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1. Introduction

Type  1  diabetes  mellitus  (T1DM) is  the  most  common endocrinopathy  in  pediatric  age
group, due to an autoimmune process characterized by a selective destruction of insulin
producing pancreatic β-cells progressing over different stages [1].  T1DM develops in ge‐
netically  susceptible  subjects  by  activation  of  so  far  uncharacterized  environmental  fac‐
tors  that  trigger  an  inflammatory  process  with  infiltration  of  pancreatic  islets  and
subsequent loss of β-cells. Despite the growing incidence of T1DM, the causative mecha‐
nisms are not completely defined up to now, and the identification of factors triggering
the immune process represents a challenge for clinical immunologists, with practical,  di‐
agnostic and therapeutic implications [2,3]. The clinical onset of T1DM is preceded by an
asymptomatic period characterized on pathology grounds by insulitis,  i.e.  an infiltration
of the pancreatic islet  of  Langerhans by CD4+, CD8+ T lymphocytes (both Th1 and Th2
subsets),  B lymphocytes,  macrophages and dendritic  cells.  T lymphocytes can differenti‐
ate into 2 major subsets: Th1, producing IL-2 and IFN-γ, and Th2, secreting mainly IL-4.
All these cells produce cytokines which can be directly cytotoxic to β-cells or play an in‐
direct  role  on  β-cell  destruction  influencing  some cells  of  the  immune system,  then  re‐
sulting  in  either  acceleration  or  arrest  of  the  immune  attack  [4].  Worldwide  T1DM
incidence has grown more than two to three fold during the last decades, particularly in
Finland, where T1DM incidence has increased from 12 to 63 cases per 100,00 [5]. A rais‐
ing incidence has also been reported in Italy, where Sardinia Region shows an incidence
rate similar to Finland, therefore is called “Hot Spot” [6,7]. Interestingly, this rise of inci‐
dence  was  not  followed  by  a  parallel  increased  frequency  of  the  major  risk  genes  [8].
T1DM  can  be  defined  as  a  polygenic  disease,  and  the  genes  mainly  involved  include
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Major  Histocompatibility  Complex  (MHC)  class  II  (DR and DQ)  on  chromosome 6,  re‐
sponsible  for  40%  of  genetic  risk,  and  insulin  gene  located  on  chromosome  11.  More‐
over  thanks  to  whole  genome  screening  techniques  more  than  15  loci  have  been
identified.  In  particular,  an  allele  of  the  gene  for  a  negative  regulator  of  T-cell  activa‐
tion, i.e.  Cytotoxic T Lymphocyte Antigen 4 (CTLA-4), on chromosome 2q33, and a var‐
iant  of  PTNP22 gene encoding LYP (a  suppressor  of  T  cell  activation)  and ILrRA gene
are  considered  as  other  important  susceptibility  loci  [8].  Recently,  the  prevalence  of
MHC  class  II  genes  seems  to  be  decreasing  [9].  Moreover,  studies  in  identical  twins
showed  a  concordance  rate  ranging  from  27  to  61%,  otherwise  lower  in  non-identical
twins (3.8-12%) [10].  Despite the growing incidence of T1DM, the causative mechanisms
are not completely defined up to now. The paradigm of autoimmune dysregulation has
not offered a clear explanation for its raising incidence.

The reported discrepancy between higher incidence of T1DM without concomitant shift in
the frequency of susceptibility genes, suggests that environmental factors play a key role in
the development of the autoimmune process leading to clinical onset of the disease [11].
Moreover the shift to younger age at T1DM clinical onset is caused by environmental risk
factors accelerating the on-going β-cell destructive process up to clinical disease even in chil‐
dren with lower levels of genetic risk otherwise exposed to such factor [12-14].

The high T1DM incidence is a phenomenon of the 20th century, even if the disease has been
described already in antiquity. This increasing incidence and its difference among neighbor‐
ing regions strengthens the role of multiple environmental factors in the pathogenesis of
T1DM. In the present chapter the main environmental factors involved in T1DM pathogene‐
sis according to the most relevant scientific evidence will be considered. The main topics are:
perinatal and socioeconomic factors, hygiene hypothesis, dietary components both in moth‐
er and in children, gut permeability, infectious agents, vaccinations, obesity and Accelerator
Hypothesis, epigenetic.

2. Perinatal factors

Environmental risk factors combined with genetic susceptibility are thought to contribute to
the development of autoimmune destruction of pancreatic β-cells. The rapid increasing inci‐
dence of T1DM, especially in the youngest age group [15], cannot be explained by genetic
factors. It has been postulated that gestational or perinatal events could trigger T1DM.

2.1. Infections

It has been reported that certain infections during pregnancy contribute to an increased risk
of T1DM in the offspring. The first report of a link between infection and diabetes was the
exposure to rubella in intrauterine life. Studies showed that about 20% of children born with
congenital rubella develop T1DM during infancy [16,17]. Other reports describe an in‐
creased risk of T1DM if the mother has had an enterovirus infection during pregnancy
[18,19]. Anyway these studies are not confirmed by all investigators [20,21] and whether en‐
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terovirus infection during the first trimester of pregnancy is associated with increased risk
for T1DM in the offspring remains controversial up to now [21]. Not only congenital infec‐
tions are associated with the risk of T1DM, but also perinatal infections are discussed as pro‐
tective factors or triggers of the disease [22]. Certain studies reported that two infections in
the first year of life seem to be protective against T1DM, while neonatal respiratory diseases
are associated with a increased risk of disease [22].

2.2. In utero and postnatal dietary exposure

To explain the growing incidence in T1DM within the first year of life, it has been hypothe‐
sized that certain dietary nutrients could be protective for islet autoimmunity. Maternal in‐
take of vitamin D is significantly associated with a decreased risk of islet autoimmunity in
offspring, independent from HLA genotype, family history of T1DM, presence of gestation‐
al diabetes mellitus and ethnicity (adjusted HR=0.37; 95% CI 0.17-0.78). Instead, vitamin D
intake via supplements, ω-3 fatty acid and ω-6 fatty acids intake during pregnancy are not
associated with appearance of islet autoimmunity in offspring [23]. There is also an in‐
creased interest in nutritional factors in the first months of life as risk factors for T1DM.
Some authors reported that children exposed to cereals between 0 and 3 months of life were
more likely to develop islet cell auto-antibodies compared to those who were exposed dur‐
ing the fourth through sixth month [24]. Another study showed that ingestion of gluten-con‐
taining foods before 3 months of age was associated with increased islet cell autoimmunity
compared to children who received only breast milk until 3 months of life. Then other stud‐
ies showed that a high intake of cow’s milk could have a protective effect [25]. On the other
hand, some authors claim that milk protein carries an increased risk of T1DM [26,27]. It is
also been reported a correlation between a high intake of nitrosamines, nitrites and nitrates
and T1DM [25,28][Table 1].

Protective effect Vitamin D intake
HR* CI**

0.49;95% (0.17-0.78)

Increased risk

Inadequate prenatal care 0.53;95% (0.40-0.71)

Medicaid insurance 0.67;95% (0.58-0.77)

Unmarried mother 0.79;95% (0.69-0.91)

Mother's age ≥ 25 yrs 1.28;95% (1.13-1.45)

Mother's BMI ≥ 30 kg/m2 1.29;95% (1.01-1.64)

Mother's age ≥ 35 yrs 1,32;95% (1.01-1.64)

HR*: Hazard Ratio; CI**: Confidence Interval

Table 1. Maternal factors and T1DM risk.
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2.3. Birth-weight

An association  between  birth  weight  and  risk  for  T1DM has  been  postulated.  A  meta-
analysis  study  of  12.807  cases  of  T1DM found an  increased  risk  in  children  heavier  at
birth:  children with birth weight from 3,5 to 4 Kg showed an increased risk of  6% (OR
1.06;  95%  CI  1.01-1.11)  (p=0.02)  and  children  with  birth  weight  over  4  Kg  have  an  in‐
creased risk  of  10% (OR 1.10;  95% CI  1.04-1.19)  (p=0.003),  compared to  children weigh‐
ing 3 to 3,5 Kg at birth [29].  Several studies support this link [30],  while others did not
find any association with T1DM [31].

2.4. Caesarean section

Another controversial question is the role of caesarean section. A meta-analysis study of
9.938 cases reported a 20% increase in the risk of childhood-onset T1DM (adjusted OR 1.19,
95% CI 1.04-1.36, p=0.01) [32], while other authors did not find any association between cae‐
sarean delivery and risk for T1DM [33].

2.5. Other perinatal factors

It is also been investigated the association between blood incompatibility and risk for T1DM:
ABO incompatibility was related to an increased risk for the disease in some studies [34],
while others found an association just only with Rhesus immunization [33].

A report have shown that also neonatal jaundice of unknown cause confers an increased risk
for T1DM [34].

Another topic discussed is about the stress events. Some authors found an increased risk
of  T1DM  in  children  diagnosed  between  5  to  9  years  of  age  who  experienced  stress
events  [25],  while  others  showed that  stressful  events  during the  first  two years  of  life
increased  the  risk  of  the  disease,  probably  by  affecting  the  autoimmune  pathogenetic
process [35]. Finally, some investigators have reported a decreased risk for T1DM in chil‐
dren of prenatal smokers [36,37].

3. Social factors

Other factors such as maternal age may contribute to increase the risk for T1DM. It is been
observed an increased incidence of disease in children born to older mother [25,34,38,39].
These data are confirmed by a population-based case-control study in Washington State on
children younger than 19 years from 1987 to 2005, an increased OR in children of mothers
older than 25 years (age 25-34 HR=1.28; 95% CI 1.13-1.45; age≥35 HR=1.32; 95% CI 1.10-1.58)
has been reported [31]. Risk for T1DM is also been related with maternal weight: mother
with a BMI of 30 Kg/m2 or higher had an increased ORs for the disease (BMI≥30: OR 1.29; CI
1.01-1.64). Pregnancy-related factors also include birth order: the first-born child has the
highest risk for T1DM and the risk decreases with number of children born [38,40]. Several
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studies have found an inverse association between increasing number of siblings and risk of
T1DM [31,37,41,42]. An inverse correlation has also been observed with lower economic sta‐
tus or care access, such as unmarried mother (OR 0.79; 95% CI 0.69-0.91), inadequate prena‐
tal care (OR 0.53; 95% CI 0.40-0.71), or Medicaid Insurance (OR 0.67; 95% CI 0.58-0.77) [31].
Another widely discussed topic is tobacco exposure, as influencing immune system, and
represents a risk factors for T1DM. It’s been questioned if the decrease of passive smoking in
children may be a predisposing factor for the increasing incidence of T1DM, in according
with the hygiene hypothesis. To clarify this aspect, ABIS, a population-based prospective
long term cohort study, revealed no difference in prevalence of immunological markers
(GAD and IA-2 antibodies) between tobacco smoke-exposed and non-exposed children [43].

3.1. Hygiene hypothesis

Recently, attention has been focused on lifestyle changes as a major factor in the rise of
T1DM frequency, as well as other immune or allergic diseases [44]. Improved hygiene and
living conditions decreased the frequency of childhood infections, leading to a modulation
of the developing immune system and increasing risk for autoimmune and allergic diseases
such as T1DM and asthma [45]. This theory, called “Hygiene Hypothesis”, finds its roots in
the 1870 when Charles Harris Blackley noticed that aristocrats and city dwellers were more
likely to get hay fever than farmers [46]. One century later, in 1966, Leibowitz and collea‐
gues noted that in Israel the incidence of multiple sclerosis (MS) was positively related to
levels of sanitation [47]. More recently, Correale et al. showed that patients with multiple
sclerosis who become infected with helminths have a strikingly reduced rate of disease pro‐
gression [48]. However, the term “Hygiene Hypothesis” was proposed in 1989 by Strachan,
who noted that hay fever was less frequent in families with many siblings [49].

In  accordance  to  hygiene  hypothesis,  several  studies  report  the  lowest  incidence  of
T1DM in areas with poorest hygiene condition [50,31].  These data are supported by the
experiments in non-obese diabetic (NOD) mice (mice that spontaneously develop a con‐
dition resembling T1DM) and in BB rats, in which caesarean delivery and isolated living
conditions  increased  the  incidence  of  diabetes  from  40%  to  80%.  In  humans,  several
studies  reported  a  significant  inverse  correlation  between  the  incidence  of  T1DM  and
certain socioeconomic index (unemployment,  lack of  a car,  crowded housing conditions,
and living in  rental  housing rather  than purchased property)  [50,51].  In  the  people  liv‐
ing in Washington state from 1987 to 2005, D’Angeli and colleagues found a negative as‐
sociation  between  T1DM  and  some  indicators  of  lower  economic  status  or  care  access,
such  as  an  unmarried  mother  (OR  0.79%;  95%  CI  0.69-0.91),  inadequate  prenatal  care
(OR  0.53%;  95%  CI  0.40-0.71),  or  Medical  insurance  (OR,  0.67;  95%  CI  0.58-0.77)  [31].
Young  children  with  older  brothers  and  sisters  and  sharing  the  bedroom,  as  well  as
those who attended a day-care centre during the first six months of life showed a lower
incidence of T1DM later in life than children who did not attend a day-care centre and
who had no older siblings [52].
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3.1.1. Hygiene hypothesis and autoimmunity

A topic discussion of our day is whether the reduced exposure to certain infections, as result
of improving socioeconomic conditions, may be responsible for the increased incidence in
diabetes and other autoimmune conditions such as systemic lupus erythematosous and
multiple sclerosis [45,53-55]. As regards the rise in the disease in Western Europe and the
USA during the twentieth century strikingly correlates with the decline of helminths infec‐
tions, particularly E. vermicularis [56]. Experimental studies showed in Non-Obese Diabetic
(NOD) mice, infected with mycobacterium or helminthes, a reduced frequency of T1DM
[54,57-58]. Moreover, infection of 4-5 week-old NOD mice with Schistosoma mansoni or in‐
jection of soluble eggs (SEA) seems to prevent diabetes clinical onset. One possible explana‐
tion is that helminths antigens are able to induce either IL-10 production by dendritic cells
and activation of Natural Killer T cells (NKTs) and Regulatory T cells (TRegs). Considering
the role of IL-10 in delaying or inhibiting the host immune response and limiting tissue
pathology [59-61], exogenous administration of IL-10 inhibits the development of diabetes in
NOD mice [62]. Moreover, some bacterial infections can inhibit diabetes development in
NOD mice. In mice infected with S. typhimurium the protective mechanism could be the
key role of dendritic cells in modulating the trafficking of diabetogenic T cells to the pan‐
creas [63]. Another way by which bacteria and viruses could protect against autoimmune
disorders is related to Toll-Like Receptor (TLRs). In fact, when TLRs bind bacterial ligands,
stimulate mononuclear cells to produce several cytokines, which down-regulate the autoim‐
mune response. Wen and colleagues showed that Specific-Pathogen Free (SPF) NOD mice
are protected from the disease when knocked-out from the MyD88 gene, encoding an adap‐
tor for multiple TLRs [64]. Modification of the immune system in knocked out MyD88 seri‐
ously impairs the interactions between the immune system and microbiota. Due to these
positive results after treatments with a mycobacterium extract [65], helminthiases treatment
and probiotics [66,67] in patients with atopic dermatitis and multiple sclerosis, have recently
been reported [68,69]. Instead, vaccination with bacille Calmette-Guèrin produced negative
results in patient with T1DM [70,71].

Nowadays a topic discussion is about the role of gut bacteria in the control of autoimmune
diseases. In fact changes in the composition of the gut flora influence the development of
autoimmune and allergic diseases. It has been observed that the use of lactobacilli, derived
from the gut, decreases the incidence of diabetes in NOD mice [72]. More recently, Takiishi
et al. showed that treatment of NOD mice with Lactococcus lactis, a common and food-
grade commensally bacterium genetically modified, which is able to secrete IL-10 and hu‐
man pro-insulin auto-antigen, can revert autoimmune diabetes in newly diagnosed NOD
mice, by increasing frequency of TRegs [73]. Dan Litman’s group showed that a single com‐
mensally bacteria, i.e. segmented filamentous bacteria (SFB), is able to drive the appearance
of CD4+ T helper cells producing interleukin 17 (IL-17) and IL-22 (Th17 cells) in the lamina
propria, thereby influencing the microbiota equilibrium [74]. On the other hand, coloniza‐
tion of germ-free mice with a defined intestinal flora resulted in Treg generation, expansion
and activation in the lamina propria [75]. Based on these encouraging results in animal mod‐
els, the use of probiotics to delay or prevent T1DM in humans has become an area of inter‐
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est. The PRODIA study, currently ongoing in Finland, is investigating whether, the use of
probiotics during the first 6 months of life decreases the clinical onset of T1DM in children
with genetic susceptibility [76].

4. Dietary components

4.1. Feeding and risk of T1DM

The T1DM is a chronic disease characterized by a preclinical phase in which environmental
exposure, such as food, can contribute to the development of the autoimmune process of
pancreatic β-cells destruction. Recent studies have focused upon the role of breastfeeding,
introduction of cow's milk, wheat/cereals/gluten, vitamin D and E, ω-3 fatty acids [77]. Some
studies suggest that already during pregnancy, low maternal consumption of vegetables
may influence the future of the unborn [78,79].

4.2. The influence of breastfeeding

The influence of breastfeeding on the development of diabetes remains a controversial issue;
for some it seems to have a protective role, for others, a predisposing role, for others no ef‐
fect [80]. Gerstein conducted in 1993 a meta-analysis of retrospective case-control studies
showing that breast-feeding for short periods (<3 months) is associated with the develop‐
ment of T1DM, with an odds ratio (OR) of 1.43 [81]. A Finnish study has shown that early
introduction of cow milk-based formula was associated with an increased risk of β-cell auto‐
immunity in genetically predisposed children, but the duration of breastfeeding was not as‐
sociated with an increased risk of autoimmunity in children with first-degree relatives with
T1DM in Germany, Australia and USA. The risk of diabetes seems to be higher in patients
with first-degree relatives with T1DM, and this risk is increased in carriers of HLA genotype
[82-84]. The positive correlation between short duration of breastfeeding and the develop‐
ment of diabetes has been studied in non-diabetic children at the age of 5 years, evaluating
the presence of circulating antibodies predictive of the disease [Auto-Antibodies to Insulin
(IAA), Glutamic Acid Decarboxylase Antibodies (GADA) and Protein Tyrosine Phospha‐
tase-like (IA-2A)]. This study demonstrates the long-term increased risk of developing
T1DM with the early introduction of formula milk. A protective role of breast milk which,
for the presence of cytokines and growth factors, promote the maturation of the intestinal
mucosa and the development of the immune system has been suggested [85]. Conflicting re‐
sults can be explained by observing the many differences in feeding practices between the
different countries. There is variation between countries and cultures in the proportion of
babies first introduced to milk-based formula and there are differences in the kind of com‐
plementary food that infants who are not first exposed to milk-based formula [85].

4.3. Introduction of gluten

It has been known as T1DM is connected with other autoimmune diseases, such as thyroidi‐
tis or celiac disease. Two prospective studies in USA and Germany showed a high risk for
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the development of β-cells auto-immunity when gluten’s introduction happens before the
fourth month rather than after the seventh; moreover this risk is similar when gluten inges‐
tion starts before the third month [24,86]. Several studies were aimed to explain the etiology
of this phenomenon. Simpson et al. compared the levels of antibodies to a wheat storage
globulin homologue of Glo-3A, which is a non-gluten component of the wheat protein ma‐
trix. They have shown that in children with islet auto-immunity, the antibody titer was di‐
rectly linked to the early introduction of gluten, and inversely to breastfeeding duration
[87]. Not all authors agree with this association; a prospective analysis from the DIPP study
did not show a correlation between early or late introduction of gluten and subsequent de‐
velopment of pancreatic β-cells autoimmunity [88]. Mojibian et al. hypothesized that the
passage of gliadin (a polypeptide of the wheat) through the intestinal epithelial barrier may
trigger an inflammatory response, and then an autoimmune disease, in genetically predis‐
posed individuals. The passage of protein molecules is facilitated by inflammation produced
by intestinal infections. The location of an uncovering receptor for Coxsackie and Adenovi‐
rus at the level of tight junctions may explain the development of T1DM. The bowel inflam‐
mation and T-cells activation by gluten could activate and potentiate β-cell auto-immunity,
like viral infections [89]. Recently a study in NOD mice demonstrated that there is a statisti‐
cally significant protection from diabetes in mice that received gluten-free diet [90].

4.4. Vitamin D and E

Some studies have shown an increased risk of developing diabetes in children with low
intake of vitamin D. An European case-control study has quantified the reduction in risk
with an OR of  0.67 (95% CI 0.53-0.86)  in  children supplemented with vitamin D [Table
2].  Also  a  Finnish  study  showed  a  protective  role  of  vitamin  D,  with  an  OR  equal  to
0.12  (95% CI  0.03-0.51),  comparing children who received regular  doses  of  2000  IU/day
rather than 400 IU/day, and an OR of 3 (95% CI 1.0-9.0) comparing children with an ir‐
regular  supplementation  rather  no  supplementation  with  vitamin  D [91,92].  Simpson et
al.  followed from 1993 to 2011 2,664 children at increased risk of T1DM, monitoring the
intake of vitamin D and blood levels of 25(OH)D. They have shown that vitamin supple‐
mentation is  not  associated with  an increased protection from autoimmune phenomena
[93]. Vitamin D deficiency predisposes individuals to type 1 and type 2 diabetes, and re‐
ceptors  for  its  activated form 1α25-dihydroxyvitamin D3 have been identified in  β-cells
and  immune  cells.  In  some  populations,  T1DM  is  associated  with  certain  polymor‐
phisms within the vitamin D receptor gene. In studies in non-obese diabetic mice, phar‐
macological  doses  of  1α25-dihydroxyvitamin  D3,  or  its  structural  analogues,  have  been
shown to delay the onset of diabetes,  mainly through immune modulation [94].  Human
studies reported that  vitamin D is  able  to modulate the immune response by suppress‐
ing  pro-inflammatory  cytokines  and  promoting  the  secretion  of  anti-inflammatory  ones
[23].  Therefore  it  seems  appropriate  the  supplementation  with  vitamin  D  in  countries
with an increased risk of deficiency, especially if T1DM incidence is high. Other authors
emphasized the important role of vitamin E for its antioxidant function; Vitamin E amel‐
iorates oxidative stress in T1DM patients and improves antioxidant defense system [95].

Genes and Autoimmunity - Intracellular Signaling and Microbiome Contribution158



European study Vitamin D intake
HR CI

0.67;95% (0.53-0.86)

Finnish study
Vitamin D intake (2000UI/d) 0.12;95% (0.03-0.90)

Vitamin D intake (400UI/d) 3.00;95% (1.0-9.0)

Table 2. Child's diet and T1DM risk: protective effect with Vitamin D supplementation

4.5. ω-3 fatty acids and other factors

An observational study in children at high risk of T1DM reported that ω-3 fatty acid intake
is not associated with progression to overt disease; however the protective influence of ω-3
fatty acids remains controversial. On the other hand, ω-6 fatty acids seem to exert an oppo‐
site role. It has been argued that use of cod liver oil in the first year of life reduces the risk of
the disease. The case-control study DAISY [Diabetes AutoImmunity Study in the Young]
demonstrates that use of ω-3 fatty acids, between 1 and 6 years, exerts a risk reduction with
an hazard ratio of 0.45 [96,97]. The immunomodulatory role of ω-3 fatty acids is quite simi‐
lar to the role exerted by Vitamin D. Conversely, ω-6 fatty acids like arachidonic acid pro‐
mote the pro-inflammatory cytokine prostaglandin E2 with subsequent development of β-
cell autoimmunity in genetically predisposed subjects [23]. Recently, an interesting case-
control study of 298 Italian children aged 0-15 years (145 affected by T1DM) showed a
significant association, dose-response, between frequency of T1DM and meat consumption.
The association proposed by Benson et al. between T1DM and daily consumption of water
containing nitrates, nitrites and nitrosamines is intriguing [98,99].

5. Gut permeability

In the recent years a topic discussion is about the link between T1DM and gut. The role of
gut as a regulator of T1DM was first suggested in animal studies. Changes affecting the gut
immune system modulated the incidence of diabetes. In particular structural changes, such
as a decreased expression of tight junctions (TJ) proteins claudin-1 and occludin, together
with increased gut permeability were noted in the intestinal morphology of Bio-Breeding
(BB) rats, compared with Wistar rats [100,101]. These data are supported by the observations
that early onset of autoimmune diabetes in BB-rats was associated with high gut permeabili‐
ty [102] and in NOD-mouse increased intestinal permeability precedes the clinical onset of
T1DM [103]. In humans, studies showed that gut permeability, measured by the lactulose-
mannitol test, is increased in T1DM patients [104,105] and can precede clinical onset [106].
These results are supported by the discovery of high serum zonulin concentrations, a novel
member of tight-junction protein that correlates with increased ratios in sugar permeability
testing, in patients with T1DM [105] and in subjects at risk of T1DM i.e. β-cell autoantibody-
positive individuals [106]. Based on these findings, Wats et al. showed that the administra‐
tion of zonulin antagonist reduced the cumulative incidence of T1DM in diabetic-prone rats
[107]. It has also been hypothesized that changes in the normal flora may contribute to the

Environmental Factors and Type 1 Diabetes Mellitus in Pediatric Age Group
http://dx.doi.org/10.5772/53267

159



development of T1DM by affecting intestinal permeability. Duodenal administration of Lac‐
tobacillus plantarum increased the expression of epithelial TJ proteins occluding and Zo-1 in
the biopsies obtained by human volunteers [108]. Moreover, antibiotic treatment that im‐
pairs intestinal bacteria, protects from autoimmune diabetes in BB-rat model [109]. In DP-
rats (Diabetes-prone rats), the onset of T1DM could be delayed by the administration after
weaning of Lactobacillus johnsonii, isolated from DR-rats (Diabetes Resistant Bio-Breed rats)
[110]. The composition of intestinal microbiota may not only affect permeability but may al‐
so have immune-modulating effects. Recent studies suggest for intestinal microbiota an im‐
portant regulator role of Th17 immunity in the gut [74]. It has been reported that
Lactobacillus johnsonii enhances Th17 differentiation of T cells upon TCR stimulation [112].
The up-regulation of IL-17 immunity in the mucosal surface has been shown to activate an
antimicrobial response together with mucosal repair mechanisms and support of the gut
barrier [111]. Also virus, such as rotavirus and enterovirus act as promoters of the diabeto‐
genic gut environment with high intestinal permeability, enhanced immune activation, and
via the gut-pancreas link, causing activation of β-cell autoimmunity in pancreatic lymph no‐
des [112]. It is also discussed the role of antiviral cytokines that damage barrier function
[113] or the direct effect of virus, as suggested for Rotavirus and Coxsackie viruses [114,115].
The increased gut permeability in T1DM patients may be due to the uptake of dietary anti‐
gens causing improper immune activation and intestinal inflammation. Studies suggested
that early exposure to dietary wheat may trigger β-cell auto-immunity in children at genetic
risk [24,86]. In vitro, gliadin-stimulation of small intestinal biopsies taken from patients with
T1DM, caused increase in T-cells and their activation markers, i.e. CD-25 and ICAM-1, pro‐
moting intestinal inflammation [116]. Gliadin may also induce an increase in intestinal per‐
meability and zonulin released by binding to the chemokine receptor CXCR3 expressed by
epithelial cells and T cells [117]. It has been noted that dietary prevention of diabetes in
NOD-mice with a gluten-free diet was associated with a decrease in the number of ceacal
bacteria [118]. In humans, epidemiological studies suggest that the short breastfeeding time
and early feeding of cow milk (CM) proteins in the infancy increase the risk of diabetes
[119]. This may be due to the lack of breastfeeding role of support epithelial and immuno‐
logical maturation of gut, such as the gut closure [120] and the IgA system [121]. It has been
hypothesized that CM may contain diabetogenic factors, such as immunogenic bovine insu‐
lin, that could trigger insulin-specific immunity in the gut and, in the context of impaired
oral tolerance, contribute to expansion of this immune response against β cells [122]. Wean‐
ing to a hydrolyzed casein formula decreased the gut permeability [102] and led to lower
expression of IFN-γ [123] in islet infiltrating lymphocytes of BB-rats, resulting in a 50% re‐
duction in the development of autoimmune diabetes [102]. In humans, recent results of the
TRIGR pilot study, have showed that weaning to hydrolyzed casein decreased the risk of β-
cell autoimmunity by 40% in the infants at genetic risk [124]. In the FINDIA pilot study, the
use of bovine-insulin-free whey-based formula, during the first 6 months of life, decreased
the appearance of β-cell auto-antibodies by 3 age [125].
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6. Infections

6.1. Background

Several studies in humans and animal models have supported the hypothesis that infectious
agents, in particular some viruses, can be considered as one among the environmental
agents able to elicit or enhance the autoimmune response characterizing T1DM [44]. On the
other hand viral infections could exert a protective role against auto-immunity [126]. This
opposite scenario might be explained by the type of infecting virus, the immune status of
the host and the timing of infection [127]. A possible explanation could be the significant
changes in human living standards (i.e. sewage treatment, availability of microbiologically
pure water) during the last century, followed by reduced repeated exposure to fecal-oral
transmitted agents particularly early in life.

The major obstacle in clinical research is represented by the limited availability human sam‐
ples. In fact the pancreas is very difficult to access, and routine biopsy aimed to study the
role of viruses in the target organ cannot be proposed, since the majority of newly-diag‐
nosed patients are children.

However five lines of evidence link virus to T1DM [128]:

1. Some viruses are able to destroy β-cells and cause mononuclear infiltration

2. Experimental animal models report development of T1DM in mice infected with differ‐
ent strains of Picornaviruses

3. Some viral infections in humans have been followed by T1DM (i.e. congenital rubella)

4. Direct isolation of viruses from humans or animals with T1DM has been documented

5. Virus DNA or RNA are able to initiate antiviral immune response which cross-reacts
with insulin or other components within or on the surface of β-cells.

6.2. Viruses and β-cells

Viruses can directly damage β-cells or induce a strong cellular immune response leading to
progressive lack of insulin and development of clinical signs and symptoms of the disease.
Besides direct cytotoxic effect, other mechanisms involved in β-cell destruction are molecu‐
lar mimicry and bystander activation [129].

The hypothesis that viral infections are capable of triggering islet auto-reactivity has been
proven by several evidences both in humans and in animal models. The host immune re‐
sponse to viruses consists of the secretion of interferon-γ, acting as initiator of inflammation.
In the pancreas interferon-γ up-regulates MHC class I molecules on β-cells, making them
vulnerable to autoimmune attack [130]. Up-regulation of MHC class I molecules is followed
by lymphocytic infiltration in β-cells, as reported also in humans [131]. Moreover viral parti‐
cles or even isolate live virus have been detected in pancreas from patients deceased at clini‐
cal onset of T1DM.
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Another evidence strengthening the association between viruses and T1DM is the identifica‐
tion of 4 protective genetic variations of IFIH1 gene, responsible for interferon production
after viral infection [132]. Individuals with IFIH1 predisposing alleles have higher IFIH1 lev‐
els, while individuals with protective alleles have lower IFIH1 levels. After a HEV infec‐
tions, the predisposed group showed increased stimulating capacity of dendritic cell, with
production of pro-inflammatory cytokines and development of T1DM. The opposite scenar‐
io has been reported in the protected group.

The key role of viruses as trigger of autoimmune response may result from molecular simi‐
larities between viral antigens and host cell auto-antigens, otherwise defined as “Molecular
Mimicry”. These similarities are responsible for a break of the immune tolerance to endoge‐
nous auto-antigens. In particular, analogies between an epitope of Coxsackie B virus (P2-C
35-43) and an epitope of GAD 65 auto-antigen (GAD 65 258-266) has been reported also in
humans [133]. Molecular mimicry is able to enhance or accelerate autoimmune process,
however it does not start auto-immunity.

Another link between viruses and auto-immunity is the so called “Bystander Activation”.
Pre-existing auto-reactive T-cell precursors, activated by viral infections, become auto-ag‐
gressive and induce the autoimmune response. Bystander activation has been reported in
animal model infected by Coxsackie B4 virus who later develop T1DM [134]. Molecular
mimicry and bystander activation are not mutually exclusive.

The direct viral infection and lysis of β-cells has been reported in the so-called “Fulminant
Diabetes” (FD). FD accounts for about 20% of diabetes mellitus in Japan and is characterized
by extremely rapid and severe destruction of pancreatic β-cells in absence of insulitis, but
with high titers of anti-enterovirus IgA, compatible with recurrent HEV infections [135].

Several viruses have been linked to T1DM, i.e Coxsackie, Mumps, Rubella, Cytomegalovi‐
rus, Retroviruses and Rotaviruses [136-139], otherwise several evidences link enteroviruses,
in particular Coxsackie B4 virus to T1DM [140].

6.3. Coxsackie viruses and T1DM

Human EnteroViruses (HEV) [141] are small, non-enveloped viruses (30 nm), characterized
by an icosahedric capsid consisting of 60 capsomers; one capsomer comprises 4 structural
proteins (VP1, VP2, VP3, VP4). HEV belong to the Picornaviridiae family and 5 different
species are recognized: Poliovirus and HEV A, B, C, D. Enteroviruses are ubiquitous and
transmitted by faecal-oral route, and characterized by a great genetic variability and conse‐
quent broad spectrum of tissue tropism and pathological effects. HEV infections are usually
asymptomatic or characterized by fever, malaise, sometimes respiratory involvement or cu‐
taneous Rash. More severe diseases such as meningitis, encephalitis and pericarditis have
been reported.

Six different serotypes characterize Coxsackie virus B (CVB 1-6); the B4 serotype is defined
“diabetogenic” [142]. Affected patients harbor enterovirus RNA homologous to that of Cox‐
sackie B4 in peripheral blood mononuclear cells [143], and in small intestine samples, sug‐
gesting a persistent enterovirus infection [144].
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Recently direct evidence of Coxsackie B4 enterovirus infection in human β-cells with re‐
duced insulin secretion and islet inflammation mediated by natural killer cells has been pro‐
vided [145-147].

6.4. Viruses: foes or friends?

It  has  been  reported  a  protective  role  of  viral  infection  in  the  development  of  T1DM.
Studies  in  animal  models  report  a  protective  effect  of  enterovirus  infections  when con‐
tracted precociously,  before weaning,  which disappears if  the infection occurs thereafter
[148].  A virus with protective effect  exerts  a inflammatory profile  very different if  com‐
pared  to  diabetogenic  one,  with  opposite  consequences  on  autoimmune  reaction.  The
kind of virus,  its  β-cell  affinity,  and the timing of infection play a crucial  role in T1DM
occurrence.  In  fact  proliferation virus-induced auto-reactive T cells  after  recurrent  infec‐
tions  with  protective  viruses  determine  protection  from  β-cell  autoimmune  destruction
with  deviation  of  the  auto-inflammatory  response,  a  trafficking  of  auto-reactive  T  cells
and a stimulation of Treg cells [127].

7. Vaccines and risk of T1DM

The role of vaccine in the development of T1DM has been matter of debate. In fact there is a
temporal association between increased incidence of the disease after improvement of living
conditions and reduction of infectious diseases in childhood, thanks to the widespread use
of vaccines. Moreover, some vaccines prevent or induce T1DM in animal models. Further‐
more, it has been postulated that only early vaccinations (i.e. within the first month of life)
could prevent T1DM [149]. The same author reported a clusters of cases of T1DM 2-4 years
post-immunization with pertussis, MMR, and BCG vaccine, but it remains to define the link
between the haemophilus-vaccine and T1DM [150]. On the other hand, a large epidemiolog‐
ical study on all children born in Denmark from 1990 and 2000, for whom correct informa‐
tion about vaccine schedule and clinical diagnosis of T1DM 2 to 4 years after vaccination,
revealed no significant association between vaccines and development of T1DM. Moreover,
no evidence of any clustering of cases after vaccination with any kind of vaccine [151]. This
nationwide cohort, together to the prospective and independent ascertainment of vaccina‐
tion history and the time of T1DM diagnosis overcame the risk of selection bias and recall
bias [151]. De Stefano et al., in a case-control study, didn’t support an association between
any of the recommended childhood vaccines and increased risk of T1DM [152]. Similar re‐
sults have been reported in a retrospective cohort study in active components of US Military
between 2002-2008 [153]. Another retrospective cohort study in Sweden examining the risk
of autoimmune and neurological disorders in people vaccinated against pandemic influenza
A demonstrated no changes in the frequency of several autoimmune diseases, including
T1DM [154].

The possibility that vaccination may increase the risk of T1DM has been evaluated in a few
epidemiologic studies. Classen has provided the only evidence of a possible increased risk,
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but the nature of the evidence is strictly ecological, involving comparisons between coun‐
tries or between different time periods in the same country. Such comparisons, however,
may be influenced by many factors unrelated to vaccination, i.e. genetic predisposition.
Moreover, similar ecological analyses did not found significant correlations between diabe‐
tes and BCG, pertussis, and mumps vaccine.

Recently, in Japan a case of fulminant T1DM has been reported after influenza vaccination
[155]. On the other hand the absence of autoimmunity in this form of diabetes is recognized.
The role of vaccinations in T1DM deserves attention. Even if vaccinations are not triggers of
autoimmune process leading to overt diabetes, it is otherwise possible that in genetically
predisposed subjects vaccine exposure could anticipate the clinical symptoms and therefore
being associated to T1DM.

8. Obesity as environmental factor

In the past decades a worldwide rising incidence of the disease has been reported [157], with
a significant trend toward earlier age at diagnosis than previously observed [158]. This shift
to a younger age at T1DM diagnosis could be explained by exposure to higher doses of sev‐
eral environmental factors, like viral infections, polluted air, and more recently, sedentary
lifestyle [159-160]. In particular, physical inactivity results in obesity, whose incidence with‐
in pediatric age is dramatically rising [156,160,161]. In younger children obesity-induced in‐
sulin resistance exerts in metabolic β-cells up-regulation, accelerating their loss through
glucotoxicity, and can potentially bring forward the earlier age of diabetes clinical onset, ac‐
cording to the so-called Accelerator Hypothesis [162].

8.1. Accelerator hypothesis

The Accelerator Hypothesis, firstly postulated by Wilkins, argues that diabetes mellitus is a
unique disorder of insulin resistance set against different genetic backgrounds, rather than
two distinct diseases (type 1 and type 2), and focuses on the tempo of β-cell loss [162].
Therefore the concept of tempo might explain the commonality between type 1 and type 2
diabetes, which are distinguished only by the rate of β-cell loss and by the specific accelera‐
tor involved [163]. Three main accelerators play a pathogenetic role: the first is the intrinsic
potential for β-cell apoptosis, a necessary but insufficient step in the development of diabe‐
tes. The second accelerator is insulin resistance secondary to obesity, and represents the link
between type 1 and type 2 diabetes. Insulin resistance increases insulin secretory demands
on β-cells and may trigger damage in these metabolically up-regulated cells by increasing
antigen presentation. Insulin resistance is characterized by a decreased ability of insulin to
stimulate the use of glucose by the muscle and adipose tissue, where the suppression of li‐
pase controlled by insulin is impaired [164]. The consequent excessive supply of free fatty
acids further affects glucose transportation in the skeletal muscles, and inhibits insulin activ‐
ity [165]. In the liver, insulin resistance leads to increased hepatic glucose production, initial‐
ly compensated by increased insulin secretion. If the process persists, glucotoxicity can
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occur, leading to chronic hyperglycemia and clinical diabetes [166]. The third accelerator is
genetic susceptibility, predisposing to β-cell autoimmunity [167]. Several studies support
the role of the Accelerator Hypothesis, showing that BMI increasing and precocious weight
gain are inversely related to age at diagnosis of T1DM [168-173]. Noteworthy, other reports
don’t agree with the primary pathogenic role of obesity [174,175]. Recently another study in
a large cohort of patients from the Mediterranean area makes this theory controversial and
unproven up to now [176].

In our previous report  in  a  limited cohort  of  174 Italian patients  from Genoa (northern
Italy)  we  demonstrated  that  obesity  is  not  a  common  finding  in  younger  children  at
T1DM diagnosis [177].

In particular, the obesogenic environment, i.e. sedentary lifestyle, which promotes insulin
resistance and other metabolic consequences deserves attention.

On the other hand, some studies don’t support the role of Accelerator Hypothesis. In fact,
data from UK compared BMI at T1DM diagnosis with age at diagnosis in South Asian and
white children and did not find significant differences. The authors concluded that BMI
could be too crude as indicator of insulin resistance, and that other specific indicators
should be considered [178].

In a large cohort of Mediterranean patients diagnosed with T1DM between 1990 and 1994
BMI-SDS has not significantly increased. In addition a positive association between BMI-
SDS and age at diagnosis has been also reported [176].

It is plausible that Accelerator Hypothesis does or not does become manifest because of the
genetic background and environmental factors, including the prevalence of overweight and
obesity.

All studies include children BMI to define obesity; however, this measurement seems to be a
too crude measure of insulin resistance, as well as of percentage fat mass and its distribution
and for the critical variable of cardiovascular fitness, which is the major determinant of insu‐
lin sensitivity.

9. Epigenetic

The study of epigenetic in the pathogenesis of autoimmune diseases represents a new chal‐
lenge and a fascinating field for clinicians and researchers, particularly as regards T1DM. It
is recognized that genetic background is only one aspect in T1DM pathogenesis, and the role
of environment, gender and aging deserves equally attention. In fact genetic background is
responsible for susceptibility or protection from clinical onset of the disease. Moreover, ge‐
nome wide association studies discovered significant associations underlying immune toler‐
ance breakdown only in a relatively small group of patients, leading to the concept of
“Missing Heritability” [179]. Furthermore the low concordance rate of T1DM in monozygot‐
ic twins reinforces the concept that external additional factors play a crucial role, and the
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link between genetic susceptibility and environment as trigger of auto-immunity can be rep‐
resented by epigenetic [180].

In contrast to genetic alterations, epigenetic changes determine and/or perpetuate an herita‐
ble change in gene expression without a change in DNA sequence. Epigenetic mechanisms
are involved in eukaryotic gene regulation through modification in chromatin structure in
part packaging DNA, in part as modulating gene expression. Epigenome can be defined as a
cell specific and stable pattern of gene expression determined by epigenetic mechanisms.
Epigenetic mechanisms are involved in cell type development and function, since they are
able to determine stable gene expression or repression. Another important feature of epige‐
netic mechanisms consists of determining metabolic plasticity to cells, with subsequent
adaptation to environmental modifications [181].

The main epigenetic  abnormalities  include DNA methylation and histone modifications,
leading  to  spatial  and  temporal  changes  in  gene  regulation.  Studies  in  identical  twins
showed  that  the  appearance  of  epigenetic  differences  increase  with  age  and  the  most
significant epigenetic differences have been occurred in those twins who spent less time
together [182].

As regards T1DM pathogenesis, epigenetic role is by modulating lymphocyte maturation
and cytokine expression, both involved in the development of autoimmune attack to β-cells
[183]. In particular T-helper lymphocyte differentiation is under epigenetic control [184].
Another mechanism by which epigenetic modifications play a role in T1DM pathogenesis is
by influencing β-cell development and repair. In fact glucose and insulin regulate methyla‐
tion process which takes place in the cell via elevated homocysteine and homocysteine re-
methylation, with a concomitant reduced capacity to remove homocysteine by means of
transulfuration processes [185]. Homocysteine can be re-methylated to form methionine.
The maintenance of methylation patterns in DNA and histone are linked to cellular methyl
group metabolism, which is influenced by nutritional intake of folate [185]. Maternal nutri‐
tion state can influence newborn metabolic phenotype through epigenetic modifications. In
fact the relationship between nutritional status and epigenetic is crucial during embryogene‐
sis, intrauterine life and perinatal period, influencing offspring’s pancreas vascularisation
and development [186]. Furthermore Dutch people exposed to famine during intrauterine
life in the years of the Second World War experienced higher frequency of type 2 diabetes
and cardiovascular risk in adulthood [187]. As regards a direct epigenetic involvement in
T1DM pathogenesis few data are available. On the other hand a possible contribution is rep‐
resented by food intake, for methyl donors (i.e. methionine and choline) and cofactors (i.e.
folic acid and vitamin B12) which are important for DNA and histone methylation.

10. Conclusions

Even if diabetes mellitus is a condition described in the ancient Egypt, no specific etiologic
factor has been defined up to now. Fascinating case reports and large multicenter studies
demonstrated the complexity of pathogenetic events characterizing autoimmune diseases.
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Several environmental factors, old and new, play a crucial role in the development of T1DM,
being as protective as dangerous, and their interplay with genetic susceptibility can explain
the difficulty to find a single causative agent [188].

On the other hand the study of environmental factors increases the knowledge of natural
history of the disease, and allows the recognition and knowledge of those protective agents
which can delay the clinical onset of the disease and represent the basis for primary preven‐
tion programs.
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