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1. Introduction

In 2012, approximately 22,280 women will be diagnosed with ovarian carcinoma in the United
States and roughly 15,500 will die from this disease, ranked the most common cause of death
among gynecologic malignancies in developed countries [1]. Most women with epithelial
ovarian cancer (EOC) present with advanced disease (stage III or IV) at the time of diagnosis.
This phenomenon is mainly due to the lack of specific symptoms until disease has spread
beyond the ovaries, at which time the chance of cure is dramatically reduced [2]. Current
standard treatment of ovarian cancer, in both early and advanced stages, consists of complete
cytoreductive surgery followed by chemotherapy, usually based on a platinum and a taxane
doublet [3,4,5]. Initial response rate (RR) is high (70%-80%); but the majority of patients with
advanced disease relapse within two years. Recurrent ovarian cancer is not curable, due to the
development of chemoresistance [6,7]. The Gynecologic Oncology Group (GOG) adopted the
definition of sensitivity to chemotherapy (or sensitivity to platinum) in EOC based on clinical
criteria from retrospective case series [8]. When patients were re-challenged with a platinum
compound the longer the interval from the last dose of platinum patients had received the
better the response (and outcome) was. This clinical observation set the base for the current
classification of platinum resistance in relapsed EOC (Figure 1), and allowed the commonly
used stratification criteria in clinical trials of recurrent EOC. Platinum-resistant disease is also
characterized by resistance to other cytotoxic agents, and not necessarily only resistant to
platinum. However, current treatment for platinum-resistant EOC consists of chemotherapy
agents whose mechanism of action is somewhat different from that of platinum compounds [9].

Since platinum compounds are the backbone in the systemic treatment of EOC, there is great
interest in elucidate the molecular mechanisms contributing to platinum resistance in this
disease. The present chapter will provide a comprehensive basic and translational update with
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regards to biological pathways implicated in the development of platinum resistance, focusing
on ovarian cancer therapeutics.

2. Cisplatin: Mechanism of action

Once introduced actively into the cell mediated by a copper transporter (CTR1), the molecule
is activated through a series of aquation reactions, in which one of the chloride ligands is slowly
displaced by water. Aquated cisplatin avidly binds DNA, with a predilection for nucleophilic
N7-sites on purine bases [10]. The first step of the reaction involves the formation of monoad‐
ducts. These monoadducts may then react further to form intra-strand and inter-strand
crosslinks. The cytotoxic activity of platinum compounds has been related to binding with
DNA and the production of intra-strand and inter-strand crosslinks, as well as the formation
of adducts that cause conformational DNA changes, impeding the separation of both DNA
strands, which subsequently impairs replication and inhibits DNA synthesis [11]. Intra-strand
cross-links are the most abundant products of the interaction with DNA (around 70% of all
platinum-DNA linking products). These lesions cause significant distortions in the DNA that
can be recognized by one or more DNA binding proteins. These proteins can either initiate
DNA damage repair or signal for apoptosis. Platinum-mediated programmed cell death is
caused by cell cycle arrest in the G2-phase, although the pathways from platinum–DNA
binding to apoptosis are not completely understood [12].

Figure 1. Platinum-resistance definition by the Gynecologic Oncology Group (GOG). Platinum sensitivity is classified as
resistant, partially sensitive, or sensitive, according to the time relapsed since finishing first-line treatment. Probability
of re-treatment response is shown for each group of patients.
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Other proposed mechanisms of cisplatin cytotoxicity include mitochondrial damage, de‐
creased ATPase activity, and altered cellular transport mechanisms. Mitochondria seem to
play a role in the cell death. This is believed to be mediated by their interaction with nuclear
DNA [13]. Additionally, mitochondria are thought to be a major target of cisplatin and
mitochondrial DNA is heavily damaged by cisplatin leading to mitochondrial loss of energy
production and decreasing the ATPase activity [14,15]. Another proposed mechanism of action
is the transporter-mediated uptake. Entering the cells is the first step for cisplatin to exert its
toxic effects. In recent years there has been increasing evidence that the cellular uptake of
cisplatin is mediated, at least in part, by transport proteins. Several transporters, which are
expressed on the cell membranes, have been associated with cisplatin transport across the
plasma membrane and across the cell: the copper transporter 1 (Ctr1), the copper transporter
2 (Ctr2), the P-type copper-transporting ATPases ATP7A and ATP7B [16,17].

3. Platinum analogues and ovarian cancer therapeutics

Despite the clear advantage in OS and PFS obtained with cisplatin–paclitaxel, it was immedi‐
ately noted that this regimen carries a significant toxicity, namely peripheral neurotoxicity and
nephrotoxicity [18]. Another important limitation of cisplatin–paclitaxel chemotherapy is the
difficulty in administering it as an outpatient regimen. Prior to the introduction of paclitaxel,
several studies had established that cisplatin and carboplatin are therapeutically equivalent in
women with advanced epithelial ovarian cancer. Furthermore, carboplatin is associated with
significantly lower neurotoxicity and renal toxicity and that the combination of carboplatin
and 3-h infusion paclitaxel can be given as an outpatient schedule. This was also demonstrated
in a Cochrane meta-analysis [19].

Three trials have investigated the equivalence of carboplatin and cisplatin in combination with
paclitaxel in the first-line setting [20,21,22]. Given the evidence of a more favorable toxicity
profile and ease of delivery, the carboplatin–paclitaxel combination has become an almost
universal choice in the management of ovarian cancer, and is the standard comparator in all
the recent trials performed in this disease.

4. Mechanisms of cellular resistance to platinum agents

Even though initial responsiveness to platinum-based therapy is high in ovarian cancer, the
majority of patients relapse. Several mechanisms of cellular resistance to platinum compounds
have been described. These mechanisms can be classified in two groups: 1) those that the limit
the formation of cytotoxic platinum-DNA adducts, and 2) those that prevent cell death
occurring after platinum-DNA adduct formation [11,23]. A better understanding of the
molecular basis of cisplatin resistance may lead to new antitumor strategies that will sensitize
unresponsive ovarian cancers to cisplatin-based chemotherapy.
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4.1. Reduced intracellular drug accumulation

Decreased cellular uptake of cisplatin by resistant cells is one of the major mechanisms of
resistance described in vitro. The mechanism responsible for reduced cisplatin accumulation
in resistant cells may be ascribed to either an inhibition in drug uptake, an increase in drug
efflux, or both. Cisplatin and its analogues may accumulate within cells by passive diffusion
or facilitated transport. The copper transporter-1 (CTR1) regulates the influx of cisplatin and
its analogues into the cell. This is supported by the evidence in cell lines of deletion of the yeast
CTR1 gene, which encodes a high-affinity copper transporter, results in increased cisplatin
resistance and reduced intracellular accumulation of cisplatin in various cell lines including
ovarian cancer [24,25]. In human ovarian cancer cell lines it has been demonstrated that copper
and cisplatin are competitive inhibitors for the transport of each other into the cell and cause
a rapid down-regulation of CTR1 expression mediated by internalization of this transporter
from the plasma membrane and subsequent [26]. Two copper exporters, ATP7A and ATP7B,
have also been proposed to be involved in cellular resistance to cisplatin [27]. ATP7A is thought
to sequester platinum agents in intracellular compartments, preventing their reaction with
nuclear DNA. ATP7A is over-expressed in some cisplatin-resistant ovarian carcinoma cell
lines. Additionally, ovarian cancer patients with ATP7A expression have a lower survival rate
than patients with undetectable levels of expression, as determined by ATP7A immunostain‐
ing [28]. Over-expression of ATP7B in primary ovarian carcinomas and ovarian carcinoma cell
lines resulted in resistance to cisplatin, with only 60% of the cisplatin accumulation present in
ATP7B-expressing cells compared to vector control [29].

MRP-related transport proteins are involved in the active efflux of platinum drugs. MRP is
a member of the ABC (adenosine triphosphate-binding cassette) family of transport pro‐
teins that participates in the efflux of anticancer drugs from cells. Thus, it has been speculat‐
ed that deregulation of some of the MRP components may influence platinum resistance [30].
The MRP gene family is composed of at least seven members (MRP1–7) but recent reports
reinforced  the  notion  that  MRP2  expression  levels  can  be  important  in  predicting  the
sensitivity  of  tumors  to  platinum-based  therapies  [31,32].  MDR1  encodes  an  integral
membrane protein named P-glycoprotein (Pgp) or an ATP-binding cassette subfamily B,
member 1, which acts as a drug efflux pump [33]. This protein is a transmembrane transport‐
er  that  resides  in  the  plasma  membrane  of  many  cells,  including  cancer  cells  that  are
multidrug resistant. Pgp recognizes a wide range of anticancer drugs and was shown to
reduce intracellular concentrations of a variety of cytotoxic drugs, including platinum agents.
Pgp activity  results  in  blunted  chemotherapy-induced cytotoxicity  in  vitro  and in  vivo.
Moreover, anticancer drugs were found to induce MDR1 gene. Since Pgp alone can medi‐
ate resistance to a whole array of drugs through drug efflux, it is an attractive target for the
improvement of anticancer therapy. In theory, co-administration of transporter inhibitors
with Pgp-substrate anticancer drugs could reverse MDR and improve treatment outcome.
Clinical trials aimed at specifically inhibiting the function of Pgp have given mixed results,
but in at least some cases this inhibition has resulted in improved tumor shrinkage and
increased  patient  survival.  Unfortunately,  Pgp  inhibitors  such  as  PSC-833  (Valspodar)
induced pharmacokinetic interactions that limited drug clearance and metabolism of the
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concomitantly administered chemotherapy, thereby elevating plasma concentrations beyond
acceptable toxicity [34]. It is thus clear that the Pgp overexpression can be a cause of failure
of anticancer chemotherapy and be associated with worse prognosis in patients with ovarian
and breast cancers, sarcomas and other malignancies [29,35,36].

4.2. Intracellular cisplatin inactivation

Glutathione (gamma-glutamylcysteinylglycine: GSH), the most abundant intracellular thiol,
contributes (along with methionine, metallothionein and other cysteine-rich proteins) to
detoxify many cellular toxins, including cisplatin and its analogues. Part of the cytoplasmic
cisplatin reacts with DNA, which ultimately lead to the activation of the apoptosis cascade in
response to DNA damage. However, a major fraction of intracellular cisplatin can be converted
into cisplatin-thiol conjugates by GSH-S-transferase π, and these conjugates are ultimately
inactivated. Both GSTπ and γ-glutamylcysteine synthetase (γ- GCS), the latter being the
enzyme involved in GSH synthesis, have been associated with cisplatin resistance in ovarian,
cervical and lung cancer cell lines [37,38,39].

Thus, reducing intracellular glutathione levels would seem a rational strategy to overcome
platinum resistance. To that end, a novel glutathione analog prodrug, canfosfamide, initiated
clinical development in ovarian cancer. Canfosfamide (TLK286) works by targeting tumors
that over-express glutathione S-transferase (GST) P1-1, increasing the sensitivity of those
tumors to the cytotoxic effects of canfosfamide. Following activation, the apoptotic activity of
canfosfamide is mediated through the stress response pathway, resulting in the induction of
cellular apoptosis. Human cancer cells exposed to canfosfamide demonstrate activation of
mitogen- activated protein (MAP) kinase MKK4, p38 kinase, jun-N-terminal kinase (JNK) and
caspase 3. The cytotoxic activity of canfosfamide has been demonstrated in vitro and in vivo
against a variety of human cancer cell lines, including ovarian cancer cells (OVCAR3).

A phase II trial involving 34 patients with platinum-refractory or platinum-resistant ovarian
cancer reported that 15% of patients had an objective response and 50% of patients had disease
stabilization [40]. Three phase III trials in platinum-resistant ovarian cancer were undertaken
in an attempt to define the potential role of canfosfamide in ovarian cancer therapeutics:
TLK286 versus liposomal doxorubicin or topotecan (ASSIST-1,41); TLK286 plus carboplatin
versus liposomal doxorubicin (ASSIST-3,42) and TLK286 plus liposomal doxorubicin versus
liposomal doxorubicin alone (ASSIST-5,43). Unfortunately, none of these studies showed
superior efficacy of canfosfamide compared to standard treatment.

4.3. Increased DNA repair

The cytotoxicity of cisplatin is attributed to the formation of cisplatin-DNA adducts, and to
the induction of DNA damage. The balance between DNA damage to DNA repair dictates
tumor cell death or survival after cisplatin therapy. Depending on the type of damage inflicted
on the DNA structure, different DNA repair mechanisms have the ability to restore these
lesions and remove the platinum-DNA adducts from the tumor DNA [44]. The major pathway
in the repair of DNA damage is the nucleotide excision repair (NER) system. NER is one of
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five separate DNA repair mechanisms that also include mismatch repair (MMR), homologous
recombination repair (HR), base excision repair (BER) and translesion synthesis. The prepon‐
derance of one repair mechanism over another may also change in different tumor types.

4.3.1. Nucleotide Excision Repair (NER)

The nucleotide excision repair (NER) pathway is predominantly responsible for repairing
platinum-DNA adducts in cellular DNA. Several proteins interact in a coordinated fashion
to recognize damage and further repair of the DNA (Figure 2).  One of these proteins is
excision  repair  cross-complementation  group  1  (ERCC1).  This  33-kD  protein,  mainly
coupled with XPF (Xeroderma Pigmentosum-F protein)  acts  in  the  rate-limiting incision
step that cleaves the DNA strand before DNA polymerases and ligases act to reconstitute
double-strand integrity. Different studies with ovarian cancer cell lines have demonstrat‐
ed that high ERCC1 mRNA expression is correlated with increased capacity of cells to repair
cisplatin-induced DNA damage, thus conferring resistance to the drug. Further, transfec‐
tion experiments using ERCC1 antisense vectors in both cell lines and mice have shown
increased sensitivity to platinum [45,46,47].

There is growing interest in evaluating the potential role of ERCC1 as a biomarker of platinum
resistance in ovarian cancer. However, despite multiple studies evaluating the association
between ERCC1 protein expression or even single nucleotide polymorphisms and clinical
outcome, no definitive conclusion has yet been reached regarding the predictive and/or
prognostic role of ERRCC1 in the management of EOC [48,49].

4.3.2. DNA mismatch repair

The mismatch repair (MMR) system is a strand-specific DNA repair mechanism involved in
the post-replicative repair of the errors made by DNA polymerases and in charge of eliminat‐
ing single-base mismatches and insertion-deletion loops that have escaped the proofreading
back-up mechanisms.

Loss of function of the cellular mismatch repair system (MMR) can partially contribute to
develop  DNA  damage  tolerance.  Unaltered,  MMR  scans  newly  synthesized  DNA  and
removes mismatches that result  from nucleotide incorporation errors made by the DNA
polymerases. The repair process consists of 3 steps—initiation, excision, and re-synthesis—
that involve several proteins: MLH1, MSH2, MSH3, MSH6, and PMS2. Inactivation of MMR
leads to the occurrence of unrepaired deletions in mononucleotide and dinucleotide repeats,
resulting  in  variable  length  repeats.  This  phenomenon is  called  microsatellite  instability
(MSI), which can be caused by genetic or epigenetic inactivation and has been postulated
as a potential marker for MMR deficiency. DNA methylation changes in plasma have been
suggested  as  another  rationale  of  chemotherapy  resistance  in  OEC  after  treatment  (ac‐
quired MLH1 methylation) [50].

MMR deficient human cancer cell lines tolerate cytotoxic drugs, suggesting that loss of MMR
could cause platinum resistance [51]. Most MMR-deficient cancers have mutations in MLH1
or MSH2. Samimi et al [52] investigated MLH1 and MSH2 expression in paired ovarian tumor
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Figure 2. Schematic Representation of the Mismatch Repair Pathway (Adapted with permission from Diaz-Padilla I, Po‐
veda A. Clin Ovarian Cancer Other Gynecol Malig 2010, 3(1):29-35.) Base-base mismatches are the most frequent errors
associated with microsatellites (repetitive sequences of mononucleotide, dinucleotide, or higher-order nucleotide re‐
peats distributed throughout the human genome). The mismatch repair system is responsible for the surveillance and
correction of errors introduced in microsatellites. Mismatch repair proteins: MLH1, MSH2, MSH3, MSH6, PMS2. Exo 1,
exonuclease; DNA Pol, DNA polymerase δ; PCNA, proliferating cell nuclear antigen.
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sections from 54 ovarian cancer patients before and after platinum-based therapy by using
immunohistochemical staining techniques. These authors demonstrated associations between
MLH1 and MSH2 protein expression and clinical parameters known to be of prognostic
significance as well as response to treatment and overall survival. MLH1 and MSH2 staining
decreased significantly after platinum-based therapy. Hypermethylation of the MLH1
promoter has also been identified as a casual event in sporadic MMR-deficient malignant
tumors. In ovarian cancer, it is estimated that about 10% of cases are related to this molecular
pathway [53], although the methodology and definitions when assessing MSI in ovarian cancer
are heterogeneous and not prospectively validated. The frequency of MMR dysfunction seems
to vary depending on the histological subtype, being higher in endometrioid (19%) and
mucinous (17%) subtypes. It is an assumption that MMR deficiency might be a tumor-initiating
phenomenon in ovarian cancer, similar to colorectal and endometrial tumors. However, MMR
deficient ovarian cancers have been only poorly characterized to date with respect to their
epidemiological, molecular and clinical features.

Only a few studies have found a consistent relationship between MMR inactivation and
platinum-based chemotherapy resistance (primarily down-regulation or mutations in MMR
genes MLH1, MSH2 or MSH1) [50, 54,55,56].

This resistance to cisplatin can be circumvented using a DNA demethylating agent such as 2′-
deoxy-5-azacytidine (decitabine; Dacoge, MGI Pharma) in combination with cisplatin or
carboplatin to reverse this resistance mechanism [57]. Two phase II clinical trials have tested
the combination of carboplatin and decitabine in recurrent Platinum-resistant OC patients with
different conclusions [58,59].

4.3.3. Homologous recombination repair pathway

Platinum-based chemotherapy causes inter-strand DNA cross-linking which cause DNA
double-strand breaks (DSBs) during DNA replication. DSBs are one of the most toxic lesions
to DNA. This is because it affects both strands of the duplex, thus no intact complimentary
strand is available as a template for repair. When such lesions are not repaired the cell
undergoes apoptosis. If the reparation is not done appropriately, secondary lesions can occur,
such as mutations and/or deletions. Cells have evolved two major pathways for the repair of
DSBs: non-homologous end-joining (NHEJ) and homologous recombination (HR). The HR
system is the preferred system by cells when it comes to repair DSBs. It is a highly conserved
system, generally regarded as error-free, that requires an intact sister chromatid to act as
template for correct repair of the break without loss of sequence information. As such, HR
takes place in G2 and S phases of the cell cycle.

The BRCA1 gene is located on chromosome 17q21. The BRCA1 protein is a component of a
number of supercomplexes, each of which plays a role in DNA damage response activation,
cell cycle checkpoint activation and/or DSB repair. Some of the key components of this repair
process are proteins such as BRCA2, RAD51 and PALB2. Actually, the interaction between
specific domains of BRCA1 and PALB2 is key in the reparation of DBSs. Thus, mutations in
domains of BRCA1 can potentially abolish its PALB2-binding activity, resulting in compro‐
mised HR function. These mutations have been found in BRCA1-mutated tumors, implying
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that loss of this specific BRCA1 function in DSB repair is source of the genomic instability and
tumorigenesis observed in this subset of BRCA1 mutation carriers.

The BRCA2 gene is located on chromosome 13q. The BRCA2 protein has its primary function
in HR and its based upon its ability to bind to the strand invasion recombinase, RAD51. In fact,
recruitment of RAD51 to sites of DNA damage requires BRCA2, and BRCA2-deficient cells
exhibit genomic instability.

Despite only 5-10% of epithelial ovarian cancer has an inherited background, more than 90%
of hereditary ovarian tumors bear BRCA1/2 mutations. It has been described that these tumors
are generally of serous histology, and high-grade. They usually present at younger ages, and
more recently, it has been described that BRCA-mutated tumors have better prognosis.
[60,61,62]. It is relevant to note that up to 55% of sporadic epithelial ovarian tumors have some
sort of BRCA dysfunction. This has been named as BRCAness, and it may have important
clinical consequences. One of the reasons behind this better outcome relies on a higher
sensitivity to platinum compounds [63,64]. However, BRCA1/2-mutated also develop plati‐
num resistance. One possible explanation is in relation with the production of secondary
intragenic mutations in BRCA1/2 that restore these genetic expressions and HR function
correcting the open reading frames of mutated BRCA1/2 [65,66,67]. However BRCA1/2
restoration does not explain all cases of cisplatin resistance so investigations in other mecha‐
nisms of chemo-resistance in BRCA-deficient ovarian cancer cells are needed.

Recently, PARP inhibitors have been developed as an important novel strategy for the
treatment of BRCA mutation-associated ovarian and breast cancer. The rationale for this
approach is that by inhibiting BER, these agents can prevent repair that occurs after cytotoxic
chemotherapy that causes single-strand DNA breaks, and also they can work by creating
“synthetic lethality” in cells which have lost one mechanism of DNA repair. In the absence of
HR, inhibition of PARP results in poor repair of these lesions and apoptosis, increasing around
1000-fold the sensitivity in cells that are BRCA1 or BRCA2 deficient [68,69,70]. Although
olaparib and veliparib are the most widely studied in ovarian cancer [71,72,73,74,75], other
PARP inhibitors are in development such as BSI-201, AG014699, CEP9722, MK4827, E7016,
LT673, to name just a few.

5. Conclusion and future directions

Chemotherapy resistance is the ultimate reason for tumor recurrence. Relapsed ovarian cancer
is an incurable disease where chemotherapy plays a major therapeutic role. Platinum agents,
likely in conjunction with taxanes, are the most active cytotoxic drugs in ovarian cancer.
Traditionally, ovarian cancer recurrence has been classified according to the time elapsed from
the last dose of platinum. Thus, relapses occurring more than six months from the last dose of
platinum are generally re-treated with a platinum combination. Responses to a platinum
rechallenge tend to be similar to the initial response, and the longer the platinum-free interval
is the better the responses are. The so-called “platinum-sensitive” patients have better
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prognosis than women whose relapse is shorter than six months. For this group of patients
therapeutic options are limited and usually consist in non-platinum agents.

The development of platinum resistance is a multifactorial and complex molecular process.
Understanding the molecular basis of this mechanism would help potentially in selecting
patients  who  are  likely  to  have  platinum-resistance  tumors  for  alternate  non-platinum
containing  regimens.  This  would  spare  women  from  unnecessary  toxic  effects  and
ineffective treatments. One potential scenario where the application of a molecular selection
of patients by platinum sensitivity would be at initial presentation. A substantial number
of advanced ovarian cancer patients undergo neoadjuvant chemotherapy prior to debulk‐
ing surgery. Such chemotherapy consists of platinum and a taxane doublet. Despite most
patients  do  have  a  major  response  to  primary  chemotherapy,  about  20-30%  fail  to  re‐
spond or progress.

The development of platinum resistance seems a dynamic process. Patients who initially
respond to platinum-based chemotherapy end up becoming resistant.  This suggests that
we may need to investigate the mechanisms at several time points of the disease course.
It  is  likely  that  primary  platinum resistance  is  a  molecular  phenomenon different  from
secondary  (and  subsequent)  platinum  resistance.  At  this  point,  it  is  key  that  reliable
biomarkers can be identified to better  define platinum resistance.  The quest  for  a  bona-
fide biomarker of platinum resistance in ovarian cancer has been so far disappointing. It
may  well  be  the  case  that  several  markers  need  to  be  jointly  studied,  since  platinum
resistance is not a one-step molecular event. Further validation in large (ideally prospec‐
tive)  cohorts  and in  randomized phase  III  trials  will  be  still  needed.  It  will  be  difficult
though to extrapolate results of platinum sensitivity when other agents are given concom‐
itantly.  It  is  not  possible  to  rule  out  the  potential  influence  of  cytotoxics  with  similar
mechanisms of action or biologics with the potential of modifying the tumor microenviron‐
ment.  Unraveling  the  mechanisms  of  resistance  to  platinum  (and  other  chemotherapy
agents) in ovarian cancer is a very difficult task. However, its potential clinical benefits are
worth such tremendous joint basic and clinical research effort.
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