 1956, by Einstein. According to the kinetic theory of matter, the random 

walk of each individual particle is independent and eternal, being composed of translation and 

rotation movement. Brownian motion is more active in liquids with lower viscosity, for higher 

temperatures, and for the smaller dispersed particle (BROWN, 1828, EINSTEIN et al., 1956, PERRIN, 

2005). 

Despite the interactions, unless there is some attraction between the particles, the Brownian 

interparticle collisions could never occur and/or lead to aggregation. Derjaguin, Verway, Landau 

and Overbeek (DVLO) developed a theory suggesting that aggregation is determined by the sum of 

the van der Waals attractive and repulsive forces between the approaching Brownian particles. 

According to DLVO theory, if the attractive forces are larger than the repulsive forces, the particles 

will collide and aggregate (DERJAGUIN et al., 1993, VERWEY et al., 1999). On the other hand, if the 

attractive forces are lower than the repulsive forces, the particles may collide (or not), but without 

a permanently fixed contact. 

The aggregated particles generate new structures, with increased sizes and mass, and different 

shapes that move as single units. Such dispersion can also be categorized as polydispersion. 

However, it should be noted that the term monodispersion is an ideal case, since it is extremely 

difficult to obtain a dispersion of particles with strictly equal size and shape (HIEMENZ, 1977). 
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Nevertheless, for simplicity, the term monodispersion is herein attributed to an aggregation-free 

dispersion.  

 

Figure 3.1: Schematic representation of a) a monodispersion and b) a polydispersion, for a given concentration of 
MWCNTs. 

In Figure 3.1 is shown a monodispersion and a polydispersion, for a given concentration of 

MWCNTs. It is distinguishable that a polydispersion of MWCNTs may be classified as unstable, since 

the degree of aggregation is difficult to control. The aggregates may present a significant 

distribution of mass and shapes, leading to phase separation at different rates due to gravity or 

other centrifugal forces. In addition, even without phase separation, the final properties of the 

dispersion may be unsteady and even stratified or with local gradients, if the dispersion is allowed 

to stand long enough to occur aggregation. For instance, in the case of thermal nanofluids, the 

thermo-physical properties can change significantly with the degree of aggregation (PRASHER et 

al., 2006).  

Therefore, it seems obvious that if the particles present higher repulsion than attractive forces, the 

dispersion will have an improved stability, and higher probability of homogeneous thermo-physical 

properties. The interparticle repulsions may be categorized as electrostatic and steric repulsion. 

Electrostatic repulsions may be achieved by charging the particles surface, e.g. through the 

accumulation or depletion of electrons at the surface of the particles, and the dissociation of 

surface charged species (VERWEY et al., 1999). In the nanofluids research, these electrostatic 

repulsions are usually applied through intense ultrasonication, ball milling or high speed shearing 

(DAS et al., 2003a, DAS et al., 2003b, EASTMAN et al., 1997, XUAN et al., 2000). 

Even so, perhaps the most effective way for reducing the degree of aggregation is through steric 

repulsions. Such repulsive forces may be achieved through the particle adsorption of polymers or 

active species. The steric effect of polymer dispersants, or surfactants, is significantly determined 

by their concentration at the solid-medium interface. This is an economic method to enhance the 
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wettability of the particles. Surfactants consists of a hydrophobic tail portion, usually a long-chain 

hydrocarbon, and a hydrophilic polar head group than increases the continuity of the two phases. 

The hydrophilic polar head enables the solubility of the particles in polar solvents, such as distilled 

water or ethylene glycol.  

Nevertheless, equivalent active species can be enduringly bonded to the particles surface through 

covalent functionalization. Covalent functionalization presents some advantages over surfactants 

for the production of thermal nanofluids. It is recognized that surfactants may influence negatively 

the effective thermo-physical properties of nanofluids as it forms an interfacial layer between the 

two phases. Moreover, the heat and cooling routine processes may lead to the degradation of the 

surfactants and the formation of foams (NASIRI et al., 2011). Nguyen et al. found that the effective 

viscosity of nanofluids may have hysteresis behaviour, possibly by the surfactant degradation which 

culminates in the agglomeration of the nanoparticles (NGUYEN et al., 2007). Moreover, surfactants 

can be separated from their action zone during the pumping continuous routine of the thermal 

fluid. During these, the fluid is subjected to centrifugal forces that impose the separation of the 

surfactant, since this is not physically/covalently attached to the surfaces of the particles. 

To ensure that there is no aggregation of particles, the repulsive forces must extent over distances, 

at least, equal to the range of the van der Waals attraction forces. This range of interaction of the 

repulsive forces is referred herein as action layer. When two Brownian particles approach, the 

distance of separation between the particles decreases during the aggregation process, and the 

action layers begin to overlap as can be depicted in the Figure 3.2. The approaching particles 

experience an increase of the ∆G that prevents the aggregation of the particles, due to a repulsion 

induced by the equal polarity of the charged surfaces. This mechanism is designated as steric 

stabilization (HIEMENZ, 1977, RUSSEL et al., 1989). 

 

Figure 3.2: Overlap of the action layer of the active agents of two dispersed particles. 
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3.2.1.2 PHASE SEPARATION  

Phase separation, or the typically called sedimentation, is perhaps the best indicator of instability 

of a nanofluid, since it can be usually detected at the naked eye. For that reason, the 

sedimentation was the method most applied to the date, to assess the colloidal stability of 

nanofluids. Sedimentation represents the rate of separation of the two phases that occurs through 

the influence of gravity or centrifuge force field. Furthermore, sedimentation may also be a 

reflection of aggregation. As seen, aggregation produces structures of larger volume and mass, 

which cause a more rapid phase separation.  

A key relationship in understating the phase separation rate is the hydrodynamic Stokes’ law. In 

1850, Stokes derived an analytical formula (Equation 3.1) for the settling velocity of a single sphere 

suspended in a Newtonian fluid, under the influence of gravity (STOKES, 1850). This model takes 

into account the gravitational, buoyancy, and drag forces to which the particle is subjected. 

However, this model has limitations since, in most practical cases, the suspensions have more than 

one particle. 

vs=
g∙ (ρp-ρbf) ∙dp

2

18∙μbf

 3.1 

During phase separation, the particle produces the displacement of fluid in the opposite direction, 

as shown in the Figure 3.3. The velocity of the moving fluid has a gradient variation from layer to 

layer near the surface of the sphere. At a certain distance, the fluid velocity influenced by the 

settling particle equals zero, and starts to behave as if the particle were not present. 

 

Figure 3.3: Distortion of flow streamlines around a settling particle. 
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Therefore, for two neighbouring particles, the settling velocity may be lower than that predicted by 

Equation 3.1. This phenomenon is explained by the mentioned fluid displacement on the opposite 

direction to the movement of the particles, that disturbs the motion of the surrounding one. This 

effect was experimentally verified by Batchelor (BATCHELOR, 1972). Batchelor found that a 

suspension containing 3% volume fraction of spheres has an average settling velocity 20% lower 

than predicted by Stokes due to these hydrodynamics interactions.  

The shape of the particle may also play an important role on the sedimentation rate of the 

suspensions. For instance, in suspensions of elongated particles, these hydrodynamics interactions 

and physical interparticle interactions become more appreciable even for lower concentrations. 

For a given concentration the average distance between particles is reduced for elongated 

particles, increasing the influence produced by the displacement of the fluid. In such a suspension, 

the phase separation rate depends on the orientation of the particles, due to a variation of their 

drag coefficient. Moreover, the orientation of the particles is always changing due to fluctuations 

of the fluid viscosity resulting from the settling of the surrounding particles (HIEMENZ, 1977, 

KUMAR et al., 1991, TURNEY et al., 1995, VERWEY et al., 1999). Other factors may also reduce the 

settling velocity, namely hydrodynamics interparticle interactions and collisions. Sedimentation 

that has these in significant magnitudes is designated as hindered settling (BEISER et al., 2004, 

FEIST et al., 2007, HERZHAFT et al., 1999, RICHARDSON et al., 1954). 

The interaction between elongated particles is significantly higher than for equivalent spherical 

ones. Therefore, if a suspension of elongated particles (or MWCNTs) presents stability regarding 

aggregation, i.e. the repulsive forces between the particles are higher than the attractive ones, the 

sedimentation rate may be decreased. However, in the opposite situation, the agglomeration of 

particles is enhanced due to a higher particles contact, as predicted by the EVT, and the rate of 

sedimentation is higher. 

Nevertheless, there is a factor operating that prevents the complete sedimentation of small 

particles, namely, particles diffusion. According to Fick’s law, diffusion may be seen as the opposite 

process of sedimentation, since this has the tendency to keep things dispersed. Nevertheless, 

particles diffusion depends on the shape and size of the particles, and may be negligible for larger 

particles (FICK, 1855). Particles diffusion is the result of the random walk of the particles, i.e. their 

Brownian motion. As previously seen, this motion is caused by the random collisions of the 

medium molecules on the surface of the suspended particles. These collisions are a consequence 
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of the constant thermal motion of the medium molecules, also known as molecular diffusion 

(BROWN, 1828, EINSTEIN et al., 1956).  

Once the sedimentation becomes equal or less that the diffusion rate of the dispersed particles, 

the system is at equilibrium, presenting no macroscopic changes, i.e. the dispersion is stable 

regarding sedimentation. 

3.2.2 DEFINITION OF MWCNTS BASED NANOFLUIDS FOR THERMAL PURPOSES – STABILITY CONDITIONS 

To ensure a long-term stability to the MWCNTs based nanofluids, it was identified the possible 

mechanism that may directly contribute to the degradation of their thermal conductivity, according 

to the classical theories. These are the structural integrity of the nanoparticles, agglomeration and 

sedimentation, since all are main factors that contribute to the spatial distribution of the 

nanofluids over space and time. 

Assuming that the thermal conductivity of nanofluids depend on the spatial distribution of the 

nanoparticles in the medium, as suggested by the classical theories provided in Chapter 2, it is 

essential that the geometrical properties of the particles remain constant, at all the operative 

temperatures. The degradation of the initial tubular structure of the MWCNTs will reduce their 

degree of spatial distribution and probability of interaction that may contribute to the effective 

thermal conductivity enhancement. Moreover, such thermal degradation does not occur through a 

controlled way, causing the transition from monodispersion to polydispersion. 

It is also of utmost importance that the MWCNTs present low probability of agglomeration. Despite 

some authors argue that agglomeration of nanoparticles may contribute to a higher effective 

thermal conductivity enhancement (see Section 1.5.3.3), this is herein considered as a form of 

instability (PRASHER et al., 2006). Given the practical difficulty in controlling the formation of the 

aggregates, it becomes clear that the enhancement of the thermal conductivity will become 

stratified or only locally observed (see Figure 3.1). This is an undesired behaviour during the 

operation of a thermal fluid, since the local average thermal conductivity in the heat exchanger 

may be always changing. Furthermore, the nanoparticles aggregation may lead to an increased 

effective viscosity, another undesired effect (KEBLINSKI et al., 2008). The aggregation of 

nanoparticles produces structures with increased size and shape that settle more rapidly, inducing 

the separation of the phases, clogging of the flow channel and/or abrasion of the heat exchange 

surface. Regarding the experimental measurement of the effective thermal conductivity, the 
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stratification of the samples will clearly be a noise factor, due to the uncontrolled rate of 

aggregation and sedimentation during the experimental observations. It is of utmost importance to 

ensure the homogeneity within the sample during the readings. 

However, due to a hydrophobic surface, pristine MWCNTs seems to spontaneously agglomerate in 

polar solvents, such as water and ethylene glycol. Moreover, due to their high surface-to-volume 

ratio, their van der Waals attraction forces are more intense. In the Figure 3.4 is schematically 

represented a pristine CNT. In order to improve the solubility of pristine CNTs in a polar solvent, it 

is necessary that their lateral surface became hydrophilic to enhance the interaction with the 

solvent and increase the van der Waals repulsive forces (CAO, 2004, MEYYAPPAN, 2004). As 

previously seen, MWCNTs can become hydrophilic through specific covalent functionalization.  

  

Figure 3.4: Schematic representation of a pristine CNT. 

The most common covalent functionalization techniques are the oxidative treatments which are 

capable of attach oxygenated functional groups, such as carboxylic (-COOH) and alcohol groups (-

OH). This can be achieved through chemical treatment, such as boiling nitric and/or sulphuric acid 

(ESUMI et al., 1996, NASEH et al., 2010, XIE et al., 2011, XIE et al., 2003). 

The carboxylic groups behave as weak acids and possess ion-exchange properties, having both 

hydrogen acceptors and hydrogen donors (SHIM et al., 2001). This will improve the MWCNTs 

wettability, due to a more hydrophilic surface structure, and reduce agglomeration by increasing 

the repulsions van der Waals that counter-balances with the attractive ones. Additionally, both 

carboxyl and alcohol groups have polar properties, contributing for their solubility in polar solvents. 

In the Figure 3.5 is schematically illustrated a CNT functionalized with carboxylic groups in the 

lateral surface. 
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Figure 3.5: Schematic representation of a functionalized CNT. 

On the other hand, chemical treatment also causes the shortening of the MWCNTs, reducing their 

ability to enhance the spatial distribution (BANERJEE et al., 2005, NASEH et al., 2010, YUDIANTI et 

al., 2011). The distribution length reduction of the MWCNTs depends on the extent and intensity of 

the reaction. Yet, given the lack of specific approaches to measure the sizes distribution of 

elongated nanoparticles, the new distribution has to be determined by scanning electron 

microscope (SEM) or transmission electron microscopy (TEM).  

Moreover, pristine MWCNTs present a very high thermal conductivity, nearly 3000 W mK⁄ , usually 

described as ballistic (HONE, 2002). Through molecular dynamics simulations, Shenogin et al. 

verified that the degree of covalent functionalization causes a drop on the thermal conductivity of 

the MWCNTs. Even so, the thermal conductivity of covalently functionalized MWCNTs converge to 

1700 W mK⁄  for the highest degree of functionalization (SHENOGIN et al., 2004a). Furthermore, as 

verified in Chapter 2, hydrophilic surfaces contribute to the decrease of the Kapitza resistance, an 

interface thermal resistance that strongly reduces the effective thermal conductivity enhancement 

of suspensions. 

Even assuming that the functionalized MWCNTs have very low probability of agglomeration, they 

are permanently subjected to gravitational and other centrifugal force fields, which will induce the 

separation of the phases. Nevertheless, the elongated shape of the MWCNTs enables a higher 

degree of hydrodynamics and interparticle interaction that hindered the separation process.  

In summary, the proposed next-generation MWCNTs based nanofluids for heat exchange 

intensification should present negligible agglomeration and statistically homogeneous spatial 

distribution of the nanoparticles in the base fluid and over time. Nanofluids that fulfil these 

conditions of stability may ensure long-term homogeneous thermal properties that are essential 
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for their assessment through the common available measurement techniques (see Section 1.5.3.1). 

Moreover, such nanofluids enable the elimination of experimental noise factors, due to a higher 

probability of repeatability, contributing to a better inference over the experimental 

measurements. 

That is, the stability conditions desired for the long-term nanofluids are: 

1. Agglomeration free 

2. Phase separation free 

3. Constant geometrical structure of the nanoparticle. 

3.3 DESIGN OF EXPERIMENTS 

As postulated in Section 1.6, it is intended to contribute with a well-established parametric study 

on the effective thermal conductivity of nanofluids, enabling to demystify the intriguing behaviour 

reported in the open literature. To this end, an appropriate design of experiments (DOE) is 

developed to verify the mechanisms proposed in the open literature. 

The conducted survey presented in the Chapter 1 suggested that the anomalous effective thermal 

conductivity may be explained through the Brownian motion of the nanoparticles, the nano-layer 

ordering structure, and the aggregation and percolation of the heat through the nanoparticles. In 

contrast, the classical theories state that suspensions can be regarded as statistically motionless 

and homogeneous, and the effective thermal conductivity depends upon the spatial distribution of 

the nanoparticles and, depending on the geometry and volume fraction of the particles, in thermal 

interparticle interactions. 

Four main control factors that may influence the final overall thermo-physical properties were 

identified. These are the (1) MWCNTs geometry (sizes distribution), their (2) volume fraction, the 

(3) base fluid and the (4) temperature. It should be noted that a control factor of an experiment is 

a controlled independent variable. In the Table 3.1, it is presented a summary of the expected 

relation between the identified control factors and the mechanisms proposed for the 

enhancement of the effective thermal conductivity of nanofluids. As noticeable, the effect of the 

aggregation and percolation of heat through the particles was neglected, since this was identified 

as a form of instability. Therefore, the aggregation of the nanoparticles will be treated separately, 

as explained ahead in the Section 3.8. 
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Table 3.1: Expected relation of the control factors on the mechanisms governing the effective thermal conductivity. 

 
Open literature Classical theories/proposed 

Brownian 
motion 

Nano-layer 
structure 

Spatial 
distribution 

Interparticle 
interaction 

Nanoparticle geometry X X X X 

Volume fraction X X X X 

Base fluid X X   

Temperature X    

As previously seen, the Brownian motion of the particles depends upon the base fluid viscosity and 

temperature, on the geometry of the nanoparticle, since this affect their size, mass and drag 

coefficient, and on the volume fraction. The latter, increase the interparticle interaction that may 

hinder their motion. The nano-layer ordering structure of the base fluid molecules near a solid 

surface may be affected by the nanoparticle geometry, due to distinct surface-to-volume ratios, by 

the volume fraction, which enhances the density of solid surfaces on the medium, and by the base 

fluid thermo-physical properties that may produce distinct ordering nano-layer thickness. 

Furthermore, the spatial distribution and dynamic interparticle interaction may depend on the 

MWCNTs geometry and structural flexibility, volume fraction, and Brownian motion. Therefore, 

these are characterized through the dynamic numerical model provided in Section 3.6. 

From the previous Table, it appears that the MWCNTs geometries may present the most intriguing 

impact on the effective thermal conductivity, due to the impact on all the mechanisms proposed. 

Therefore, six different MWCNTs were selected for the present study. The manufacture and 

geometric properties of the selected MWCNTs are described in Table 3.2. 

Table 3.2: Nanoparticles designation and their geometric properties. 

MWCNTs 
designation 

Nanoparticle 
manufacture 

Ash [wt.%] 
Purity 
[wt.%] 

ρCNT 

[kg/m³] 
lp/dp 

d50-80 l10-20 Cheaptubes Inc. <1.5 >95 2160 231 

d60-100 l5-15 Shenzhen NanoTech Port Co., Ltd. <3.0 >97 2160 125 

d60-100 l1-2 Shenzhen NanoTech Port Co., Ltd. <3.0 >97 2160 19 

d20-40 l10-30 Cheaptubes Inc. <1.5 >95 2160 667 

d20-40 l5-15 Shenzhen NanoTech Port Co., Ltd. <3.0 >97 2160 333 

d20-40 l1-2 Shenzhen NanoTech Port Co., Ltd. <3.0 >97 2160 50 

These particles description may be summarized by two diameters distributions, dp<50 and dp>50. 

These are full crossed with three length distributions, lp1-2, lp=5-15 and lp>15. The diameter and 

length distributions are used for the designation of each MWCNTs type in a quite obvious way. In 

addition, the nanoparticle sizes were chosen in order to cover a broad interval both in what 
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concerns diameter as well as length, to enable appropriate data interpolation and further analysis. 

Although the particles were achieved through different manufacturers, all the carbon nanotubes 

were produced by catalysed chemical vapour deposition (CCVD), inferring identical structural and 

thermo-physical properties. 

In line with the MWCNTs geometry, the nanoparticles volume fraction was identified also as an 

important control factor. It should be reminded the intriguing linearity or non-linearity behaviour 

suggested by the researcher community, cited in Section 1.5.3.2. Therefore, five volume fractions 

were selected, ranging from 0.25 to 1.5%vol., namely 0.25, 0.50, 0.75, 1.00, and 1.50%vol. It is 

known that the viscosity increases considerably with the nanoparticles loading (KANAGARAJ et al., 

2008, PONMOZHI, 2009, PONMOZHI et al., 2009). Since the viscosity is an important parameter in 

practical heat transfer processes, the 1.50%vol. was selected as the upper limit in the present 

studied. Furthermore, higher volume fractions will require more MWCNTs, which are yet expensive 

in the worldwide market. It is expected that five volume fractions enable to assess the possible 

non-linearity of this control factor.  

The base fluid produce changes in the thermo-physical properties of the medium, which may 

perform a statistically significant difference in the results. In the eventual case of Brownian motion 

producing some effect on the results, it should be important to verify this through the variation of 

the viscosity of the medium. Therefore, two distinct base fluids are selected, specifically aqueous 

solution of ethylene glycol at 30% and 60% (DW+30%EG and DW+60%EG, respectively). Aqueous 

solutions of ethylene glycol are common in heat transfer applications due to its antifreeze, low 

corrosive and lubricant properties. Furthermore, the measurement of the thermal conductivity of 

fluids is not easy, and the accuracy of the results may be improved for fluids with higher viscosity 

than water. Nevertheless, it is herein recognized that the base fluid may induce some impact on 

the magnitude of the Kapitza resistance. Given the lack of fundamentals mechanisms to describe 

this resistance, the selection of only two base fluids allows the reduction of the degrees of freedom 

that could be induced by the Kapitza resistance, preventing for lack of inference on the results. In 

Appendix B, it is presented the thermo-physical properties of the aqueous solutions of ethylene 

glycol. 

As pointed out, quite a few researchers suggest a strong dependence of the effective thermal 

conductivity on the temperature. It is known that the increase of the temperature speed up the 

Brownian motion and, perhaps, the dynamical interparticle interaction. Hence, six temperatures 
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were selected, ranging from 283.15 K to 323.15 K. The upper limit temperature 323.15 K 

represents the limit to ensure the accuracy of the thermal conductivity measurements, as stated in 

Section 4.2. 

In Table 3.3, it is summarized the control factors selected for the study and their respective degrees 

of freedom. 

Table 3.3: Control factors and their range of settings for the experiment. 

Control factor 
MWCNT Base fluid ɸ [%] Temperature [K] 

A B C D 

Level 1 d50-80 l10-20 DW+30%EG 0.25 283.15 

Level 2 d60-100 l5-15 DW+60%EG 0.50 293.15 

Level 3 d60-100 l1-2 - 0.75 298.15 

Level 4 d20-40 l10-30 - 1.00 303.15 

Level 5 d20-40 l5-15 - 1.50 313.15 

Level 6 d20-40 l1-2 - - 323.15 

degrees of freedom 5 1 2 5 

It is distinguishable that the experiments have a factorial design. In order to decrease the cost and 

time of experimental measurements, it can be applied a fractional factorial design. However, from 

the literature review conducted in the Chapter 1, it was verified that a lack of systematically and 

identical nanofluids production and characterization may have contributed to noise factors and 

development of controversy theories. Therefore, a full factorial design of experiments was selected 

in this research, to ensure a higher degree of inference over the experimental results. In this, all 

levels of each factor are combined with those of other factors. Therefore, the problem results in 

360 experimental data points (62∙21∙51=360), i.e. ABCD accordingly to the identification provided 

in Table 3.3.  

The three basic principles of design of experiments are randomization, blocking, and replication. By 

randomly distribute the experimental events, it is possible to average the effects of extraneous 

factors that may be present. Blocking allows to increase the precision when randomization is 

impossible or undesired. Therefore, the design is blocked by the factor temperature, virtually 

decreasing the number of experimental runs to 60, the total number of nanofluids (ABC). Through 

this procedure, it is reduced the time for the experimental measurements, since it is preventing the 

selection of temperature in each run, enabling to programme this as a routine, as described in 

detail in Chapter 4. 
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Replication of experimental measurements can identify the source of experimental variance 

and uncertainties. If the number replication is too low, the experiment will lack the precision on the 

results, and if is too high, time and resources will be wasted for minimal gain. Therefore, the 

calculation of the sample size is crucial for an efficient design of experiments. This is described in 

Section 4.2. 

3.4 MWCNTS FUNCTIONALIZATION METHODOLOGY  

The base fluids used for the preparation of the nanofluids are aqueous solutions of ethylene glycol 

that are polar solvents. Therefore, it is necessary to transform the hydrophobic surfaces of the 

pristine MWCNTs on hydrophilic surfaces. As previously seen, the best available approach to create 

a hydrophilic surface on the MWCNTs is through a covalent functionalization. The most common 

covalent functionalization techniques are the oxidative treatments which are capable of attach 

oxygenated functional groups on the tubes such as carboxylic and alcohol groups. These 

techniques present advantages over the use of surfactants for thermal transport nanofluids. 

Therefore, in the present research, the pristine MWCNTs were covalently functionalized through 

the methodology proposed by Esumi et al. (ESUMI et al., 1996). Other technique, non-chemical and 

dry, can be used for the carboxyl functionalization of the MWCNTs surface, namely dielectric 

barrier charge (DBD) plasma. However, there are evidences that this technique produces less 

functional groups on the MWCNTs surface and, far more important, have an prohibitive cost of 

applications when compared to the chemical methodology (BANERJEE et al., 2005, CHEN et al., 

2011, NASEH et al., 2010, WANG et al., 2006). 

 It was prepared 50 ml of each MWCNTs based nanofluid. The volume fraction of the nanofluids 

was obtained through the following expression: 

ϕ=
mCNT∙ ρCNT

mCNT ∙ρCNT+Vbf
∙100 3.2 

The previously expression suggested the measurement of distinct volume of base fluid Vbf, 

depending on the volume fraction of the nanofluid. Additionally, this volume may be difficult to 

measure due to the magnitude of the graduated cylinder, since they can become decimal or 

centesimal, inducing noise errors to the system. Therefore, the Vbf (VDW + VEG) was fixed to 50 ml, 

and the total volume of the nanofluid will be nearly 50 ml, depending on the volume fraction of the 
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nanoparticles. In Appendix D, Equation D.2 provides the mathematical formulation for the 

experimental volume fraction error.  

In Table 3.4, it is presented the amount of nanoparticles needed to produce the samples that were 

tested, for each of the MWCNTs geometries selected. The total amount of MWCNTs calculated is 

majored in 50% to avoid for some badly dispersion achievement (unstable), which must be 

repeated. Furthermore, according to Esumi et al., it is also expected nearly 35 to 40% mass loss of 

the initial pristine MWCNTs, during the chemical treatment. Therefore, a total of 20 g (≈19 g) of 

MWCNTs, for each of the geometries selected, were functionalized. 

Table 3.4: Materials and quantities required for preparation of the samples. 

Base fluid ϕ VDW [ml] VEG [ml] mCNT [g] ∆ϕ 

DW+30%EG 

0.25% 35 15 0.271 0.01% 

0.50% 35 15 0.543 0.02% 

0.75% 35 15 0.816 0.03% 

1.00% 35 15 1.091 0.04% 

1.50% 35 15 1.645 0.06% 

DW+60%EG 

0.25% 20 30 0.271 0.01% 

0.50% 20 30 0.543 0.02% 

0.75% 20 30 0.816 0.03% 

1.00% 20 30 1.091 0.04% 

1.50% 20 30 1.645 0.06% 

Total - - - 8.730  

The following steps describe the chemical treatment process for each MWCNTs geometry (ESUMI 

et al., 1996): 

1. Inside the hood, it was measured 20 g of pristine MWCNTs and transferred to a 5 litre 

beaker; 

2. Then, these were mixed with 200 ml of nitric acid (HNO₃) and 600 ml of sulphuric acid 

(H₂SO₄), a 1:3 volume ratio. This performs 40 ml of acids per gram of MWCNTs, as 

suggested by several authors (CHEN et al., 2004, ESUMI et al., 1996, KANAGARAJ et al., 

2008, PONMOZHI et al., 2009, VEINGNON et al., 2011, XIE et al., 2011, XIE et al., 2003, 

ZHOU et al., 2008); 

3. The mixture was boiled for 30 minutes at 413.25 K on a hot plate with a magnetic stirrer; 

4. After the end of the chemical reaction, the mixture was cooled naturally for 24 hours and 

diluted with distilled water; 
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5. The particles were intensely washed with distilled water until the supernatant show no 

signs of acidity. When necessary, the particles are washed with a centrifuge (Heraeus 

Multifuge 1L). At this step, the carboxylic groups are already bonded to the surface of the 

MWCNTs, being impossible to reach the pH of the distilled water (≈7) (SHIM et al., 2001, 

XIE et al., 2003). 

6. The cleaned MWCNTs were collected and dried at 373.15 K in an oven, becoming a hard 

pellet. 

7. Finally, the dried nanoparticles pellets were powdered with an analytical miller.  

8. The functionalized MWCNTs were stored in a desiccator. Through this, it was avoided the 

gain of moisture, which change the effective density of the nanoparticles that contributes 

to noise factors. 

Other authors used this method for the MWCNTs functionalization and reported good dispersion 

results (CHEN et al., 2004, ESUMI et al., 1996, KANAGARAJ et al., 2008, PONMOZHI et al., 2009, 

VEINGNON et al., 2011, XIE et al., 2011, XIE et al., 2003, ZHOU et al., 2008). 

In Figure 3.6, it can be depicted SEM images of pristine MWCNTs and covalently functionalized 

MWCNTs. In this, it is perceptible that the pristine MWCNTs are highly entangled and, in contrast, 

the covalently functionalized MWCNTs are disentangled. Furthermore, it seems that the tubular 

structure integrity was maintained after the chemical treatment. Nevertheless, it should be noted 

that this does not indicate that the size distribution of the final MWCNTs dispersed in the base 

fluids is equal to that of the pristine MWCNTs, and announced by the manufacturers. 

 

a) 

 

b) 

Figure 3.6: SEM image of a) pristine MWCNTs and b) covalently functionalized MWCNTs. 
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3.5 QUALITY OF THE FUNCTIONALIZED MWCNTS 

As seen, in order to produce the long-term nanofluids projected, it was necessary the 

functionalization of the pristine MWCNTs. In this Section, it is provided an experimental 

characterization and assessment to the quality of the functionalized MWCNTs. 

3.5.1 IDENTIFICATION TO THE FUNCTIONAL GROUPS PRODUCED 

Fourier transform infrared spectroscopy (FTIR) was performed in pristine and functionalized 

MWCNTs, in order to identify the functional groups attached to the MWCNT surface after 

functionalization.  

The FTIR analysis method uses infrared light to scan the samples and observe chemical 

compounds. During the analysis, an absorbance spectrum of the sample is registered, providing 

information about the chemical bonds and molecular structure of the material under test. It should 

be reminded that, to reduce the probability of agglomeration, the MWCNTs were covalently 

functionalized with carboxylic groups (-COOH), which increased interparticle van der Waals 

repulsive forces. Thus, it is intended herein to verify the formation of such compounds on the 

MWCNTs. 

The FTIR measurements were performed in a Brucker Tensor-27 spectrometer in the range of 400 

to 4000 cmˉ¹. The final spectrum is the mean of 3 measurements replications with a resolution of 4 

cmˉ¹. Each spectrum was collected over 256 scans. Since the MWCNT detains high absorbance, 

they were mixed with KBr, and pellets were prepared. 

In Figure 3.7, it is illustrated the FTIR spectra of the pristine and functionalized MWCNTs. The 

spectra are vertically shifted for better visualization purposes.  

As it can be depicted, all functionalized MWCNTs exhibit a peak nearby 1630 cmˉ¹, which 

represents the carbon skeleton (C=C) (RAHIMPOUR et al., 2012), suggesting that the integrity of 

the MWCNTs was not affected by the chemical treatment. The peak ranging from 1150 cmˉ¹ to 

1210 cmˉ¹ is associated with C-O stretching of phenolic and carboxylic groups, the peak near 1150 

cmˉ¹  identifies the O-H, and the peak close to 1710 cmˉ¹ corresponds to C=O stretching of the 

same groups (KIM et al., 2008b, PENG et al., 2003, RAHIMPOUR et al., 2012, SHAFFER et al., 1998, 

XIE et al., 2003, ZHANG et al., 2003). These results reveal the quality of the functionalization 

procedure. 
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Figure 3.7: FTIR spectra of studied pristine and functionalized MWCNTs.  
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3.5.2 FUNCTIONALIZED MWCNTS STRUCTURAL DAMAGES AND INTEGRITY ASSESSMENT 

It was already seen that the structure of the dispersed MWCNTs is achieved through the analysis of 

the SEM images. Nevertheless, thermo-gravimetric analysis (TGA) was used to evaluate the thermal 

behaviour, and stability of the functionalized MWCNTs at higher temperatures and, far more 

important, to assess possible structural damage induced by the functionalization methodology, 

which may decompose the MWCNTs when the temperature of test is changed. A negligible 

structural degradation of the MWCNTs at the distinct measuring temperature ensures constant 

test conditions regarding structural morphology and spatial distribution of the samples during the 

measurements, appraising possible noise factors at the higher temperatures. 

TGA measure the mass-loss of the sample as a function of the temperature, indicating the 

decomposition rate of the samples. Therefore, the mass-loss curve of the functionalized MWCNTs 

is compared to that of the corresponding pristine MWCNTs.  

The measurements were conducted in a SETSYS Setaram DSC-TG. This apparatus measure the 

mass-loss at heating rate ranging from 0.1 to 100 K per minute, with a resolution of 0.002 µg, 

within a temperature range from 293.15 K to 2673.15 K (SETARAM, 2013). Even so, the mass-loss 

of the samples were preformed from 293.15 K to 1023.15 K with a heating rate of 10 K/min under 

an atmosphere of nitrogen. 

It is known that the heating rate influence the temperature of decomposition of the sample, i.e. for 

a higher heating rate, the temperature of decomposition may also be slightly enhanced. 

Nevertheless, the trend line of the mass-loss are similar and since it is not intended to specifically 

identify the temperature of degradation, but possible structural degradation and/or damage, this 

typical medium-slow heating rate (10 K/min) was selected (HSIEH et al., 2010, TALAEI et al., 2011). 

Furthermore, TGA measurements are also strongly influenced by the atmosphere. The nitrogen 

ensures an inert atmosphere, providing a more reliable measurement of the structural degradation 

of the nanoparticles with the temperature rather than an oxidative atmosphere, since it is intended 

to predict the thermal behaviour and possible structural damage of the functionalized MWCNTs 

dispersed in a fluidic medium. For instance, an oxygen atmosphere will certainly react faster with 

the functional groups and oxidize the MWCNTs, decomposing them faster. Therefore, an inert 

atmosphere enables to asses such structural damage, which degrades the MWCNTs with the 

temperature, rather than through chemical reactions. 
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In Figure 3.8, it can be depicted the mass change of both pristine and functionalized d50-80 l10-20 

MWCNTs as a function of the temperature. This results suggests that the pristine MWCNTs have 

perfect stability, since no mass change was detected for temperature ranging from 293.15 to 

1023.15 K. In contrast, the functionalized MWCNTs present a slight linear degradation of the 

original mass, yet, without an evident temperature set point of decomposition, i.e. a pronounced 

decay of mass to 0%. Nevertheless, the trend line reveals that, at least, 90% of the mass do not 

decompose and evaporate. This may indicate the presence of some impurities or some MWCNTs 

fragments that were not washed during the functionalization treatment, which might easily 

degrade at higher temperatures, evaporating, and perhaps the decomposition of the functional 

group attached to the side walls of the MWCNTs. Similar results were obtained for the remaining 

MWCNTs analysed and are reported in the Appendix E. 

 

Figure 3.8: TGA of functionalized and pristine MWCNTs (d50-80 l10-20). 

In Table 3.5, it is summarized the mass-loss % for two different temperatures, 323.15 K and for 

1023.15 K. As it can be depicted, for 323.15 K, the functionalized MWCNTs present, in general, 

negligible mass-loss, indicating an acceptable thermal stability for the tested conditions. These 

results are of greatest importance to ensure that the samples may present similar morphological 

and structural conditions at several experimental conditions, thereby reducing noise factors. 

Table 3.5: Mass-loss achieved in the TGA test at 323.15 and 1023.15 K, for all the functionalized MWCNTs. 

Nanoparticle mass-loss @ 323.15 K mass-loss @ 1023.15 K 

d50-80 l10-20 -0.8% -12.0% 

d60-100 l5-15 -1.2% -16.9% 

d60-100 l1-2 -0.4% -5.8% 

d20-40 l10-30 -0.9% -9.7% 

d20-40 l5-15 -1.3% -15.6% 

d20-40 l1-2 -0.7% -10.7% 
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3.5.3 FUNCTIONALIZED MWCNTS SIZE DISTRIBUTIONS ANALYSIS 

Although the dispersion method enables the production of non-agglomerated dispersions of 

MWCNTs in polar solvents, it is recognized that the covalent functionalization cause degradation of 

the geometry of the nanoparticle, namely length reduction (HILDING et al., 2003). Therefore, the 

size distribution of the functionalized nanoparticles differs from the announced by the 

manufacturer (Table 3.2) and cannot be applied in the predictive models. 

The literature highlights a few novel techniques to assess the size distribution of particles at the 

nanoscale, such as laser diffraction, dynamic light scattering, sieving, sedimentation, microscopy, 

among others. However, for a complete description of the nanoparticle, it is required two 

parameters: length, and diameter. The majority of the sizing techniques mentioned, which 

generally have prohibitive costs, assume that the particles are spherical, describing these through 

an equivalent diameter, of a sphere with the same mass, volume, surface area, or sedimentation 

rate, among others (ALLEN, 1996).  

As it can be depicted from Section 1.5.3.4 and 2.5, to describe the effective thermal conductivity of 

MWCNTs based nanofluids, it may be required the respective diameter and length distribution of 

the dispersed MWCNTs. The assumption of a spherical shape of the nanotubes will lead to the 

underestimation of the effective conductivity, as suggested in Figure 2.15. Therefore, it is of utmost 

importance the selection of the appropriate methodology to assess the two-dimensional size 

distributions of the dispersed MWCNTs. 

In this research, the size distributions of the MWCNTs were achieved through microscopy, namely 

scanning electron microscope (SEM), and image analysis. SEM scans the surface of the sample 

through a high energy electron beam, and the back scattering from the electrons forms an image. 

These images enable to observe the structure and dimensions of the MWCNTs. Moreover, the 

manufacturers were contacted and these revealed that the provide sizes distribution of pristine 

MWCNTs were also achieved by similar technique.  

The diameter and length distribution of the functionalized-MWCNTs was determined in a Hitachi 

SU-70. It should be noted that this microscopic technique must work in a vacuum being, therefore, 

required dried nanoparticles. The functionalized MWCNTs, of each selected geometry, were 

dispersed in ethanol in very low concentration. Drops of these dispersions are then deposited over 
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the surface of the samples' holder and it is allowed to dry. Then it is performed a sputter coating of 

carbon to ensure that the samples are electron conductive.  

Several images are taken from each sample for analysis and measurement. Ideally, the images 

should be processed by specific image analysis software. However, these would require MWCNTs 

completely isolated from each other and, preferably, stretched. The combination of these factors 

induces noise factors in the automatic image analysis, requiring constant monitoring and co-

processing/validation during the analysis. Recognizing the possibility of human error, the 

measurement of the sizes distribution of the dispersed MWCNTs was performed manually, using a 

free CAD software, DraftSight from Dassult Systemes (DASSAULT-SYSTEMES, 2013).  

To minimize the associated error, a large number of images and measurements were taken, and it 

is assumed that the latter have a normal distribution, enabling to estimate their respective 

confidence interval and statistical error. However, as it will be seen, the functionalized MWCNTs 

present a high length reduction that produced asymmetric normal distributions that also predict 

negative lengths, a physical impossibility. Therefore, the lengths' normal distributions were 

truncated in the interval ]0 ; +∞[. The truncated normal distribution is a probability distribution 

from a normal distribution, were the values have, at least, one bound (LAWLESS, 2006). In 

Appendix D, is provided the mathematical formulation of both distributions, as well as the 

methodologies to test the goodness-of-fit of the distributions over the observed results, which 

reveals satisfactory adherence. Therefore, the mean (and truncated mean) and standard deviation 

(and truncated standard deviation) can be used to describe the sizes distribution of the 

functionalized MWCNTs. 

As mentioned, the size distributions of the dispersed MWCNTs were measured through an 

intensive SEM image analysis, as schematically represented in Figure 3.9. Nonetheless, it should be 

noted that the performed measurements are executed in projected images, which induces a 

certain unknown degree of inaccuracy, mainly in what concerns length estimation due to the 

three-dimensional nature of the analysed structures. Even so, this methodology enables the 

assessment of the two-dimensional size distributions at the nanoscale.  
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Figure 3.9: a) illustration of a given SEM image of dispersed MWCNTs and b) schematic representation of the 

measurement procedure used.  

It is known that the samples have dispersed nanoparticles with different sizes, which are 

characterized by the obtained sizes distribution. Nevertheless, the mean (and truncated mean) of 

these sizes distribution is used to characterize the experimental observed results. This technique 

also enabled to verify the structural integrity of the dispersed functionalized-MWCNTs, i.e., their 

tubular shape (Figure 3.6).  

For each of the studied MWCNTs, it was analysed a large number of SEM images, to obtain higher 

samples size and, therefore, decrease the standard deviation error of the measured size 

distributions. In Table 3.6, is provided samples size obtained from the SEM analysis, for each of the 

MWCNTs tested. The larger number of diameters observed when compared to the number of 

considered lengths results from the fact that some SEM images do not permit a truthful 

measurement of the MWCNTs length. In such cases, only the diameter was measured. 

Table 3.6: Samples size obtained from the SEM images analysis. 

MWCNT designation N dp N lp 

d50-80 l10-20 263 70 

d60-100 l5-15 131 111 

d60-100 l1-2 189 171 

d20-40 l10-30 401 130 

d20-40 l5-15 175 106 

d20-40 l1-2 189 122 

average 225 118 

In Figure 3.10, it is illustrated the measured diameters and lengths distributions of the 

functionalized MWCNTs d50-80 l10-20. It should be noted that, in this Figure, the measured sizes 
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are rounded to perform the histogram graph, which is only used to visualize the distributions. 

Moreover, all the results from this analysis outcomes from the original measured values. Similar 

results were obtained for the remaining MWCNTs analysed and are reported in the Appendix E. As 

it can be observed, the functionalized MWCNTs physical dimensions (diameter and length), exhibit 

a normal distribution. From this, it was obtained the mean diameter and length and respective 

confidence interval of 95%, for all the studied MWCNTs. The mathematical formulation to estimate 

the 95% confidence range of the mean for the considered samples is expressed in Appendix D. 

 

Figure 3.10: Diameter and length distribution of the dispersed MWCNTs d50-80 l10-20. 

In the Appendix E similar Figures of the statistical convergence for the remaining studied 

nanoparticles are provided. 

As mentioned, since the diameters and lengths comply within the normal and truncated normal 

distributions, the mean (and truncated mean) and standard deviation (and truncated standard 

deviation) of the measurements can be used to describe the sizes distribution of the functionalized 

MWCNTs. 

The results obtained for the studied MWCNTs are summarized in Table 3.7. These are the results 

for a mean sample size of 218 measured diameters and 118 measured lengths, as shown in Table 

3.6. The uncertainty interval of the mean diameter and mean length for a 95% confidence level 

were calculated through Equation D.7 and D.9, respectively, presented in the Appendix D. 
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Table 3.7: Diameter and length distribution assessment, after functionalization (uncertainty and 95% confidence interval 
C.I. according to Appendix D). 

 
diameter length 

MWCNTs 
designation 

dp̅ [nm] Δdp̅ [nm] 95% C.I. lptru
 ̅̅ ̅̅ ̅ [nm] Δlptru

 ̅̅ ̅̅ ̅   [nm] 95% C.I. 

d50-80 l10-20 68 ± 1.194 (1.8%) [49;88] 2865 ± 342 (11.9%) [246;5485] 

d60-100 l5-15 62 ± 1.985 (3.2%) [37;86] 2012 ± 181 (9%) ]0;4050] 

d60-100 l1-2 58 ± 1.927 (3.3%) [36;84] 1702 ± 181 (10.6%) ]0;3516] 

d20-40 l10-30 50 ± 0.766 (1.5%) [34;65] 1799 ± 149 (8.3%) [179;3420] 

d20-40 l5-15 50 ± 1.331 (2.7%) [32;68] 1590 ± 189 (11.9%) ]0;3232] 

d20-40 l1-2 42 ± 1.133 (2.7%) [27;58] 1052 ± 151 (14.4%) ]0;2174] 

As expected, the MWCNTs lengths are the parameter most affected by the functionalization 

process, assuming as valid the initial size distribution announced by the manufacturers. The 

average aspect ratio reduction, for all the studied MWCNTs, was of -56%.  

Table 3.8 summarizes the geometrical properties of the dispersed MWCNTs under study that may 

be relevant to the experimental results' assessment. 

Table 3.8: Geometrical properties of the dispersed MWCNTs under study. 

MWCNTs designation dp̅ [nm] lptru
 ̅̅ ̅̅ ̅ [nm] lptru

 ̅̅ ̅̅ ̅/dp V [nm³] S/V [nm¯¹] S [nm²] 

d50-80 l10-20 68 2865 42 10406208 0.059 612130 

d60-100 l5-15 62 2012 32 6073070 0.065 391811 

d60-100 l1-2 58 1702 29 4497895 0.069 310200 

d20-40 l10-30 50 1799 36 3532834 0.080 282627 

d20-40 l5-15 50 1590 32 3122603 0.080 249808 

d20-40 l1-2 42 1052 25 1457167 0.095 138778 

Assuming that the final geometry of the nanoparticles caused by the dimensional degradation 

induced by the functionalization process depends of the initial dimensional properties of the 

MWCNTs (provided by the manufacturer), it is possible to develop a statistical predictive model, 

based on multivariate linear regression technique. In Equation 3.3 it is presented a multivariate 

linear regression to predict both magnitude of the diameter and length of the MWCNTs after the 

dispersion process, based on the original dimensional data disclosed by the manufacturers (Table 

3.2). 

X=a1+
dp

a2
+

a3

lp
+

a4

lp
2 +

a5

lp
3 3.3 
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where X is the variable to be predicted, i.e. the functionalized diameter or length in m, and a1…5 are 

the model adjustment factors shown in the Table 3.9.  

Table 3.9: Values of the adjustment factors for the multivariate linear regression for both diameter and length prediction. 

Variable diameter length 

a₁ -4.2742E-08 -6.104E-06 

a₂ 2.8000E-01 1.070E+01 

a₃ 2.6684E-12 2.420E-10 

a₄ -2.0912E-17 -1.925E-15 

a₅ 2.5625E-23 2.366E-21 

In Figure 3.11, it is shown the scatter chart of the proposed multivariate linear regression. As this is 

a multivariable problem, the graph is represented in terms of output versus target, where, output 

is the statistical results shown in Table 3.7, and target the results achieved through the model, as 

schematically defined in Table 3.10. As it can be seen, the regression model presents an acceptable 

correlation  with the statistical results (r²>0.99), suggesting that this can be used to predict the final 

geometry properties of MWCNTs functionalized through the methodology described in the Section 

3.4. In Table 3.11 is a comparison of between the mean diameter and mean truncated length 

achieved by the normal distributions with the predicted through Equation 3.3. 

 

Figure 3.11: Multivariable regression for the achieved diameters and lengths of the functionalized MWCNTs. 

Table 3.10: Schematic defined of the terms target and output, used in Figure 3.11. 

 
Predictive model Measured experimentally values 
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Table 3.11: Comparison of between the mean diameter and mean truncated length achieved by the normal distributions 
with the predicted through Equation 3.3. 

MWCNTs designation dp̅ [nm] lptru
 ̅̅ ̅̅ ̅ [nm] dp̅ predicted [nm] lp  ̅ predicted [nm] 

d50-80 l10-20 68 2 865 68 2 870 

d60-100 l5-15 62 2 012 63 2 067 

d60-100 l1-2 58 1 702 57 1 642 

d20-40 l10-30 50 1 799 50 1 800 

d20-40 l5-15 50 1 590 49 1 532 

d20-40 l1-2 42 1 052 43 1 107 

3.5.4 BRIEF DISCUSSION 

So far, it was verified that the functionalization technique attached the desired carboxyl groups to 

the sidewall of the pristine MWCNTs. Through this, it is expected the creation of the hydrophilic 

surface on the MWCNTs. The TGA revealed that the chemical treatment produced some structural 

damages. Nevertheless, this is only noticeable for very high temperatures (~1000 K). For the 

projected temperatures for thermal conductivity assessment, the functionalized nanoparticles 

present satisfactory thermal stability, since the damage caused by the chemical treatment seems 

to be unnoticeable for this temperature range. 

Even so, the major drawback of the functionalization methodology used is the MWCNTs length 

distribution reduction. The latter clearly provide a higher thermal conductivity enhancement for 

the same volume fractions. Though, it should be noted that it is not desired to obtain the maximum 

thermal conductivity enhancement in a nanofluid. A thermal nanofluid should present long-term 

effective thermo-physical properties, even if these present an initial penalty. 

3.6 NUMERICAL MODELLING OF NANOPARTICLES INSIDE A FLUIDIC MEDIUM 

As verified in Section 1.5.3.4, the predictive models for non-spherical particles (expect for Deng et 

al.) simplify « the flexible geometry of the MWCNTs to rigid cylinders. Such assumption defines that 

the flexible structure of the tubular nanoparticle has no impact on the degree of spatial distribution 

and, therefore, does not contribute to the effective thermal conductivity. This structural flexibility 

maybe even more pronounced in the results due to the molecular dynamic behaviour of 

dispersions. Furthermore, one of the controversial theories to describe the anomalous thermal 

behaviour of nanofluids is the Brownian motion of the particles. 

Therefore, in the next Section is formulated a numerical analysis that enables to assess the 

Brownian behaviour of dispersed CNTs in conventional fluids. The numerical model, based on 
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continuum mechanics, allows measuring the dynamic interparticle interaction, and respective 

spatial distribution, of flexible and rigid CNTs, at different volume fractions and geometrical 

properties.  

Since the classical predictive models for the effective thermal conductivity of nanofluids are based 

on static mechanism, i.e. motionless mixture, it is expected to verify if the dynamics behaviour of 

the nanoparticles can be considered as statistically motionless or static. Among the various 

dynamics behaviour of the particles is their spatial distribution and interparticle interactions that, 

due to the natural motion of the particles, are constantly modifying. 

3.6.1 DYNAMIC NUMERICAL MODELS 

The Brownian motion explains the random movement among the particles through a fluid, at any 

time step, caused by the impact of the base fluid molecules. Owning to the high aspect ratio of 

CNTs, it is expected a high degree of spatial distribution, which will contribute to higher effective 

heat conduction. However, CNTs are flexible which could affect the spatial distribution and 

respective transition through the microstructural arrangements shown in Figure 2.12. 

Therefore, two continuum numerical models are proposed to assess the dynamic interparticle 

interaction of (1) flexible and (2) rigid CNTs. In these, the influence of the Brownian field intensity, 

CNTs geometry, and volume fraction are dynamically studied in detail. It is expected that the 

numerical models confirm that the dynamical behaviour of the particles can be treated as 

statistically motionless and, thereby, corroborate the proposed models for the effective thermal 

conductivity. It should be noted that the latter was based on static physical mechanisms. 

In both numerical models it is assumed that the nanoparticles are suspended in a base fluid, inside 

a cubic control volume, and comply with continuum mechanics theory. The variation in the particle 

rigidity will be used to understand if the interparticle interaction and respective spatial distribution 

inside the control volume are influenced by the structural flexibility of CNTs. A higher number of 

random collisions indicate a superior interaction between the particles and, as a consequence, a 

higher degree of spatial distribution. Furthermore, the number of interparticle interaction enables 

to identify the existence of thermal interparticle interaction, since the latter is observed even after 

the contact of the particles, as seen in Figure 2.6. 
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3.6.1.1 STRUCTURAL FLEXIBILITY OF CARBON NANOTUBES 

The dynamics of a CNT suspended in a stationary base fluid are dominated by Brownian forces, 

which tend to curve them, and elastic forces, which oppose this bend. Fakhri et al. studied the 

Brownian bending dynamics of an individual SWCNT in water. Their results suggested that the 

SWCNT had no static curvature, since the measured mean amplitude of the bending angle was 

essentially zero (FAKHRI et al., 2009). Moreover, the results suggested that the Brownian field is 

unable of permanently bend the CNTs. 

The angle between the axis of the deformed CNTs and the initial straight axis is defined as the 

bending-angle α. The critical bending buckling, for critical bending angle αc, is expressed by 

Equation 3.4: 

κc=
αc

lp
 3.4 

The critical bending buckling represents the curvature limits that a CNT can be bent without a 

permanent deformation (see Figure 3.12). Experimental and theoretical studies show that carbon 

nanotubes are remarkably flexible (FAKHRI et al., 2009, IIJIMA et al., 1996, YAKOBSON et al., 1996). 

Dividing the nanotube in two rigid sections with equal length lp 2⁄ , the bending angle is 

represented in Figure 3.12:  

 

Figure 3.12: Curvature of a CNT divided in two rigid sections. 

Iijima et al. found that the critical angle strongly depends on the SWCNTs diameter (IIJIMA et al., 

1996): 

κc=
1.49

(10dp)2 ∙ [1+
9.89

(10dp)5 ∙103 ∙cos (
π

6
)] 3.5 
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In addition, Yakobson et al. also studied the nonlinear mechanical behaviour of SWCNTs by 

molecular dynamics simulation, proposing an alternative expression for the  critical curvature 

(YAKOBSON et al., 1996): 

 κc=
0.155

(dp)2  
3.6 

A simple evaluation of the two correlations presented (Equation 3.5 and 3.6) is made in the Figure 

3.13. As can be seen, the two correlations fit perfectly. 

 

Figure 3.13: Comparison of the two correlations for bending angle calculation. 

The above correlations were achieved for SWCNTs, being expected a significant difference in the 

bending behaviour of MWCNTs due to the presence of the inner tubes (see Figure 1.2). However, 

correlations for bending buckling for MWCNTs do not seem to be available in the literature so far. 

Even so, it is expected that the MWCNTs present lower bending buckling than SWCNTs being, 

therefore, assess the worst-case scenario. 

For the proposed flexible model, the structural flexibility of the CNTs meet the bending buckling of 

Yakobson et al. due to its simplicity.  

3.6.1.2 BROWNIAN MOTION  

When a sufficiently small particle is suspended in a fluid, it will exhibit a stochastic motion. This 

natural phenomenon is the so-called Brownian motion, described by Robert Brown in 1828 

(BROWN, 1828). Experimental and theoretical work, supported by the kinetic theory of matter, 

postulates that (PERRIN, 2005): 

 Particle motion is composed of translational and rotational movement; 
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 Particles move independently; 

 Particle motion is more active for smaller particles; 

 Particle motion is more active for less viscous fluid; 

 Particle motion is more active the higher the temperature; 

 Particle motion never ceases. 

The theory of Brownian motion began with Albert Einstein, when he derived the diffusion equation 

(Equation 3.9) for a sphere of diameter dp immersed in a fluid of viscosity μbf, supported by the 

Stokes law for friction force. According to the molecular-kinetic theory of heat, Einstein has shown 

that solid bodies can perform movements when suspended in liquids (EINSTEIN et al., 1956). Later, 

Langevin derives an equation for spherical bodies based on the Newton law of motion (REIF, 1965): 

 m
d2ξ⃗

dt2 =-β∙
dξ⃗

dt
+Fs⃗⃗⃗ ⃗(t)  3.7 

where ξ is the displacement of the particle at the time t, Fs is a stochastic force and m is the mass. 

The dynamical friction constant β is governed by the Stokes’ law and comes from the surrounding 

medium and geometry of the small particle: 

β=3π∙μbf∙dp 3.8 

By assuming the diffusion coefficient D given by Stokes-Einstein (Equation 3.9) and the stochastic 

force (Equation 3.10), it was possible to derive the mean displacement for a long time (Equation 

3.11). 

D=
kB∙T

β
 3.9 

where kB is the Boltzmann constant  ( 1.38×10-23J K⁄ ) and T is the absolute temperature. 

  Fs⃗⃗⃗⃗⃗(t)=Grand∙√
2kB∙T∙β

∆t
  3.10 

where  Grand is a zero mean Gaussian random number. 

The mean displacement was shown to be in agreement with the Einstein result for a long time 

interval (∆t≫β-1), and can be expressed as (EINSTEIN et al., 1956, REIF, 1965): 

|ξ⃗|=√2D∙∆t  3.11 
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As it can be noticed, the shape of CNTs does not seem to fit into this theory. An adaptation is 

needed in order to simulate this dynamical behaviour of suspended solid bodies in a base fluid. For 

that, individual CNTs will be assumed to be inside of a surrounding sphere, which will describe the 

random movement at each time step, as represented in Figure 3.14. The considered surrounding 

sphere should have an equivalent diameter deq that equals the drag coefficient of the CNT, based 

on the cross-sectional area.  

 

Figure 3.14: Schematics of the surrounding sphere on a CNT made of spheres. 

The drag coefficient of a body immersed in a fluid in motion can be described by the following 

expression (WHITE, 1998): 

Cd=
2Fd

ρbf∙v
2∙Acs

  3.12 

where Fd is the drag force, ρbf is the mass density of the fluid, v is the relative velocity and Acs is the 

cross-sectional area of the CNT. For the surrounding sphere, the equivalent cross-sectional area is 

defined as: 

Acseq=
π

4
∙deq

2  3.13 

However, the cross-sectional area of the CNT strongly depends on the CNT orientation in relation 

to the movement performed. The minimum cross-sectional area that accounts for less resistance 

against the movement occurs when the CNT is fully stretched and with the tube axis parallel to the 

movement, shown in Figure 3.15 (a). The maximum resistance against the movement occurs when 

the CNT is stretched, and the tube axis is perpendicular to the movement, represented in Figure 

3.15 (b). 
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(a) (b) 

Figure 3.15: Illustration of the minimum (a) and maximum (b) cross section of the CNT. 

Knowing the direction of the movement it is, therefore, possible to estimate the Acseq of the CNT 

based on its relative angle to the movement. Nevertheless, the surrounding sphere, used to 

estimate the Brownian movement, will have an equivalent diameter within: 

deq ∈ [dp;√
lp∙dp

2π
] 3.14 

For simplicity, the equivalent diameter of each CNT is assumed to be in the medium of this interval 

(Equation 3.15) and applied in the Equation 3.8 in order to compute the mean displacement that 

this must perform.  

deq=
√dp

2+
lp∙dp

2π
2

  3.15 

In addition, the estimated mean displacement per time step of each CNT is recorded, and an 

estimation of the average Brownian velocity of the CNTs inside the control volume is derived. The 

latter is used to verify the sedimentation stability of the nanofluids. 

3.6.1.3 CARBON NANOTUBE SUSPENSION DYNAMICS 

Through considering that each CNT is composed of nsec connected and perfectly solid spheres, 

whose diameter is the same of the CNT, shown in Figure 3.14, it is expected to include a model 

which favours the calculation of collision rate. The number of spheres nsec (or sections) required to 

describe each CNT is a function of the nanotube length and model discretization, i.e., sphere 

diameter, and is given by: 

nsec=
lp

dp
 

3.16 

Each CNT is be plotted by the aggregation of each direction vector with norm dp. For the direction 

vectors construction, nsec+1, points need to be defined for each CNT, as represented in Figure 3.16.  



 
105 

 

 

Figure 3.16: Schematic representation of points used for the direction vectors definition. 

Each CNT (j) starts the simulation (at t=0) in a random position inside of a control volume. This 

random position can be achieved by: 

x1,j=rand∙lcv 
3.17 

y1,j=rand∙lcv 
3.18 

z1,j=rand∙lcv 
3.19 

where rand is a random number ∈ [0,1] and lcv is the characteristic length of the control volume. 

As mentioned before, the colloid is at rest with no flow or external force field application. Thus, the 

orientation of each carbon nanotube is arbitrary. This random orientation can be achieved by the 

orientation of the first direction vector, which can be expressed by the second point: 

x2,j=x1,j+lp∙sinφ1,j∙cosθ1,j 
3.20 

y2,j=y1,j+lp∙sinφ1,j∙sinθ1,j 3.21 

z2,j=z1,j+lp∙cosφ1,j 3.22 

where φ and θ is the azimuth and colatitude angles respectively, and defined as: 

φ1,j=rand∙2π 
3.23 

θ1,j=rand∙π 
3.24 

The next points, which define the remains direction vectors, can be achieved by: 

xi,j=xi-1,j+lp∙sinφi-1,j∙cosθi-1,j 3.25 

yi,j=yi-1,j+lp∙sinφi-1,j∙sinθi-1,j 3.26 
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zi,j=zi-1,j+lp∙cosφi-1,j 3.27 

for i ∈ [3,nsec+1]. 

These points define the structural flexibility of the carbon nanotubes. In order to assure the rigidity 

and flexibility of each model, the following angles derivation is needed. 

Flexible model 

By this model, each pair of spheres can bend at a maximum angle equal to αc, expressed in Section 

3.6.1.1. Thus, it was assumed that the stochastic force is not enough to bend the CNTs to reach the 

deformation point.  

φs,j=φs-1,j+Grand∙αc 
3.28 

θs,j=θs-1,j+Grand∙αc 
3.29 

for s ∈ [2,nsec] 

This model can be depicted in Figure 3.17 (a). 

 

Figure 3.17: Representation of a) flexible and b) rigid carbon nanotube inside of the control volume. 



 
107 

 

Rigid model 

Since the CNTs in this model cannot be bent, the azimuth and colatitude angle will be constant for 

all points, as following: 

φs,j=φs-1,j 3.30 

θs,j=θs-1,j 3.31 

for s ∈ [2,nsec] 

This model can be depicted in Figure 3.17 (b). 

3.6.1.4 PARTICLE DISPOSITION EVOLUTION 

The previous mathematical models place the nanoparticles randomly within the volume control for 

the first initial moment (t=0). In addition to the deformation and reorientation of the CNTs, the 

Brownian motion will cause a random displacement of the nanoparticle within the overall control 

volume (for t>0). In order to adjust this random movement, the CNTs were considered to behave 

like an equivalent sphere (see Section 3.6.1.2), which will be subjected to the mentioned stochastic 

force. 

At each equivalent sphere, the mean square displacement will be calculated for each time step. 

This displacement is incremented in the first direction vector and is then reflected in the others. 

For the rigid model, where the deformation is neglected, the rotation will be limited by the first 

direction vector, since the direction angles who define the remaining spheres will be constant. In 

the improbable event, where all the constituting vectors of the CNT bend to the same direction, 

the maximum global azimuth and colatitude angle can be described by: 

φs,j=φs-1,j+Grand∙αc∙ nsec 
3.32 

θs,j=θs-1,j+Grand∙αc∙nsec 
3.33 

For the flexible model, the azimuth and colatitude angle will randomly vary each time step, with a 

maximum variation between each pair of spheres, equal to the critical bending angle. With this 

assumption, it is possible to verify the effect of the structural flexibility of CNTs on the average 

interparticle interaction and spatial distribution. 
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3.6.1.5 DYNAMIC INTERPARTICLE INTERACTIONS MEASUREMENT 

Through counting all the collisions achieved between the CNTs inside the control volume, it is 

possible to characterize the interparticle interactions. These are directly proportional to the degree 

of spatial distribution.  

Nevertheless, it should be noted the meaning of the term collision. Given the stability desired  for 

the thermal nanofluids, stated in the Section  3.2.2, it is assumed in both numerical models, no 

fixed contact after a collision, i.e. each CNT encounters the others in its vicinity, thus forming a 

dynamic percolation chains in the suspension, without aggregation or fixed contacts.  

For the collisions detection, at the end of all time steps, the distance (dist) between the centre 

point of each sphere (representing an individual CNT) and all the centre point of the remaining 

spheres will be calculated through Equation 3.34. When the distance between two spheres is equal 

or less than the diameter of the CNT, one collision is counted. Moreover, the collisions' count 

model rejects more than one contact for the same particle (usually defined as a short circuit). For 

instance, two contacts may be representative of only one interparticle collision/bond, as shown in 

the Figure 3.18. 

 dist=√(xi,j-xi,j+n)
2
+ (yi,j-yi,j+n)

2
+(zi,j-zi,j+n)

2
 3.34 

 

Figure 3.18: Schematic representation of a bond created by two spherical contacts. 

3.6.1.6 NUMERICAL MODEL CALIBRATION 

Due to the small dimensions of the CNTs, it is expected that they are strongly affected by the 

Brownian force field. In addition, these particles are structurally flexible, yielding a dispersion of 

particles with variable shape. It is expected that both factors may contribute to their interparticle 
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interaction. Currently, the interparticle interaction is usually predicted through the excluded 

volume theory (EVT). As mentioned, the excluded volume of a particle is defined as the volume 

around an object which the centre of another similar particle is not allowed to enter if overlapping 

of the two objects is to be avoided. A detailed description of this theory can be found in Appendix 

A.  

The EVT enables to predict the number of interparticle contacts, or bonds B, of a motionless and 

homogenous dispersion of rigid particles. Moreover, the EVT states that in the percolation 

threshold of very long rigid cylinders, the particles present nearly 1.4 particles bonded per particle 

Bc. In order to verify that the numerical models developed comply with the continuum mechanics 

of the EVT, the rigid model was used to verify the number of particles bonded per particle inside 

the control volume, at the critical volume fraction. 

Since in both numerical models it is imposed that the CNTs are generated strictly within the control 

volume, it is expected that the interparticle interaction become affected for very low characteristic 

length lcv, since the particles can be strangled and placed all at the centre. However, if selected a 

very higher lcv, the required computational resources to solve the model will be also very higher. As 

such, the optimal lcv was predicted through a convergence of the rigid model with the EVT.  

Therefore, it was selected a rigid elongated CNT with an aspect ratio of 100 (dp=100 nm and lp=10 

μm), without Brownian motion, i.e. the CNTs are only dispersed randomly for a time step t=0. 

According to the EVT, this CNT geometry present a percolation threshold nearly 0.7% (Equation 

A.1). 

In the Figure 3.19 is represented the average Bc of the rigid model for various lcv to lp ratios, and its 

respective convergence with the EVT, Bc≈1.4 of the selected CNT geometry. The simulations where 

repeated 10 times for each of lcv to lp ratio, enabling to measure the standard deviation that is 

represent by the error bar. As can be depicted, the convergence of the model happens for at 

lcv=10lp. 
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Figure 3.19: Critical collisions per particle inside a control volume with a length lcv dependent on the CNT length lp. 

From these results, it is possible to assert that the mathematical model is in agreement with the 

literature. Moreover, in order to reduce the calculation time, the length of the control volume is 

defined as 10 times greater than the CNTs length. 

3.6.2 NUMERICAL STUDY OF THE DYNAMIC BEHAVIOUR OF LONG-TERM NANOFLUIDS 

The conducted survey, presented in Chapter 1, suggested that the anomalous enhancement of the 

effective thermal conductivity of MWCNTs based nanofluids may be explained by the Brownian 

motion of the nanoparticles. Therefore, correspondent samples to that obtained from the DOE 

presented in Section 3.2 are numerical studied through the dynamic numerical model proposed.  

In this numerical study, it is used the obtained particles mean size from the SEM analysis (Section 

3.5.1), ensuring closely boundary conditions to that of the experimental. The influence of the 

Brownian motion intensity in the results was also evaluated. For that purpose, the nanoparticles 

were assumed to be suspended on their correspondent base fluid at two different temperatures, 

namely 283.15 and 323.15 K. The proposed numerical model shows that the variation of the base 

fluid temperature and dynamical viscosity induces a variation in the intensity of the Brownian 

motion. 

In all numerical simulations, it was considered a total of 100 time steps of 1 second each. The 

number of interparticle interaction, i.e. collisions without permanent contact, was counted in each 

time step. The standard deviation of the number of interactions for each sample is used to verify 

the influence of the Brownian motion of the spatial distribution of the nanoparticles. 

Moreover, the Brownian mean displacement of each nanoparticle inside the control volume is 

registered at each time step, and the overall mean Brownian velocity of the sample is calculated. 
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These enable to compare with the phase separation rate experimental achieved, and described in 

detail in the next Sections. This overall mean Brownian rate also enables to compare the Brownian 

diffusion with the thermal diffusion of the base fluid and, therefore, verify the significance of the 

nanoscale convection induced by the Brownian motion. 

The proposed predictive model for the effective thermal conductivity of MWCNTs based nanofluids 

assumes that the nanoparticles can be treated as rigid cylinders, i.e. rod-like particles. 

Nevertheless, as verified in the Section 3.6.1.1, the MWCNTs have a structural flexibility that may 

influence the average spatial distribution of the particles in the medium. Indeed, the only 

predictive model for such nanofluids that accounts for the structural flexibility of the MWCNTs was 

proposed by Deng et al. (DENG et al., 2007, DENG et al., 2009).  

In Figure 3.20, is represented the average interparticle collisions per MWCNT, of the studied 

nanoparticles dispersed in DW+30%EG at 283.15 K. In this, it can be seen that the average 

interparticle collisions are equal for the flexible and rigid numerical models, suggesting a negligible 

influence of the nanoparticle structural flexibility on the interparticle interaction and spatial 

distribution in the medium. The error bar in the Figure is the standard deviation of the 100 time 

steps numerically achieved. As can be seen, the standard deviation is rather low, suggesting an 

almost constant interparticle interaction in time. 

 

Figure 3.20: Influence of the structural flexibility of the MWCNTs on the spatial distribution in the medium. 

These results enable to corroborate the assumed rod-like geometry of the nanoparticles, by the 

majority of the predictive model available in the open literature, and by proposed model in Section 

2.5.2, since the spatial distribution of flexible and rigid MWCNTs is slightly equivalent. The influence 

of the Brownian motion intensity in the spatial distribution and interparticle interaction was also 

evaluated, and the results are plotted in the Figure 3.21.  
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Figure 3.21: Influence of the Brownian motion intensity on the average collision per particle. 

As it can be seen, the numerical results suggest that the Brownian motion intensity has a probably 

negligible impact on the interparticle collisions, since the average collisions and standard deviation 

seems to be independent of the base fluid viscosity and temperature. In addition, the results 

suggest that the interparticle interaction and spatial distribution depend on the aspect ratio and 

volume fraction of the nanoparticles. This behaviour was previously verified by the excluded 

volume theory (EVT), discussed in the Appendix A. The EVT states that the number of interparticle 

collisions per particle, inside a control volume, is given by: 

 B ≈2ϕ∙(
lp

dp

) 3.35 

In Figure 3.22, is the scatter chart of the results obtained and shown in the Figure 3.21. As it can be 

seen, the results lies within the previously equation of the EVT. 
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Figure 3.22: Average collisions per MWCNTs obtained from Figure 3.21. 

According to this theory (EVT), the percolation-like structure threshold is observed for nearly (B≈) 

1.4 collisions per particle. Due to the high reduction on the length distribution of the nanoparticles, 

caused by the dispersion approach, it seems that this morphological microstructure has very low 

probability to be achieved in any of the prepared nanofluids. Even so, it is known that thermal 

interparticle interaction occurs far below percolation threshold, and it was verified the high degree 

of interparticle interaction induced by the elongated aspect ratio of the MWCNTs. 

Some authors suggested that due to the nanoscale size of the dispersed nanoparticles, the 

temperature dependence may be explained by the higher Brownian diffusion of the nanoparticles 

DBM than that of the thermal diffusion of the base fluid DT. Considering the equivalent diameter of 

Equation 3.14, and introducing these into Equation 3.9, it can be estimated the average DBM of the 

studied samples. In contrast, the DT can be estimated through the following expression: 

DT = 
kbf

cpbf
∙ ρbf

 3.36 

In Figure 3.23, it can be depicted the average thermal diffusion to Brownian diffusion ratio 

estimated through the numerical model. The results reveal that the DT is always higher than DBM, 

in order of 10⁴, suggesting that the thermal diffusion is much faster that Brownian diffusion for 

heat transport mechanisms. That is, the heat is diffused through the base fluid at a higher rate than 

the Brownian diffusion of the nanoparticles and, therefore, the probability of heat transfer through 

interparticle collisions and micro-convection is very low. Similar conclusions for spherical 

nanoparticles suspensions where analytically proposed by Keblinski et al. (KEBLINSKI et al., 2002). 
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Figure 3.23: Estimation of the average thermal diffusion to Brownian diffusion ratio of the samples studied. 

In conclusion, the results achieved through this numerical analysis highlight that the structural 

flexibility of the nanotubes has a negligible impact on the spatial distribution and interparticle 

interaction of the studied nanofluids, as it can also be depicted from Figure 3.24. It was also 

verified that the two forms of Brownian mechanisms, that may contribute to the effective thermal 

conductivity enhancement, suggested by some authors, may also present negligible impact in the 

studied samples. It should be noted that these results comply within the proposed EDEMT model 

for the effective thermal conductivity of nanofluids based on elongated particles. 

 

Figure 3.24: Illustration of the spatial distribution for the a) flexible and b) rigid MWCNTs (0.15% d50-80 l10-20). Note: for 
higher volume fractions, the Figure becomes very dense due to 3D effect. 

The results obtained by the numerical models enable to understand the effect of the MWCNTs 

geometry and structural flexibility in the spatial distribution and morphology, such degree of 

interparticle interactions. Nevertheless, these results require an experimental validation. This may 

be possible through proper imaging on these systems through epi-fluorescence microscopy. The 

latter, enable to visualize nanoscale wetted systems, like nanofluids. However, there have 

prohibitive costs associated with the process. 
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3.7 NANOFLUIDS DISPERSION METHODOLOGY  

In this Section, it is provided the methodology for the dispersion of the functionalized MWCNTs in 

the base fluids, to form the so-called nanofluid. In Table 3.4 it was provided the materials 

quantities for the preparation of each of the 60 nanofluids that will be tested. The following steps 

describe the final process for the production of the long-term MWCNTs based nanofluids: 

1. With a high-precision balance (∆m=0.001 g), it was measured the total amount of 

nanoparticles dispersed (Table 3.4); 

2. With a graduated cylinder (∆V=0.5 ml), it was measured each base fluid (Table 3.4); 

3. The solution was homogenised at naked eye with a magnetic stirrer for a short period; 

4. In a magnetic stirrer, it was applied ultrasonication energy of 60 kJ in the Bioblock Scientific 

Vibra-Cell 75043 sonicator with 20kHz±50Hz at 21% amplitude and with a low intensity of 

cavitation probe (630-0210) enabling the release of energy over a greater area (SONICS & 

MATERIALS, 2013). In contrast, probes with high intensity of cavitation release the energy 

in a narrower area, increasing the probability of the MWCNTs suffering higher degradation; 

5. The dispersion was cooled naturally during 10 minutes; 

6. The steps 4 and 5 where repeated more three times, until the ultrasonication energy 

performs 240 kJ, i.e. 4.8 kJ/ml. These energy is equivalent to the reported by previous 

researchers (KANAGARAJ et al., 2008, PONMOZHI et al., 2009). 

The above steps were carefully repeated for all the 60 nanofluids produced. Furthermore, it should 

be noted that it was always attempted the reduction of noise factors. As noticeable, the 

ultrasonication contribute to the electrostatic stabilization of the nanoparticles. 

3.8 ASSESSMENT TO THE LONG-TERM COLLOIDAL STABILITY 

As stated in the Section 3.2.2, the term stability must imply the ability to preserve the projected 

thermo-physical properties with negligible variation. Therefore, it is intended that the long-term 

MWCNTs based nanofluids must present stability regarding: 

 Structural integrity of the dispersed nanoparticles over the test temperatures conditions; 

 Negligible agglomeration of the nanoparticles 

 Negligible phase separation of the nanoparticles 

It should be reminded that the first condition mentioned was verified and granted in Section 3.5.2. 
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3.8.1 PROBABILITY OF AGGLOMERATION  

Despite the presence of functional groups, identified by the FTIR analysis in Section 3.5.1, the 

probability of agglomeration may not be as negligible, as desired. Therefore, the repulsion forces of 

the functionalized MWCNTs were assessed through the measurement of their zeta potential.  

According to the DVLO theory (Section 3.2.1), if the van der Waals interparticle repulsive forces are 

higher than the attractive, the probability to occur agglomeration during a Brownian collision is 

low. The zeta potential of the particles is regarded as an index of the magnitude of the interparticle 

interaction (DERJAGUIN et al., 1993, VERWEY et al., 1999). 

In general, dispersions with an absolute zeta potential less than 25 mV are considered unstable 

regarding agglomeration. In contrast, an absolute zeta potential higher than 25 mV indicates 

satisfactory stability. Nevertheless, for zeta potentials above 60 mV it can be considered a 

negligible agglomeration probability, i.e. excellent stability regarding agglomeration Following is a 

Table summarizing the index of stability according to several authors (DERJAGUIN et al., 1993, 

GHADIMI et al., 2011b, LI et al., 2007, RUSSEL et al., 1989, VERWEY et al., 1999): 

Table 3.12: Zeta potential and associated dispersion stability. 

Absolute zeta potential range [mV] Stability 

0 to 10 Little or no stability 

10 to 25 Some stability but slight 

25 to 40 Moderate stability 

40 to 60 Good stability 

>60 Excellent stability 

The zeta potential is not measureable, but can be estimated through theoretical models, generally 

provided by the software of the experimental instrument. In this research, the zeta potential 

measurements were conducted in a Malvern ZS Nano S analyser at 293.15 K. In this, it is applied an 

electric field to the dispersion, allowing to the particles travel, with a given velocity, in the direction 

of the electrode. This velocity is measured through light scattering, enabling to calculate the 

electrophoretic mobility and, from this, the zeta potential of the sample is estimated through the 

equation of Smoluchowski. 

Since zeta potential measures the velocity of the particles through light scattering, it is required 

diluted samples. Therefore, diluted samples of the functionalized MWCNTs at 0.02% volume 

fraction, dispersed in the two studied base fluids were prepared. This diluted nanofluids are 
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prepared with the same base fluid of the original nanofluids that will be studied, ensuring similar 

interfacial equilibrium of the nanoparticles with the medium, i.e. the dilution is not performed with 

a different solvent. Furthermore, the nanofluids have low nanoparticles loadings (maximum of 

1.5% volume fraction). Therefore, the zeta potential may be similar and extrapolated for the 

studied volume fractions (DERJAGUIN et al., 1993, VERWEY et al., 1999). This similarity is verified 

by the reduced phase separation (or sedimentation) for the higher volume fractions, indicating that 

these are hindered and, therefore, present low probability of agglomeration. This behaviour is 

verified in the following Section.  

It should be noted that it was performed 5 runs for each sample, enabling to verify the 

repeatability of the measurements and estimate the mean value and respective experimental 

uncertainty, as described in Appendix D. 

The dielectric constant of the DW+30%EG and DW+60%EG, considered in the experiments, are 

69.73 and 59.00, respectively, and the refractive index is 1.36 and 1.39, respectively, as provided in 

the Table 3.13 (KUMBHARKHANE et al., 1992, REFRACTOMETER, 2011). Furthermore, the viscosity 

was the provided in Table B.1 and B.2. 

Table 3.13: Dielectric constant of aqueous solutions of ethylene glycol, for room temperature. 

ɸ DW ɸ EG Dielectric constant Refractive index 

0% 100% 40.89 1.44 

10% 90% 46.43 - 

20% 80% 52.06 - 

30% 70% 56.00 - 

40% 60% 59.00 1.39 

50% 50% 64.36 1.39 

60% 40% 64.65 1.37 

70% 30% 69.73 1.36 

80% 20% 73.00 1.35 

90% 10% 75.60 1.34 

100% 0% 80.1 1.33 

As it can be observed in Figure 3.25, the measured samples presented an absolute zeta potential 

ranging from 40 to 60mV, suggesting a good to excellent stability regarding agglomeration, i.e. low 

probability of agglomeration (Table 3.12). Furthermore, since the interface nanoparticle-base fluid 

is constant, for a given base fluid, it can be considered that the samples with higher volume 

fraction present equal absolute zeta potential (DERJAGUIN et al., 1993, LI et al., 2007, RUSSEL et 
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al., 1989, VERWEY et al., 1999). The uncertainties provided in the Figure 3.25 where calculated 

through the methodology suggested in Appendix D. 

 

Figure 3.25: Zeta potential of the studied samples, estimated through the model of Smoluchowski. 

In addition, the previous Figure suggests no relation between the absolute zeta potential and the 

base fluid type. Far more important, regarding agglomeration, it can be considered that all the 

tested nanofluids meet the statistical agglomeration conditions idealized in the Section 3.2. 

3.8.2 PHASE SEPARATION RATE 

As seen in Section 1.5.2.2, UV-visible spectrophotometry and sedimentation photograph are 

commonly used for evaluate the phase separation in nanofluids. These methods identify the 

concentration of the nanoparticle dispersed, at each time step. It is recognized the technical 

impossibility to determine the sedimentation or flotation velocity of nanofluids using these 

approaches, since it will take a large amount of time for a full sedimentation or flotation to occur.  

In contrast, analytical centrifuge is an effortless and undemanding method that allows for 

estimating the phase separation of the suspensions (LERCHE, 2002). In this, a centrifuge field 

accelerates the phase separation phenomenon, evaluating the change in concentration by 

detecting the transmission profiles along the entire height of the sample. Through the 

measurement of the separation rate for high centrifugal force fields, it is possible to extrapolate 

this to the gravitational field.  

The phase separation rate of the engineered MWCNTs based nanofluids were achieved through 

the Stability Analyser LUMiSizer 6120 kindly provided by Dias de Sousa SA (LERCHE, 2002). 

Accordingly to this methodology, fluid samples are subjected to different centrifugal fields 
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(RCF=centrifugal acceleration/earth acceleration) that accelerate the particle settling process, and 

a calibrated NIR light beam intensity is continuously measured by a CCD sensor after intersecting 

the fluid sample. In each time step, a light transmission profile through the sample is registered in a 

gradient colour picture. The phase separation behaviour along with the entire height of the 

samples is registered, and it can be easily observed from Figure 3.26. Furthermore, the light 

transmission profiles change with time, enable the calculation of the phase separation velocity for 

each RCF. If the deposition/particle decay velocity is proportional to the RCF, the phase separation 

for gravity conditions (RCF=1) could be extrapolated, and the shelf life regarding sedimentation of 

each sample predicted. This analytical centrifuge allows the measurement of samples without the 

need for dilution. It is a great advantage compared to conventional methods, since the distance 

between nanoparticles is unchanged, ensuring all original interparticle interactions that hinder the 

phase separation. 

 

Figure 3.26: Schematic illustration of the measuring principle of the Stability Analyser. 

For cost reduction and problem simplification, the DOE developed for the effective thermal 

conductivity assessment, and presented in the Section 3.3, is reduced for the volume fractions of 

0.25%, 0.50%, and 1.50%. It is, therefore, considered that the remaining samples are within the 

range of the observed values.  

The samples are tested at a controlled temperature of 298±1 K, at 3 proportional centrifugal force 

fields, described in detail in Table 3.14. The particle decay/deposition phenomenon is measured by 

a near infrared (NIR) light (865 nm wavelengths). As it will be seen, the particle decay/deposition 
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rate is proportional to the RCF, proving that the selection of these does not affect the final results. 

The mean experimental uncertainty of the phase separation is described in Appendix D. 

Table 3.14: Stability Analyser measuring conditions for each sample. 

Test Nr. rpm RCF [G] Time step [s] Total time [h] Nr. profiles 

1 1990 500 200 14 255 

2 2800 1000 100 7 255 

3 4000 2000 50 3.5 255 

In Figure 3.27, it is shown the a transmission profile portion, to improve the readability, of the 

sample 0.25%vol. d50-80 l10-20 in DW+30%EG, when subjected to an RCF of 2000 G. The complete 

transmission profiles, as well for the remaining RCF are proportional to the presented and are 

reported in Appendix G, Figure G.1. 

 

Figure 3.27: Evolution of transmission profiles of sample 0.25%vol. d50-80 l10-20 in DW+30%EG at 2000 G. 

In Figure 3.27, the profiles are spaced at about 20 min, revealing a phase separation rate constant 

over time. In addition, as the shape of the transmission profiles is constant, equally spaced and 

quasi-vertical, it indicates that the suspension is  composed by monodispersed particles that moves 

at the same velocity (LERCHE, 2002). This an important requirement to ensure thermal conductivity 

homogeneity (LEE et al., 2010). This behaviour may indicate that the functionalization process and 

the application of the ultrasonication for the MWCNTs dispersion in the base fluid broke the 

MWCNTs aggregates, as previously stated from Figure 3.6. Nevertheless, it should be noted that 

this does not indicate that the size distribution of the final MWCNTs dispersed in the base fluids is 

equal to that of the pristine MWCNTs, and as previously verified in Section 3.5.3. The behaviour 
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described here for the sample 0.25%vol. d50-80 l10-20 in DW+30%EG was observed for all the 

remaining tested samples. 

 

Figure 3.28: Representation of the linear regression of the phase separation rate obtained for some of the samples. 

Through linear regressions, as represented in Figure 3.28, it was found the constant of 

proportionality between the RCF and phase separation rate for each sample. In these regressions, 

it was considered a null ordinate at the origin (y=mc∙x), since it is assumed that no sedimentation 

occurs if the force field is null. In Appendix G, Table G.1 and Table G.2 summarizes the result of the 

previous linear regression, and the extrapolation of settling velocity subjected to the gravitational 

field (RCF=1) of all the samples. The constant of proportionality of each sample enables the 

extrapolation of the results to the rest conditions, i.e. to the gravitational force field (RCF=1). The 

results are shown in Figure 3.29. The mean experimental uncertainty of the phase separation is 

described in Appendix D. 

 

Figure 3.29: Phase separation rate at gravity field (RCF = 1) for the studied samples. 
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The results obtained suggest that it is possible to produce nanofluids with long shelf life. Moreover, 

for the analysed concentration, MWCNTs based nanofluids are characterized by hindered settling. 

The latter corresponds to a significant decrease in the phase separation rate of the immersed 

particles, with increasing hydrodynamic interparticle interactions. 

From Figure 2.12 it was possible to visualize the transition of the microstructure on these 

nanofluids through the increase of the nanoparticles volume fraction. The transition through the 

various stages of microstructure enhances the number of interparticle collision and electrostatic 

repulsions, reducing significantly the settling velocity and phase separation. Furthermore, during 

phase separation, the particles displace liquid in the opposite direction to their movement, which 

affects the motion of the surrounding ones.  

In addition, according to the excluded volume theory, and by the results achieved by the numerical 

model in Section 3.6.2, the interparticle interactions increase with increasing nanoparticles aspect 

ratios (BALBERG et al., 1984a). In general, this behaviour is also observed in the present results, 

where the nanoparticles with greater lengths show a lower average phase separation rate. This 

hindered behaviour was anticipated in Section 3.2.1.2. 

However, the MWCNTs that show lower phase separation (d20-40 l1-2) are the shortest, 

suggesting that other mechanisms may also play an important role. Perhaps, due to their small size, 

these nanoparticles begin to behave as molecules of the fluid itself. Furthermore, it appears that 

the phase separation rate decreases with increasing base fluid viscosity, as expected. 

Nevertheless, during these centrifugal accelerations, the Brownian rate of the MWCNTs becomes 

negligible due to the imposed centrifugal force field. Therefore, it is assumed that the extrapolated 

phase separation rate for rest of the conditions does not account for the Brownian effect. As 

previously noted, if this random motion is more intense than the sedimentation rate, the sample 

can be considered free of phase separation. As such, the phase separation rate measured is 

compared with the Brownian rate achieved through the numerical model and reported in Section 

3.6.2. 

However, the numerical Brownian model does not account for the hindered effect caused by the 

MWCNTs physical and hydrodynamic interactions. Therefore, the sedimentation rate, vs, of a 

MWCNT is calculated using an equivalent formulation of Stokes (STOKES, 1850) (Equation 3.37), 

and the hindered rate  is therefore estimated and applied to the Brownian rate. 
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vseq
=

g ∙∆ρ∙deq
2

18∙μbf

 3.37 

where deq is the equivalent diameter of a sphere that equals the drag coefficient of the MWCNTs, 

based on its cross-sectional area, expressed in Equation 3.15.  

Considering that the hydrodynamics and physical interactions of the MWCNTs are independent 

from the movement direction, it can be stated that the Brownian motion is reduced through an 

equal factor. It is known that this is not entirely true, since in an accelerated phase separation, all 

the particles move in the same direction. Even so, applying the same hindered rate to the Brownian 

movement of the particles, the hindered Brownian rate (HBM) is underestimated. Therefore, it is 

analysed the worst-case scenario. The hindered rate Hratio can be defined as: 

Hratio=
phase separation rate

vseq

 3.38 

From this, hindered Brownian motion (HBM) of the MWCNTs is a reduction of the Brownian rate, or 

Brownian diffusion (DBM), achieved in the numerical study presented in Section 3.6.2, such as: 

HBM=Hratio∙DBM 3.39 

For a given RCF threshold (RCFthreshold), the phase separation rate equals the ratio of the hindered 

Brownian rate (HBM). These thresholds delimitates the transition to the stability of the nanofluids 

regarding phase separation, i.e. when the phase separation for given centrifugal force field become 

less intense than the constantly diffusion homogeneity induced by the Brownian motion. This 

formulation is evidenced in the following expression: 

HBM=phase separation=mc∙RCFthreshod 3.40 

where mc is the constant of proportionality between RCF and the phase separation rate (Figure 

3.28 and Table G.2). 
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Figure 3.30: Estimated Brownian rate reduced through the application of the estimated hindered rate.  

The hindered Brownian rates are shown in Figure 3.30. As it can be verified, the estimated 

Brownian rates are much higher than the experimental phase separation rate shown in Figure 3.29. 

Furthermore, the results suggest that the Brownian motion is, in average, 244 times higher than 

these phase separation rate. The ratio of Brownian motion and phase separation rate (RCFthreshold) 

range from 70 to 550 (expressed in the Figure 3.31), i.e. the Brownian rate is always higher than 

the phase separation rate. These were expected results, since they are below the RCF selected for 

the phase separation rate assessment. It should be noted that during this, it was observed 

sedimentation, as revealed by the transmission profile represent in Figure 3.27. 

 

Figure 3.31: RCF thresholds of the studied samples. 

Therefore, since the Brownian motion is considerably more intense than the phase separation rate, 

it can be stated that all the nanofluids tested are stable regarding phase separation at the rest 

condition. Nevertheless, during the application of the nanofluids, these are constantly subjected to 
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centrifugal forces in the heat exchange/transfer circuit of the energy system. In the Figure 3.31, it is 

provided the ratio of the centrifugal and earth accelerations' threshold of the studied samples, 

which reveals the maximum centrifugal force fields that each sample could suffer until become 

instable regarding phase separation.  

When tailoring a nanofluid for a specific sustainable energy system, it should be predicted the 

centrifugal acceleration at which the nanoparticles will be subjected in the heat transfer circuit, in 

order to select the appropriate nanofluid that meet the stability requirements and thermo-physical 

properties to ensure a long-term applicability of these.  

3.8.3 BRIEF DISCUSSION 

So far, it was verified that the nanofluids produced present negligible probability of agglomeration 

and phase separation. In addition, despite the high reduction in the length distribution of the 

MWCNTs due to the dispersion methodology used, the nanoparticle seems to present low 

damaged structure and acceptable thermal stability. Therefore, combining all these stability 

conditions, it can be stated that these nanofluids accomplish the conditions for the measurement 

of their thermal conductivity, and for their industrial application. This feature is of utmost 

importance, since the measurement of the thermal conductivity, for the various temperatures, 

takes several hours per nanofluid. Thus, it is ensured that the samples are homogeneous during the 

measurement periods, reducing, therefore, noise factors.  

3.9 CHAPTER CONCLUSIONS 

Through the overview of the instability mechanisms that dispersions may suffer, it is proposed, in 

detail, the minimum stability requirements for nanofluids, namely long-term agglomeration-free, 

phase separation free, and constant structural integrity of the nanoparticles. Only respecting these 

stability conditions it is ensured the correct measurement of their thermo-physical properties 

(similar morphological structures in all the samples) and, as well, its implementation at the 

industrial scale. Knowing the desired morphological conditions for the nanofluids, it is developed a 

design of experiments that estimated the production of 60 nanofluids that will be tested at 6 

distinct temperatures, resulting in 360 experimental observations. To achieve the desired long-

term stability projected, the MWCNTs are covalently functionalized through acid chemical 

treatment and dispersed in the base fluids with ultrasonication. Since it is expected the 

degradation of the geometry of the MWCNTs, the size distribution of these was achieved through 

SEM image analysis. It was verified that the dispersion methodology caused a high degree of aspect 
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ratio destruction, in an average of -56% in relation to the provided by the manufacturer. The 

stability is assessed through zeta potential, to verify the probability of agglomeration, phase 

separation rate, and thermo-gravimetric analysis, to verify the structural integrity at all the 

measuring temperatures. It should be noted that these assessments also enable to predict the 

morphological distribution of the nanoparticles within the medium, reducing noise factors during 

the experimental data analysis. The spatial distribution of the nanoparticles was verified through a 

numerical model, which suggested that the functionalized MWCNTs easily interact, being expected 

thermal interaction as a mechanism for thermal conductivity enhancement. 
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4 EXPERIMENTAL ASSESSMENT OF NANOFLUIDS THERMAL 

CONDUCTIVITY PROPERTIES 

4.1 CHAPTER SYNTHESIS 

An experimental assessment to the effective thermal conductivity of the MWCNTs based 

nanofluids is performed. To this end, it is shown the experimental apparatus for assertively 

measure the effective thermal conductivity of the developed long-term nanofluids. The latter 

presents experimental repeatability for the base fluids measurements, with a maximum 1.8% 

deviation from the theoretical values. The experimental thermal conductivity assessment reveal an 

enhancement up to 18.5%, for the test conditions. Given the high number of experimental 

observations, a statistical analysis is delineated in an attempt to easily verify the existence of some 

of the recent theories suggested to explain the observed anomalous behaviour. The statistical 

analysis implemented to the experimental thermal conductivity revealed non-anomalous 

behaviour, predictable by the EDEMT model with a maximum fraction error of 4.5%. 

4.2 NANOFLUIDS THERMAL CONDUCTIVITY MEASUREMENT  

As seen through the conducted survey, presented in the Section 1.5.3.1, the one of the most used 

technique to assess the thermal conductivity of liquid samples is the transient hot-wire, given their 

inexpensive and accuracy. Therefore, the effective thermal conductivity of the produced samples 

was measured through coated transient hot-wire technique, namely through Decagon KD2 Pro 

(DECAGONDEVICES, 2013). Since the measuring probe of the Decagon KD2 Pro is coated, it is 

ensured that the influence of the eventual electrical conductivity of the nanoparticles do not 

influence the readings (Section 1.5.3.1). The different temperatures referred to in the DOE (Section 

3.2) were guaranteed through a thermal bath (Polyscience Model 1187P). The overall experimental 

setup is schematically represented in Figure 4.1. It should be noted that this technique assumes 

that the measured properties are isotropic.  

 

Figure 4.1: Schematic representation of the experimental apparatus for measurement of thermal conductivity. 
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As it can be seen, the temperature of the sample was ensured by circulating thermal bath in the 

double jacketed bottled (schematically illustrated in Figure H.1, Appendix H), fitted in a block cavity 

of a rigid polyurethane foam, to decrease the vibrations provided by the laboratory environment. 

Furthermore, the flow rate of the thermal bath was set to the minimum flow so that it does not 

produce any significant results, also due to vibrations. The double jacketed bottled requires nearly 

10 ml of nanofluid to ensure the full fill of the container and the respective full immersion of the 

sensing probe. The coated sensing probe, KS-1, has 1.3 mm diameter and 60 mm long, with an 

accuracy of 5% from 0.2 to 2 W/mK and less than ±0.001 W/mK. Nevertheless, in order to avoid 

free convection near the sensing probe, the manufacturer suggests 323.15 K as the maximum 

temperature for measurements of aqueous solutions.  

As the KD2 Pro enables data acquisition, each nanofluid was measured in ascending temperature 

order, remaining in each temperature set-point for 5 h, where the measurements are taken at each 

15 min (performing 20 readings per temperature). It should be noted that the data acquisition 

registers the accuracy of each reading, and values with error higher than 0.01 should be rejected, 

as suggested by Decagon (DECAGONDEVICES, 2013). Therefore, if at least 10 readings do not 

present satisfactory accuracy, the measurement of the sample is repeated for that specific 

condition/temperature.  

One of the  recommendations for the use of this device is performing the readings with the probe 

needle in the vertical, fully immersed into the base fluid (to reduce free convection and other 

phenomena) (DECAGONDEVICES, 2013). Thus, the readings were performed with the probe needle 

vertically inserted from the bottom of the sample, ensuring a more efficiently immersion. Given the 

high measuring time required for each sample (at least 40 h), it is imperative to consider that the 

agglomeration and sedimentation of nanoparticles are negligible over time. As seen, the 

agglomerates behave as a single particle of increased size and mass that settles more rapidly. This 

sedimentation will cause a gradient in the nanoparticles volume fraction, with largest magnitude in 

the region where the measurement is performed, as represented in Figure 4.2. Nevertheless, as 

previously verified in Chapter 3, the probability of this issue was reduced through the colloidal 

stability observed for the prepared nanofluids. 



 
129 

 

 

Figure 4.2: Schematic representation of samples with a) inhomogeneous and b) homogeneous effective thermal 
conductivity. 

It is expected that a polydispersion nanofluid present a superior thermal conductivity at the 

bottom, where the particle concentration is higher. Therefore, if the thermal conductivity 

measurement is performed vertically, as in the typical steady-state and the transient hot-wire 

methods (where the needle is placed vertically from the bottom), the readings may be 

overestimated. 

The experimental apparatus was calibrated with both base fluids, with a maximum variation of 

1.8% from the theoretical values, despite the declared 5% of accuracy of the KD2 Pro. The results 

are illustrated in Figure 4.3 and summarized in Table 4.1. In Appendix D, Equation D.21 provides 

the mathematical formulation for the experimental thermal conductivity uncertainty, for a 

confidence interval of 95%.  
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Figure 4.3: Thermal conductivity experimental apparatus calibration curve. 

Table 4.1: Theoretical versus experimental thermal conductivity achieved in the experimental apparatus (ASHRAE, 2005). 

Base fluid DW+30%EG 

Temperature [K] 283.15 293.15 298.15 303.15 313.15 323.15 

ktheoretical[W/mK] 0.442 0.453 0.459 0.464 0.473 0.481 

k̅ [W/mK] 0.443 0.459 0.464 0.465 0.468 0.485 

∆k̅  [W/mK] 0.007 0.002 0.002 0.002 0.002 0.007 

variation [%] 0.2% 1.4% 1.2% 0.3% 1.0% 0.8% 
  

Base fluid DW+60%EG 

Temperature [K] 283.15 293.15 298.15 303.15 313.15 323.15 

ktheoretical[W/mK] 0.340 0.349 0.352 0.355 0.360 0.365 

k̅ [W/mK] 0.346 0.352 0.354 0.356 0.358 0.361 

∆k̅  [W/mK] 0.003 0.003 0.002 0.002 0.002 0.002 

variation [%] 1.8% 0.9% 0.6% 0.3% 0.5% 1.0% 

4.3 NANOFLUIDS EFFECTIVE THERMAL CONDUCTIVITY  

4.3.1 MULTIVARIABLE STATISTICAL ANALYSIS METHODOLOGY  

Given the large amount of experimental data (360 experimental observation), in these Section it is 

provided the statistical analysis used for the analysis of the experimental results that are exposed 

in detail in the Appendix H, in the form of thermodynamic Tables and Figures. In these, the 

uncertainties are the confidence interval of 95% of the experimental mean, as provided in detail in 

the Appendix D.  

The statistical analysis is performed to ascertain how and how much the control factors (identified 

in the DOE, Section 3.3), produces significant impact on the results. Moreover, through the 
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interaction among control factors assessment, it is possible to find out if the mechanisms proposed 

to the effective properties are valid. 

A control factor interaction occurs if one factor affects the results differently depending on a 

second, or even a third control factor. In Table 4.2 is summarized the control factor interactions 

identified that may enable to assess the proposed mechanism that govern the effective thermal 

conductivity. It should be stated that the main effect of each individual control factors is also 

assessed. 

Table 4.2: Identified possible control factors interactions. 

Id. Control factor 

(Table 3.3) 

Brownian 

motion 

Nano-layer 

structure 

Spatial 

distribution 

Interparticle 

interaction 

AB   X X 

AC X X   

AD X    

BD X    

ABC  X X X 

ABD X    

Legend: 

 AB – MWCNTs geometry x Volume fraction 

 AC – MWCNTs geometry x Base fluid 

 AD – MWCNTs geometry x Temperature 

 BD – Volume fraction x Temperature 

 ABC – MWCNTs geometry x Volume fraction x Base fluid 

 ABD – MWCNTs geometry x Volume fraction x Temperature 

The statistical contribution of each control factor and control factor interaction is assessed through 

a main effect analysis. The latter, enables a graphical representation to better interpretation. A 

main effect can be described as the difference between the factor level average and the overall 

mean, representing the effect of an independent variable on the dependent variable, ignoring the 

effects of all the others independent variables. Then main effect can be expressed as (JACCARD, 

1998): 

 main effect= Xcn
̅̅ ̅̅ -X̅  4.1 
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where X̅  is the overall mean, or grand mean, of the experimental results under analysis, and Xcn
̅̅ ̅̅   is 

the mean of the experimental result under analysis, when the control factor (or control factor 

interaction) c is at the level n. 

Therefore, a main effect occurs when the mean difference between the levels of a control factor is 

statistically significant to the overall mean. As will be seen, this is a rather quick and efficient way to 

visualize the effect of each parameter. 

An analysis of variance (ANOVA) is also performed in order to verify which control factor have the 

greatest impact on the experimental thermal conductivity. Since it is a factorial design of 

experiments, it is assumed that the null hypothesis H0,c is that the means between the levels (n) of 

each parameter c are equal. That is, the mean of each level of the parameter is constant and does 

not significantly affect the experimental results. In contrast, the alternative hypothesis H1,c 

assumes that at least one of the levels means is different and therefore, the control factor has a 

significant impact on the experimental results. The null and alternative hypothesis can be 

expressed as: 

H0,c :  Xc1
̅̅ ̅̅ = Xc2

̅̅ ̅̅ =…= Xcn
̅̅ ̅̅  4.2 

H1,c :  Xc1
̅̅ ̅̅ ≠ Xc2

̅̅ ̅̅ ≠…≠ Xcn
̅̅ ̅̅  4.3 

Furthermore, regarding the effective thermal conductivity analysis, and since the base fluids 

selected present distinct thermal conductivities, the statistical analysis were performed to the 

effective thermal conductivity enhancement ratio, i.e. X= keff kbf⁄ . Through this methodology it is 

identified the enhancement produced in the thermal properties by the incorporation of the 

nanoparticles, independently on the magnitude of the thermal conductivity of the base fluids. This 

interpretation is also in line with the majority of the predictive models. 

4.3.2 ANALYSIS TO THE EXPERIMENTAL THERMAL CONDUCTIVITY 

So far, it was verified that the nanofluids produced satisfies the stability condition defined (Chapter 

3). It should be noted that this ensures the reduction of noise factors and, therefore, improves the 

statistical inference from the results. The effective thermal conductivity of the samples was 

measured and, as expected, the results show an increase on the effective thermal conductivity 

with MWCNTs loadings. The experimental temperature presented a standard deviation, for each 
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experimental run, ranging from 0.1 K to 0.6 K, with an average standard deviation error for all the 

runs of 0.1 K. 

The experimental results are exposed in detail in the Appendix H, in the form of thermodynamic 

Tables and Figures. In these, the uncertainties are those for a confidence interval of 95% of the 

experimental mean, as provided in detail in the Appendix D.  

As mentioned in Section 4.2, the upper temperature limit of the KD2-Pro, the transient hot-wire 

used for thermal conductivity assessment, is 323.15 K. At this limit, the samples under test may 

suffer free convection near the testing needle, providing overestimated effective thermal 

conductivity. This issue is even more pronounced for less viscous fluid, or more diluted samples. 

For some of the samples, given to laboratory uncontrolled vibrations (HVAC system, other users, 

among others.) this issue was noticeable, especially for the lowest volume fractions, contributing to 

a slight main effect increase. Even so, as it will be noticeable, this issue is statistically negligible, as 

easily seen in the following Sections, and especially in Section 4.3.2.6. 

Table 4.3 shows the experimental average and maximum results in thermal conductivity obtained, 

for each of the MWCNTs studied. It is important to notice that the maximum enhancement of 

18.5% for the MWCNTs d50-80 l10-20. In addition, it is noticeable the low increment on thermal 

conductivity of the MWCNTs d20-40 l1-2, the nanoparticle with lower geometrical properties, i.e. 

aspect ratio, volume, surface to volume ratio, among others (Table 3.8). 

Table 4.3: Average and maximum results obtained experimentally for each MWCNT geometry. 

  average maximum 

MWCNTs keff-kbf keff kbf⁄  keff-kbf keff kbf⁄  

d50-80 l10-20 0.030 1.072 0.082 1.185 

d60-100 l5-15 0.015 1.038 0.051 1.109 

d60-100 l1-2 0.014 1.033 0.037 1.107 

d20-40 l10-30 0.014 1.033 0.043 1.097 

d20-40 l5-15 0.016 1.038 0.037 1.102 

d20-40 l1-2 0.003 1.006 0.015 1.034 

As mentioned in Section 4.3.1, the statistical analysis was performed over the thermal conductivity 

enhancement ratio, i.e.  keff kbf⁄ . Through this approach the effect of the magnitude of the intrinsic 

thermal conductivity of the base fluid is diminished in the analysis. In addition, this approach lies 

within the majority of the predictive models proposed in the open literature, where kbf is in 

evidence in the majority of the equations, as it can be seen in Section 1.5.3.4. 



134 
 

 

An analysis of variance (ANOVA) was performed in order to verify which control factors have the 

greatest impact on the experimental thermal conductivity. The F-distribution, or Fisher-Snedecor 

distribution, was used to determine which of the hypotheses is likely to be true. The 

F-distribution is a continuous probability distribution used to validate the null hypothesis, through 

the comparison of the F-distribution  with the tabulated F-critical (TAGUCHI, 1987). That is, 

F-statistical < F-critical, the null hypothesis is true, and when F-statistical > F-critical, the alternative 

hypotheses is true.  

In Table 4.4 it is presented the ANOVA of the experimental results. As it can be depicted, the 

nanoparticles geometry, and volume fraction present an F-statistical higher than the F-critical. 

Therefore, for these control factors, it can be stated that the alternate hypothesis is true, i.e. their 

variation significantly affects the experimental results, an expected results since these are the 

control factors responsible for the spatial distribution of the nanoparticles in the medium.  Also 

expected, the temperature and base fluid presents the lowest contribution to the experimental 

results.  

Table 4.4: Multi-factor analysis of variance to the experimental thermal conductivity. 

 
Sum of 
Squares 

dof Variance F-statistical F-critical contribution 

MWCNTs geometry 0.132 5 0.026 91.0 2.2 24.1% 

Volume fraction 0.312 4 0.078 268.0 2.4 56.8% 

Base fluid 0.002 1 0.002 8.3 3.9 0.4% 

Temperature 0.003 5 0.001 1.9 2.2 0.5% 

Residual 0.100 344 0.000   18.2% 

Total 0.549 359     

where contribution is the Sum of Squaresc  Sum of SquaresTotal⁄ , i.e. the respective contribution of the 
control factor to the total sum of squares. 

The ANOVA allowed to recognise the control factors (or input parameters), that gave the greatest 

impact on the effective thermal conductivity. Nevertheless, it is also intended in this study, to 

evaluate the main effect of each control factor and of control factors interaction on the results. The 

definition of main effect was provided in the Section 4.3.1. This statistical analysis provides further 

inference to ascertain the mechanisms governing this thermal property. 
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Figure 4.4: Main effect of the MWCNTs geometry in the experimental thermal conductivity. 

As verified, the MWCNTs geometry seems to be one of the main control factors governing the 

effective thermal conductivity of nanofluids, evidencing that the nanoparticles should not be 

simplified as quasi-spherical ones. In Figure 4.4, it is shown the main effect of the MWCNTs 

geometry on the experimental thermal conductivity. As it can be seen, it appears that the MWCNTs 

d60-100 l5-15, d60-100 l1-2, d20-40 l10-30, and d20-40 l5-15 produce the same contribution to 

the overall mean of the experimental results. This may be explained by the similar geometrical 

properties of the MWCNTs after the functionalization procedure, as revealed in Table 3.8. 

Nevertheless, it should be noted that this does not imply that the results are strictly equal for these 

MWCNTs, and the interaction with other control factors, such as volume fraction, may produce 

distinct results. Such behaviour is clear through the analysis of the main effect of the MWCNTs 

diameter and length distribution. In these, it seems that the lower the diameter distribution, and 

the higher the length distribution, the higher the experimental thermal conductivity. Such 

behaviour may correspond with the increase on the aspect ratio of the MWCNTs (lp/dp) that 

contributes to a higher degree of spatial distribution through the medium for a given volume 

fraction. This behaviour is easily depicted from Figure 3.21. 
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As envisaged in Chapters 1 and 2, the aspect ratio of the MWCNTs is considered as one of the most 

important parameter affecting the effective thermal conductivity. In Figure 4.5, it is shown the 

main effect of the MWCNTs aspect ratio on the experimental thermal conductivity, suggesting that 

a significant increase of the aspect ratio provides a higher enhancement on the effective thermal 

conductivity. However, as observed in Figure 2.15, the thermal conductivity enhancement is 

directly proportional to the diameter distribution of the MWCNTs, being therefore clear that, for a 

given lengths distribution, it can be observed a higher enhancement for a lower aspect ratio of the 

MWCNTs. This behaviour is also evidenced in Figure 4.5. 

 

Figure 4.5: Main effect of the MWCNTs aspect ratio in the experimental thermal conductivity. 

In Figure 4.6, it can be verified the main effect of the volume fraction on the experimental thermal 

conductivity. The latter suggest a slight non-linear relationship between the volume fraction and 

the effective thermal conductivity of the nanofluids. Importantly, several researchers reported 

similar observations (CHOI et al., 2001, DING et al., 2006, HARISH et al., 2012, LIU et al., 2005, 

WEITING et al., 2009, XIE et al., 2003, ZHANG et al., 2006). This was usually defined as an intriguing 

behaviour of nanofluids. Nevertheless, this was an expected results give the classical theories, and 

the non-linearity may suggest the thermal interparticle interaction due to the high degree of spatial 

distribution of the MWCNTs, even for the modest volume fractions studied.  
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Figure 4.6: Main effect of the MWCNTs volume fraction in the experimental thermal conductivity. 

In addition, the slight non-linear behaviour (poor significance) may indicate a high Kapitza 

resistance, as predicted in Figure 2.20. In this, it can be depicted that the increase on the Kapitza 

resistance decreases the contribution of the thermal interparticle interaction. 

As previously identified by the ANOVA, and as can be seen in Figure 4.7, the base fluid presents 

negligible contribution to the effective thermal conductivity enhancement. It should be reminded 

that the main effects are calculated over the thermal conductivity enhancement ratio, diminishing 

the effect of the magnitude of the base fluid original thermal conductivity. The behaviour observed 

may suggest that the Brownian motion of the nanoparticles, higher for the less viscous base fluid, 

induces negligible impact on the experimental results. Furthermore, as noticed in Section 3.6.2, the 

dispersed MWCNTs are very interactive, even for the smallest volume fraction. These interparticle 

interactions reduce the random or Brownian motion of the MWCNTs. This theory is also revealed 

and established ahead. Nevertheless, the slight decrease in the thermal conductivity enhancement 

ratio for DW+60%EG may suggest an increased Kapitza resistance, due to a lower surface 

wettability of the nanoparticles and interface bonding for this more viscous base fluid. In a 

hypothetical scenario where the nanofluids are governed by nano-layer ordering liquid structures 

at the interface, it should be expected a higher thermal conductivity enhancement ratio for 

DW+60%EG, due to their higher viscosity and, hence, a higher probability of forming ordered 

structures at the hydrophilic interface. 
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Figure 4.7: Main effect of the base fluid in the experimental thermal conductivity. 

The temperature is another control factor with a negligible contribution on the experimental 

results, as can be seen in Figure 4.8. As also suggested by the analysis to the Figure 4.7, this 

behaviour may be related to a negligible impact of the Brownian motion of the nanoparticles. The 

increase on the effective thermal conductivity with the temperature seems to be related to the 

increase on that of the base fluid.  

 

Figure 4.8 Main effect of the temperature in the experimental thermal conductivity. 

In line with the ANOVA, the analysis to the main effect of the control factor revealed that the 

MWCNTs geometry and volume fraction are those that higher impact induces on the experimental 

thermal conductivity. In contrast, the base fluid and temperature seem to present lower effect on 

this thermal property. Nonetheless, despite their negligible impact, these may produce some 

interaction with the MWCNTs geometry and volume fraction. In the following subsections are 

presented an analysis to the control factors interactions, enabling to demystify the intriguing 

behaviour of the nanofluids based on the experimental observations. 
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4.3.2.1 MWCNTS GEOMETRY VERSUS VOLUME FRACTION (AB) 

The statistical interaction between the MWCNTs geometry and its volume fraction, shown in Figure 

4.9, suggest that for the lowest volume fraction, 0.25%, the thermal conductivity enhancement 

ratio is independent of the MWCNTs geometry. For the remaining volume fractions, the statistical 

analysis revealed a non-linear enhancement proportional to the MWCNTs geometry. This 

behaviour may put in evidence the increase of the spatial distribution of the nanoparticles and the 

increase of the thermal interparticle interaction. According to Figure 3.21, the nanoparticle with 

the higher degree of spatial distribution and interparticle interaction is the MWCNTs d50-80 l10-

20, being the opposite scenario attributed to the MWCNTs d20-40 l1-2. Moreover, for the 

remaining MWCNTs, the spatial distribution and interparticle interaction are very similar, as also 

observed for the thermal conductivity experimental results, as shown in Figure 4.9. This evidence is 

in accordance with the classical theories, described in Chapter 2, and are a heat conduction 

mechanisms of the proposed predictive model.  

 

Figure 4.9: Main effect of the MWCNTs geometry and volume fraction interaction in the experimental thermal 
conductivity. 

4.3.2.2 MWCNTS GEOMETRY VERSUS BASE FLUID (AC) 

Keblinski et al. (KEBLINSKI et al., 2002) verified analytically that the thermal diffusivity of the base 

fluid may be higher than the Brownian diffusion of the nanoparticles, even for the smaller 

nanoparticles. This result was also obtained for the elongated nanoparticles studied, MWCNTs, as 

suggested in the Section 3.6.2. Therefore, it is expected a non-proportional relation between the 

effective thermal conductivity and the viscosity of the base fluid. 

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75%

m
ai

n
 e

ff
ec

t

ɸ

d50-80 l10-20

d60-100 l5-15

d60-100 l1-2

d20-40 l10-30

d20-40 l5-15

d20-40 l1-2



140 
 

 

However, as can be verified in the Figure 4.10, there is a slight interaction between the MWCNTs 

geometry and the base fluid, since the main effect on the thermal conductivity enhancement ratio 

is higher for the lowest viscous fluid, for all the MWCNTs geometries. It should be noted that the 

negligible main effect described in Figure 4.7, is also noticeable in this slight control factor 

interaction. 

 

Figure 4.10: Main effect of the MWCNTs geometry and base fluid interaction in the experimental thermal conductivity. 

With absence of information to attribute this behaviour to a Brownian mechanism, perhaps the 

results may be attributed to a higher thermal interface resistance, or Kapitza resistance, for the 

most viscous base fluid, contributing to the reduced thermal conductivity enhancement. Despite 

the lack of theoretical understanding on the Kapitza resistance at the nanoscale, it is recognized 

that this strongly depends on the MWCNTs surface wettability and interface bonding (see Section 

2.4), which also depends on the thermo-physical properties of the base fluid. 

4.3.2.3 MWCNTS GEOMETRY VERSUS TEMPERATURE (AD) 

The control factors interaction between the MWCNTs geometry and temperature enables to verify 

the existence of the so announced Brownian contribution to the effective thermal conductivity. As 

depicted in Figure 4.11, for all the nanoparticles under study, there is no statistical evidence of 

thermal conductivity enhancement with the temperature rise, even for the smaller MWCNTs, d20-

40 l1-2, which are expected to be most affected by the Brownian field. The main effects shown in 

the Figure, advocate negligible variation on the thermal conductivity enhancement ratio with the 

temperature rise, suggesting that this is little, if anything, influenced by the Brownian field. In a 

hypothetical scenario, where the results were affected by a Brownian mechanism, it should be 

expected an evident rise in the main effect of each MWCNTs geometry with the temperature rise. 
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It should be noted that the slightest variations in the Figure, in an imaginary main effect horizontal 

line for each MWCNTs geometry, are attributed to uncertainties of the experimental observations.  

 

Figure 4.11: Main effect of the MWCNTs geometry and temperature interaction in the experimental thermal 
conductivity. 

4.3.2.4 VOLUME FRACTION VERSUS TEMPERATURE (BD) 

In Figure 4.12, it is shown the main effects of the control factors interaction between the volume 

fraction and temperature. In this, it can also be depicted the absence of a Brownian mechanism in 

the thermal conductivity enhancement ratio, since this present the similar linear behaviour with 

that reported in the Figure 4.11.  

 

Figure 4.12: Main effect of the volume fraction and temperature interaction in the experimental thermal conductivity. 

4.3.2.5 MWCNTS GEOMETRY VERSUS VOLUME FRACTION AND BASE FLUID (ABC) 

In Figure 4.13, it can be depicted the main effects of the interaction between the control factors 

MWCNTs geometry, volume fraction, and base fluid. In this, it can be seen that the experimental 
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results present a thermal conductivity enhancement ratio proportional to the MWCNTs geometry 

and volume fraction. In contrast, there is no evidence of a contribution of the base fluid on the 

experimental results. Such behaviour may indicate the inexistence of the so-called nano-layer 

structure, acting as a thermal bridge, and increasing the heat conduction through the medium.  

In addition, the negligible impact of the nano-layer ordering structure was anticipated and 

explained in detail in Section 2.4. In the hypothetical scenario of the existence of such nano-layer 

structure at the interface, it is expected a thermal conductivity enhancement ratio proportional to 

both control factors under analysis. Nanoparticles with higher surface, at superior volume fraction, 

and more viscous fluids, will probably provide a higher density of nano-layers structures that 

increase the heat conduction.  

Nevertheless, in line with the postulated previously, the results suggest that the nanoparticle 

spatial distribution and thermal particle interaction provide a non-linear thermal conductivity 

enhancement ratio, independently on the base fluid type.  
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Figure 4.13: Main effect of the MWCNTs geometry, volume fraction and base fluid interaction in the experimental 
thermal conductivity. 

4.3.2.6 MWCNTS GEOMETRY VERSUS VOLUME FRACTION AND TEMPERATURE (ABD) 

In line with the postulated in the Section 4.3.2.2, 4.3.2.3, and 4.3.2.4, Figure 4.14 revealed lack of 

evidence on Brownian mechanisms contributing to the thermal conductivity enhancement ratio. 
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Figure 4.14: Main effect of the MWCNTs geometry, volume fraction and base fluid interaction in the experimental 
thermal conductivity. 

It should be noted that for the MWCNTs d60-100 l5-15 and d20-40 l5-15 it was observed 

poorly/accuracy experimental results for some of the nanofluids with lowest volume fractions, at 

temperature 323.15 K. Such inaccurate results may induce in poor interpretation. Such 

uncertainties were anticipated in Section 4.2 and are related with the upper temperature limit of 

the KD2 Pro, the transient hot-wire used. At this limit, the samples under test may suffer free 

convection near the testing needle, providing overestimated effective thermal conductivity. 

Furthermore, this issue is amplified with uncontrolled laboratory vibrations (HVAC system, other 

users, among others.). Nevertheless, this behaviour did not show any pattern with the control 

factors under test, being certainly associated with poor measurements. 

4.3.3 BRIEF DISCUSSION 

The statistical analysis to the experimental results suggested that the effective thermal conductivity 

of MWCNTs based nanofluids strongly depends on the spatial distribution of the nanoparticles in 

the medium. Furthermore, there seems to be no evidence of some of the intriguing mechanisms 

suggested by some authors, namely Brownian motion, nano-layer structure of base fluid molecules 

at the interface, and nanoparticles agglomeration/percolation. The latter was excluded by the 

measurement of the Zeta potential of the samples, reported in the Section 3.8.1.  

The molecular-level layering concept states that the molecules from a liquid near a solid surface 

(such as a nanoparticle surface) become more organized than the remaining, forming a solid-like 

layer (not crystalized) structure that acts as a thermal bridge. In Section 2.4, it was verified that in 

materials where heat conduction is governed by electrons, such metals, this might be true, since it 

-5.0%

-2.5%

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

280 290 300 310 320 330

m
ai

n
 e

ff
ec

t

temperature [K]

d20-40 l1-2

0.25%

0.50%

0.75%

1.00%

1.50%



 
147 

 

is not needed the formation of a crystalline structure (POIRIER et al., 1994). However, for materials 

with heat conduction dominated by phonons, a non-crystalline structure seems to present 

imperfections that scatter the heat conductive phonons (EVANS et al., 2007, XUE et al., 2004). 

These behaviour is easily established by the thermal conductivity of liquid water (~0.6 W/mK) and 

ice (~2.2 W/mK), at the melting temperature point (LIDE, 2004). Despite being known that a 

hydrophilic surface may enhance the formation of the solid-like layer, it is also known that, in order 

to these present a significant enhancement on the effective thermal conductivity, strong electric 

fields are required. Therefore, it seems unlikely to be formed by the hydrophilic surface itself 

(EVANS et al., 2007, XUE et al., 2004). 

On the other hand, as suggested by several authors, the hydrophilic surface induces a lower 

magnitude on the Kapitza resistance (GE et al., 2006, LEE, 2007). Perhaps, this lowering of 

magnitude may be induced by a nano-layer ordered of the base fluid molecules, with fewer 

imperfections that scatter the heat conduction phonons, when compared to hydrophobic ones 

(LEE, 2007). As all the MWCNTs studied, have hydrophilic surface, it is likely to the nano-layer 

become an integrant part of the Kapitza resistance, i.e. a fundamental mechanism of the Kapitza 

resistance, if exists. Nevertheless, no statistical evidence from the experimental results for distinct 

base fluids was verified. 

Furthermore, the negligible impact induced by the Brownian motion was also anticipated by the 

results achieved through the numerical model, and expressed in Section 3.6.2. In this, it was 

verified that the Brownian motion among the particles has a negligible impact on the dynamic 

interparticle interaction and, in theory, is slower than the base fluid thermal diffusion. To 

corroborate these numerical results, no experimental evidence was found, namely a strong 

enhancement of the experimental results with the temperature rise and viscosity of the base fluid. 

4.4 PREDICTIVE MODEL VALIDATION 

The analysis to the previous results, suggested that the experimental results may comply within the 

theory of predictive model proposed in the Chapter 2. For these reason, this model, for non-

agglomerated and very elongated nanoparticles, randomly dispersed in the base fluids, at volume 

fractions where thermal interparticle interaction may occur, was also used to verify the fitness to 

the results. It should be reminded that this model complies with the structural morphology and 

stability conditions preconized for the nanofluids, and experimentally verified. Even so, the 

extended differential effective medium (EDEMT), i.e. the proposed model, has two unknown input 
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parameters, the thermal conductivity of MWCNTs and the Kapitza resistance.  As mentioned in the 

Section 3.2.2, the thermal conductivity of the functionalized MWCNTs were considered to be 1700 

W/mK, as suggested by Shenogin et al. (SHENOGIN et al., 2004a).  Through molecular dynamics 

simulations, they found that the degree of functionalization causes a drop on the thermal 

conductivity of the MWCNTs. Nevertheless, they also observed that the results converged to 1700 

W/mK, for the highest degrees of functionalization.  

Therefore, this value was adopted since the nanofluids prepared in this study present low 

probability of agglomeration, and the FTIR analysis of Section 3.5.1, suggested a high degree of 

functionalization. Furthermore, as shown in the Section 2.5, the EDEMT model presents converging 

results for the thermal conductivity of the nanoparticles above 1000 W/mK (see Figure 2.19, for 

Kapitza resistance above 8×10-8 K m2 W⁄ ), being, therefore, slow impact caused by these 

assumption. 

Given the lack of uncertainties in the Kapitza resistance mechanisms and magnitude, reported in 

the Section 2.4, this was used to fit the EDEMT model to the experimental observations as a single 

value, since the conventional base fluids used are both aqueous solutions of ethylene glycol. 

Nonetheless, it should be remembered that the experimental results suggest a slight difference in 

the Kapitza resistance for the two base fluids (Section 4.3.2.2). It is expected that the proposed 

Kapitza resistance achieved through this adjustment enables to predict the effective thermal 

conductivity of nanofluids composed by the same family of these conventional base fluids. 

Nevertheless, as it can be seen in the Table 4.4, MWCNTs geometry and volume fraction are the 

control factors most important for the system, since they present the highest sums of squares, 

variance, and F-statistical. Therefore, it can be stated that fitting the Kapitza resistance to the 

experimental results does not necessarily force the EDEMT model to predict the behaviour of the 

experimental data.  

In Figure 4.15, it is shown the scatter chart of the EDEMT model with the experimental thermal 

conductivity, also in terms of effective thermal conductivity, keff. As this is a multivariable problem, 

the graph is represented by means of output versus target, where the outputs are the obtained 

results, both experimental and analytical and the target the analytical, as schematically defined in 

Table 4.5. Therefore, the experimental results are the dispersed points, and the EDEMT model is 

represented by a straight line of slope 1. The Pearson’s correlation r² between the experimental 

and predicted data was calculated through the Equation J.1, in Appendix J. 
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Figure 4.15: Scatter chart of the EDEMT model and experimental data (in terms of keff). 

Table 4.5: Schematic defined of the terms target and output. 

 
Predictive model Experimental values 

target (x) predicted measured 

output (y) predicted predicted 

In this study, the Kapitza resistance that produced the best-fit, i.e. the best fitting parameters 

shown in Table 4.7, is 10.5×10-8 K m2 W⁄ . This value is close to that suggested by Huxtable et al. 

(HUXTABLE et al., 2003), 8×10-8 K m2 W⁄  for heavy water, an expected result since the nanofluids 

are both aqueous solutions of ethylene glycol. Furthermore, this Kapitza resistance magnitude is 

within the bonds reported by Cahill’s research group (CAHILL et al., 2001, WILSON et al., 2002). 

From the achieved Kapitza resistances, it is obtained an average Kapitza radius aK of 48 nm and 37 

nm, respectively for DW+30%EG and DW+60%EG based nanofluids. These Kapitza radius is of the 

same order of magnitude of the diameter of the studied MWCNTs, an expected result. 

Nevertheless, for aK smaller than the particle size, the effective thermal conductivity increases with 

the rise on volume fraction. Conversely, when aK is larger than the particle size, the effective 

thermal conductivity decreases with the increase of the volume fraction.  

Similar scatter charts for the predictive models available in the open literature (Section 1.5.3.4) are 

presented in the Appendix J. Through a simple visual comparison it can be verified that the EDEMT 

model has a better correlation with the experimental results, in relation to the other existing 

models in the open literature. This result corroborates that, nanofluids that comply with minimum 

stability conditions for thermal management, present heat conduction mechanisms proposed by 
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the classical theories, expressed in detail in the Chapter 2. Moreover, as can be seen from Figure 

J.3, the model of Nan et al. with a Kapitza resistance of 8×10-8 K m2 W⁄  (suggested by the authors) 

shows similar tendency in the distribution of the experimental results with the EDEMT model (NAN 

et al., 2004). This is an expected results since the EDEMT model is based on Nan et al. model, 

proving that adjusting the Kapitza resistance do not forcedly fit the results to the EDEMT model. 

In Figure 4.16, it is shown the cumulative accuracy of the EDEMT model and Nan et al. model. In 

both models it was considered the best fitting Kapitza resistance, RK=10.5×10-8 K m2 W⁄ . The 

curves represent all the 360 experimental thermal conductivities measured, and suggest that the 

EDEMT model is capable of predicting 80% of the results with a fractional error of less than 2% (in 

Appendix J.1, Equation J.2 provides the expression for the fraction error). Furthermore, all the data 

is predictable with less than 4.5% error. The standard deviation of the difference between the 

predicted and observed results is 0.9%, as expressed in Table 4.6. In this, the term mse represents 

the mean square error of each model (expressed in Equation J.4), an estimator of the accuracy of 

the predictive models. The smaller mse, the better the results fit to the model (JACCARD, 1998, 

TAGUCHI, 1987). 

 

Figure 4.16: Cumulative percentage of experimental data predicted by the proposed EDEMT model within the fractional 

error (RK=10.5×10-8 K m2 W⁄ ). 
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Table 4.6: Fitness estimators of the models to the experimental results (RK=10.5×10-8 K m2 W⁄ ).  

Estimator EDEMT model Nan et al. 2004 (Eq. 1.31*) 

r² 0.95832 0.93256 

mse 0.00004 0.00005 

Maximum fractional error 4.51% 4.69% 

Minimum fractional error 0.01% 0.00% 

Average fractional error 1.49% 1.66% 
Standard deviation of fractional error 0.95% 1.00% 

*this equation was actualized to the Kapitza resistance that best fit the EDEMT model 

(RK=10.5×10-8 K m2 W)⁄ . 

More relevant, since the adjusted Kapitza resistance achieved is of order 10-7 K m2 W⁄ , the models 

are almost coincident, as expected since the thermal interparticle interaction becomes poorly 

significant to this order of Kapitza resistance as shown in Figure 2.20. Nevertheless, it is expected 

that the EDEMT model is more generalist since this is capable of predict the interparticle thermal 

interaction for higher MWCNTs lengths and volume fractions. Therefore, the EDEMT model may be 

used for nanofluids produced by nanoparticles with a lower degree of length destruction, a 

challenge for the future (see Figure 2.21). Such nanoparticle would allow for a higher increase in 

effective thermal conductivity of nanofluids. Furthermore, in an eventual case that, in the future, 

become possible to reduce the magnitude of the Kapitza resistance in these systems, the EDEMT 

model will be the more accurate. 

In Figure 4.17, it is presented the cumulative percentage of experimental data predicted by the 

EDEMT model for Kapitza resistance ranging from 5×10-8 K m2 W⁄  to 20×10-8 K m2 W⁄ , suggested 

by the Cahill’s research group (Section 2.4). As it can be depicted, the results suggest that for 

Kapitza resistances above 8×10-8 K m2 W⁄ , the value for MWCNTs suggested by the Cahill’s 

research group, 80% of the experimental observations can be predicted with a maximum fractional 

error of ~7%. Moreover, for 15×10-8 K m2 W⁄ , the maximum fractional error achieved for the 100% 

experimental data is of ~9%. In contrast, for Kapitza resistance below 8×10-8 K m2 W⁄ , the 

divergence with the experimental data is higher, presenting a maximum fractional error of 16%, 

with 80% of the data below the 8% error. 
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Figure 4.17: Cumulative percentage of experimental data predicted by the EDEMT model within the fractional error for 
different Kapitza resistance. 

In Table 4.7 it is summarized the fitness estimators of the EDEMT model for different Kapitza 

resistance. In line with the results presented in the postulated previously, the results suggest that 

the best fit is achieved for 10.5×10-8 K m2 W⁄ . Moreover, a variation of 43% on the Kapitza 

magnitude can lead to a maximum fractional error of 4% achieved for the best fitting Kapitza 

resistance. In contrast, a variation of -52% on the Kapitza magnitude can produce a deviation of 

11% on the results observed experimental, an undesired variation. Nevertheless, the results 

suggest that using a Kapitza resistance ranging from 8×10-8 K m2 W⁄  to 15×10-8 K m2 W⁄ , for these 

nanofluids family, provides satisfactory predictions of the thermal conductivity enhancement. It 

should be noted, however, that the nanofluids must meet the spatial distribution homogeneity 

described in Chapter 2, to be described for this predictive model. 

Table 4.7: Fitness estimators of the EDEMT model to the experimental results for different Kapitza resistance. 

RK [ K m2 W⁄ ] 5×10-8 8×10-8 10.5×10-8 12×10-8 15×10-8 20×10-8 

RK variation -52% -24% Ref. (0%) 14% 43% 90% 

r² 0.93405 0.95872 0.95832 0.95192 0.92885 0.87513 

mse 0.00085 0.00012 0.00004 0.00005 0.00010 0.00018 

Maximum fractional error 17.23% 6.95% 4.51% 5.68% 8.42% 11.32% 

Minimum fractional error 0.36% 0.03% 0.01% 0.01% 0.01% 0.00% 

Average fractional error 6.64% 2.81% 1.49% 1.41% 1.57% 2.19% 

Standard deviation f.e. 3.47% 1.65% 0.95% 1.00% 1.45% 2.14% 

In general, it was shown that the EDEMT model is capable of predicting the thermal conductivity of 

long-term nanofluids. Furthermore, it was also shown that the structural morphology of the 

prepared nanofluids agrees with the physical mechanisms considered for development of the 

model. This is a characteristic that distinguishes this study from the remaining ones available in the 
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literature. Many of the predictive models available were developed and validated with modest 

experimental data, which are, in general, poorly characterized, regarding structural morphology, 

nanoparticles size distribution, and degree of stability. In addition, this study used a large amount 

of experimental data, with a special focus on the effect of the nanoparticle geometry and particle 

volume fraction. These were proved statistically as the parameters with the greatest impact on the 

effective thermal conductivity. Moreover, as envisaged in Figure 2.19, the consideration of the 

thermal conductivity of the MWCNTs as 1700 W/mK, did not affected the prediction values for the 

achieved Kapitza resistance magnitude. 

Table 4.8: Fitness estimators of the models available in the literature to the experimental results (DENG et al., 2007, 
DENG et al., 2009, GENSHENG et al., 2009, KOO et al., 2008, MURSHED et al., 2008, NAN et al., 2004, SASTRY et al., 2008, 

XUE et al., 2003, XUE, 2005, YU et al., 2004). 

 
r² mse 

maximum 
fractional 

error 

minimum  
fractional 

error 

average 
fractional 

error 

standard 
deviation 

of f.e. 

Xue 2003 (Eq. 1.36) 0.80533  0.00005    12.30% 0.80% 2.77% 1.94% 

Nan et al. 2004 (Eq. 1.31) 0.92956  0.00012    6.97% 0.01% 3.19% 2.07% 

Yu-Choi et al. 2004 (Eq. 1.37) 0.78503  0.00019    14.16% 0.80% 3.07% 2.37% 

Xue 2005 (Eq. 1.39) 0.81234  0.00124    18.83% 0.44% 7.40% 3.65% 

Murshed et al. 2008 (Eq. 1.41) 0.75164  0.00013    15.48% 0.80% 3.42% 2.73% 

Sastry et al. 2008 (Eq. 1.42) 0.80472  0.00024    14.47% 0.82% 3.35% 2.52% 

Koo et al. 2008 (Eq. 1.48) 0.85799  0.00017    12.69% 0.80% 2.92% 2.08% 

Deng et al. 2009 (Eq. 1.50) 0.79214  0.00024    14.69% 0.82% 3.40% 2.64% 

Gensheng et al. 2009 (Eq. 1.53) 0.78006  0.00019    14.36% 0.81% 3.11% 2.41% 

EDEMT model 0.95832 0.00004 4.51% 0.01% 1.49% 0.95% 

In Table 4.8 and Figure 4.18, it is provided and compared the fitting parameters used, of the 

predictive models available in the open literature. These, in line with the scatter charts presented 

in the Appendix J, shows that the predictive models proposed by other researchers seems to worse 

represent the 360 experimental data of the MWCNTs based nanofluids. As such, the major 

contribution of this study was the development and calibration of a more generalist predictive 

model for the effective thermal conductivity of these next-generation thermal fluids. Moreover, 

this study reveals that the thermal conductivity of nanofluids is non-anomalously high, as 

announced by some researchers, and can be predicted by the effective medium theory (EMT). 
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Figure 4.18: Cumulative percentage of experimental data predicted by the models within the fractional error (DENG et 
al., 2007, DENG et al., 2009, GENSHENG et al., 2009, KOO et al., 2008, MURSHED et al., 2008, NAN et al., 2004, SASTRY et 

al., 2008, XUE et al., 2003, XUE, 2005, YU et al., 2004). 

4.5 CHAPTER CONCLUSIONS 

In this Chapter, it was provided the experimental apparatus for the determination of nanofluids 

effective thermal conductivity. The effective thermal conductivity of the MWCNTs based nanofluids 

was achieved through transient hot-wire, namely KD2 Pro from Decagon Devices, which provided a 

maximum deviation of 1.8% from the theoretical values for the base fluids. The experimental 

results revealed a maximum enhancement of 18.5%, for the nanoparticles with highest length 

distribution and a volume fraction of 1.5%. A delineated control factor interaction provides the 

ability to verify the possible existence of the recent theories developed to explain the anomalous 

behaviour observed. It was found that MWCNTs based nanofluids present non-anomalous 

behaviour, predictable by the classical theories, i.e. the effective medium theory. The EDEMT 

model, based on these theories, seems to fit to the experimental results, with a maximum 

fractional error of 4.5%, for a Kapitza resistance of 10.5×10-8 K m2 W⁄ . In addition, the statistical 

analysis shows that the effective thermal conductivity strongly depends on the MWCNTs geometry 

and volume fraction, the control factors with high levels of inference. 
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5 CONCLUSIONS 

5.1 CHAPTER SYNTHESIS  

The main objective of this work was the development and characterization of carbon nanotubes 

based nanofluids, for thermal engineering applications. The available literature reports that the 

addition of highly conductive nanoparticles to conventional fluids produces a significant increase in 

their heat conduction characteristics. It was concluded that a long-term nanofluid, with negligible 

agglomeration and phase separation, will provide long-term thermo-physical properties over long 

periods, an essential feature towards their industrial application. It should however be mentioned 

how the dispersion methodology applied induced a certain penalty in what concerns the effective 

thermal conductivity of the samples associated with the reduction of the length distribution of the 

nanoparticles. The intrinsic mechanisms responsible for the heat conduction enhancement in these 

nanofluids were identified, and a predictive model for the effective thermal conductivity of these 

fluids was proposed and validated. The thermal characterization of the nanofluids was achieved 

through an experimental parametric analysis, revealing a strong dependence on the nanoparticles 

size distribution and volume fraction, with a maximum enhancement of 18.5% for the test 

conditions. Moreover, it was identified that a high Kapitza resistance at the interface of the 

nanoparticle is a limitation to the thermal conductivity enhancement, also decreasing the 

contribution of the thermal interparticle interaction. 

5.2 CONCLUSIONS 

This research focus on the development and characterization of nanofluids for heat exchange 

intensification. The conducted survey on the open literature, revealed that the addition of small 

amounts of nanoparticles to conventional fluids produces strong enhancements on the effective 

thermal conductivity of nanofluids. However, the latter also revealed an intriguing behaviour of 

nanofluids and a considerable lack of agreement between both experimental and theoretical 

studies. 

Among the several thermo-physical properties of nanofluids, the thermal conductivity is still the 

most studied one. The latter was suggested to have an anomalous behaviour, since it seems to be 

unpredictable by the classical theories. Several nanoparticles were also studied worldwide, and 

these can be subdivided in quasi-spherical and non-spherical (or elongated) particles. From 
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experimental and theoretical results it is evident that elongated nanoparticles, such as multiwalled 

carbon nanotubes (MWCNTs) provide a higher thermal conductivity enhancement for a given 

volume fraction. Such results are of utmost importance for appropriate development of nanofluids 

with improved thermal conductivity but lower viscosities, to keep energy consumption to a 

minimum.  

The classical theories for thermal conductivity enhancement in heterogeneous systems were 

developed by Maxwell, the effective medium theory (EMT), more than a century ago. In this, the 

particles are considered as spheres, homogeneously dispersed through the medium, at volume 

fractions so low that thermal interparticle interactions could be neglected. Later, Bruggeman 

proposed a differential effective medium theory (DEMT), enabling the prediction of this property 

for higher volume fractions. More recently, Nan et al. developed an extended EMT that accounts 

for the particle shape and interfacial thermal resistance, i.e. Kapitza resistance. However, this 

model is only valid for diluted mixtures, since the thermal interparticle interaction is neglected.  

In an attempt to describe the anomalous behaviour of the thermal conductivity of nanofluids, a 

few theories were suggested in addition to the classical ones from which is highlighted the 

contribution of the (1) Brownian motion of the nanoparticles through collisions and micro-

convection, (2) the probability for nanoparticles agglomeration and percolation of heat through the 

clusters, (3) and the formation of a solid-like layer of base fluid molecules near the interface of the 

nanoparticles. These theories have encouraged the development of several modern predictive 

models, with divergent premises. 

The survey suggested that the controversial observations might have resulted from the lack of 

parametric studies, divergent techniques for sample preparation, uncontrolled nanoparticles 

aggregation and poor stability and unknown nanoparticles size distribution. To the date, the 

literature does not present a consensual and robust model capable of predicting the thermal 

conductivity of a generic nanofluid with an acceptable level of accuracy for engineering purposes. 

Therefore, the study here presented contributes to the definition of long-term nanofluids and to 

the breaching of the mechanisms responsible for its effective thermal conductivity enhancement. 

The term nanofluid should represent a dispersion of nanoparticles in a base fluid (or a mixture of 

fluids) with structural stability at all operating temperatures, with negligible probability of 

agglomeration and phase separation. These requisites ensure a slightly constant morphological 

structure over time, mandatory to ensure persistent long-term thermo-physical properties and, 
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particularly important for the current research purposes, a correctly assessment to these 

properties. It should be reminded that, despite the fact that some researchers suggest that the 

nanoparticles agglomeration may contribute towards the effective thermal conductivity 

enhancement, this was assumed as a form of instability. 

From a well-defined design of experiments (DOE), a total of sixty (60) different MWCNTs based 

nanofluids were estimated, and prepared through a methodology that ensures the preconized 

stability level. These 60 different fluids are the result of a full factorial arrangement of 6 MWCNTs 

geometries, dispersed in 2 distinct aqueous solutions of ethylene glycol at 5 volume fractions.  

The MWCNTs were functionalized trough a chemical treatment that is capable of introducing 

carboxylic groups on the side-walls of the nanotubes, as confirmed by the Fourier transform 

infrared spectroscopy. However, the SEM images analysis revealed an intensive length distribution 

reduction, in relation to the announced by the manufacturer for the pristine MWCNTs. This is 

considered as the major drawback of the conducted research, since the results revealed that 

higher MWCNTs lengths produce higher thermal conductivity enhancement for the same volume 

fractions. Therefore, it is anticipated the requirement for the development of a similar 

functionalization technique, yet less destructive. In addition, thermo-gravimetric analysis revealed 

that the functionalized MWCNTs present a statistically negligible structural damage that contribute 

to the thermal stability at the test temperatures. 

Through a numerical representation of a Brownian model analysis, the interparticle interaction of 

the functionalized MWCNTs, dispersed in a fluidic medium, were estimated. From this analysis, it 

was verified that the MWCNTs interact easily, even for the modest volume fractions. Additionally, 

the obtained numerical results supported that the structural flexibility of the dispersed nanofluids 

has a negligible impact on their spatial distribution and respective interparticle interaction. It was 

also verified that the Brownian diffusion of the functionalized MWCNTs is slower than the thermal 

diffusion of the base fluid, anticipating a negligible impact of the Brownian motion in the effective 

thermal conductivity enhancement. It should be noted that similar results were obtained by other 

researches for spherical nanoparticles. 

The functionalized MWCNTs were dispersed in the base fluids through ultrasonication. In order to 

evaluate their long term stability, the produced nanofluids were subjected to a proper stability 

characterization. The Zeta potential and analytical centrifuge tests revealed that the samples have 

a low probability of nanoparticle agglomeration, and they may be subjected to high centrifugal 
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force fields without showing phase separation. Furthermore, these experimental and numerical 

analyses suggest that the prepared nanofluids present a structural morphology, or spatial 

distribution of the MWCNTs, as desired and postulated. 

The effective thermal conductivity of the long-term MWCNTs based nanofluids were tested at 6 

temperatures, performing 360 experimental observations. It was observed a maximum thermal 

conductivity enhancement of 18.5% for a volume fraction 1.5% of the nanoparticle with higher 

length distribution. The experimental results revealed that the effective thermal conductivity of the 

samples strongly depends upon the MWCNTs geometry (size distribution) and volume fraction, 

revealing that the spatial distribution of the nanoparticles is a key mechanism. Thus, it was shown 

that it is extremely important to identify the sizes distribution of the MWCNTs. More importantly, 

the experimental results suggested a non-anomalous behaviour, without revealing none of the 

recently theoretical mechanisms suggested (Brownian motion, nano-layer structure, and 

percolation through the agglomerates). 

The contribution of the Brownian motion of the nanoparticles was negligible and anticipated by the 

numerical model, as mentioned. In addition, as verified by other researchers, the contribution of 

the nano-layer structure, for non-metal liquids is unlikely to occur. They suggest that the 

contribution of this ordering is only noticeable for crystalline structures due to imperfections that 

scatter the heat transfer phonon. The contribution of heat percolating though agglomerates, or 

clusters were avoided through the stability conditions achieved. 

Given the lack of a classical predictive model for the thermal conductivity of mixtures of non-

spherical nanoparticles with interfacial thermal resistance (or Kapitza resistance), that could 

interact thermally, it was proposed an extended DEMT. The latter rises from the application of the 

Bruggeman differential principal to the extended EMT of Nan et al., for very dilute dispersions of 

spheroids. Therefore, this more generalist model takes into account both the thermal conductivity 

of the nanoparticle and of the medium, the nanoparticle geometry, the volume fraction and 

Kapitza resistance. It should be reminded that the EDEMT model also complies with the classical 

theories. 

Nevertheless, due to the deficit of experimental and theoretical research on the magnitude of 

Kapitza resistance for the studied conditions (nanoscale), it was assumed as an adjustment 

parameter for the EDEMT model. Even so, it was verified that this adjustment did not force the 

results to fit the model. The experimental results present satisfactory fitness with the EDEMT 
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model, suggesting that the effective thermal conductivity of nanofluids may be predicted through 

the classical theories, after a proper upgrade, in order to account for particle geometry, thermal 

interparticle interactions and Kapitza resistance. However, it was verified that the magnitude of the 

Kapitza resistance is a limitation to the thermal conductivity enhancement, since it decreases the 

equivalent thermal conductivity of the nanoparticles. The 360 experimental observations were 

predicted with a maximum fractional error lower than 4.5%.  

It can be concluded that the EDEMT model is valid and that it can be applied to homogeneous 

dispersions of MWCNTs, at any volume fraction. However, the model does not account for the 

nanoparticle agglomeration and, therefore, is unable to predict the thermal conductivity of 

unstable nanofluids, which is not a major limitation since those are not of a great value for 

engineering applications. 

In addition, the Kapitza resistance magnitude reduces the contribution of the thermal interparticle 

interaction, and the experimental results can also be predicted through the extended EMT model 

of Nan et al., yet with a slight divergence from the EDEMT model. Nevertheless, the EDEMT model 

is considered to be more generalist than this, opening the possibility for the research to decrease 

the magnitude of the Kapitza resistance.  

In summary, this research provides evidences to answer the questions raised in the objectives of 

the thesis. Namely: 

1. What are the stability conditions to achieve long-term CNT based nanofluids for thermal 

applications? 

The term stability for nanofluids must imply the ability to preserve the engineered 

thermo-physical properties of these, with negligible variation over the required 

duty cycle. Therefore, it is of utmost importance that the nanoparticles present 

low probability of agglomeration and phase separation, during a defined period. In 

addition, it is detrimental to ensure the geometrical integrity of the nanoparticle in 

the base fluid, at all operative temperatures. These stability requirements ensure a 

constant spatial distribution of the nanoparticles that, as seen, contribute for the 

effective thermal conductivity of the mixture. 

2. What are the most important inherent physical mechanisms responsible for the effective 

thermal conductivity improvement presented by such CNT based nanofluids? 
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The experimental results have shown that the parameters that contribute for the 

thermal conductivity of these nanofluids are the size distribution, geometry and 

volume fraction of the nanoparticles. These, are associated to the degree of spatial 

distribution and to the contribution of the thermal interparticle interaction to the 

enhancement of these property. Furthermore, it was seen that the effective 

thermal conductivity of these mixtures is limited by the Kapitza resistance, which 

seem to decrease (yet without full elimination) the thermal interparticle 

interaction. 

3. Is it possible to predict the thermal conductivity of CNT based nanofluids through a general 

physical-mathematical model?  

It was verified that these nanofluids, that respect the structural morphology and 

stability preconized, can be predicted through a generalized physical mathematical 

model. These, designated as extended differential effective medium theory 

(EDEMT), take into consideration both thermal conductivity of nanoparticle and 

medium, the nanoparticle geometry and volume fraction and Kapitza resistance. 

Given the lack of theoretical formalism for the Kapitza resistance, it was verified 

that this fits the experimental results for a magnitude of 10.5×10-8 K m2 W⁄ , 

predicting the thermal conductivity of nanofluids with a maximum fractional error 

of 4.5%. The mathematical formulation of the EDEMT model is described in detail 

in Section 2.5.2. 

5.3 FUTURE RESEARCHES 

The conducted research programme enabled to successfully answer to all the originally proposed 

research questions. Despite that, additional questions and research ideas were revealed as a 

natural result of the developed work. 

For future work it is of the utmost importance to develop methodologies that allow the covalent 

functionalization of MWCNTs with carboxylic or equivalent groups, with a lower impact on their 

original length. Accordingly to the proposed predictive model, the incorporation of longer 

MWCNTs would produce a stronger enhancement on the effective thermal conductivity; 

unfortunately this effect was not experimentally verified due to the limitations associated to 

current functionalization methodologies. 
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In addition, it is important to deeply study the mechanisms associated with the Kapitza resistance, 

since this strongly limits the increase in thermal conductivity. From previous theoretical research, it 

becomes clear that this thermal resistance effect depends of the base fluid thermo-physical 

properties and surface properties of the nanoparticle. However, given the divergences reported 

from the experimental results, other mechanisms have to be identified and modelled. The 

development of a Kapitza resistance predictive model is also of maximum importance, in order to 

complete the presented study. 

Finally, it is imperative a future validation of the EDEMT model, for the effective thermal 

conductivity of nanofluids based on quasi-spherical nanoparticles. However, it should be ensured 

that the nanofluids under test retain a structural morphology and stability similar to that proposed 

herein, in order to ensure the quality of the cross-validation procedure. 

The present study revealed that it is possible to develop (quasi-) stable nanofluids, with improved 

thermal conductivity. However, in order to enable their industrial application, it is of utmost 

importance to characterize other thermo-physical properties, such as specific density, heat 

capacity, and viscosity. 

 





 
163 

 

6 REFERENCES 

ALLEN, T. - Particle Size Measurement: Volume 1: Powder sampling and particle size measurement. 

Springer, 1996.  ISBN 9780412729508. 

 

AMROLLAHI, A.; HAMIDI, A. A.; RASHIDI, A. M. - The effects of temperature, volume fraction and 

vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon 

nanofluid). Nanotechnology. ISSN 0957-4484. Vol. 19, n.º 31 (2008), p. 315701. 

 

ASHRAE, AMERICAN SOCIETY OF HEATING, REFRIGERATING, AIR-CONDITIONING ENGINEERS - 

ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning 

Engineers, Inc., 2005.  ISBN 1523-7230. 

 

ASSAEL, M. J. [et al.] - Thermal conductivity enhancement in aqueous suspensions of carbon multi-

walled and double-walled nanotubes in the presence of two different dispersants. International 

Journal of Thermophysics. ISSN 0195-928X. Vol. 26, n.º 3 (2005), p. 647-664. 

 

BALASUBRAMANIAN, KANNAN; BURGHARD, MARKO - Chemically Functionalized Carbon 

Nanotubes. Small. ISSN 1613-6829. Vol. 1, n.º 2 (2005), p. 180-192. 

 

BALBERG, I. [et al.] - Excluded volume and its relation to the onset of percolation. Physical Review 

B. Vol. 30, n.º 7 (1984a), p. 3933-3943. 

 

BALBERG, I.; BINENBAUM, N.; WAGNER, N. - Percolation Thresholds in the Three-Dimensional 

Sticks System. Physical Review Letters. Vol. 52, n.º 17 (1984b), p. 1465-1468. 

 

BANERJEE, S.; HEMRAJ-BENNY, T.; WONG, S.  S - Covalent Surface Chemistry of Single-Walled 

Carbon Nanotubes. Advanced Materials. ISSN 1521-4095. Vol. 17, n.º 1 (2005), p. 17-29. 

 

BATCHELOR, G. K. - Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics. 

ISSN 0022-1120. Vol. 52, n.º 02 (1972), p. 245-268. 

 



164 
 

 

BAYRLE, R.; WEIS, O. - Acoustic mismatch model and thermal phonon radiation across a 

tin/sapphire interface with radiation temperatures between 1.6 and 3.7 K. Journal of Low 

Temperature Physics. ISSN 0022-2291. Vol. 76, n.º 3-4 (1989), p. 129-141. 

 

BEISER, M.; BICKERT, G.; SCHARFER, P. - Comparison of Sedimentation Behavior and Structure 

Analysis with Regard to Destabilization Processes in Suspensions. Chemical Engineering & 

Technology. ISSN 1521-4125. Vol. 27, n.º 10 (2004), p. 1084-1088. 

 

BENVENISTE, Y. - Effective thermal conductivity of composites with a thermal contact resistance 

between the constituents: Nondilute case. Journal of Applied Physics. Vol. 61, n.º 8 (1987), p. 2840-

2843. 

 

BENVENISTE, Y.; MILOH, T. - The effective conductivity of composites with imperfect thermal 

contact at constituent interfaces. International Journal of Engineering Science. ISSN 0020-7225. 

Vol. 24, n.º 9 (1986), p. 1537-1552. 

 

BEVINGTON, P.R.; ROBINSON, D.K. - Data reduction and error analysis for the physical sciences. 

McGraw-Hill, 2003.  ISBN 9780072472271. 

 

BIERCUK, M. J. [et al.] - Carbon nanotube composites for thermal management. Applied Physics 

Letters. ISSN 0003-6951. Vol. 80, n.º 15 (2002), p. 2767-2769. 

 

BÖNNEMANN, H. [et al.] - Monodisperse copper- and silver-nanocolloids suitable for heat-

conductive fluids. Applied Organometallic Chemistry. ISSN 1099-0739. Vol. 19, n.º 6 (2005), p. 768-

773. 

 

BOTHA, SUBELIA SENARA - Synthesis and characterization of nanofluids for cooling applications. 

University of the Western Cape, 2007.  

 

BROWN, ROBERT - A brief account of microscopical observations made in the months of June, July 

and August 1827, on the particles contained in the pollen of plants; and on the general existence of 

active molecules in organic and inorganic bodies. Philosophical Magazine Series 2. ISSN 1941-5850. 

Vol. 4, n.º 21 (1828), p. 161 - 173. 



 
165 

 

 

BRUGGEMAN, D. A. G. - Calculation of various physical constants in heterogeneous substances. I. 

Dielectric constants and conductivity of composites from isotropc substances (German). Annalen 

der Physik. ISSN 1521-3889. Vol. 24, n.º 7 (1935), p. 636-679. 

 

BUONGIORNO, JACOPO [et al.] - A benchmark study on the thermal conductivity of nanofluids. 

Journal of Applied Physics. Vol. 106, n.º 9 (2009), p. 094312. 

 

CAHILL, DAVID G. [et al.] - Nanoscale thermal transport. Journal of Applied Physics. Vol. 93, n.º 2 

(2003), p. 793-818. 

 

CAHILL, DAVID G.; GOODSON, KENNETH; MAJUMDAR, ARUNAVA - Thermometry and Thermal 

Transport in Micro/Nanoscale Solid-State Devices and Structures. Journal of Heat Transfer. ISSN 

0022-1481. Vol. 124, n.º 2 (2001), p. 223-241. 

 

CAO, G. - Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College 

Press, 2004.  ISBN 9781860944802. 

 

CASTRO, C. A. NIETO DE [et al.] - An apparatus to measure the thermal conductivity of liquids. 

Journal of Physics E: Scientific Instruments. ISSN 0022-3735. Vol. 9, n.º 12 (1976), p. 1073. 

 

CHEN, G. - Thermal conductivity and ballistic-phonon transport in the cross-plane direction of 

superlattices. Physical Review B. Vol. 57, n.º 23 (1998), p. 14958-14973. 

 

CHEN, LIFEI [et al.] - Nanofluids containing carbon nanotubes treated by mechanochemical 

reaction. Thermochimica Acta. ISSN 0040-6031. Vol. 477, n.º 1-2 (2008), p. 21-24. 

 

CHEN, LIFEI; XIE, HUAQING; YU, WEI - Functionalization Methods of Carbon Nanotubes and Its 

Applications. InTech, Carbon Nanotubes Applications on Electron Devices. ISSN 978-953-307-496-2.  

(2011). 

 



166 
 

 

CHEN, QUAN [et al.] - Aggregation behavior of single-walled carbon nanotubes in dilute aqueous 

suspension. Journal of Colloid and Interface Science. ISSN 0021-9797. Vol. 280, n.º 1 (2004), p. 91-

97. 

 

CHERKASOVA, ANNA S. - Thermal conductivity enhancement in micro- and nano-particle 

suspensions. University of New Jersey, 2009.  

 

CHOI, S. U.-S. - Nanofluid technology : current status and future research. 1998.  ISBN ANL/ET/CP-

97466; TRN: AH200128%%525 United StatesTRN: AH200128%%525Mon Feb 04 15:16:16 EST 

2008OSTI as DE00011048ANL; EDB-01:070721English. 

 

CHOI, S. U. S. [et al.] - Anomalous thermal conductivity enhancement in nanotube suspensions. 

Applied Physics Letters. Vol. 79, n.º 14 (2001), p. 2252-2254. 

 

CHOI, SOON-HO [et al.] - Feasibility Study of a New Model for the Thermal Boundary Resistance 

at Thin Film Interfaces. Journal of the Korean Physical Society. Vol. 44, n.º 2 (2004), p. 317-325. 

 

CHOI, STEPHEN; EASTMAN, JEFFREY- Enhancing thermal conductivity of fluids with nanoparticles: 

ASME International Mechanical Engineering Congress & Exposition. San Francisco, 1995.  

 

CHOY, T.C. - Effective Medium Theory: Principles and Applications. Clarendon Press, 1999.  ISBN 

9780198518921. 

 

CLANCY, THOMAS C.; GATES, THOMAS S. - Modeling of interfacial modification effects on thermal 

conductivity of carbon nanotube composites. Polymer. ISSN 0032-3861. Vol. 47, n.º 16 (2006), p. 

5990-5996. 

 

DAS, SARIT K. [et al.] - Nanofluids: Science and Technology. New Jersey: Wiley, 2008.  ISBN 978-0-

470-07473-2. 

 

DAS, SARIT K.; PUTRA, NANDY; ROETZEL, WILFRIED - Pool boiling characteristics of nano-fluids. 

International Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 46, n.º 5 (2003a), p. 851-

862. 



 
167 

 

 

DAS, SARIT KUMAR [et al.] - Temperature Dependence of Thermal Conductivity Enhancement for 

Nanofluids. Journal of Heat Transfer. Vol. 25 (2003b), p. 3319-3322. 

 

DASSAULT-SYSTEMES- DraftSight. 2013. Disponível em:<URL:http://www.3ds.com/products-

services/draftsight/overview/>.  

 

DAVIS, R. H. - The effective thermal conductivity of a composite material with spherical inclusions. 

International Journal of Thermophysics. ISSN 0195-928X. Vol. 7, n.º 3 (1986), p. 609-620. 

 

DECAGONDEVICES - Decagon Devices, Thermal Properties Instruments [em linha]. [Consult. 

Disponível em:<URL:http://www.decagon.com/products/environmental-instruments/Thermal-

Properties-Instruments/kd-2-pro/>. 

 

DENG, FEI [et al.] - Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on 

thermal conductivity of carbon nanotube composites. Applied Physics Letters. Vol. 90, n.º 2 (2007), 

p. 021914-3. 

 

DENG, FEI; ZHENG, QUANSHUI - Interaction models for effective thermal and electric conductivities 

of carbon nanotube composites. Acta Mechanica Solida Sinica. ISSN 0894-9166. Vol. 22, n.º 1 

(2009), p. 1-17. 

 

DERJAGUIN, B.; LANDAU, L. - Theory of the stability of strongly charged lyophobic sols and of the 

adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science. ISSN 

0079-6816. Vol. 43, n.º 1–4 (1993), p. 30-59. 

 

DING, YULONG [et al.] - Heat transfer of aqueous suspensions of carbon nanotubes (CNT 

nanofluids). International Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 49, n.º 1-2 

(2006), p. 240-250. 

 

DING, YULONG [et al.] - Heat transfer intensification using nanofluids. KONA Powder and Particle. 

ISSN 0288-4534. Vol. 25, n.º 1-2 (2007), p. 23-28. 

 

http://www.3ds.com/products-services/draftsight/overview/%3e
http://www.3ds.com/products-services/draftsight/overview/%3e
http://www.decagon.com/products/environmental-instruments/Thermal-Properties-Instruments/kd-2-pro/%3e
http://www.decagon.com/products/environmental-instruments/Thermal-Properties-Instruments/kd-2-pro/%3e


168 
 

 

DUNCAN, MICHAEL A; ROUVRAY, DENNIS H - Microclusters. Scientific American. ISSN 0036-8733. 

Vol. v261, n.º n6 (1989), p. p110(6). 

 

EAPEN, J.; LI, J.; YIP, S. - Beyond the Maxwell limit: Thermal conduction in nanofluids with 

percolating fluid structures. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. Vol. 

76, n.º 6 (2007). 

 

EAPEN, JACOB [et al.] - The Classical Nature of Thermal Conduction in Nanofluids. Journal of Heat 

Transfer. Vol. 132, n.º 10 (2010), p. 102402-14. 

 

EASTMAN, J. A. [et al.] - Enhanced thermal conductivity through the development of nanofluids. 

Materials Research Society.  (1997). 

 

EASTMAN, J. A. [et al.] - Anomalously increased effective thermal conductivities of ethylene glycol-

based nanofluids containing copper nanoparticles. Applied Physics Letters. Vol. 78, n.º 6 (2001), p. 

718-720. 

 

EASTMAN, J.A. [et al.] - Thermal Transport in Nanofluids. Annu. Rev. Mater. Res. Vol. 34 (2004). 

 

EINSTEIN, A; FÜRTH, R - Investigations on the theory of the Brownian movement. Dover 

Publications, 1956.  ISBN 9780486603049. 

 

ESUMI, K. [et al.] - Chemical treatment of carbon nanotubes. Carbon. ISSN 0008-6223. Vol. 34, n.º 2 

(1996), p. 279-281. 

 

EVANS, WILLIAM; FISH, JACOB; KEBLINSKI, PAWEL - Thermal conductivity of ordered molecular 

water. The Journal of Chemical Physics. Vol. 126, n.º 15 (2007), p. 154504. 

 

EVANS, WILLIAM [et al.] - Effect of aggregation and interfacial thermal resistance on thermal 

conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass 

Transfer. ISSN 0017-9310. Vol. 51, n.º 5-6 (2008), p. 1431-1438. 

 



 
169 

 

FAKHRI, NIKTA [et al.]- Diameter-dependent bending dynamics of single-walled carbon nanotubes 

in liquids. National Academy of Sciences, 2009.  

 

FEDELE, LAURA [et al.] - Experimental stability analysis of different water-based nanofluids. 

Nanoscale Research Letters. ISSN 1556-276X. Vol. 6, n.º 1 (2011), p. 300. 

 

FEIST, M. [et al.] - Stokesian dynamics and the settling behaviour of particle–fibre-mixtures. The 

Canadian Journal of Chemical Engineering. ISSN 1939-019X. Vol. 89, n.º 4 (2007), p. 682-690. 

 

FICK, ADOLF - Ueber Diffusion. Annalen der Physik. ISSN 1521-3889. Vol. 170, n.º 1 (1855), p. 59-

86. 

 

FRICKE, HUGO - A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse 

Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids. Physical Review. 

Vol. 24, n.º 5 (1924), p. 575-587. 

 

FRICKE, HUGO - A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse 

Systems ii. The Capacity of a Suspension of Conducting Spheroids Surrounded by a Non-Conducting 

Membrane for a Current of Low Frequency. Physical Review. Vol. 26, n.º 5 (1925), p. 678-681. 

 

GAO, LEI; ZHOU, XIAO FENG - Differential effective medium theory for thermal conductivity in 

nanofluids. Physics Letters A. ISSN 0375-9601. Vol. 348, n.º 3–6 (2006), p. 355-360. 

 

GARG, PARITOSH [et al.] - An experimental study on the effect of ultrasonication on viscosity and 

heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. International 

Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 52, n.º 21–22 (2009), p. 5090-5101. 

 

GE, Z.; URBANA-CHAMPAIGN, UNIVERSITY OF ILLINOIS AT - Nanoscale Thermal Transport at Solid-

liquid Interfaces. University of Illinois at Urbana-Champaign, 2006.  ISBN 9780542988400. 

 

GENSHENG, WU [et al.] - Thermal Conductivity Measurement for Carbon-Nanotube Suspensions 

with 3ω Method. Advanced Materials Research. Vol. 60-61 (2009), p. 394-398. 

 



170 
 

 

GHADIMI, A.; SAIDUR, R.; METSELAAR, H. S. C. - A review of nanofluid stability properties and 

characterization in stationary conditions. International Journal of Heat and Mass Transfer. ISSN 

0017-9310. Vol. 54, n.º 17–18 (2011a), p. 4051-4068. 

 

GHADIMI, A.; SAIDUR, R.; METSELAAR, H. S. C. - A review of nanofluid stability properties and 

characterization in stationary conditions. International Journal of Heat and Mass Transfer. ISSN 

0017-9310. Vol. 54, n.º 17-18 (2011b), p. 4051-4068. 

 

GOPALAKRISHNAN, J. - Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. 

Chemistry of Materials. ISSN 0897-4756. Vol. 7, n.º 7 (1995), p. 1265-1275. 

 

HAAN, S. W.; ZWANZIG, R. - Series expansions in a continuum percolation problem. Journal of 

Physics A: Mathematical and General. ISSN 0305-4470. Vol. 10, n.º 9 (1977), p. 1547. 

 

Electronic Components and Technology Conference, 2007. ECTC '07. Proceedings. 57th, 2007, 

Thermal Performance of Carbon Nanotube-Based Composites Investigated by Molecular Dynamics 

Simulation. City 2007. 269-272 p.  

 

HAMILTON, R. L.; CROSSER, O. K. - Thermal conductivity of heterogeneous two-component 

systems. Industrial & Engineering Chemistry Fundamentals. ISSN 0196-4313. Vol. 1, n.º 3 (1962), p. 

187-191. 

 

HARISH, SIVASANKARAN [et al.] - Enhanced thermal conductivity of ethylene glycol with single-

walled carbon nanotube inclusions. International Journal of Heat and Mass Transfer. ISSN 0017-

9310. Vol. 55, n.º 13–14 (2012), p. 3885-3890. 

 

HASHIMOTO, TAKEJI [et al.] - Domain-Boundary Structure of Styrene-Isoprene Block Copolymer 

Films Cast from Toluene Solutions. Macromolecules. ISSN 0024-9297. Vol. 7, n.º 3 (1974), p. 364-

373. 

 

HASHIN, Z.; SHTRIKMAN, S. - A Variational Approach to the Theory of the Effective Magnetic 

Permeability of Multiphase Materials. Journal of Applied Physics. Vol. 33, n.º 10 (1962), p. 3125-

3131. 



 
171 

 

 

HASSELMAN, D.P.H.; JOHNSON, LLOYD F. - Effective Thermal Conductivity of Composites with 

Interfacial Thermal Barrier Resistance. Journal of Composite Materials. Vol. 21, n.º 6 (1987), p. 508-

515. 

 

HERNADI, K. [et al.] - Catalytic synthesis and purification of carbon nanotubes. Synthetic Metals. 

ISSN 0379-6779. Vol. 77, n.º 1–3 (1996), p. 31-34. 

 

HERZHAFT, BENJAMIN [et al.] - Experimental study of the sedimentation of dilute and semi-dilute 

suspensions of fibres. Journal of Fluid Mechanics. ISSN 0022-1120. Vol. 384 (1999), p. 133-158. 

 

HIEMENZ, P.C. - Principles of colloid and surface chemistry. Marcel Dekker Inc., 1977.  ISBN 

9780824765736. 

 

HILDING, JENNY [et al.] - Dispersion of carbon nanotubes in liquids. Journal of Dispersion Science 

and Technology. ISSN 0193-2691. Vol. 24, n.º 1 (2003), p. 1-41. 

 

HONE, J. - Carbon nanotubes: thermal properties. Marcel Dekker, Inc.  (2002). 

 

HONG, TAE-KEUN; YANG, HO-SOON; CHOI, C. J. - Study of the enhanced thermal conductivity of Fe 

nanofluids. Journal of Applied Physics. Vol. 97, n.º 6 (2005), p. 064311-4. 

 

HOPKINS, PATRICK E. - Thermal Transport across Solid Interfaces with Nanoscale Imperfections: 

Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance. ISRN 

Mechanical Engineering. Vol. 2013 (2013), p. 19. 

 

HOPKINS, PATRICK E.; DUDA, JOHN C. - Introduction to Nanoscale Thermal Conduction [em linha]. 

Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology: InTech, 

2011. [Consult. Disponível em:<URL:http://www.intechopen.com/books/heat-transfer-

mathematical-modelling-numerical-methods-and-information-technology/introduction-to-

nanoscale-thermal-conduction>. ISBN 978-953-307-550. 

 

http://www.intechopen.com/books/heat-transfer-mathematical-modelling-numerical-methods-and-information-technology/introduction-to-nanoscale-thermal-conduction%3e
http://www.intechopen.com/books/heat-transfer-mathematical-modelling-numerical-methods-and-information-technology/introduction-to-nanoscale-thermal-conduction%3e
http://www.intechopen.com/books/heat-transfer-mathematical-modelling-numerical-methods-and-information-technology/introduction-to-nanoscale-thermal-conduction%3e


172 
 

 

HSIEH, YU-CHEN [et al.] - Thermal Analysis of Multi-walled Carbon Nanotubes by Kissinger’s 

Corrected Kinetic Equation Aerosol and Air Quality Research. ISSN: 1680-8584. Vol. 10 (2010), p. 

212-218. 

 

HSIN, Y. L. [et al.] - Production and in-situ Metal Filling of Carbon Nanotubes in Water. Advanced 

Materials. ISSN 1521-4095. Vol. 13, n.º 11 (2001), p. 830-833. 

 

HUXTABLE, SCOTT T. [et al.] - Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 

ISSN 1476-1122. Vol. 2, n.º 11 (2003), p. 731-734. 

 

HWANG, Y. J. [et al.] - Investigation on characteristics of thermal conductivity enhancement of 

nanofluids. Current Applied Physics. ISSN 1567-1739. Vol. 6, n.º 6 (2006a), p. 1068-1071. 

 

HWANG, Y. [et al.] - Stability and thermal conductivity characteristics of nanofluids. Thermochimica 

Acta. ISSN 0040-6031. Vol. 455, n.º 1-2 (2007), p. 70-74. 

 

HWANG, Y. [et al.] - Thermal conductivity and lubrication characteristics of nanofluids. Current 

Applied Physics. Vol. 6 (2006b), p. e67-e71. 

 

IIJIMA, SUMIO- Helical microtubules of graphitic carbon: Nature. 1991.  

 

IIJIMA, SUMIO [et al.] - Structural flexibility of carbon nanotubes. The Journal of Chemical Physics. 

Vol. 104, n.º 5 (1996), p. 2089-2092. 

 

INCROPERA, FRANK P. [et al.] - Fundamentals of Heat and Mass Transfer. 6. Wiley, 2006.  ISBN 978-

0-471-45728-2. 

 

INGLE, JAMES D.; CROUCH, STANLEY R. - Spectrochemical analysis. Prentice Hall, 1988.   

 

JACCARD, J. - Interaction Effects in Factorial Analysis of Variance. SAGE Publications, 1998.  ISBN 

9780761912217. 

 



 
173 

 

JANG, SEOK PIL; CHOI, STEPHEN U. S. - Role of Brownian motion in the enhanced thermal 

conductivity of nanofluids. Applied Physics Letters. Vol. 84, n.º 21 (2004), p. 4316-4318. 

 

JEFFREY, D. J. - Conduction Through a Random Suspension of Spheres. Proceedings of the Royal 

Society of London. A. Mathematical and Physical Sciences. Vol. 335, n.º 1602 (1973), p. 355-367. 

 

Photonics and Optoelectronics, 2009. SOPO 2009. Symposium on, 2009, Influence of pH on the 

Stability Characteristics of Nanofluids. City 2009. 1-4 p.  

 

JOSE-YACAMAN, M. [et al.] - Catalytic growth of carbon microtubules with fullerene structure. 

Applied Physics Letters. Vol. 62, n.º 2 (1993), p. 202-204. 

 

KANAGARAJ, S. [et al.]- Rheological study of nanofluids at different concentration of carbon 

nanotubes: Heat and Mass Transfer Conference. Department of Mechanical Engineering, University 

of Aveiro. 2008.  

 

KAPITZA, P. L. - Zh. Eksp. Teor. Fiz, J. Phys. USSR. Vol. 4 (1941), p. 181. 

 

KEBLINSKI, P. [et al.] - Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). 

International Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 45, n.º 4 (2002), p. 855-863. 

 

KEBLINSKI, PAWEL; PRASHER, RAVI; EAPEN, JACOB - Thermal conductance of nanofluids: is the 

controversy over? Journal of Nanoparticle Research. ISSN 1388-0764. Vol. 10, n.º 7 (2008), p. 1089-

1097. 

 

KEIDAR, M.; WAAS, A. M. - On the conditions of carbon nanotube growth in the arc discharge. 

Nanotechnology. ISSN 0957-4484. Vol. 15, n.º 11 (2004), p. 1571. 

 

KESTIN, J.; WAKEHAM, W. A. - A contribution to the theory of the transient hot-wire technique for 

thermal conductivity measurements. Physica A: Statistical Mechanics and its Applications. ISSN 

0378-4371. Vol. 92, n.º 1–2 (1978), p. 102-116. 

 



174 
 

 

KHALATNIKOV, I. M.; ADAMENKO, I.N. - Theory of the Kapitza temperature discontinuity at a solid 

body-liquid helium boundary. Soviet Physics JETP. Vol. 36 (1973). 

 

KHAN, MESBAH G.; FARTAJ, AMIR - A review on microchannel heat exchangers and potential 

applications. International Journal of Energy Research. ISSN 1099-114X. Vol. 35, n.º 7 (2011), p. 

553-582. 

 

KHANAFER, KHALIL; VAFAI, KAMBIZ - A critical synthesis of thermophysical characteristics of 

nanofluids. International Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 54, n.º 19–20 

(2011), p. 4410-4428. 

 

KIM, BO HUNG; BESKOK, ALI; CAGIN, TAHIR - Molecular dynamics simulations of thermal resistance 

at the liquid-solid interface. The Journal of Chemical Physics. Vol. 129, n.º 17 (2008a), p. 174701. 

 

KIM, JUN YOUNG; HAN, SANG IL; HONG, SEUNGPYO - Effect of modified carbon nanotube on the 

properties of aromatic polyester nanocomposites. Polymer. ISSN 0032-3861. Vol. 49, n.º 15 

(2008b), p. 3335-3345. 

 

KOO, J.; KANG, Y.; KLEINSTREUER, C. - A nonlinear effective thermal conductivity model for carbon 

nanotube and nanofiber suspensions. Nanotechnology. ISSN 0957-4484. Vol. 19, n.º 37 (2008), p. 

375705. 

 

KOO, J.; KLEINSTREUER, C. - A new thermal conductivity model for nanofluids. Journal of 

Nanoparticle Research. Vol. 6, n.º 6 (2004), p. 577-588. 

 

KOUSHKI, E.; MAJLES ARA, M. H.; AKHERAT DOOST, H. - Thermal conductivity in spherical 

nanocolloids. International Journal of Thermal Sciences. ISSN 1290-0729. Vol. 69, n.º 0 (2013), p. 

14-20. 

 

KUMAR, D. HEMANTH [et al.] - Model for Heat Conduction in Nanofluids. Physical Review Letters. 

Vol. 93, n.º Copyright (C) 2010 The American Physical Society (2004), p. 144301. 

 



 
175 

 

KUMAR, P.; RAMARAO, B. V. - Enhancement of the sedimentation rates of fibrous suspensions. 

Chemical Engineering Communications. ISSN 0098-6445. Vol. 108, n.º 1 (1991), p. 381-401. 

 

KUMBHARKHANE, A. C.; PURANIK, S. M.; MEHROTRA, S. C. - Temperature dependent dielectric 

relaxation study of ethylene glycol-water mixtures. Journal of Solution Chemistry. ISSN 0095-9782. 

Vol. 21, n.º 2 (1992), p. 201-212. 

 

KYRYLYUK, ANDRIY; VAN DER SCHOOT, PAUL - Continuum percolation of carbon nanotubes in 

polymeric and colloidal media. Proceedings of the National Academy of Sciences. Vol. 105, n.º 24 

(2008), p. 8221-8226. 

 

LAGARKOV, A. N.; SARYCHEV, A. K. - Electromagnetic properties of composites containing 

elongated conducting inclusions. Physical Review B. Vol. 53, n.º 10 (1996), p. 6318-6336. 

 

LANDAU, L.D. [et al.] - Electrodynamics of continuous media. Pergamon, 1984.  ISBN 

9780080302751. 

 

LAWLESS, J. F. - Truncated Distributions. In:  Encyclopedia of Actuarial Science. John Wiley & Sons, 

Ltd, 2006.  ISBN 9780470012505,  

 

LEE, DONGGEUN - Thermophysical Properties of Interfacial Layer in Nanofluids. Langmuir. ISSN 

0743-7463. Vol. 23, n.º 11 (2007), p. 6011-6018. 

 

LEE, DONGGEUN; KIM, JAE-WON; KIM, BOG G. - A New Parameter to Control Heat Transport in 

Nanofluids:  Surface Charge State of the Particle in Suspension. The Journal of Physical Chemistry B. 

ISSN 1520-6106. Vol. 110, n.º 9 (2006), p. 4323-4328. 

 

LEE, J.-H. [et al.] - A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids. 

International Journal of Micro-Nano Scale Transport. Vol. 1 (2010), p. 269-322. 

 

LEE, JI-HWAN [et al.] - Effective viscosities and thermal conductivities of aqueous nanofluids 

containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and 

Mass Transfer. ISSN 0017-9310. Vol. 51, n.º 11–12 (2008), p. 2651-2656. 



176 
 

 

 

LERCHE, D. - Dispersion Stability and Particle Characterization by Sedimentation Kinetics in a 

Centrifugal Field. Journal of Dispersion Science and Technology. ISSN 0193-2691. Vol. 23, n.º 5 

(2002), p. 699 - 709. 

 

LI, CALVIN H.; PETERSON, G. P. - Experimental investigation of temperature and volume fraction 

variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of 

Applied Physics. Vol. 99, n.º 8 (2006), p. 084314-8. 

 

LI, XINFANG; ZHU, DONGSHENG; WANG, XIANJU - Evaluation on dispersion behavior of the 

aqueous copper nano-suspensions. Journal of Colloid and Interface Science. ISSN 0021-9797. Vol. 

310, n.º 2 (2007), p. 456-463. 

 

LI, YANJIAO [et al.] - A review on development of nanofluid preparation and characterization. 

Powder Technology. ISSN 0032-5910. Vol. 196, n.º 2 (2009), p. 89-101. 

 

LIDE, D.R. - CRC Handbook of Chemistry and Physics, 85th Edition. Taylor & Francis, 2004.  ISBN 

9780849304859. 

 

LISUNOVA, MILANA O. [et al.] - Stability of the aqueous suspensions of nanotubes in the presence 

of nonionic surfactant. Journal of Colloid and Interface Science. ISSN 0021-9797. Vol. 299, n.º 2 

(2006), p. 740-746. 

 

LIU, M.; LIN, M. C.; WANG, C. - Enhancements of thermal conductivities with Cu, CuO, and carbon 

nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. 

Nanoscale Research Letters. ISSN 1556276X. Vol. 6, n.º 1 (2011), p. 297. 

 

LIU, MIN-SHENG [et al.] - Enhancement of thermal conductivity with carbon nanotube for 

nanofluids. International Communications in Heat and Mass Transfer. ISSN 0735-1933. Vol. 32, n.º 

9 (2005), p. 1202-1210. 

 



 
177 

 

LIU, MIN-SHENG [et al.] - Enhancement of thermal conductivity with Cu for nanofluids using 

chemical reduction method. International Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 

49, n.º 17-18 (2006), p. 3028-3033. 

 

LO, CHIH-HUNG [et al.] - Fabrication of copper oxide nanofluid using submerged arc nanoparticle 

synthesis system (SANSS). Journal of Nanoparticle Research. Vol. 7, n.º 2 (2005), p. 313-320. 

 

MAXWELL, JAMES CLERK - A treatise on electricity and magnetism. 3. Oxford: Clarendon Press, 

1873.   

 

MEIBODI, MAJID EMAMI [et al.] - The role of different parameters on the stability and thermal 

conductivity of carbon nanotube/water nanofluids. International Communications in Heat and 

Mass Transfer. ISSN 0735-1933. Vol. 37, n.º 3 (2010), p. 319-323. 

 

MERCHAN-MERCHAN, WILSON [et al.] - Combustion synthesis of carbon nanotubes and related 

nanostructures. Progress in Energy and Combustion Science. ISSN 0360-1285. Vol. 36, n.º 6 (2010), 

p. 696-727. 

 

MEYYAPPAN, M. - Carbon Nanotubes: Science and Applications. Boca Raton: CRC Press, 2004.  ISBN 

0-8493-2748-2. 

 

MINKOWYCZ, W.J.; SPARROW, E.M.; ABRAHAM, J.P. - Nanoparticle Heat Transfer and Fluid Flow. 

Taylor & Francis, 2012.  ISBN 9781439861929. 

 

MISSANA, TIZIANA; ADELL, ANDRÉS - On the Applicability of DLVO Theory to the Prediction of Clay 

Colloids Stability. Journal of Colloid and Interface Science. ISSN 0021-9797. Vol. 230, n.º 1 (2000), p. 

150-156. 

 

MOHAMMED, H. A. [et al.] - Heat transfer and fluid flow characteristics in microchannels heat 

exchanger using nanofluids: A review. Renewable and Sustainable Energy Reviews. ISSN 1364-0321. 

Vol. 15, n.º 3 (2011), p. 1502-1512. 

 



178 
 

 

MURSHED, S. M. S.; LEONG, K. C.; YANG, C. - A combined model for the effective thermal 

conductivity of nanofluids. Applied Thermal Engineering. ISSN 1359-4311. Vol. 29, n.º 11–12 

(2009), p. 2477-2483. 

 

MURSHED, S. M. S.; LEONG, K. C.; YANG, C. - Investigations of thermal conductivity and viscosity of 

nanofluids. International Journal of Thermal Sciences. ISSN 1290-0729. Vol. 47, n.º 5 (2008), p. 560-

568. 

 

NAGASAKA, Y.; NAGASHIMA, A. - Absolute measurement of the thermal conductivity of electrically 

conducting liquids by the transient hot-wire method. Journal of Physics E: Scientific Instruments. 

ISSN 0022-3735. Vol. 14, n.º 12 (1981), p. 1435. 

 

NAN, C. W.; SHI, Z.; LIN, Y. - A simple model for thermal conductivity of carbon nanotube-based 

composites. Chemical Physics Letters. ISSN 0009-2614. Vol. 375, n.º 5-6 (2003), p. 666-669. 

 

NAN, C.W. - Physics of inhomogeneous inorganic materials. Progress in Materials Science. Vol. 37 

(1993), p. 1-116. 

 

NAN, CE-WEN [et al.] - Effective thermal conductivity of particulate composites with interfacial 

thermal resistance. Journal of Applied Physics. Vol. 81, n.º 10 (1997), p. 6692-6699. 

 

NAN, CE-WEN [et al.] - Interface effect on thermal conductivity of carbon nanotube composites. 

Applied Physics Letters. Vol. 85, n.º 16 (2004), p. 3549-3551. 

 

NASEH, MASOUD VESALI [et al.] - Fast and clean functionalization of carbon nanotubes by dielectric 

barrier discharge plasma in air compared to acid treatment. Carbon. ISSN 0008-6223. Vol. 48, n.º 5 

(2010), p. 1369-1379. 

 

NASIRI, AIDA [et al.] - Effect of dispersion method on thermal conductivity and stability of 

nanofluid. Experimental Thermal and Fluid Science. ISSN 0894-1777. Vol. 35, n.º 4 (2011), p. 717-

723. 

 



 
179 

 

NGUYEN, C. T. [et al.] - Temperature and particle-size dependent viscosity data for water-based 

nanofluids - Hysteresis phenomenon. International Journal of Heat and Fluid Flow. ISSN 0142-727X. 

Vol. 28, n.º 6 (2007), p. 1492-1506. 

 

OH, DONG-WOOK [et al.] - Thermal conductivity measurement and sedimentation detection of 

aluminum oxide nanofluids by using the 3[omega] method. International Journal of Heat and Fluid 

Flow. ISSN 0142-727X. Vol. 29, n.º 5 (2008), p. 1456-1461. 

 

ORDONEZ-MIRANDA, J.; ALVARADO-GIL, J. J. - Thermal conductivity of nanocomposites with high 

volume fractions of particles. Composites Science and Technology. ISSN 0266-3538. Vol. 72, n.º 7 

(2012a), p. 853-857. 

 

ORDÓÑEZ-MIRANDA, J.; ALVARADO-GIL, J. J.; MEDINA-EZQUIVEL, R. - Generalized Bruggeman 

Formula for the Effective Thermal Conductivity of Particulate Composites with an Interface Layer. 

International Journal of Thermophysics. ISSN 0195-928X. Vol. 31, n.º 4-5 (2010), p. 975-986. 

 

ORDONEZ-MIRANDA, J.; YANG, RONGGUI; ALVARADO-GIL, J. J. - A model for the effective thermal 

conductivity of metal-nonmetal particulate composites. Journal of Applied Physics. Vol. 111, n.º 4 

(2012b), p. 044319-12. 

 

ORDONEZ-MIRANDA, J.; YANG, RONGGUI; ALVARADO-GIL, J. J. - On the thermal conductivity of 

particulate nanocomposites. Applied Physics Letters. Vol. 98, n.º 23 (2011), p. -. 

 

PATEL, HRISHIKESH E. [et al.] - Thermal conductivities of naked and monolayer protected metal 

nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. 

Applied Physics Letters. Vol. 83, n.º 14 (2003), p. 2931-2933. 

 

PATEL, HRISHIKESHE [et al.] - A micro-convection model for thermal conductivity of nanofluids. 

Pramana. ISSN 0304-4289. Vol. 65, n.º 5 (2005), p. 863-869. 

 

PENAS, JOSE R. VAZQUEZ; ZARATE, JOSE M. ORTIZ DE; KHAYET, MOHAMED - Measurement of the 

thermal conductivity of nanofluids by the multicurrent hot-wire method. Journal of Applied 

Physics. Vol. 104, n.º 4 (2008), p. 044314. 



180 
 

 

 

PENG, HAIQING [et al.] - Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon 

Nanotubes. Journal of the American Chemical Society. ISSN 0002-7863. Vol. 125, n.º 49 (2003), p. 

15174-15182. 

 

PERRIN, JEAN - Brownian Movement and Molecular Reality. Dover Publications, 2005.  ISBN 

0486442578. 

 

PIKE, G. E.; SEAGER, C. H. - Percolation and conductivity: A computer study. I. Physical Review B. 

Vol. 10, n.º 4 (1974), p. 1421-1434. 

 

POIRIER, D. R; GEIGER, GORDON H. (GORDON HAROLD) - Transport phenomena in materials 

processing / D.R. Poirier, G.H. Geiger. Minerals, Metals & Materials Society, 1994.  ISBN 

0873392728. 

 

POLLACK, GERALD L. - Kapitza Resistance. Reviews of Modern Physics. Vol. 41, n.º 1 (1969), p. 48-

81. 

 

PONMOZHI, J. - Water based nanofluids development and characterization. Univeristy of Aveiro, 

2009. 125 f.  

 

PONMOZHI, J. [et al.] - Thermodynamic and transport properties of CNT- water based nanofluids. 

Journal of Nano Research. Vol. 11 (2009), p. 101-106. 

 

POPA, IONEL [et al.] - Attractive and Repulsive Electrostatic Forces between Positively Charged 

Latex Particles in the Presence of Anionic Linear Polyelectrolytes. The Journal of Physical Chemistry 

B. ISSN 1520-6106. Vol. 114, n.º 9 (2010), p. 3170-3177. 

 

PRASHER, RAVI; BHATTACHARYA, PRAJESH; PHELAN, PATRICK E. - Thermal Conductivity of 

Nanoscale Colloidal Solutions (Nanofluids). Physical Review Letters. Vol. 94, n.º Copyright (C) 2010 

The American Physical Society (2005), p. 025901. 

 



 
181 

 

PRASHER, RAVI; PHELAN, PATRICK E.; BHATTACHARYA, PRAJESH - Effect of Aggregation Kinetics on 

the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid). Nano Letters. ISSN 1530-

6984. Vol. 6, n.º 7 (2006), p. 1529-1534. 

 

RAAB, CHRISTINA [et al.] - Production of nanoparticles and nanomaterials. Nanotrust dossiers. ISSN 

1998-7293. Vol. 006en (2011). 

 

RAHIMPOUR, AHMAD [et al.] - Novel functionalized carbon nanotubes for improving the surface 

properties and performance of polyethersulfone (PES) membrane. Desalination. ISSN 0011-9164. 

Vol. 286, n.º 0 (2012), p. 99-107. 

 

REFRACTOMETER - Refractive index of ethylene glycol solutions [em linha]. [Consult. Disponível 

em:<URL:http://www.refractometer.pl/refraction-datasheet-ethylene-glycol>. 

 

REIF, FEDERICK- Fundamentals of Statistical and Thermal Physics. International Edition 1985. 

Singapore: McGraw-Hill, 1965. ISBN/ISSN 0-07-085615-X. 

 

RICHARDSON, J. F.; ZAKI, W. N. - Sedimentation and fluidisation: part I. Trans. Instn. Chem. Engrs. 

Vol. 32 (1954), p. -53. 

 

RODER, HANS M. - A Transient Hot Wire Thermal Conductivity Apparatus for Fluids. Journal of 

Research of the National Bureau of Standards. Vol. 86, n.º 5 (1981). 

 

RUSSEL, W.B.; SAVILLE, D.A.; SHOWALTER, W.R.- Colloidal Dispersions. Cambridge: Cambridge 

University Press, 1989. ISBN/ISSN 0521341884. 

 

SABBAGHZADEH, JAMSHID; EBRAHIMI, SADOLLAH - Effective Thermal Conductivity of Nanofluids 

containing cylindrical nanoparticles. International Journal of Nanoscience. Vol. 06, n.º 01 (2007), p. 

45-49. 

 

SASTRY, N. N. VENKATA [et al.] - Predicting the effective thermal conductivity of carbon nanotube 

based nanofluids. Nanotechnology. ISSN 0957-4484. Vol. 19, n.º 5 (2008), p. 055704. 

 

http://www.refractometer.pl/refraction-datasheet-ethylene-glycol%3e


182 
 

 

SCHNITZLER, MARIANEC; ZARBIN, ALDOJ G. - The effect of process variables on the characteristics 

of carbon nanotubes obtained by spray pyrolysis. Journal of Nanoparticle Research. ISSN 1388-

0764. Vol. 10, n.º 4 (2008), p. 585-597. 

 

SETARAM - Setsys Evolution [em linha]. [Consult. Disponível 

em:<URL:http://www.setaram.com/SETSYS-Evolution-TGA-DTA-DSC.htm>. 

 

SHAFFER, M. S. P.; FAN, X.; WINDLE, A. H. - Dispersion and packing of carbon nanotubes. Carbon. 

ISSN 0008-6223. Vol. 36, n.º 11 (1998), p. 1603-1612. 

 

SHENOGIN, S. [et al.] - Effect of chemical functionalization on thermal transport of carbon 

nanotube composites. AIP, 2004a.   

 

SHENOGIN, SERGEI [et al.] - Role of thermal boundary resistance on the heat flow in carbon-

nanotube composites. Journal of Applied Physics. ISSN 0021-8979. Vol. 95, n.º 12 (2004b), p. 8136-

8144. 

 

SHENOGINA, N. [et al.] - On the lack of thermal percolation in carbon nanotube composites. 

Applied Physics Letters. Vol. 87 (2005), p. 6-9. 

 

SHIM, JAE-WOON; PARK, SOO-JIN; RYU, SEUNG-KON - Effect of modification with HNO3 and NaOH 

on metal adsorption by pitch-based activated carbon fibers. Carbon. ISSN 0008-6223. Vol. 39, n.º 

11 (2001), p. 1635-1642. 

 

SIDDIQUE, M. [et al.] - Recent Advances in Heat Transfer Enhancements: A Review Report. 

International Journal of Chemical Engineering. Vol. 2010 (2010). 

 

SNOOK, IAN K.; HENDERSON, DOUGLAS - Monte Carlo study of a hard-sphere fluid near a hard wall. 

The Journal of Chemical Physics. Vol. 68, n.º 5 (1978), p. 2134-2139. 

 

SONICS & MATERIALS, INC. - [em linha]. [Consult. Disponível em:<URL:http://www.sonics.biz/lp-

accessories-large.htm>. 

 

http://www.setaram.com/SETSYS-Evolution-TGA-DTA-DSC.htm%3e
http://www.sonics.biz/lp-accessories-large.htm%3e
http://www.sonics.biz/lp-accessories-large.htm%3e


 
183 

 

STAUFFER, D. - Scaling theory of percolation clusters. Physics Reports. ISSN 0370-1573. Vol. 54, n.º 

1 (1979), p. 1-74. 

 

STOKES, GEORGE GABRIEL - On the Effect of the Internal Friction of Fluids on the Motion of 

Pendulums Mathematical and Physical Papers. Cambridge University Press, 1850.   

 

STONER, R. J.; MARIS, H. J. - Kapitza conductance and heat flow between solids at temperatures 

from 50 to 300 K. Physical Review B. Vol. 48, n.º 22 (1993), p. 16373-16387. 

 

SWARTZ, E. T.; POHL, R. O. - Thermal boundary resistance. Reviews of Modern Physics. Vol. 61, n.º 

3 (1989), p. 605-668. 

 

TAGUCHI, G. - System of experimental design: engineering methods to optimize quality and 

minimize costs. UNIPUB/Kraus International Publications, 1987.  ISBN 9780941243001. 

 

TALAEI, ZEINAB [et al.] - The effect of functionalized group concentration on the stability and 

thermal conductivity of carbon nanotube fluid as heat transfer media. International 

Communications in Heat and Mass Transfer. ISSN 0735-1933. Vol. 38, n.º 4 (2011), p. 513-517. 

 

TAYLOR, J.R. - An Introduction to Error Analysis: The Study of Uncertainties in Physical 

Measurements. University Science Books, 1997.  ISBN 9780935702750. 

 

TORQUATO, S. - Random Heterogeneous Materials: Microstructure and Macroscopic Properties. 

Springer, 2002.  ISBN 9780387951676. 

 

TURNEY, MICHAEL A. [et al.] - Hindered settling of rod-like particles measured with magnetic 

resonance imaging. AIChE Journal. ISSN 1547-5905. Vol. 41, n.º 2 (1995), p. 251-257. 

 

VAISMAN, LINDA; WAGNER, H. DANIEL; MAROM, GAD - The role of surfactants in dispersion of 

carbon nanotubes. Advances in Colloid and Interface Science. ISSN 0001-8686. Vol. 128-130 (2006), 

p. 37-46. 

 



184 
 

 

VEINGNON, SOMJATE [et al.] - Development of Carbon Nanotube - Reinforced Silk and Cannabis 

Fibers by an Electrophoretic Deposition Method. Materials Science Forum. Vol. 695 (2011), p. 377-

380. 

 

VENERUS, DAVID C. [et al.] - Study of thermal transport in nanoparticle suspensions using forced 

Rayleigh scattering. Journal of Applied Physics. Vol. 100, n.º 9 (2006), p. 094310-5. 

 

VERWEY, E.J.W.; OVERBEEK, J.T.G. - Theory of the Stability of Lyophobic Colloids. Dover 

Publications, 1999.  ISBN 9780486409290. 

 

WANG, BU-XUAN; ZHOU, LE-PING; PENG, XIAO-FENG - A fractal model for predicting the effective 

thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and 

Mass Transfer. ISSN 0017-9310. Vol. 46, n.º 14 (2003a), p. 2665-2672. 

 

WANG, CHENCHEN [et al.] - Chemical functionalization of carbon nanotubes by carboxyl groups on 

stone-wales defects:  a density functional theory study. The Journal of Physical Chemistry B. ISSN 

1520-6106. Vol. 110, n.º 21 (2006), p. 10266-10271. 

 

WANG, XINWEI; XU, XIANFAN; CHOI, STEPHEN U. S. - Thermal conductivity of nanoparticle–fluid 

mixture. Journal of Thermophysics and Heat Transfer. Vol. 13 (1999), p. 474-480. 

 

WANG, YAO; WU, JUN; WEI, FEI - A treatment method to give separated multi-walled carbon 

nanotubes with high purity, high crystallization and a large aspect ratio. Carbon. ISSN 0008-6223. 

Vol. 41, n.º 15 (2003b), p. 2939-2948. 

 

WEBA-TECHNOLOGY- Glycol-Based Heat Transfer Fluid Technical Manual. 2003. [Consult. 

04/11/2013]. Disponível em:<URL:http://www.webacorp.com/HTF-Manual.pdf>.  

 

WEI, WANG [et al.] - A Comprehensive Model for the Enhanced Thermal Conductivity of 

Nanofluids. Journal of Advanced Research in Physics. Vol. 3, n.º 021209 (2012). 

 

http://www.webacorp.com/HTF-Manual.pdf%3e


 
185 

 

WEITING, JIANG; GUOLIANG, DING; HAO, PENG - Measurement and model on thermal 

conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences. 

ISSN 1290-0729. Vol. 48, n.º 6 (2009), p. 1108-1115. 

 

WEPASNICK, KEVINA [et al.] - Chemical and structural characterization of carbon nanotube 

surfaces. Analytical and Bioanalytical Chemistry. ISSN 1618-2642. Vol. 396, n.º 3 (2010), p. 1003-

1014. 

 

WHITE, FRANK M. - Fluid Mechanics. 6th. MC Graw Hill, 1998.   

 

WILSON, ORLA M. [et al.] - Colloidal metal particles as probes of nanoscale thermal transport in 

fluids. Physical Review B. Vol. 66, n.º 22 (2002), p. 224301. 

 

WONG, S. S.; BANERJEE, S. - Functionalization of carbon nanotubes with a metal-containing 

molecular complex. Nano Letters. ISSN 1530-6984. Vol. 2, n.º 1 (2002), p. 49-53. 

 

XIAO, BOQI; YANG, YI; CHEN, LINGXIA - Developing a novel form of thermal conductivity of 

nanofluids with Brownian motion effect by means of fractal geometry. Powder Technology. ISSN 

0032-5910. Vol. 239, n.º 0 (2013), p. 409-414. 

 

XIE, HUAQING; CHEN, LIFEI - Adjustable thermal conductivity in carbon nanotube nanofluids. 

Physics Letters A. ISSN 0375-9601. Vol. 373, n.º 21 (2009), p. 1861-1864. 

 

XIE, HUAQING; CHEN, LIFEI - Review on the Preparation and Thermal Performances of Carbon 

Nanotube Contained Nanofluids. Journal of Chemical & Engineering Data. ISSN 0021-9568. Vol. 56, 

n.º 4 (2011), p. 1030-1041. 

 

XIE, HUAQING; FUJII, MOTOO; ZHANG, XING - Effect of interfacial nanolayer on the effective 

thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer. 

ISSN 0017-9310. Vol. 48, n.º 14 (2005), p. 2926-2932. 

 

XIE, HUAQING [et al.] - Nanofluids containing multiwalled carbon nanotubes and their enhanced 

thermal conductivities. Journal of Applied Physics. Vol. 94, n.º 8 (2003), p. 4967-4971. 



186 
 

 

 

XIE, HUAQING [et al.] - Thermal conductivity enhancement of suspensions containing nanosized 

alumina particles. Journal of Applied Physics. Vol. 91, n.º 7 (2002), p. 4568-4572. 

 

XUAN, YIMIN; LI, QIANG - Heat transfer enhancement of nanofluids. International Journal of Heat 

and Fluid Flow. Vol. 21 (2000), p. 58-64. 

 

XUAN, YIMIN; LI, QIANG; HU, WEIFENG - Aggregation structure and thermal conductivity of 

nanofluids. AIChE Journal. ISSN 1547-5905. Vol. 49, n.º 4 (2003), p. 1038-1043. 

 

XUE, L. [et al.] - Effect of liquid layering at the liquid–solid interface on thermal transport. 

International Journal of Heat and Mass Transfer. ISSN 0017-9310. Vol. 47, n.º 19–20 (2004), p. 

4277-4284. 

 

XUE, L. [et al.] - Two regimes of thermal resistance at a liquid--solid interface. The Journal of 

Chemical Physics. Vol. 118, n.º 1 (2003), p. 337-339. 

 

XUE, Q. Z. - Model for thermal conductivity of carbon nanotube-based composites. Physica B: 

Condensed Matter. ISSN 0921-4526. Vol. 368, n.º 1-4 (2005), p. 302-307. 

 

XUE, QING-ZHONG - Model for effective thermal conductivity of nanofluids. Physics Letters A. ISSN 

0375-9601. Vol. 307, n.º 5-6 (2003), p. 313-317. 

 

YAJIE, REN; HUAQING, XIE; AN, CAI - Effective thermal conductivity of nanofluids containing 

spherical nanoparticles. Journal of Physics D: Applied Physics. ISSN 0022-3727. Vol. 38, n.º 21 

(2005), p. 3958. 

 

YAKOBSON, B. I.; BRABEC, C. J.; BERNHOLC, J. - Nanomechanics of Carbon Tubes: Instabilities 

beyond Linear Response. Physical Review Letters. Vol. 76, n.º 14 (1996), p. 2511. 

 

YOO, DAE-HWANG; HONG, K. S.; YANG, HO-SOON - Study of thermal conductivity of nanofluids for 

the application of heat transfer fluids. Thermochimica Acta. ISSN 0040-6031. Vol. 455, n.º 1-2 

(2007), p. 66-69. 



 
187 

 

 

YOUNG, D. A.; MARIS, H. J. - Lattice-dynamical calculation of the Kapitza resistance between fcc 

lattices. Physical Review B. Vol. 40, n.º 6 (1989), p. 3685-3693. 

 

YU, W.; CHOI, S. U. S. - The role of interfacial layers in the enhanced thermal conductivity of 

nanofluids: A renovated Hamilton–Crosser model. Journal of Nanoparticle Research. Vol. 6, n.º 4 

(2004), p. 355-361. 

 

YU, W.; CHOI, S. U. S. - The Role of Interfacial Layers in the Enhanced Thermal Conductivity of 

Nanofluids: A Renovated Maxwell Model. Journal of Nanoparticle Research. ISSN 1388-0764. Vol. 5, 

n.º 1-2 (2003), p. 167-171. 

 

YU, WEI [et al.] - Investigation on the thermal transport properties of ethylene glycol-based 

nanofluids containing copper nanoparticles. Powder Technology. ISSN 0032-5910. Vol. 197, n.º 3 

(2010), p. 218-221. 

 

YU, WEI [et al.] - Highly Efficient Method for Preparing Homogeneous and Stable Colloids 

Containing Graphene Oxide. Nanoscale Research Letters. ISSN 1931-7573. Vol. 6, n.º 1 (2011), p. 1-

7. 

 

YUDIANTI, RIKE [et al.] - Analysis of functional group sited on multi-wall carbon nanotube surface. 

The Open Materials Science Journal. Vol. 5 (2011), p. 242-247. 

 

ZHANG, JIN [et al.] - Effect of Chemical Oxidation on the Structure of Single-Walled Carbon 

Nanotubes. The Journal of Physical Chemistry B. ISSN 1520-6106. Vol. 107, n.º 16 (2003), p. 3712-

3718. 

 

ZHANG, XING; GU, HUA; FUJII, MOTOO - Effective thermal conductivity and thermal diffusivity of 

nanofluids containing spherical and cylindrical nanoparticles. Journal of Applied Physics. Vol. 100, 

n.º 4 (2006), p. 044325-5. 

 

ZHAO, XINYUAN; VANDERBILT, DAVID - Phonons and lattice dielectric properties of zirconia. 

Physical Review B. Vol. 65, n.º 7 (2002), p. 075105. 



188 
 

 

 

ZHONG, HONGLIANG; LUKES, JENNIFER R. - Interfacial thermal resistance between carbon 

nanotubes: Molecular dynamics simulations and analytical thermal modeling. Physical Review B. 

Vol. 74, n.º 12 (2006), p. 125403. 

 

ZHOU, WEI; XU, JIANWEN; SHI, WENFANG - Surface modification of multi-wall carbon nanotube 

with ultraviolet-curable hyperbranched polymer. Thin Solid Films. ISSN 0040-6090. Vol. 516, n.º 12 

(2008), p. 4076-4082. 

 

ZHU, HAI-TAO; LIN, YU-SHENG; YIN, YAN-SHENG - A novel one-step chemical method for 

preparation of copper nanofluids. Journal of Colloid and Interface Science. ISSN 0021-9797. Vol. 

277, n.º 1 (2004), p. 100-103. 

 

 



 
189 

 

APPENDIX 

A. EXCLUDED VOLUME THEORY 

The excluded volume of a particle is defined as the volume around a particle which the centre of 

another similar particle is not allowed to enter if overlapping of the two particles is to be avoided. 

This is an efficient concept to ascertain the degree of interparticle contacts on a dispersion 

(BALBERG et al., 1984a, BALBERG et al., 1984b). According to this theory, the excluded volume of a 

randomly oriented capped cylinder 〈V〉  can be expressed as: 

〈V〉 =
4π

3
∙dp

3+2π∙lp∙dp
2+2∙lp

2∙dp∙〈sin γ〉 A.1 

where γ is the average angle over all possible solid angles between two rigid cylinders. For an 

isotropic case 〈sin γ〉= π 4⁄ .  

This expression can be reduced to the excluded volume of a sphere when lp=0. Such reduction is 

possible because the first term of the Equation A.1 represents the capped section of a cylinder. 

Furthermore, for high aspect ratio cylinders, lp
2∙dp∙ π 2⁄ ≫2π∙lp∙dp

2, the excluded volume could be 

simplified for (BALBERG et al., 1984b): 

〈V〉 ≈
π

2
∙lp

2∙dp A.2 

The total excluded volume of the system 〈Vex〉 is the excluded volume of one particle multiplied by 

the number of particles n. The average number of particles in contact to a given particle, B, is 

conceptually and numerically the same as the 〈Vex〉, and could be expressed as: 

〈Vex〉 ≡B=n〈V〉 A.3 

where n= ϕ (6π∙dp
3)⁄ , for spherical particles and n= 4∙ϕ (π∙dp

2∙lp)⁄  for uncapped cylinders. 

Through Monte Carlo simulations, it was found that B at the percolation threshold, or Bc, is for 

≈1.4  for uncapped rigid cylinders, and ≈2.8 for spherical particles. These results were in agreement 

with Pike et al. and Haan et al. (BALBERG et al., 1984a, HAAN et al., 1977, PIKE et al., 1974). 

Therefore, the critical volume fraction of monodispersed uncapped cylinders can be expressed as: 
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ϕc≈
Bc

2
∙
dp

lp
 A.4 
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B. BASE FLUID THERMO-PHYSICAL PROPERTIES  

 

 

Table B.1: Thermo-physical properties of DW+30%EG (ASHRAE, 2005, WEBA-TECHNOLOGY, 2003). 

Aqueous solution of 30% ethylene glycol 

Temperature 

[K] 

Thermal conductivity 

[W/mK] 

Viscosity 

[Pa s] 

Density 

[kg/m³] 

Specific heat capacity 

[kJ/kg K] 

283.15 0.442 0.003 1050.0 3.617 

293.15 0.453 0.002 1046.4 3.648 

298.15 0.459 0.002 1044.5 3.663 

303.15 0.464 0.002 1042.5 3.678 

313.15 0.473 0.001 1037.9 3.704 

323.15 0.481 0.001 1032.9 3.734 

 

 

Table B.2: Thermo-physical properties of DW+60%EG (ASHRAE, 2005, WEBA-TECHNOLOGY, 2003). 

Aqueous solution of 60% ethylene glycol 

Temperature 

[K] 

Thermal conductivity 

[W/mK] 

Viscosity 

[Pa s] 

Density 

[kg/m³] 

Specific heat capacity 

[kJ/kg K] 

283.15 0.340 0.008 1092.0 3.044 

293.15 0.349 0.005 1087.5 3.085 

298.15 0.352 0.005 1085.1 3.107 

303.15 0.355 0.004 1082.6 3.130 

313.15 0.360 0.003 1077.1 3.174 

323.15 0.365 0.002 1071.3 3.216 





 
193 

 

C. EFFECTIVE THERMAL CONDUCTIVITY EXPERIMENTAL LAYOUT 

Table C.1: Effective thermal conductivity experimental layout. 

Run MWCNTs Base fluid ɸ [%] Temperature [K] 

1 to 6 

d50-80 l10-20 

DW+30%EG 

0.25% 

283.15 to 313.15 

7 to 12 0.50% 

13 to 18 0.75% 

19 to 24 1.00% 

25 to 30 1.50% 

31 to 36 

DW+60%EG 

0.25% 

37 to 42 0.50% 

43 to 48 0.75% 

49 to 54 1.00% 

55 to 60 1.50% 

61 to 66 

d60-100 l5-15 

DW+30%EG 

0.25% 

283.15 to 313.15 

67 to 72 0.50% 

73 to 78 0.75% 

79 to 84 1.00% 

85 to 90 1.50% 

91 to 96 

DW+60%EG 

0.25% 

97 to 102 0.50% 

103 to 108 0.75% 

109 to 114 1.00% 

115 to 120 1.50% 

121 to 126 

d60-100 l1-2 

DW+30%EG 

0.25% 

283.15 to 313.15 

127 to 132 0.50% 

133 to 138 0.75% 

139 to 144 1.00% 

145 to 150 1.50% 

151 to 156 

DW+60%EG 

0.25% 

157 to 162 0.50% 

163 to 168 0.75% 

169 to 174 1.00% 

175 to 180 1.50% 

181 to 186 

d20-30 l10-30 

DW+30%EG 

0.25% 

283.15 to 313.15 

187 to 192 0.50% 

193 to 198 0.75% 

199 to 204 1.00% 

205 to 210 1.50% 

211 to 216 

DW+60%EG 

0.25% 

217 to 222 0.50% 

223 to 228 0.75% 

229 to 234 1.00% 
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Run MWCNTs Base fluid ɸ [%] Temperature [K] 

235 to 240 1.50% 

241 to 246 

d20-30 l5-15 

DW+30%EG 

0.25% 

283.15 to 313.1 

247 to 252 0.50% 

253 to 258 0.75% 

259 to 264 1.00% 

265 to 270 1.50% 

271 to 276 

DW+60%EG 

0.25% 

277 to 282 0.50% 

283 to 288 0.75% 

289 to 294 1.00% 

295 to 300 1.50% 

301 to 306 

d20-30 l1-2 

DW+30%EG 

0.25% 

283.15 to 313.15 

307 to 312 0.50% 

313 to 318 0.75% 

319 to 324 1.00% 

325 to 330 1.50% 

331 to 336 

DW+60%EG 

0.25% 

337 to 342 0.50% 

343 to 348 0.75% 

349 to 354 1.00% 

355 to 360 1.50% 
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D. EXPERIMENTAL UNCERTAINTIES ANALYSIS 

No physical quantity can be measured with perfect certainty, i.e. there are always errors, or 

uncertainties, in any experimental measurement. It is known that uncertainties are an unavoidable 

part of the experiments. In order to increase the confidence on the results it is, therefore, required 

the estimation of the uncertainty (BEVINGTON et al., 2003, TAYLOR, 1997). 

D.1 VOLUME FRACTION EXPERIMENTAL UNCERTAINTIES 

As described in Equation 3.2, the measurement of the volume fraction depends on the both 

measurements of the carbon nanotubes mass and base fluid volume. Therefore, it is 

distinguishable that the uncertainty on the volume fractions developed has the propagation of the 

experimental errors of the mentioned quantities. This uncertainty propagation is given as 

(BEVINGTON et al., 2003, TAYLOR, 1997): 

 ∆ϕ=√(
∂ϕ

∂mCNT
)

2

∙∆mCNT
2+(

∂ϕ

∂Vbf
)

2

∙∆Vbf
2 D.1 

Which, considering Equation 3.2 becomes: 

 ∆ϕ=√(
ρCNT∙Vbf

(mCNT∙ρCNT+Vbf)
2)

2

∙∆mCNT
2+(

-mCNT∙ρCNT

(mCNT∙ρCNT+Vbf)
2)

2

∙∆Vbf
2 D.2 

where, 

∆Vbf=∆VDW+∆VEG=2∙∆V=1 ml D.3 

∆mCNT=0.001 g D.4 

D.2 NANOPARTICLES SIZES DISTRIBUTIONS UNCERTAINTIES 

The diameter and length distribution of the after dispersed MWCNTs were measured through SEM 

images analysis. However, it is known that these sizes were measured on a projection of the 

particles in a 2D plan, providing an uncertainty of difficulty to estimate. Even so, it was considered 

that these sizes comply within a normal distribution, enabling to estimate the 95% confidence 

interval of the samples, as well as the 95% confidence interval of the means considered for the 

reaming study.  
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However, the functionalized MWCNTs, presented a higher length reduction. This reduction 

developed a normal distribution that predicts negative lengths. Therefore, considering the nature 

of the nanoparticles, and the physical impossibility of such negative lengths, it was assumed that 

these comply within truncated normal distributions. These simple truncated normal distributions 

(truncated in 0 µm) requires the adjustment of the average and standard deviation of the lengths, 

which are provided ahead. 

It was considered normal (and truncated) distributions, since the samples size is high (>100, see 

Table 3.6) and the t-student distribution converge to the normal distribution (see Table D.3, in 

Appendix D.6), despite the sample is a portion of the population.  

In addition, the methodology to verify the goodness-of-fit of the distributions is also provided 

ahead. 

D.2.1 DIAMETER DISTRIBUTION UNCERTAINTIES 

As mentioned, the diameters of the functionalized MWCNTs were considered to comply within 

normal distributions. Normal distributions have mean dp ̅̅̅̅  and standard deviation σ .The σ of the 

diameters distributions mean can be expressed as: 

 σ=√
1

N-1
∙∑(dpi

-dp̅)
2

N

i=1

 D.5 

where N is the sample size (see Table 3.6). 

The probability density function can be expressed as: 

 f(dpi
)=

1

σ√2π
e

-
(dpi

-dp
̅̅̅)

2

2σ2  
D.6 

From this, the 95% confidence interval of the diameter distribution, ranges from: 

[dp̅-Zσ ; dp
̅̅̅̅ +Zσ] D.7 

where Z=1.96 (see Table D.3, in Appendix D.6) (BEVINGTON et al., 2003, TAYLOR, 1997). 
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The estimated 95% confidence interval for the expected mean size dp̅, is given by: 

dp̅expected
=dp̅±∆dp̅ D.8 

where  

 ∆dp̅=Z∙
σ

√N
 D.9 

where N is given in Table 3.6 (BEVINGTON et al., 2003, TAYLOR, 1997). 

D.2.2 LENGTH DISTRIBUTION UNCERTAINTIES 

As mentioned, the lengths distribution of the functionalized MWCNTs were very reduced, 

regarding the announced by the manufacturers to the pristine. As it will be seen, these produced 

an asymmetric distribution, with higher frequency to the left. Appling normal distributions to these 

results, led to part of the left tail of the distribution be on ℝ-, an impossibility. As noticeable, this 

led to non-fitness of the results to the normal distributions. 

Therefore, to improve the fitness of the results to the normal distributions, these were truncated in 

the interval ]0 ; +∞[, which describes the physical nature of the particles. The truncated normal 

distribution is a probability distribution from a normal distribution, were the values have, at least 

one bound (LAWLESS, 2006), in these case at the left, 0. Nevertheless, it should be noted that 

these are derived from a normal distribution, calculated in a similar way to the described in the 

previous Section. 

The probability density function of the truncated normal distribution can be expressed as 

(LAWLESS, 2006): 

ftru(lpi
)=

{
 
 

 
 1

σ√2π
e

-
(lpi

-lp̅)
2

2σ2

1-F(0)
,  &    0<lp<+∞

0,  &    lp≤0

 D.10  

where  F(0) is the cumulative probability for the truncated bound, obtained from the original 

normal distributions. 
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Normal distributions have mean lp  ̅ and standard deviation σ .Nevertheless, the truncated normal 

distributions provides variation in these quantities. The truncated mean lptru
 ̅̅ ̅̅ ̅ can be estimated 

through the following expression: 

lptru
 ̅̅ ̅̅ ̅=lp  ̅+

φ(α)

1-F(0)
∙σ D.11 

where α= (a-lp  ̅) σ⁄ , and a is the left bound of the truncated distribution, a=0, and φ(α) is the 

standard normal distribution of α.  

The truncated standard deviation σtru of the truncated length distributions mean can be expressed 

as: 

  σtru=(1-δ)√
1

N-1
∙∑(lpi

-lp  ̅)
2

N

i=1

 D.12 

where N is the sample size (see Table 3.6), and  δ= φ(α) (1-F(0)⁄ ). 

From this, the 95% confidence interval of the truncated length distributions, ranges from: 

[lptru
̅̅ ̅̅ -Zσtru ;lptru

̅̅ ̅̅ +Zσtru] D.13 

where Z=1.96 (see Table D.3, in Appendix D.6) (BEVINGTON et al., 2003, TAYLOR, 1997). 

The estimated 95% confidence interval for the expected mean size dp̅, is given by: 

lptru
̅̅ ̅̅

expected
=lptru
̅̅ ̅̅ ±∆lptru

̅̅ ̅̅  D.14 

where  

 ∆lptru
̅̅ ̅̅ =Z∙

σtru

√N
 D.15 

where N is given in Table 3.6 (BEVINGTON et al., 2003, TAYLOR, 1997). 
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D.2.3 GOODNESS-OF-FIT FOR NORMAL DISTRIBUTION 

It is important to demonstrate evidences on the fitness to the experimental measurements in the 

normal and truncated normal distributions predicted. There are several techniques to verify the 

goodness-of-fit of a distribution. Among these are the probability graphs and the χ² test.  

In Appendix F are provided comparisons of the cumulative probability graphs predicted through 

the respective normal and truncated normal distributions (for each MWCNTs geometry) with the 

cumulative frequency (in %) of the observed values. In these it seems that the frequency predicted 

by the normal or truncated normal distributions presents satisfactory fitness to the observed 

values.  

In addition, evidences of the goodness-of-fit of the normal and truncated distributions where 

carried through χ² test. In this, the χ² of the estimated distribution through the following equation 

(TAYLOR, 1997): 

χ2=∑
OX-EX

EX
 D.16 

where OX is the frequency of observed values (diameter or length) and EX is the frequency of the 

expected ones. The later can be predicted through the respective distribution function multiplied 

by the sample size. 

For simplicity, the  OX and EX are transformed in categories through the following expression: 

Φ=
OXi-OX

̅̅ ̅

σOX

 D.17 

where σ is the standard deviation. This simplicity enables to categorize the problem in 4 groups, 

namely Φ<-1, -1<Φ<0, 0< Φ<1, and Φ>1. 

Then the χ²distribution is compared with a theoretical one (χ²theoretical), obtained from a table (TAYLOR, 

1997). When χ²distribution> χ²theoretical it could be considered that the normal and truncated normal 

distributions presents satisfactory fitness to the measurements. These results are summarized in 

Table D.1. In this, it is corroborated the results also obtained through the graphical approach. 
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Table D.1: Main results of the goodness-of-fit χ² test to the normal distributions. 

  
diameter distribution length distribution 

 χ² theoretical χ² distribution χ² distribution 

d50-80 l10-20 7.815 1.686 5.223 

d60-100 l5-15 7.815 1.461 6.722 

d60-100 l1-2 7.815 2.683 7.512 

d20-40 l10-30 7.815 2.882 5.586 

d20-40 l5-15 7.815 2.629 5.450 

d20-40 l1-2 7.815 5.972 6.379 

In the previous Table it was considered a p-value of 0.05 and 3 degrees of freedom, since the 

χ²distribution where grouped in 4 categories. 

D.3 EXPERIMENTAL ZETA POTENTIAL UNCERTAINTIES 

As mentioned in Section 3.8.1, the Malvern ZS Nano S analyser was used to measure the Zeta 

potential of the dispersed MWCNTs. For each of the prepared samples, 5 independent runs were 

taken and the respective mean calculated. Nevertheless, in each of these runs, the Malvern ZS 

Nano S analyser performed several measurements, until converge to good quality criteria, such as 

good data distribution, among others. From these, the software of the instrument uses the 

Smoluchoski equation to estimate the zeta potential, and automatically calculate and provided the 

mean standard deviation and mean standard error. Therefore, in this case, the considered 

uncertainty of the measurements was the average of the 5 mean standard error estimated by the 

experimental apparatus. In Table D.2, is provided the mentioned mean standard error of each run 

and the overall mean uncertainty for each sample. 

Table D.2: Standard error of the measurements, for each run, and respective overall mean uncertainty, predicted by 
Smoluchowski. 

MWCNTs Base fluid COV [%] Δξ₁ Δξ₂ Δξ₃ Δξ₄ Δξ₅ Δξ̅ 

d50-80 l10-20 
DW+30%EG 2.03% 3.50 3.87 3.47 3.50 3.60 3.50 

DW+60%EG 4.61% 5.63 6.33 5.32 5.60 4.05 5.63 

d60-100 l5-15 
DW+30%EG 1.73% 4.67 4.30 4.60 4.57 5.63 4.67 

DW+60%EG 1.62% 4.32 4.78 4.38 5.47 4.23 4.32 

d60-100 l1-2 
DW+30%EG 3.15% 4.30 3.67 4.17 3.93 3.93 4.30 

DW+60%EG 3.01% 3.98 4.60 4.13 4.60 4.17 3.98 

d20-40 l10-30 
DW+30%EG 1.23% 3.29 3.60 3.77 3.90 3.60 3.29 

DW+60%EG 2.51% 4.97 6.12 4.53 5.32 5.02 4.97 

d20-40 l5-15 
DW+30%EG 1.42% 5.90 5.17 4.53 5.17 5.00 5.90 

DW+60%EG 2.60% 5.37 5.37 4.98 4.47 5.40 5.37 

d20-40 l1-2 
DW+30%EG 1.84% 5.13 5.00 5.33 4.57 4.90 5.13 

DW+60%EG 2.59% 6.15 5.07 4.73 4.43 4.65 6.15 
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where COV is the coefficient of variance of the results. 

D.4 EXPERIMENTAL PHASE SEPARATION RATE UNCERTAINTIES 

The Stability Analyser LUMiSizer 6120 was used to assess the mean phase separation rate at high 

RCF, as explained in detail in 3.8.2. From these measurements, the standard deviation error of the 

mean phase separation rate at high RCF was automatically estimated by the instrument LUMiSizer 

during the readings, which were considered as the experimental uncertainties for the respective 

RCF.  

Nevertheless, these readings are used to extrapolate the results for gravity conditions and, 

therefore, the uncertainty for these condition should be estimated. As mentioned, the 

extrapolation was performed, considering a linear correlation between the phase separation rate 

and the RCF, y=mcx. Therefore, the mean standard deviation for gravity condition, i.e., RCF=1, was 

estimated through the following expression (TAYLOR, 1997): 

 ∆y=√
∑ (yi-mc∙xi)

2N
i=1

N-2
 

D.18 

D.5 EXPERIMENTAL THERMAL CONDUCTIVITY UNCERTAINTIES 

As envisaged in Section 4.2, the KD2-Pro has a declared accuracy of 5%. However, the experimental 

apparatus calibration for the base fluids presented repeatability of the measurements, with a 

maximum deviation of 1.2%. Even so, a t-Student distribution was considered to estimate the limits 

of the confidence interval of the experimental thermal conductivity mean. The t-Student 

distribution was selected since it was considered that the variance of the sample is an unknown 

parameter. As such, the standard deviation σ of the effective thermal conductivity mean can be 

expressed as: 

 σ=√
1

N-1
∙∑(ki-k̅)

2

N

i=1

 D.19 

where k̅ is the thermal conductivity mean, and N is the sample size (N≥10, since the at least 10 

consecutives data points are measured, for each run). 
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The estimated 95% confidence interval for the expected mean experimental thermal conductivity, 

for 9 degrees of freedom, is given by: 

k̅expected=k̅±∆k̅ 
D.20 

where  

 ∆k̅=t.975∙
σ

√N
 D.21 

where t.975 =2.262 (see Table D.3, in Appendix D.6) (BEVINGTON et al., 2003, TAYLOR, 1997).  
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D.6 STANDARD TABLE OF STUDENT’S T AND NORMAL DISTRIBUTION 

Table D.3: Standard table of student’s t and normal distribution (TAYLOR, 1997). 

  
t table 

 
Probability t.50 t.75 t.80 t.85 t.90 t.95 t.975 t.99 t.995 t.999 t.9995 

d
eg

re
es

 o
f 

fr
ee

d
o

m
 

1 0 1.000 1.376 1.963 3.078 6.314 12.710 31.820 63.660 318.310 636.620 

2 0 0.816 1.061 1.386 1.886 2.92 4.303 6.965 9.925 22.327 31.599 

3 0 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924 

4 0 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 0 0.727 0.92 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869 

6 0 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 

7 0 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408 

8 0 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 

9 0 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.25 4.297 4.781 

10 0 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 

11 0 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437 

12 0 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318 

13 0 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221 

14 0 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140 

15 0 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073 

16 0 0.69 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015 

17 0 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965 

18 0 0.688 0.862 1.067 1.33 1.734 2.101 2.552 2.878 3.610 3.922 

19 0 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883 

20 0 0.687 0.86 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850 

21 0 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819 

22 0 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792 

23 0 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768 

24 0 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745 

25 0 0.684 0.856 1.058 1.316 1.708 2.06 2.485 2.787 3.450 3.725 

26 0 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707 

27 0 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690 

28 0 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674 

29 0 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659 

30 0 0.683 0.854 1.055 1.31 1.697 2.042 2.457 2.750 3.385 3.646 

40 0 0.681 0.851 1.05 1.303 1.684 2.021 2.423 2.704 3.307 3.551 

60 0 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460 

80 0 0.678 0.846 1.043 1.292 1.664 1.99 2.374 2.639 3.195 3.416 

100 0 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390 

∞ 0 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300 

             

normal dist. 
Z 0 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 

C.I. 0% 50% 60% 70% 80% 90% 95% 98% 99% 99.80% 99.90% 
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E. THERMO-GRAVIMETRIC ANALYSIS 

E.1 d50-80 l10-20 

 

Figure E.1: TGA of functionalized and pristine MWCNTs (d50-80 l10-20). 

E.2 d60-100 l5-15 

 

Figure E.2: TGA of functionalized and pristine MWCNTs (d60-100 l5-15). 
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E.3 d60-100 l1-2 

 

Figure E.3: TGA of functionalized and pristine MWCNTs (d60-100 l1-2). 

E.4 d20-40 l10-30 

 

Figure E.4: TGA of functionalized and pristine MWCNTs (d20-40 l10-30). 
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E.5 d20-40 l5-15 

 

Figure E.5: TGA of functionalized and pristine MWCNTs (d20-40 l5-15). 

E.6 d20-40 l1-2 

 

Figure E.6: TGA of functionalized and pristine MWCNTs (d20-40 l1-2). 
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F. FUNCTIONALIZED MWCNTS SIZE DISTRIBUTIONS 

F.1 d50-80 l10-20 

 

Figure F.1: Diameter and length distribution of the dispersed MWCNTs d50-80 l10-20. 

 

Figure F.2: Goodness-of-fit of the normal distribution to the observed values for the MWCNTs d50-80 l10-20. 
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F.2 d60-100 l5-15 

 

Figure F.3: Diameter and length distribution of the dispersed MWCNTs d60-100 l5-15. 

 

Figure F.4: Goodness-of-fit of the normal distribution to the observed values for the MWCNTs d60-100 l5-15 
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F.3 d60-100 l1-2 

 

Figure F.5: Diameter and length distribution of the dispersed MWCNTs d60-100 l1-2. 

 

Figure F.6: Goodness-of-fit of the normal distribution to the observed values for the MWCNTs d60-100 l1-2 
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F.4 d20-40 l10-30 

 

Figure F.7: Diameter and length distribution of the dispersed MWCNTs d20-40 l10-30. 

 

Figure F.8: Goodness-of-fit of the normal distribution to the observed values for the MWCNTs d20-40 l10-30 
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F.5 d20-40 l5-15 

 

Figure F.9: Diameter and length distribution of the dispersed MWCNTs d20-40 l5-15. 

 

Figure F.10: Goodness-of-fit of the normal distribution to the observed values for the MWCNTs d20-40 l5-15 
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F.6 d20-40 l1-2 

 

Figure F.11: Diameter and length distribution of the dispersed MWCNTs d20-40 l1-2. 

 

Figure F.12: Goodness-of-fit of the normal distribution to the observed values for the MWCNTs d20-40 l1-2 
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G. PHASE SEPARATION RATE 

G.1  TRANSMISSION PROFILES 

Figure G.1 shows the evolution of the transmission profiles for sample 1 at different RCF a) 500, b) 

1000 and c) 2000 G. 

 

Figure G.1: Evolution of transmission profiles of sample 1 at different RCF (a) 500, (b) 1000 and (c) 2000 G. 
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When analysing Figure G.1, it can be stated that the light transmitted through the sample increases 

as the centrifugal forces rise. As it was expected, these results establish that the settling velocity 

increases with the rise of RCF. Furthermore, since each curve represents one measurement at a 

given time-step, it is found that there is a sedimentation constant profile over the whole sample. 

The behaviour described here for the sample 0.25%vol. d50-80 l10-20 in DW+30%EG was observed 

for all the remaining tested samples, which for simplicity are note provided in these document. 

G.2 PHASE SEPARATION RATE EVALUATION 

Table G.1: Phase separation rate obtained at different RCF for the studied experimental layout. 

  
ɸ Mean RCF [G] 

Phase separation rate 
[mm/day] 

Std. Dev. 
[mm/day] 

d50-80 l10-20 

DW+30%EG 

0.25% 

480 10.8463 0.4477 

962 22.9743 1.0053 

1965 44.1845 1.6958 

0.75% 

483 4.969 0.2888 

962 11.5598 0.5536 

1960 23.6596 1.0544 

1.50% 

481 2.5326 0.2274 

959 7.7988 0.4839 

1940 16.6877 0.7701 

DW+60%EG 

0.25% 

484 3.7888 0.121 

965 7.1122 0.4314 

1946 15.9486 0.228 

0.75% 

483 1.6096 0.071 

956 3.4685 0.1339 

1934 7.5023 0.047 

1.50% 

483 0.9903 0.0217 

958 2.5918 0.0675 

1944 6.546 0.0337 

d60-100 l5-15 

DW+30%EG 

0.25% 

490 20.0631 0.9753 

972 37.7338 1.6324 

1972 70.6327 2.0746 

0.75% 

485 6.7054 0.4745 

961 13.5092 0.919 

1967 31.0144 1.4272 

1.50% 

485 3.6989 0.2784 

963 7.9061 0.658 

1945 19.1574 1.2374 

DW+60%EG 0.25% 
487 6.2358 0.2942 

957 12.0562 0.7713 
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ɸ Mean RCF [G] 

Phase separation rate 
[mm/day] 

Std. Dev. 
[mm/day] 

1964 25.8791 1.2327 

0.75% 

485 1.8323 0.0726 

965 3.5213 0.2546 

1958 9.9146 0.2635 

1.50% 

485 1.0955 0.0397 

955 2.0167 0.1201 

1991 5.8027 0.5761 

d60-100 l1-2 

DW+30%EG 

0.25% 

494 22.62 0.9207 

973 42.9807 1.5915 

1990 87.0119 1.7562 

0.75% 

489 15.1711 0.6686 

970 29.5085 1.3347 

1966 60.161 1.7168 

1.50% 

480 9.7444 0.5697 

963 20.2798 1.1789 

1968 42.9796 1.5992 

DW+60%EG 

0.25% 

485 9.3639 0.3459 

962 18.0252 0.9792 

1977 27.0784 3.3977 

0.75% 

484 4.8268 0.1728 

958 9.3956 0.4933 

1963 12.2537 1.4247 

1.50% 

479 3.3753 0.1375 

953 6.1866 0.415 

1955 13.9818 0.5769 

d20-40 l10-30 

DW+30%EG 

0.25% 

486 5.2257 0.3081 

959 12.5428 0.423 

1970 33.8321 1.2404 

0.75% 

519 1.4275 0.063 

1024 3.5403 0.1095 

2088 7.7897 0.2177 

1.50% 

519 0.4444 0.0431 

1024 2.5195 0.0988 

2088 6.5669 0.1716 

DW+60%EG 

0.25% 

519 1.6483 0.024 

1025 3.3722 0.0527 

2085 7.1297 0.074 

0.75% 

519 0.3769 0.0386 

1025 1.4562 0.0606 

2085 4.0724 0.0919 

1.50% 519 0.1805 0.0196 
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ɸ Mean RCF [G] 

Phase separation rate 
[mm/day] 

Std. Dev. 
[mm/day] 

1025 0.8249 0.0564 

2085 2.9041 0.1212 

d20-40 l5-15 

DW+30%EG 

0.25% 

484 5.7188 0.2684 

956 12.3536 0.5574 

1918 23.6873 1.3803 

0.75% 

480 2.2587 0.1539 

956 5.2503 0.2909 

1947 12.1 0.2689 

1.50% 

484 1.2614 0.1364 

950 3.7384 0.1956 

1945 9.2908 0.2164 

DW+60%EG 

0.25% 

482 1.7614 0.1049 

962 3.7585 0.1346 

1954 13.0803 0.5775 

0.75% 

484 0.2998 0.0598 

963 1.1879 0.0908 

1956 3.9072 0.3096 

1.50% 

482 0.1542 0.0039 

961 0.6101 0.0319 

1954 2.8413 0.134 

d20-40 l1-2 

DW+30%EG 

0.25% 

488 4.6985 0.2563 

961 9.6532 0.4986 

1968 20.8652 0.9925 

0.75% 

487 1.5073 0.1101 

956 3.1673 0.2472 

1939 8.4651 0.4323 

1.50% 

480 0.5005 0.0173 

954 1.6277 0.1565 

1955 5.2228 0.3843 

DW+60%EG 

0.25% 

482 1.3634 0.0757 

961 2.8817 0.1264 

1948 5.8256 0.3993 

0.75% 

484 0.3296 0.0154 

957 0.9513 0.0895 

1954 4.2275 0.4269 

1.50% 

482 0.1658 0.0169 

956 0.5295 0.0392 

1949 1.788 0.2627 
 

Table G.2: Regression coefficients (y=mx) from the results obtained and the phase separation rate for RCF=1. 
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Sample mc r² Phase separation rate [mm/day] 

0.25% d50-80 l10-20 DW+30%EG 0.0227 0.9974 0.023±0.0053 

0.75% d50-80 l10-20 DW+30%EG 0.0120 0.9961 0.012±0.0018 

1.50% d50-80 l10-20 DW+30%EG 0.0084 0.9757 0.008±0.0004 

0.25% d50-80 l10-20 DW+60%EG 0.0080 0.9934 0.008±0.0021 

0.75% d50-80 l10-20 DW+60%EG 0.0038 0.9944 0.004±0.0003 

1.50% d50-80 l10-20 DW+60%EG 0.0032 0.9611 0.003±0.0004 

0.25% d60-100 l5-15 DW+30%EG 0.0366 0.9912 0.037±0.0105 

0.75% d60-100 l5-15 DW+30%EG 0.0154 0.9912 0.015±0.0029 

1.50% d60-100 l5-15 DW+30%EG 0.0094 0.9780 0.009±0.0018 

0.25% d60-100 l5-15 DW+60%EG 0.0131 0.9987 0.013±0.0041 

0.75% d60-100 l5-15 DW+60%EG 0.0047 0.9525 0.005±0.0010 

1.50% d60-100 l5-15 DW+60%EG 0.0027 0.9570 0.003±0.0010 

0.25% d60-100 l1-2 DW+30%EG 0.0439 0.9995 0.044±0.0065 

0.75% d60-100 l1-2 DW+30%EG 0.0306 0.9999 0.031±0.0044 

1.50% d60-100 l1-2 DW+30%EG 0.0216 0.9985 0.022±0.0033 

0.25% d60-100 l1-2 DW+60%EG 0.0149 0.9634 0.015±0.0040 

0.75% d60-100 l1-2 DW+60%EG 0.0071 0.8909 0.007±0.0007 

1.50% d60-100 l1-2 DW+60%EG 0.0070 0.9947 0.007±0.0018 

0.25% d20-40 l10-30 DW+30%EG 0.0161 0.9556 0.016±0.0062 

0.75% d20-40 l10-30 DW+30%EG 0.0036 0.9865 0.004±0.0004 

1.50% d20-40 l10-30 DW+30%EG 0.0029 0.9181 0.003±0.0003 

0.25% d20-40 l10-30 DW+60%EG 0.0034 0.9983 0.003±0.0008 

0.75% d20-40 l10-30 DW+60%EG 0.0018 0.9219 0.002±0.0003 

1.50% d20-40 l10-30 DW+60%EG 0.0012 0.8730 0.001±0.0003 

0.25% d20-40 l5-15 DW+30%EG 0.0124 0.9980 0.012±0.0031 

0.75% d20-40 l5-15 DW+30%EG 0.0060 0.9844 0.006±0.0008 

1.50% d20-40 l5-15 DW+30%EG 0.0045 0.9581 0.005±0.0008 

0.25% d20-40 l5-15 DW+60%EG 0.0060 0.9102 0.006±0.0022 

0.75% d20-40 l5-15 DW+60%EG 0.0018 0.8906 0.002±0.0003 

1.50% d20-40 l5-15 DW+60%EG 0.0012 0.9729 0.001±0.0003 

0.25% d20-40 l1-2 DW+30%EG 0.0105 0.9971 0.011±0.0031 

0.75% d20-40 l1-2 DW+30%EG 0.0041 0.9595 0.004±0.0009 

1.50% d20-40 l1-2 DW+30%EG 0.0024 0.9061 0.002±0.0004 

0.25% d20-40 l1-2 DW+60%EG 0.0030 0.9994 0.003±0.0005 

0.75% d20-40 l1-2 DW+60%EG 0.0019 0.9708 0.002±0.0006 

1.50% d20-40 l1-2 DW+60%EG 0.0008 0.8942 0.001±0.0002 
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H. APPARATUS FOR THE THERMAL CONDUCTIVITY MEASUREMENT  

In Figure H.1, it is schematically represented the double jacketed bottled used for the effective 

thermal conductivity measurement. This enables to control the temperature of the samples 

through a recirculating bath, maintaining the temperature of the sample constant during the 

measurements. Maintaining a steady temperature is essential to the KD2-Pro measurement 

accuracy, the transient hot-wire, preventing free convention around the testing probe. The double 

jacketed bottled was fitted in a block cavity of a rigid polyurethane foam to decrease the vibrations 

provided by the laboratory environment. 

 

Figure H.1 Schematic illustration of the double jacketed bottled for the thermal conductivity. 

Thermal 
bath flow 

Thermal 
bath flow 

Testing vial 
(filled with the 
nanofluids) 
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I. NANOFLUIDS EFFECTIVE THERMAL CONDUCTIVITY 

I.1  EXPERIMENTAL THERMAL CONDUCTIVITY TABLES 

Table I.1: Experimental thermal conductivity of the MWCNTs based nanofluids studied. Note: the uncertainty represents 
the confidence interval of 95% of the mean value (Appendix D). 

MWCNTs d50-80 l10-20         

base fluid DW+30%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.458 ± 0.004 0.468 ± 0.003 0.479 ± 0.001 0.477 ± 0.001 0.482 ± 0.002 0.494 ± 0.003 

0.50% 0.465 ± 0.009 0.473 ± 0.004 0.474 ± 0.001 0.484 ± 0.001 0.491 ± 0.005 0.501 ± 0.002 

0.75% 0.476 ± 0.005 0.482 ± 0.005 0.488 ± 0.001 0.491 ± 0.001 0.497 ± 0.002 0.506 ± 0.002 

1.00% 0.502 ± 0.009 0.501 ± 0.007 0.506 ± 0.002 0.510 ± 0.001 0.517 ± 0.002 0.525 ± 0.003 

1.50% 0.525 ± 0.001 0.534 ± 0.001 0.539 ± 0.001 0.543 ± 0.001 0.547 ± 0.001 0.552 ± 0.002 

 

MWCNTs d50-80 l10-20         

base fluid DW+60%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.352 ± 0.005 0.353 ± 0.004 0.365 ± 0.001 0.354 ± 0.001 0.356 ± 0.001 0.357 ± 0.001 

0.50% 0.358 ± 0.005 0.364 ± 0.001 0.353 ± 0.003 0.367 ± 0.001 0.368 ± 0.001 0.372 ± 0.002 

0.75% 0.366 ± 0.001 0.373 ± 0.003 0.375 ± 0.001 0.377 ± 0.001 0.380 ± 0.001 0.382 ± 0.001 

1.00% 0.378 ± 0.005 0.384 ± 0.002 0.385 ± 0.001 0.387 ± 0.001 0.390 ± 0.001 0.393 ± 0.001 

1.50% 0.406 ± 0.004 0.409 ± 0.003 0.410 ± 0.004 0.412 ± 0.002 0.415 ± 0.001 0.419 ± 0.002 

 

MWCNTs d60-100 l5-15         

base fluid DW+30%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.438 ± 0.003 0.456 ± 0.001 0.466 ± 0.001 0.462 ± 0.001 0.477 ± 0.002 0.499 ± 0.005 

0.50% 0.446 ± 0.001 0.459 ± 0.001 0.458 ± 0.002 0.470 ± 0.001 0.482 ± 0.001 0.499 ± 0.002 

0.75% 0.452 ± 0.001 0.468 ± 0.001 0.474 ± 0.001 0.477 ± 0.001 0.490 ± 0.002 0.515 ± 0.001 

1.00% 0.470 ± 0.004 0.479 ± 0.001 0.483 ± 0.002 0.487 ± 0.001 0.494 ± 0.002 0.505 ± 0.002 

1.50% 0.491 ± 0.005 0.500 ± 0.004 0.498 ± 0.006 0.501 ± 0.002 0.520 ± 0.001 0.535 ± 0.002 

 

MWCNTs d60-100 l5-15         

base fluid DW+60%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.347 ± 0.002 0.353 ± 0.001 0.358 ± 0.001 0.356 ± 0.001 0.36 ± 0.001 0.364 ± 0.004 

0.50% 0.355 ± 0.009 0.357 ± 0.001 0.355 ± 0.001 0.361 ± 0.001 0.365 ± 0.001 0.369 ± 0.001 

0.75% 0.357 ± 0.001 0.362 ± 0.001 0.364 ± 0.001 0.365 ± 0.001 0.370 ± 0.001 0.376 ± 0.001 

1.00% 0.363 ± 0.005 0.367 ± 0.001 0.371 ± 0.001 0.371 ± 0.001 0.372 ± 0.001 0.377 ± 0.002 

1.50% 0.379 ± 0.002 0.383 ± 0.001 0.387 ± 0.001 0.388 ± 0.001 0.389 ± 0.001 0.393 ± 0.001 
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MWCNTs d60-100 l1-2         

base fluid DW+30%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.448 ± 0.012 0.457 ± 0.002 0.474 ± 0.001 0.470 ± 0.002 0.483 ± 0.002 0.499 ± 0.005 

0.50% 0.463 ± 0.003 0.470 ± 0.001 0.462 ± 0.001 0.478 ± 0.001 0.485 ± 0.001 0.492 ± 0.001 

0.75% 0.462 ± 0.001 0.472 ± 0.001 0.478 ± 0.001 0.482 ± 0.001 0.489 ± 0.001 0.496 ± 0.001 

1.00% 0.465 ± 0.003 0.471 ± 0.001 0.475 ± 0.001 0.478 ± 0.001 0.484 ± 0.001 0.493 ± 0.003 

1.50% 0.479 ± 0.001 0.489 ± 0.001 0.492 ± 0.001 0.496 ± 0.001 0.501 ± 0.001 0.511 ± 0.001 

 

MWCNTs d60-100 l1-2         

base fluid DW+60%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.341 ± 0.001 0.351 ± 0.001 0.352 ± 0.001 0.355 ± 0.001 0.358 ± 0.001 0.365 ± 0.001 

0.50% 0.345 ± 0.001 0.351 ± 0.001 0.354 ± 0.001 0.353 ± 0.001 0.354 ± 0.001 0.361 ± 0.001 

0.75% 0.356 ± 0.001 0.361 ± 0.001 0.364 ± 0.001 0.366 ± 0.001 0.368 ± 0.001 0.378 ± 0.001 

1.00% 0.358 ± 0.001 0.366 ± 0.001 0.368 ± 0.001 0.370 ± 0.001 0.373 ± 0.001 0.378 ± 0.001 

1.50% 0.383 ± 0.003 0.387 ± 0.001 0.391 ± 0.001 0.392 ± 0.001 0.394 ± 0.001 0.398 ± 0.001 

 

MWCNTs d20-40 l10-30         

base fluid DW+30%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.454 ± 0.002 0.463 ± 0.004 0.471 ± 0.001 0.47 ± 0.001 0.476 ± 0.001 0.487 ± 0.002 

0.50% 0.456 ± 0.002 0.464 ± 0.002 0.466 ± 0.002 0.474 ± 0.001 0.479 ± 0.001 0.490 ± 0.001 

0.75% 0.457 ± 0.002 0.466 ± 0.003 0.470 ± 0.001 0.474 ± 0.001 0.479 ± 0.001 0.494 ± 0.001 

1.00% 0.467 ± 0.005 0.479 ± 0.004 0.482 ± 0.001 0.487 ± 0.001 0.491 ± 0.001 0.502 ± 0.001 

1.50% 0.486 ± 0.005 0.495 ± 0.004 0.496 ± 0.002 0.502 ± 0.001 0.508 ± 0.001 0.515 ± 0.002 

 

MWCNTs d20-40 l10-30         

base fluid DW+60%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.343 ± 0.002 0.346 ± 0.001 0.357 ± 0.001 0.351 ± 0.001 0.354 ± 0.001 0.363 ± 0.001 

0.50% 0.350 ± 0.006 0.355 ± 0.002 0.350 ± 0.001 0.359 ± 0.001 0.360 ± 0.001 0.365 ± 0.002 

0.75% 0.355 ± 0.005 0.359 ± 0.002 0.361 ± 0.002 0.363 ± 0.001 0.365 ± 0.001 0.368 ± 0.001 

1.00% 0.364 ± 0.002 0.370 ± 0.001 0.373 ± 0.001 0.374 ± 0.001 0.377 ± 0.001 0.383 ± 0.001 

1.50% 0.372 ± 0.009 0.379 ± 0.002 0.384 ± 0.002 0.389 ± 0.001 0.391 ± 0.001 0.394 ± 0.001 

 
 
 
 
 



 
225 

 

MWCNTs d20-40 l5-15         

base fluid DW+30%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.443 ± 0.003 0.455 ± 0.001 0.476 ± 0.002 0.464 ± 0.001 0.478 ± 0.001 0.498 ± 0.001 

0.50% 0.450 ± 0.013 0.473 ± 0.002 0.462 ± 0.001 0.478 ± 0.001 0.494 ± 0.002 0.506 ± 0.007 

0.75% 0.448 ± 0.007 0.470 ± 0.002 0.475 ± 0.002 0.481 ± 0.004 0.490 ± 0.003 0.513 ± 0.002 

1.00% 0.459 ± 0.001 0.477 ± 0.001 0.484 ± 0.001 0.487 ± 0.001 0.494 ± 0.001 0.51 ± 0.001 

1.50% 0.487 ± 0.002 0.498 ± 0.001 0.501 ± 0.001 0.508 ± 0.001 0.514 ± 0.001 0.532 ± 0.001 

 

MWCNTs d20-40 l5-15         

base fluid DW+60%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.351 ± 0.004 0.353 ± 0.001 0.361 ± 0.001 0.356 ± 0.001 0.359 ± 0.001 0.368 ± 0.001 

0.50% 0.353 ± 0.003 0.357 ± 0.001 0.354 ± 0.001 0.363 ± 0.001 0.366 ± 0.001 0.371 ± 0.004 

0.75% 0.353 ± 0.002 0.360 ± 0.001 0.362 ± 0.001 0.363 ± 0.001 0.369 ± 0.001 0.379 ± 0.001 

1.00% 0.359 ± 0.001 0.364 ± 0.001 0.366 ± 0.001 0.367 ± 0.001 0.370 ± 0.001 0.376 ± 0.001 

1.50% 0.377 ± 0.002 0.381 ± 0.001 0.385 ± 0.001 0.385 ± 0.001 0.389 ± 0.001 0.398 ± 0.001 

 

MWCNTs d20-40 l1-2           

base fluid DW+30%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.447 ± 0.002 0.457 ± 0.001 0.459 ± 0.001 0.464 ± 0.001 0.472 ± 0.001 0.494 ± 0.005 

0.50% 0.441 ± 0.002 0.455 ± 0.001 0.461 ± 0.001 0.461 ± 0.001 0.469 ± 0.001 0.489 ± 0.002 

0.75% 0.445 ± 0.003 0.459 ± 0.001 0.463 ± 0.001 0.466 ± 0.001 0.471 ± 0.001 0.496 ± 0.002 

1.00% 0.458 ± 0.002 0.470 ± 0.001 0.475 ± 0.001 0.479 ± 0.001 0.483 ± 0.001 0.501 ± 0.001 

1.50% 0.458 ± 0.004 0.467 ± 0.001 0.472 ± 0.001 0.476 ± 0.001 0.484 ± 0.001 0.499 ± 0.002 

 

MWCNTs d20-40 l1-2           

base fluid DW+60%EG           

temp. [K] 283.15 293.15 298.15 303.15 313.15 323.15 

0.25% 0.344 ± 0.003 0.350 ± 0.001 0.352 ± 0.001 0.354 ± 0.001 0.354 ± 0.001 0.360 ± 0.001 

0.50% 0.346 ± 0.001 0.350 ± 0.001 0.352 ± 0.001 0.353 ± 0.001 0.355 ± 0.001 0.360 ± 0.001 

0.75% 0.349 ± 0.002 0.351 ± 0.001 0.352 ± 0.001 0.355 ± 0.001 0.357 ± 0.001 0.362 ± 0.001 

1.00% 0.348 ± 0.001 0.353 ± 0.001 0.356 ± 0.001 0.358 ± 0.001 0.360 ± 0.001 0.361 ± 0.001 

1.50% 0.353 ± 0.003 0.354 ± 0.003 0.357 ± 0.003 0.359 ± 0.001 0.363 ± 0.001 0.369 ± 0.001 
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I.2  EXPERIMENTAL THERMAL CONDUCTIVITY FIGURES 

 

Figure I.1: Experimental thermal conductivity of the d50-80 l10-20 DW+30%EG. 

  

Figure I.2: Experimental thermal conductivity of the d50-80 l10-20 DW+60%EG. 
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Figure I.3: Experimental thermal conductivity of the d60-100 l5-15 DW+30%EG. 

  

Figure I.4: Experimental thermal conductivity of the d60-100 l5-15 DW+60%EG. 

  

Figure I.5: Experimental thermal conductivity of the d60-100 l1-2 DW+30%EG. 

  

Figure I.6: Experimental thermal conductivity of the d60-100 l1-2 DW+60%EG. 
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Figure I.7: Experimental thermal conductivity of the d20-40 l10-30 DW+30%EG. 

  

Figure I.8: Experimental thermal conductivity of the d20-40 l10-30 DW+60%EG. 

 

Figure I.9: Experimental thermal conductivity of the d20-40 l5-15 DW+30%EG. 
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Figure I.10: Experimental thermal conductivity of the d20-40 l5-15 DW+60%EG. 

  

Figure I.11: Experimental thermal conductivity of the d20-40 l1-2 DW+30%EG. 

 

Figure I.12: Experimental thermal conductivity of the d20-40 l1-2 DW+60%EG.
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J. FIT TESTING OF PREDICTIVE MODELS 

J.1  PREDICTIVE MODELS CORRELATIONS 

 

Figure J.1: Scatter chart of the Xue model and experimental data (in terms of keff) (XUE et al., 2003). 

 

Figure J.2: Scatter chart of the Yu et al. model and experimental data (in terms of keff) (YU et al., 2004). 
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Figure J.3: Scatter chart of the Nan et al. model and experimental data (in terms of keff) (NAN et al., 2004). 

 

Figure J.4: Scatter chart of the Xue model and experimental data (in terms of keff) (XUE, 2005). 
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Figure J.5: Scatter chart of the Murshed et al. model and experimental data (in terms of keff) (MURSHED et al., 2008). 

 

Figure J.6: Scatter chart of the Sastry et al. model and experimental data (in terms of keff) (SASTRY et al., 2008). 
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Figure J.7: Scatter chart of the Koo et al. model and experimental data (in terms of keff) (KOO et al., 2008). 

 

Figure J.8: Scatter chart of the Deng et al. model and experimental data (in terms of keff) (DENG et al., 2007, DENG et al., 

2009). 
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Figure J.9: Scatter chart of the Gensheng et al. model and experimental data (in terms of keff) (GENSHENG et al., 2009). 

J.2  CORRELATION (r²) MATHEMATICAL FORMULATION 

The correlation (r²) of Pearson was used to verify the fitness of the predictive models in the 

Chapter 4 is given as (BEVINGTON et al., 2003, TAYLOR, 1997): 

 r2=
xy̅-x̅∙y̅

√(x2̅-x̅2)(y2̅-y̅2)

 
J.1 

where x is the experimental thermal conductivity, and y is the predicted thermal conductivity. 

J.3  FRACTIONAL ERROR MATHEMATICAL FORMULATION 

A common central quantifying of the overall model performance is the measurement of the 

distance between the predicted value and the actual, or experimental, value |yexp-ythe|. This 

concept is related to the “goodness-of-fit” of a model, with better models having smaller distances 

between predicted and observed values. However, since the values in question are very small, 

between 0 and 1, it is expected a very small difference for all the predictive models that difficult 

the readability of the performance parameters. Therefore, in a similar way to this concept, it was 

used the concept fractional error, a percentage variance between the predicted value and the 

experimental value. The fractional error (ferror), used to verify the fitness of the predictive models in 

the Chapter 4 is given as (BEVINGTON et al., 2003, TAYLOR, 1997): 
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 ferror= |
|

    
keffexp

kbfexp

    

keffthe
kbfthe

 -1
|
|
 J.2 

where the subscripts exp and the refers to experimental and theoretical (predicted) results, 

respectively. 

As revealed in Section 4.2,  

Table 4.1, kbfexp
≈kbfthe

, with a maximum divergence of 1.2%. Taking this in consideration, the 

Equation J.2 can be simplified to: 

ferror≈ |
    keffexp

    

keffthe

-1 | J.3 

Nevertheless, Equation J.2 was used for the fraction error estimation. 

J.4  MEAN SQUARE ERROR MATHEMATICAL FORMULATION 

The mean square error (mse) used also as an estimator of the accuracy of the predictive models 

can be expressed as (BEVINGTON et al., 2003, TAYLOR, 1997): 

 mse=
1

N
∙∑(keffexp

-keffthe
)

2
N

i=1

 J.4 

where N are the number of data points (360 in this case). 
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