
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322421044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 11

Biological Significance of Apoptosis in Ovarian Cancer:
TRAIL Therapeutic Targeting

Nadzeya Goncharenko-Khaider, Denis Lane,
Isabelle Matte, Claudine Rancourt and Alain Piché

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53380

1. Introduction

An apoptotic program is present in almost all cell types. Functional characterization of the
apoptotic cascade has revealed how the apoptotic program is activated in response to di‐
verse stresses such as DNA damage, signaling imbalance provoked by oncogene activation,
survival factors insufficiency or hypoxia. One of the hallmarks of tumor cells is their ability
to resist apoptosis. The concept that apoptosis serves as a barrier to cancer development has
been well established (Evan and Littlewood, 1998; Hengartner, 2000; Lowe et al., 2004;
Adams and Cory, 2007). This is especially relevant for ovarian cancer (OC) where most pa‐
tients presenting with advanced OC (most commonly high grade serous OC) will respond to
the initial chemotherapy treatment suggesting that most tumor cells present are sensitive to
chemotherapy. However, only 10-15% of these patients maintain a complete response to the
initial therapy implying that a fraction of the tumor cells escaped apoptosis induced by che‐
motherapeutic drugs. Thus, one of the main obstacles to an effective treatment in OC is the
failure of the initial chemotherapy to eradicate a sufficient number of tumor cells to prevent
disease recurrence. Attenuation of apoptosis in those tumor cells contributes to the resist‐
ance to subsequent therapy and likely plays an important role in OC progression.

This chapter focuses on the molecular pathways that lead to apoptotic resistance and the
need to move towards new targeted treatment in OC. Particular attention will be given to
the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade.
TRAIL is a cytokine that triggers apoptosis in a wide variety of tumor cells with apparent
little effect on normal cells. We will discuss the various mechanisms that OC cells may de‐
velop to suppress TRAIL cytotoxicity. Furthermore, we will review the emerging TRAIL-tar‐
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geting strategies for treating OC and provide information about the latest clinical studies of
TRAIL agonists that are being conducted for the treatment of OC.

2. Treatment for ovarian cancer

Because of the limited efficacy of current treatments for advanced OC, novel and more effec‐
tive therapies are being investigated. An emerging option for the treatment of OC is the tar‐
geting of the TRAIL signaling cascade. Because of its unique ability to trigger apoptosis in
cancer cells and spare normal cells, in contrast to other cytokines such as FasL and TNFα,
TRAIL is an attractive and promising treatment for cancer therapy. Preclinical studies in
mice provided the first evidence that the soluble recombinant TRAIL suppresses the growth
of human tumor xenografts with no apparent systemic toxicity (Walczak et al., 1999; Ashke‐
nazi et al., 1999). More recently, recombinant TRAIL has entered clinical trials for the treat‐
ment of various malignancies (Ashkenazi, 2008; Ashkenazi et al., 2008; Abdulghani and El-
Deiry, 2010; Hellwig and Rehm, 2012). In addition to soluble TRAIL, several agonistic
antibodies targeting TRAIL R1 or TRAIL R2 death receptors have been developed and en‐
tered into clinical trials that included OC patients (Ashkenazi et al., 2008; Hellwig and
Rehm, 2012). As for standard chemotherapy, tumor cells have developed various mecha‐
nisms to escape the apoptosis induced by TRAIL. This underscores the need to understand
the mechanisms of TRAIL resistance, and based on this knowledge, identify and validate
novel combinations that could be used with TRAIL to potentiate its therapeutic efficacy. For
example, TRAIL resistance has been often associated with overexpression of anti-apoptotic
proteins. Therefore, the identification of combination treatments that abrogate anti-apoptotic
protein function is promising.

3. Apoptosis overview

Deregulation of the apoptotic cascade not only plays a key role in the pathogenesis and pro‐
gression of cancer, but also leads to resistance to chemotherapy. There are two major cellular
death pathways that transduce the effects of various death inducers: the extrinsic and the
intrinsic pathway (Figure 1). The extrinsic pathway is triggered when TRAIL binds to
TRAIL R1 or TRAIL R2. Receptor trimerization, along with the subsequent oligomerization
and clustering of the receptors, leads to the recruitment of the adaptor protein Fas-associat‐
ed protein with death domain (FADD). FADD allows the recruitment of the inactive pro-
caspase-8 or –caspase-10 via a shared death effector domain (DED) leading to the formation
of the death-inducing signaling complex (DISC). Depending on the cell type, apoptosis acti‐
vation through the extrinsic pathways may or may not depend on the intrinsic pathway. For
example, in type I cells, upon DISC activation, sufficient caspase-8 is activated and, in turn,
directly activates the effector caspases (caspase-3, -6, -7) leading to the execution of apopto‐
sis (Abdulghani and El-Deiry, 2010). FLICE-inhibitory protein (c-FLIP) shares structural ho‐
mology with pro-caspase-8 and possesses a death effector domain that lacks protease
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activity. In specific conditions, its structure allows c-FLIP to be recruited to the DISC where
it inhibits the processing and activation of pro-caspase-8. Although many isoforms of c-FLIP
have been identified, only three are expressed in human cells (Djerbi et al., 2001). They con‐
sist of two short variants, c-FLIPS and c-FLIPR, and a long splice variant, c-FLIPL. Both c-
FLIPL and c-FLIPS contain two DEDs and compete with pro-caspase-8 for association with
FADD (Bagnoli et al., 2010). Depending on the level of c-FLIPL expression, its function at the
DISC will vary. When present in high amounts, c-FLIPL will exert an anti-apoptotic effect at
the DISC (Krueger et al., 2001). When present in low amounts, it may heterodimerize with
caspase-8 at the DISC and promotes apoptosis (Chang et al., 2002). c-FLIP is thus seen as a
major inhibitor of the extrinsic pathway of apoptosis. In so-called type II cells, less caspase-8
is activated at the DISC and efficient apoptosis requires further signal amplification via the
intrinsic or mitochondrial pathway. This is achieved by caspase-8-mediated Bid cleavage to
generate a truncated form of Bid (tBid) which subsequently engages Bax/Bak to activate the
mitochondria.

The intrinsic pathway is usually triggered in response to DNA damage, hypoxia or onco‐
gene overexpression. As a sensor of cellular stress, p53 is a critical initiator of the intrinsic
pathway. In response to cellular damage, p53 translocates from the cytoplasm to the nucleus
where it promotes the transcription of pro-apoptotic members of the Bcl-2 family. Pro-apop‐
totic Bcl-2 family members Bax and Bak form pores in the outer mitochondrial membrane
causing the release of cytochrome c and other apoptogenic factors such as apoptosis induc‐
ing factor (AIF) and SMAC/DIABLO into the cytoplasm. The released of cytochrome c,
along with apoptosis protease activating factor-1 (APAF-1) and pro-caspase-9 form the
apoptosome. Within the apoptosome, clustered pro-caspase-9 gets activated and cleaves
downstream effector caspases, leading to the hallmark of apoptosis (Youle and Strasser,
2008; Brunelle and Letai, 2009). The release of SMAC/DIABLO from the mitochondria pro‐
motes apoptosis by binding to and neutralizing members of the family of inhibitor of apop‐
tosis proteins (IAPs), which can block caspase-3 activity through its baculovirus IAP repeat
domains. Although the extrinsic and intrinsic pathways are activated by different mecha‐
nisms, these two pathways are interconnected (Figure 1). In type II cells, activated caspase-8
cleaves pro-apoptotic Bcl-2 family member Bid to form truncated Bid (tBid), which can then
interact with Bax/Bak. This interaction increases the release of cytochrome c from the mito‐
chondria. Thus, Bid provides a connection between extrinsic and intrinsic pathways (so
called mitochondrial amplification loop). The reasons that determine whether tumor cells re‐
ly on type I or II signaling are not well understood but resistance has been attributed to dys‐
function of different steps in the TRAIL-induced apoptosis pathway and/or elevation of
survival signals (Zhang and Fang, 2005). In particular, it has been proposed that the levels of
c-FLIP and XIAP relative to caspase-8 and SMAC/DIABLO might be important determi‐
nants (Kim et al., 2000).

Bcl-2 family proteins are involved in the regulation of apoptosis by controlling mitochondri‐
al membrane permeability. Several studies have demonstrated that these proteins can inter‐
act with each other and these interactions can neutralize their pro- or anti-apoptotic
functions. The balance between anti- and pro-apoptotic members dictates the fate of cell sur‐
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vival or death. Pro-apoptotic Bcl-2 members can be divided into 2 groups according to their
function and the number of BH domains that they possess. Proteins containing BH domains
1-3 are known as multidomain pro-apoptotic proteins such as Bax, Bak and Bok (Youle and
Strasser, 2008). BH-3-only pro-apoptotic proteins such as Bik, Bid, Bad, Bim, Bmf, Noxa, Pu‐
ma and others can form heterodimers with the multidomain proteins Bax and Bak leading to
the activation of the mitochondria. Anti-apoptotic proteins such as Bcl-2, Bcl-XL and Mcl-1
can also form hetero-dimeric interactions with Bax and Bak, thereby neutralizing their pro-
apoptotic activity. Anti-apoptotic proteins can form hetero-dimers with BH-3-only proteins
and this interaction neutralizes the pro-survival function of anti-apoptotic proteins.

4. TRAIL and its receptors

TRAIL is a member of the TNF ligand superfamily of cytokines and is a type II transmem‐
brane protein, which is anchored to the plasma membrane and presented to the cell surface.
The extracellular domain of TRAIL can be shed from the cell surface by cysteine proteases to
produce soluble TRAIL. Both the soluble and the membrane-bounded TRAIL can trigger
apoptosis by interacting with its cognate death receptors expressed by target cells. Of the
five human TRAIL receptors that have been identified, both TRAIL R1 (DR4) and TRAIL R2
(DR5) contain a functional death domain in their intracellular portion, unlike decoy recep‐
tors TRAIL R3 (DcR1) and TRAIL R4 (DcR2), which lack a functional death domain and are
thus incapable of transmitting an apoptotic signal (Pan et al., 1997a; Pan et al., 1997b; Sheri‐
dan et al., 1997; Marsters et al., 1997). Soluble TRAIL also binds with low affinity to soluble
osteoprotegerin (OPG), which is a decoy receptor for RANKL that blocks the RANK-
RANKL interaction (Hofbauer et al., 2000). OPG negatively regulates osteoclastogenesis and
soluble OPG can act as a scavenger for soluble TRAIL and therefore inhibits TRAIL-induced
apoptosis (Vitovski et al., 2007).

5. Expression of apoptosis-related proteins in ovarian cancer

Because the susceptibility of tumor cells to apoptosis appears to be determined, at least in
part, by the ratio between pro- and anti-apoptotic proteins, the expression pattern of anti-
apoptotic proteins, Bcl-2, Bcl-XL and Mcl-1 has been assessed in OC tissues. For example,
higher Bcl-2 expression has been generally associated with a favorable outcome in OC (Hen‐
riksen et al., 1995; Herod et al., 1996; Marx et al., 1997; Marone et al., 1998). This apparent
paradox may be explained by the observation that high Bcl-2 expression delays cell cycle
progression by promoting accumulation of cells in S phases without affecting the rate of
apoptosis in OC cells (Bélanger et al., 2005). Bcl-XL expression is generally higher in OC tis‐
sues when compared to normal tissues (Marone et al., 1998) but has not been consistently
associated with worse outcome (Shigemasa et al., 2002; Williams et al., 2005). This could be
related to the observation that the ability of Bcl-XL to attenuate apoptosis appears to be cell
context-dependent in OC (Dodier and Piché, 2006). In at least one study, increased Mcl-1 ex‐
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pression has been correlated with poor prognostic for patients with OC (Shigemasa et al.,
2002). Elevated expression of c-FLIPL has been reported in a substantial percentage of OC
tissues from patients with advanced diseases (Mezzanzanica et al., 2004; Horak et al., 2005a)
and has been associated with adverse outcome in some studies (Ouellet et al, 2007; Bagnoli
et al., 2009) whereas others have found no such association (Duiker et al., 2010).

In patients with OC, high TRAIL expression in either tumor or stromal cells is a predictor of
overall survival (Lancaster et al., 2003; Horak et al., 2005a). Interestingly in Horak’s study,
almost 50% of the tumor analyzed expressed elevated level of c-FLIPL and about 80% of tu‐
mors displayed low expression of TRAIL R1 and/or TRAIL R2, which could contribute to
protect OC cells from TRAIL-induced apoptosis. Loss of TRAIL expression has been associ‐
ated with worse outcome (Duiker et al., 2010). Furthermore, this group reported that epige‐
netic silencing of TRAIL R1 occurred in 8% to 27% OC tumor samples (Horak et al., 2005b).
Higher expression of TRAIL receptors in OC cells has been associated with a worse outcome
(Ouellet et al., 2007; Dong et al., 2008) but other studies have found no correlation between
TRAIL R1 or TRAIL R2 expression and survival (Duiker et al., 2010).

6. Resistance in OC cells

The mechanisms of resistance to TRAIL can be divided into three categories based on their
mode of acquisition: intrinsic resistance, acquired resistance and environment-mediated re‐
sistance (Goncharenko-Khaider et al., 2012). Each of them will be discussed separately.

6.1. Intrinsic resistance

Intrinsic resistance is observed when tumor cells are resistant to a specific drug without pre‐
vious exposure to this drug. The incidence of intrinsic resistance to TRAIL among patients
presenting with OC is not known but intrinsic TRAIL resistance among OC cell lines and
primary OC cells is roughly 50% (Cuello et al., 2001a; Vignati et al., 2002; Siervo-Sassi et al.,
2003; Lane et al., 2004). Multiple mechanisms have been described for intrinsic TRAIL resist‐
ance in OC cells because the susceptibility to TRAIL-induced apoptosis can be regulated at
multiple levels in the apoptotic signaling cascade. The loss of TRAIL R1 expression by epi‐
genetic silencing correlated with resistance to TRAIL-induced apoptosis in OC cells (Horak
et al., 2005b). Aberrant methylation of TRAIL receptors has been reported in up to 40% of
OC tumors (Shivapurkar et al., 2004). Despite these observations in OC tissues, the levels of
TRAIL receptors or decoy receptors do not usually correlate with sensitivity or resistance to
TRAIL in OC cell lines (Cuello et al., 2001a; Vignati et al., 2002; Lane et al., 2004). However,
the modulation of TRAIL receptors expression may sensitize tumor cells to TRAIL. For ex‐
ample, celestrol-induced upregulation of TRAIL R1 and TRAIL R2 enhances TRAIL-induced
apoptosis (Zhu et al., 2010).

As mentioned earlier, c-FLIP is an important modulator of TRAIL sensitivity. Therefore, it is
not surprising that c-FLIP overexpression has been associated with intrinsic TRAIL resist‐
ance in OC cells. A number of studies have demonstrated that the down-regulation of c-
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FLIPL (through different means) enhances TRAIL-induced apoptosis in resistant OC cells
(Lane et al., 2004; Clarke et al., 2007; Syed et al. 2007; Park et al., 2009). In addition, the
knockdown of c-FLIPL inhibited human OC cell lines migratory phenotype in a TRAIL-de‐
pendent manner in vitro and inhibited the invasion of tumor cells into the peritoneal cavity
(El-Gazzar et al., 2010a).

Activation of the PI3K/Akt promotes cell survival and resistance to chemotherapy in OC
cells (Fraser et al., 2008; Abedini et al., 2010). The constitutive activation of Akt in OC cell
lines and primary tumor cells also promotes resistance to TRAIL (Goncharenko-Khaider et
al., 2010). There is a close correlation between the activation of Akt in OC cells and the de‐
gree of resistance to TRAIL (Goncharenko-Khaider et al., 2010; Lane et al., 2010). The inhibi‐
tion of Akt phosphorylation reversed cellular resistance to TRAIL whereas the transfection
of Akt in tumor cells with low Akt basal activity enhanced TRAIL resistance (Goncharenko-
Khaider et al., 2010). Akt confers resistance, in part, by modulating TRAIL-induced Bid
cleavage (Goncharenko-Khaider et al., 2010). The role of Akt in TRAIL resistance among OC
cells is also supported by the observation that the inhibition of Akt activation by trastuzu‐
mab (Cuello et al., 2001b), an ErbB2 receptor inhibitor, or by a small molecule that inhibits
hPEBP4 (Qiu et al., 2010), enhanced TRAIL-induced apoptosis.

TRAIL triggers changes in mitochondrial membrane permeability which results in the re‐
lease of pro-apoptotic proteins such as cytochrome c and SMAC/DIABLO from the mito‐
chondria. In a cohort of 75 patients, Mao et al. demonstrated decreased expression of SMAC/
DIABLO and increased expression of XIAP in OC compared to normal ovarian tissues (Mao
et al., 2007). However, they observed no difference in SMAC/DIABLO and XIAP expression
between TRAIL sensitive and resistant cell lines. To assess the biological relevance of these
observations, they stably transfected TRAIL resistant OC cell lines with a SMAC/DIABLO
expression vector and showed enhanced TRAIL-induced apoptosis in transfected cells. Simi‐
larly, the treatment of TRAIL resistant OC cells with a small molecule SMAC/DIABLO mim‐
ic enhanced TRAIL- and TRAIL R1 or R2 agonist-induced apoptosis (Petrucci et al., 2007).
Others have found a lack of correlation between XIAP protein expression and TRAIL sensi‐
tivity (Goncharenko-Khaider et al., 2010). Furthermore, down-regulation of XIAP in TRAIL
resistant OC cells failed to enhance TRAIL-induced apoptosis (Goncharenko-Khaider et al.,
2010) suggesting that XIAP is not a major factor contributing to TRAIL resistance in OC.

In summary, intrinsic TRAIL resistance appears to be multi-factorial and can be influenced
by the activation of survival pathways such as Akt. In this context, the identification of in‐
formative and validated biomarkers of TRAIL resistance will be important for selecting pa‐
tients and predicting the clinical outcome.

6.2. Acquired resistance

Acquired resistance is a mechanism by which tumor cells that were initially sensitive to a
drug adapted to survive to prolonged exposure to this drug. Acquired drug resistance con‐
stitutes a major problem in the management of OC. This type of resistance is believed to be
caused by sequential genetic alterations in tumor cells often associated with sub-lethal expo‐
sure to apoptosis-inducing drugs that eventually result in a therapy-resistant phenotype.
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For example, in an OC cell line model, resistance to the anti-TRAIL-R2 antibody TRA-8 was
induced by repeated exposure to non-apoptosis-inducing doses of the antibody (Li et al.,
2006). Interestingly, the apoptotic responses induced by TRAIL, a TRAIL-R1 agonist anti‐
body (2E12), and other apoptotic stimuli were not impaired. Lane et al. demonstrated that
TRAIL acquired resistance was due to a rapid degradation of active caspase-3 subunits by
the proteasome in the TRAIL resistant variant OC cells OVCAR3 (Lane et al., 2006). Interest‐
ingly, TRAIL resistant OVCAR3 cells remained sensitive to chemotherapeutic drugs.

One reassuring finding of these studies in OC and other in different tumor types is the fact
that acquired TRAIL resistance does not confer cross-resistance to chemotherapeutic drugs
such as cisplatin. In fact, combining standard chemotherapy with TRAIL treatment appears
to be beneficial because treatment with platinum compounds upregulates the expression of
TRAIL death receptors regardless of the p53 status which leads to increase apoptosis in OC
cells (El-Gazzar et al., 2010b).

6.3. Environment-mediated resistance

Environment-mediated drug resistance (de novo resistance) is a form of resistance by which
tumor cells are transiently protected from drug-induced apoptosis via the induction of sur‐
vival signaling pathways (Meads et al., 2009). Soluble factors in the tumor environment may
engage cell surface receptor to activate survival pathways. Evidence is accumulating that the
tumor environment affects both tumor progression and response to chemotherapy in OC.
The accumulation of peritoneal fluid that develops during OC progression, which contains a
large mass of the tumor cells, represents a unique form of tumor environment. The floating
malignant cells are capable of surviving and proliferating despite lacking immediate prox‐
imity to blood vessels presumably due to the permissive attributes of this environment.
There are several indirect evidences to suggest that ascites alter drug resistance in tumor
cells. Proteomic profiling of tumor cells from ascites before and after chemotherapy showed
an increase in the activation of survival pathways such as Akt pathway (Davidson et al.,
2006). Moreover, OC ascites attenuate TRAIL and drug-induced apoptosis in vitro (Lane et
al., 2007; Lane et al., 2010a; Lane et al., 2010b). OC ascites contains significant levels of bioac‐
tive lipids such as lysophosphatidic acid (LPA), which exceed levels required to activate
LPA receptors (Yamada et al., 2004; Lane et al., 2010a). LPA, one of the ligands of G-protein
coupled receptors, has been shown to induce cell survival signaling pathways through dif‐
ferent mechanisms including PI3K/Akt activation and regulation of DR4 and c-FLIP (Tanyi
et al., 2003; Kang et al., 2004; Ishdorj et al., 2008). Furthermore, LPA inhibits cisplatin-in‐
duced apoptosis (Tanyi et al., 2003). The role of LPA, as a component of ascites, in modulat‐
ing drug resistance in OC cells remains however uncertain. For example, the blockade of
LPA cascade did not altered TRAIL-induced apoptosis in OC cells (Lane et al., 2010a) and
incubation of OC cells with LPA did not protect them from TRAIL-induced apoptosis (Lane
et al., 2010).

A wide variety of cytokines can be measured in OC ascites and interleukin-6 (IL-6) and
interleukin-8 (IL-8) are among the most abundant (Giuntoli et al., 2009; Lane et al., 2011;
Matte et al., 2012). A number of studies have reported an association between serum lev‐
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els of  IL-6 and prognosis,  where elevated levels correlated with a poor relapse-free and
overall survival (Plante et al., 1994; Scambia et al., 1995; Tempfer et al., 1997). Interesting‐
ly, it was recently shown that elevated ascites levels of IL-6, but not IL-8, were an inde‐
pendent predictor of shorter progression-free survival (Lane et al., 2011). Whether IL-6 is
a critical soluble factor in ascites-mediated TRAIL resistance is unclear but a recent study
suggests that IL-6 may indeed be an important component of the tumor environment that
support tumor growth (Kulbe et al., 2012). Recently, high levels of IL-10, OPG and leptin
in ascites  were found to correlate  with shorter  PFS (Matte  et  al.,  2012).  Furthermore,  in
this study, Il-10 neutralizing antibodies attenuated the protective effect of ascites against
TRAIL-induced apoptosis  suggesting that  IL-10 is  one of  the factors  in  ascites  that  pro‐
mote ascites-induced TRAIL resistance.

The role of integrins in mediating cell proliferation, migration and survival in ovarian can‐
cer is well established (Carreiras et al., 1999; Cruet-Hennequart et al., 2003; Lane et al., 2008).
Integrins transmit signals directly through ligation-dependent recruitment of non-receptor
tyrosine kinases from the focal adhesion kinase (FAK) leading to the activation of several
cell signaling pathways including the PI3K/Akt pathway (Stupack and Cheresh, 2002). Re‐
cently, it has been shown that the PI3K/Akt cascade is activated by OC ascites (Lane et al.,
2010a). The ability of different ascites to induce Akt phosphorylation in tumor cells strongly
correlates with their ability to inhibit TRAIL-induced apoptosis. The PI3K/Akt pathway
most likely couples signals from ascites-activated cell surface receptors which regulate the
expression and/or phosphorylation of apoptosis-regulating targets. Ascites-induced activa‐
tion of αvβ5 integrins leads to focal adhesion kinase (FAK) phosphorylation and FAK indu‐
ces the activation of Akt (Lane et al., 2010a). This leads to Akt-mediated up-regulation of c-
FLIPs expression in ovarian cancer cells (Lane et al., 2007).

Collectively, these data support the role of ascites to promote resistance to TRAIL-induced
apoptosis, at least in vitro. Whether this is relevant in vivo remains unclear for the moment.
However, the prosurvival activity of ascites against TRAIL-induced apoptosis has been as‐
sociated with shorter PFS in women with OC suggesting that ascites-mediated resistance
might be clinically relevant (Lane et al., 2010b).

7. TRAIL targeting agents

Different strategies have been used to activate the TRAIL signaling pathway in cancer thera‐
py. A variety of recombinant forms of soluble TRAIL have been developed and fused with
different tags (Pitti et al., 1996; Schneider et al., 2000; Ganten et al., 2006). Major limitations
however of recombinant soluble TRAIL (rsTRAIL) include the short half-life in vivo and rela‐
tive lack of specificity as rsTRAIL can also bind decoy receptors TRAIL R3 and TRAIL R4.
Despite these potential limitations, rsTRAIL (dulanermin) has entered phase I and phase II
clinical trials. Alternatively, various humanized TRAIL receptor agonist antibodies have
been developed which target TRAIL R1 (Mapatumumab) or TRAIL R2 (Apomab, Conatu‐
mumab, Lexatumumab, Tigatuzumab and LBY-135), and are currently being evaluated clin‐
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ically (Table 1). These antibodies have a significantly increased half-life and consequently
their bioavailability is increased at the tumor site.

Name Targets Compagny Clinical stage

development

Apomab/Drozitumab (PRO95780)

(human monoclonal antibody agonist)

TRAIL R2 Genetech Phase II

Conatumumab (AMG 655)

(human monoclonal antibody agonist)

TRAIL R2 Amgen Phase I/II

Dulanermin

(rs TRAIL)

TRAIL R1

and TRAIL R2

Amgen/Genetech Phase I/II

Lexatumumab (HGS-ETR2)

(monoclonal antibody agonist)

TRAIL R2 Human Genome

Sciences

Phase I

Mapatumumab (TRM-1, HGS-ETR1) TRAIL R1 Human Genome

Sciences

Phase II

Tigatuzumab (CS-1008)

(humanized monoclonal antibody agonist)

TRAIL R2 Daiichi Sankyo Phase I/II

LBY-135

(humanized monoclonal antibody agonist)

TRAIL R2 Novartis Phase I

Table 1. TRAIL-targeting agents

8. Therapeutic potential of TRAIL agonistic agents in ovarian cancer:
Preclinical studies

8.1. Monotherapy

The anti-tumor activity of dulanermin has been extensively evaluated in preclinical models
(Ashkenazi et al., 1999; Hylander et al., 2005; Pollack et al., 2001). Furthermore, preclinical in
vitro studies have demonstrated that OC cell lines displayed variable sensitivity to recombi‐
nant human TRAIL (Cuello et al., 2001; Vignati et al., 2002; Siervo-Sassi et al., 2003; Lane et
al., 2004). TRAIL-resistant cell lines usually remain sensitive to chemotherapy and converse‐
ly, cisplatin-resistant cell lines may be sensitive to TRAIL. Collectively, these results suggest
that both platinum-sensitive and platinum-resistant OC are candidates for TRAIL-targeting
therapy (Tomek et al., 2004). To increase cancer cell-directed toxicity of TRAIL, fusion pro‐
teins of rsTRAIL with target moiety to epidermal growth factor receptor (EGFR) have been
developed and were shown to have superior pro-apoptotic activity compared to soluble
TRAIL in tumor cells that expressed high levels of EGFR such as the OC cell line OVCAR3
(Bremer et al., 2008).
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8.2. Combination therapy

Several studies demonstrated that the combination of TRAIL with cisplatin was more effi‐
cient than either molecule alone in various OC cell lines in vitro (Cuello et al., 2001; Vignati
et al., 2002; Siervo-Sassi et al., 2003; Tomek et al., 2004; Liu et al., 2006). In a mouse model of
OC, treatment with rhTRAIL-DR5 or rhTRAIL in combination with cisplatin significantly re‐
duced tumor growth compared to rhTRAIL-DR5 alone (97% and 85% reduction in the com‐
bination arms versus 63% reduction in the rhTRAIL-DR5 arm alone) (Duiker et al., 2009). In
this study, the beneficial effect of combined treatment was related to the observation that
cisplatin strongly enhanced TRAIL R2 surface expression. Similar to cisplatin, proteasome
inhibitors and nelfinavir, an HIV protease inhibitor, up-regulate TRAIL R2 and enhance the
sensitivity of ovarian cancer cells and tissue explants to an apoptosis-inducing TRAIL recep‐
tor antibody (Saulle et al., 2007; Brüning et al., 2008; Brüning et al., 2009; Pasquini et al.,
2010). For example, mapatumumab (TRAIL R1 agonist) and lexatumumab (TRAIL R2 ago‐
nist) were more efficient than TRAIL to induce apoptosis in primary OC cells and enhanced
apoptosis induced by the proteasome inhibitor bortezomid (Pasquini et al., 2010). Using a
model of acquired cisplatin resistant cell lines, Duiker et al. showed that cisplatin enhances
TRAIL-induced apoptosis in cisplatin-resistant ovarian cancer cells, and induction of cas‐
pase-8 protein expression is the key factor of TRAIL sensitization (Duiker et al., 2011). Estes
et al. evaluated the cytotoxicity of TRAIL R2 agonist (TRA-8) in nineteen chemotherapy-na‐
ive primary ovarian tumor samples (stage III/IV) (Estes et al., 2007). Using a similar ex vivo
model, increased cytotoxicity was observed when TRA-8 was used in combination with che‐
motherapeutic drugs (Frederick et al., 2009). The potential of TRA-8 was further evaluated
in a xenograft mouse model of OC (Bevis et al., 2011). When used alone, TRA-8 produced
only a modest benefit in terms of tumor growth inhibition. However, animals treated with
the combination of carboplatin, docetaxel and TRA-8 demonstrated a better outcome when
compared to carboplatin and docetaxel only.

Because TRAIL cytotoxicity in OC cells relies on the activation of both the extrinsic and the
intrinsic apoptosis pathways, the combination of TRAIL with pro-apoptotic proteins is of in‐
terest. For example, SMAC/DIABLO or LBW242, a SMAC/DIABLO mimic, sensitizes OC
cell lines to the antitumor effects of TRAIL and anticancer drugs commonly used in clinic
(Mao et al., 2007; Petrucci et al., 2007; Petrucci et al., 2012). These observations suggest that
the LBW242 could be of value for the development of experimental strategies for treatment
of ovarian cancer. Radicicol, an Hsp90 inhibitor, potentiate the apoptotic effect of TRAIL on
ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-depend‐
ent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activa‐
tion (Kim et al., 2012).

The enhanced efficacy of TRAIL in combination with other agents in preclinical models is
encouraging and suggests that combination therapies with TRAIL probably represent the
best clinical option at this point. Because TRAIL resistance in OC can be induced by various
pathways, a combination of molecules that targets critical steps in the TRAIL signaling cas‐
cade is likely to be the most efficient approach.
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9. Clinical trials with TRAIL targeting agents in OC patients

A large number of phase I/II clinical trials have been undertaken with TRAIL targeting

agents either as monotherapy or in combination with chemotherapeutic drugs in a wide

range of solid and haematological malignancies (Table 2). For the purpose of this discussion,

we have only considered clinical studies with TRAIL targeting agents that included patients

with OC.

Name Status
Clinical

stage
Clinical Trials Identifier

Apomab/Drozitumab

A study of PRO95780 in patients with previously

untreated, advanced-stage NSCLC
Completed Phase II NCT00480831

A study of PRO95780 in combination with Rituximab in

patients with NHL that has progressed following previous

Rituximab therapy

Completed Phase II NCT00517049

A study of PRO95780 in combination with Cetuximab

and Irinotecan chemotherapy or the FOLFIRI regimen

with Bevacizumab in patients with previously treated

metastatic colorectal cancer

Completed Phase I NCT00497497

A study of PRO95780 administered in combination with

the FOLFOX regimen and Bevacizumab in patients with

previously untreated, locally advanced, recurrent, and

metastatic colorectal Cancer

Completed Phase I NCT00851136

Conatumumab

Phase I/II study of Conatumumab and Gemcitabine

Hydrochloride followed by Conatumumab, Capecitabine,

and 3-dimensional conformal radiotherapy in patients

with locally advanced pancreatic cancer

Approved – not

yet active
Phase I NCT01017822

A phase 1b/2 study of AMG 655 in combination with

Paclitaxel and Carboplatin for the first-line treatment of

advanced NSCLC

Completed Phase I/II NCT00534027

Phase 1b/2 study of AMG 655 with mFOLFOX6 and

Bevacizumab for first-line metastatic colorectal cancer
Completed Phase I/II NCT00625651

Phase 1b/2 study of AMG 655 with Doxorubicin for the

first-line treatment of unresectable soft tissue sarcoma
Completed Phase I/II NCT00626704
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Name Status
Clinical

stage
Clinical Trials Identifier

A study of AMG 655 or AMG 479 in combination with

Gemcitabine for treatment of metastatic pancreatic

cancer

Completed Phase I/II NCT00630552

AMG655/Panitumumab combination in metastatic

colorectal cancer study
Completed Phase I/II NCT00630786

AMG 655 in combination with AMG 479 in advanced,

refractory solid tumors
Completed Phase I/II NCT00819169

Phase 2 safety & efficacy of FOLFIRI in combination with

AMG 479 or AMG 655 vs FOLFIRI in KRAS-mutant

metastatic colorectal carcinoma

Completed Phase II NCT00813605

Phase 1b Lymphoma Study of AMG 655 in Combination

With Bortezomib or Vorinostat
Completed Phase I NCT00791011

Dulanermin

A study of AMG 951 [rhApo2L/TRAIL] in subjects with

previously untreated NSCLC treated with chemotherapy

+/- Bevacizumab

Completed Phase II NCT00508625

A study of Dulanermin administered in combination with

Camptosar®/Erbitux® chemotherapy or FOLFIRI (with or

without Bevacizumab) in subjects with previously treated

metastatic colorectal cancer

Completed Phase I NCT00671372

A study of Dulanermin administered in combination with

the FOLFOX regimen and Bevacizumab in patients with

previously untreated, locally advanced, recurrent, or

metastatic colorectal cancer

Completed Phase I NCT00873756

Lexatumumab

Phase I study of Lexatumumab with or without

recombinant interferon gamma in pediatric patients with

relapsed or refractory solid tumors or lymphoma

Completed Phase I NCT00428272

Mapatumumab

Mapatumumab, Cisplatin and radiotherapy for advanced

cervical cancer

Active Phase I/II NCT01088347

Study of TRM-1 (TRAIL-R1 monoclonal antibody) in

subject with relapsed or refractory NSCLC
Completed Phase II NCT00092924

Study of TRM-1 (TRAIL-R1 monoclonal antibody) in

subjects with relapsed or refractory NHL
Completed Phase II NCT00094848
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Name Status
Clinical

stage
Clinical Trials Identifier

Study of Mapatumumab in combination with Bortezomib

(Velcade) and Bortezomib alone in subjects with relapsed

or refractory multiple myeloma

Completed Phase II NCT00315757

A Study of Mapatumumab in combination with Paclitaxel

and Carboplatin in Subjects With NSCLC
Completed Phase II NCT00583830

Study of Mapatumumab in combination with Sorafenib

in subjects with advanced hepatocellular carcinoma
Completed Phase II NCT01258608

Tigatuzumab

An imaging and pharmacodynamic trial of CS-1008 in

patients with metastatic colorectal cancer
Active Phase I NCT01220999

Open-label study of CS1008 for subjects with untreated

and unresectable pancreatic cancer
Completed Phase II NCT00521404

Combination chemotherapy with CS-1008 to treat

ovarian cancer
Completed Phase II NCT00945191

CS-1008 with Carboplatin/Paclitaxel in chemotherapy

naive subjects with metastatic or unresectable NSCLC
Completed Phase II NCT00991796

CS1008- in combination with Sorafenib compared to

Sorafenib alone in subjects with advanced liver cancer
Completed Phase II NCT01033240

Abraxane with or without Tigatuzumab in patients with

metastatic, triple negative breast cancer
Completed Phase II NCT01307891

Study of CS-1008 in patients with advanced solid

malignancies and lymphomas (without leukemic

component)

Completed Phase I NCT00320827

Study of CS-1008 in combination with FOLFIRI in patients

who have failed other treatments
Completed Phase I NCT01124630

Abbreviations: NHL, non Hodgkin lymphoma; NSCLC, non-small cell lung cancer

Table 2. Active or completed clinical trials with TRAIL targeting agents

TRAIL-based treatment strategies that entered clinical studies have included dulanermin. In
a phase I study involving 71 patients with advanced or metastatic solid tumors or non-
Hodgkin lymphoma (NHL), dulanermin appeared safe and well tolerated (Herbst et al.,
2010). Partial response and stable disease were observed in 3% and 53% of patients respec‐
tively in this study. Additonal clinical studies with dulanermin in combination with other
drugs have been performed most often in patients with lung cancer (Soria et al., 2010; Soria
et al., 2011).
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Although there have been several published early-phase trials with antibody targeting
TRAIL-R1 or TRAIL-R2, only two have included patients with OC. The feasibility of intrave‐
nous mapatumumab administration, as a single-agent, has been examined in a phase I phar‐
macokinetic and biological correlative study in patients with advanced solid malignancies
refractory to standard therapy (Tolcher et al., 2007). Of the 49 patients enrolled in the study,
two had advanced OC. Mapatumumab dosing ranged from 0.01 to 10 mg/kg and was ad‐
ministered every 2-4 weeks. Overall, mapatumumab was well tolerated and toxicity was
generally limited to grade 1-2 events. No objective response was observed for mapatumu‐
mab in this unselected phase I study. Hotte et al. evaluated the safety and tolerability of ma‐
patumumab in a phase I clinical trial involving 41 patients with malignant solid tumors
refractory to conventional therapy in which 22% of the patients had OC (Hotte et al., 2008).
Mapatumumab was administered intravenously every 4 weeks and patients received a me‐
dian of 2 cycles (range, 1-33) with mapatumumab doses ranging from 0.01 to 20 mg/kg. The
patient that received 33 cycles of mapatumumab had a diagnosis of borderline OC. She ex‐
perienced no cumulative toxicity. Indeed, mapatumumab was generally well tolerated and
common adverse events included fatigue, hypotension, nausea and fever. No objective re‐
sponse was observed. Conatumumab (AMG 655), a TRAIL R2-specific antibody is currently
being evaluated in patients with advanced refractory solid tumors that includes ovarian tu‐
mors in combination with ganitumab, a fully human monoclonal antibody against insulin-
like growth factor receptor 1 (National Cancer Institute (NCI) Clinical Trials Identifier
Number : NCT00819169).

Of the two studies published with mapatumumab in combination with chemotherapy, one
included a patient with OC (primary peritoneal carcinoma) (Leong et al., 2009). A phase II
using tigatuzumab (CS-1008), a humanized TRAIL-R2 antibody, in combination with pacli‐
taxel and carboplatin is underway (NCI Clinical Trials Identifier Number: NCT00945191).

10. Conclusions and future directions

The inherent properties of TRAIL or its agonists offer a new targeted therapy for OC. Pre‐
clinical studies using TRAIL or its agonists have demonstrated the therapeutic potential of
these molecules and formed the basis of ongoing phase I/II clinical trials. Although these
treatments appear to be clinically well tolerated so far, intrinsic, acquired and environment-
mediated resistance may limit the effectiveness of these approaches. However, the develop‐
ment of combination treatments appears to be capable of overcoming, at least in part, some
of these limitations. As the search for more effective treatment for OC continues, the mor‐
bidity and mortality will hopefully improve. TRAIL treatment strategies have been used so
far in the context of salvage treatment and the optimal patient population that will mostly
benefit from these treatments remains to be defined. Although significant progress has been
made in our understanding of the molecular basis of TRAIL resistance in OC, efforts should
continue to further improve this knowledge as this will likely lead to the development of
specific biomarkers of resistance and more efficient targeted therapies.
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Figure 1. Apoptotic pathways. Binding of TRAIL to death receptors (TRAIL R1, TRAIL R2) leads to the recruitment of
the adaptor molecule, FADD. Pro-caspase-8 binds to FADD leading to DISC formation and resulting in its activation.
Activated caspase-8 directly activates executioner caspases (caspase-3, -6, and -7) (type I cells) or cleaves Bid (type II
cells). Translocation of the truncated Bid (tBid) to the mitochondria promotes the assembly of Bax-Bak oligomers and
mitochondria outer membrane permeability changes. Cytochrome c is released into cytosol resulting in apoptosome
assembly. Active caspase-9 then propagates a proteolytic cascade of effector caspases activation that leads to mor‐
phological hallmarks of apoptosis. Further cleavage of pro-caspase-8 by effector caspases generates a mitochondrial
amplification loop that further enhances apoptosis. When FLIP levels are elevated in cells, caspase-8 preferentially re‐
cruits FLIP to form a caspase-8-FLIP heterodimer which does not trigger apoptosis. Chemotherapeutic drugs such as
cisplatin cause DNA damage which is sensed by the ataxia telangiectasia mutated homolog (ATM) leading to the acti‐
vation of p53 dependent activation of genes such as PUMA and Noxa which can bind to anti-apoptotic proteins Bcl-2/
Bcl-XL thereby opposing their effect. This leads to mitochondrial permeabilization and activation.
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