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resumo 
 

 

   Apesar das recentes inovações tecnológicas, o setor dos transportes 
continua a exercer impactes significativos sobre a economia e o ambiente. 
Com efeito, o sucesso na redução das emissões neste setor tem sido inferior 
ao desejável. Isto deve-se a diferentes fatores como a dispersão urbana e a 
existência de diversos obstáculos à penetração no mercado de tecnologias 
mais limpas. Consequentemente, a estratégia “Europa 2020” evidencia a 
necessidade de melhorar a eficiência no uso das atuais infraestruturas 
rodoviárias. Neste contexto, surge como principal objetivo deste trabalho, a 
melhoria da compreensão de como uma escolha de rota adequada pode 
contribuir para a redução de emissões sob diferentes circunstâncias espaciais 
e temporais. Simultaneamente, pretende-se avaliar diferentes estratégias de 
gestão de tráfego, nomeadamente o seu potencial ao nível do desempenho e 
da eficiência energética e ambiental. A integração de métodos empíricos e 
analíticos para avaliação do impacto de diferentes estratégias de otimização 
de tráfego nas emissões de CO2 e de poluentes locais constitui uma das 
principais contribuições deste trabalho. 
   Esta tese divide-se em duas componentes principais. A primeira, 
predominantemente empírica, baseou-se na utilização de veículos equipados 
com um dispositivo GPS data logger para recolha de dados de dinâmica de 
circulação necessários ao cálculo de emissões. Foram percorridos 
aproximadamente 13200 km em várias rotas com escalas e características 
distintas: área urbana (Aveiro), área metropolitana (Hampton Roads, VA) e um 
corredor interurbano (Porto-Aveiro). A segunda parte, predominantemente 
analítica, baseou-se na aplicação de uma plataforma integrada de simulação 
de tráfego e emissões. Com base nesta plataforma, foram desenvolvidas 
funções de desempenho associadas a vários segmentos das redes estudadas, 
que por sua vez foram aplicadas em modelos de alocação de tráfego. 
Os resultados de ambas as perspetivas demonstraram que o consumo de 
combustível e emissões podem ser significativamente minimizados através de 
escolhas apropriadas de rota e sistemas avançados de gestão de tráfego. 
Empiricamente demonstrou-se que a seleção de uma rota adequada pode 
contribuir para uma redução significativa de emissões. Foram identificadas 
reduções potenciais de emissões de CO2 até 25% e de poluentes locais até 
60%. Através da aplicação de modelos de tráfego demonstrou-se que é 
possível reduzir significativamente os custos ambientais relacionados com o 
tráfego (até 30%), através da alteração da distribuição dos fluxos ao longo de 
um corredor com quatro rotas alternativas. 
    Contudo, apesar dos resultados positivos relativamente ao potencial para a 
redução de emissões com base em seleções de rotas adequadas, foram 
identificadas algumas situações de compromisso e/ou condicionantes que 
devem ser consideradas em futuros sistemas de eco navegação. Entre essas 
condicionantes importa salientar que: i) a minimização de diferentes poluentes 
pode implicar diferentes estratégias de navegação, ii) a minimização da 
emissão de poluentes, frequentemente envolve a escolha de rotas urbanas 
(em áreas densamente povoadas), iii) para níveis mais elevados de 
penetração de dispositivos de eco-navegação, os impactos ambientais em 
todo o sistema podem ser maiores do que se os condutores fossem orientados 
por dispositivos tradicionais focados na minimização do tempo de viagem.  
   Com este trabalho demonstrou-se que as estratégias de gestão de tráfego 
com o intuito da minimização das emissões de CO2 são compatíveis com a 
minimização do tempo de viagem. Por outro lado, a minimização de poluentes 
locais pode levar a um aumento considerável do tempo de viagem. No 
entanto, dada a tendência de redução nos fatores de emissão dos poluentes 
locais, é expectável que estes objetivos contraditórios tendam a ser 
minimizados a médio prazo. Afigura-se um elevado potencial de aplicação da 
metodologia desenvolvida, seja através da utilização de dispositivos móveis, 
sistemas de comunicação entre infraestruturas e veículos e outros sistemas 
avançados de gestão de tráfego. 
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abstract 
 

Despite recent technological innovations, transportation sector is still producing 
significant impacts on the economy and environment. In fact, the success in 
reducing transportation emissions has been lower than desirable due to several 
factors such as the urban sprawl and several barriers to the market penetration 
of cleaner technologies. Therefore, the “Europe 2020” strategy has emphasised 
the relevance of improving the efficiency in the transportation networks through 
the better use of the existing infrastructures. In this context, the main objective 
of this thesis is increasing the understanding of how proper route choices can 
contribute to reduce emissions output over different spatial and temporal 
contexts. Simultaneously, it is intended to evaluate the potential of different 
traffic management strategies in terms of traffic performance and 
energy/environmental efficiency. The integration of empirical and analytical 
methods to assess the impact of different traffic optimization strategies on CO2 

emissions and local pollutants constitutes one the main contributions of this 
work. 
   This thesis has been divided in two main parts. The first is predominantly 
empirical, using field data as the main source of information.  Using GPS 
equipped vehicles, empirical data for approximately 13200 km of road coverage 
have been collected to estimate energy and emissions impacts of route choice 
in three different scenarios: a medium-sized urban area (Aveiro), a metropolitan 
area (Hampton Roads, VA) and an intercity corridor (Oporto-suburban area). 
The second part, predominantly analytical, is essentially based on the output of 
traffic simulators and optimization models. The analytical component was 
based on the capability of microscopic traffic models to generate detailed 
emissions information and to generate link-based performance functions. Then, 
different traffic management strategies were tested to evaluate road networks 
in terms of traffic performance and emissions.   
   Both outcomes of the empirical and analytical approaches have 
demonstrated that fuel use and emissions impacts can also be significantly 
reduced through appropriate route choices and advanced traffic management 
systems. The empirical assessment of route choice impacts has shown that 
both during off peak and peak periods, the selection of an appropriate route 
can lead to significant emissions reduction. Depending on the location, 
potential emissions savings of CO2 up to 25% and local pollutants up to 60% 
were found. The analytical approach has demonstrated that it is possible to 
significantly reduce system environmental costs (30%) by modifying traffic flow 
distribution along a corridor with 4 alternative routes.  However, despite the 
positive results in terms of the potential for emissions reduction based on 
appropriate route choices, a number of important trade-offs that need to be 
considered in future implementations of eco-routing systems. Among these 
trade-offs it is worth noting that: i) different pollutants may lead to different eco-
routing strategies, ii) the minimization of pollutants emissions often involves 
choosing urban routes (densely populated), iii) for higher penetration levels of 
eco-routing  devices considering local pollutants, system environmental 
impacts can be higher than if drivers were guided under the traditional devices 
focused on travel time. 
      With this research, it has been demonstrated that road traffic management 
strategies focused on minimizing CO2 emissions and fuel consumption can be 
compatible with the minimization of system travel time. On the other hand the 
minimization of local pollutants may lead to considerable increases in travel 
time. However, given the trend rate of reduction in the emissions factors of 
local pollutants, it is expected that such trade-offs would tend to be minimized 
in medium term. Thus, the developed methodology has great potential for 
further real life application, either through the use of nomadic devices, 
infrastructures to vehicle communication or different advanced traffic 
management systems.  
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ITS Intelligent Transportation Systems 

LB Load Based 

LDDV  Light Diesel Duty Vehicle 

LDGV  Light Gasoline Diesel Vehicle 

LDV Light Duty Vehicle 

NPH Non-peak hour 

OD Origin-Destination 

PH Peak hour 

RB regression Based 

RC Recurrent Congestion 

RGS Route Guidance System 

SAA Simulated Annealing Approach 

SB Speed Based 

SBA  Sensitive Bases Analysis 

SE  System Equitable 

SED System Environmental Damage  

SO System Optimum 

TMC Traffic management centre 

TMS Traffic monitoring station 

UC Unexpected Congestion 

UE User equilibrium 

VDF Volume Delay functions 

VDmF Volume Damage Functions 
VDOT Virginia Department of Transportation 
VEF Volume Emission Functions 
Vph/vpd Vehicles per hour / Vehicles per day 
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VSP Vehicle Specific Power 

 

NOMENCLATURE IN EQUATIONS 

A - frontal area of the vehicle  

a -vehicle acceleration 

CD - drag coefficient (dimensionless) 

Cl - Estimated maximum capacity for link i (vph). 

cp - Cost factor for the associated with the emission of the pollutant p  

CPj - Cost of the pollutant j released in the air (€/g) 

CR - coefficient of rolling resistance (0.0135 -dimensionless) 

 Dvspi- Damage cost of VSP mode i (USD/s); 

EC - Economic cost (€) 

ep - Emissions factor for a vehicle type, pollutant p and VSP mode i (g/s); 

EP - Total emissions pollutant P (g) 

f - Share of vehicle types in the fleet (%); 

g - acceleration of gravity (9.8 m/s2) 

grade - vertical rise/grade length 

h - altitude of the vehicle 

i=VSP mode (1 to 14) 

m - vehicle mass 

nvsp,i - time (seconds) spent on mode i for all vehicles using the link l  

Pa - ambient air density (1.207 kg/m3 at 20°C) 

Pji - Total emissions of the pollutant j produced on route i (g); 

q - General traffic flow (vph) or link i; 

qer - Traffic volume of eco-routing vehicles (vph); 

Qi - Total traffic volume on route i (vph) 

 QT - Total Demand (vph) 
v - vehicle speed 

Vw - headwind into the vehicle 

XP = Emissions rate (g/s) (of the pollutant P from a particular vehicle) for VSP mode 
i 

εi  - "Mass factor", which is the equivalent translational mass of the rotating 
components (wheels, gears, shafts, etc.) of the power train 
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1 INTRODUCTION    

 

 

Initially, this chapter presents the main motivation for this research. In order to justify the 

relevance of the research topic, recent data on the impact of the transportation system in 

the economy and the environment is discussed. Then, this work is contextualized in the 

framework of national and international policies for transportation. After the presentation 

of the motivation behind this work, the main objectives of this research are defined in 

Section 1.2. 

Finally, the structure of the thesis and the contextualization of its chapters are summarized 

in section 1.3. 
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1.1 MOTIVATION  

 

It is well known that transportation systems have directly and indirectly significant effects 

on the economy. Directly, when they are related to system inefficiencies, congestion and 

fuel costs but also indirectly, such as the externalities associated with pollutant emissions. 

Thus, this is the main motivation behind the present thesis: To contribute for improving the 

efficiency of the road transportation system, through a better understanding of the impact 

of route choice and related traffic management strategies on emissions and fuel 

consumption.  The following paragraphs describe some important facts justifying the 

importance of this research. 

 

1.1.1 Impact of road transportation system on economy and environment 

 

The transportation sector has been assuming an increasingly prominent role in the global 

economy. According to the latest available data (2010), this sector accounts  for 

approximately  5% of gross domestic product (GDP) and for over 5% of total employment 

in the European Union  [1,2].   In Portugal, the transportation sector corresponds to 4% of 

the Portuguese GDP, in 2002 [3].  Since in Europe, car journeys comprised 82% of all 

passenger kilometers, in 2010 [2],  any inefficiency of the system generates significant 

environmental, economic and social costs. In Europe, an increase in congestion costs of 

approximately 50% by 205O  is anticipated [1].  

 

Despite policy efforts and technical progress, nowadays the transportation system still 

depends on oil products for 96% of its energy needs, in EU [1]. Specifically in Portugal, 70% 

of fossil fuel consumption (3% of GDP) occurs due to the transportation sector, in 2008 [4].    

According to the preliminary results of the Survey on Energy Consumption in Domestic 

Sector [5], 51% of the energy consumption expenses is related to the private vehicles. As a 

result, 2010 was the first year in which this value exceeded the expenses related to energy 

consumed in domestic sector  [6]. In addition to the economic issue, there is the challenging 
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of reducing CO2 emissions which are directly proportional to the amount of fuel 

consumption. 

Numerous indicators have been showing that the environment is one of the central policy 

areas where additional investment is required. The EU impact assessment on the 

externalization reports that if no action is taken within the next few years, the 

environmental costs (air pollution, CO2 emissions) could reach €210 billion by 2020 [7,8]. 

Therefore, a key goal of the Europe 2020 strategy for smart, sustainable, and inclusive 

growth is the gradual decarbonisation of transportation, towards the target of a 60% 

reduction of CO2 emissions from transportation by 2050 [1].  

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report provides 

a comprehensive assessment of the physical science basis of climate change. This report 

demonstrates the total radiative forcing caused by anthropogenic sources is positive, and 

has contributed to an uptake of energy by the climate system. The largest contribution to 

total radiative forcing is caused by the increase in the atmospheric concentration of CO2 

since 1750 (Figure 1). 

Taking into account the 1990 levels,  no other area demonstrates the growth rate of 

greenhouse gas (GHG) emissions as high as in the transportation sector [9]. Between 1990 

and 2005, road transportation-related emissions increased by 27 % while total EU-27 

emissions felt by approximately 8% [10]. It should be noted that this increase has occurred 

although fleets have enhanced their energy efficiency. At the national level, and between 

1990 and 2007, Portugal has shown an increase in transportation emissions of 97% which 

is one of the highest rates of the 32 European countries considered. Only from 2008 

onwards, a very a slight reduction in CO2 emissions is observed [2].  

With demand-oriented incentives Member States can additionally speed up the reduction 

of average CO2 emissions of new cars. Such incentives have already been implemented in 

some countries and include scrappage incentives, extra taxes on cars with high CO2 

emissions or purchase grants for low emission vehicles such as hybrids. 
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Values are global average radiative forcing partitioned according to the emitted compounds or processes that result in a 
combination of drivers. The best estimates of the net radiative forcing are shown as black diamonds with corresponding 
uncertainty intervals; the numerical values 

 

Figure 1: Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertainties for the main 
drivers of climate change  Retrieved from [11].  

  

A lot of attention is being focused on greenhouse gas emissions. However, adopting such 

isolate approach would be unsuccessful, since some GHG mitigation strategies could have 

negative environmental impacts elsewhere and/or in other pollutants.  Thus, proper 

planning actions to combat GHG should be designed to deliver positive environmental net 

benefits [6].  

Hence, in addition to GHG, other transportation-related pollutants such as, nitrogen oxide 

(NOX), particulate matter (PM) and carbon monoxide (CO) have noteworthy negative 
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effects on human health such as problems on the cardiovascular system, lungs, liver, spleen 

and blood.  In the last decade, there have been some substantial improvements, 

particularly through the implementation of strict emissions standards for new vehicles. The 

transportation sector reduced its NOX and HC emissions by 31 % and 60% respectively, 

between 2002 and 2011 [12]. However road transportation sector stills contributing 

significantly to NOX, PM and CO emissions (33, 13 and 27% respectively), in Europe [13]. 

Recent studies show that people living near congested European roads are still particularly 

exposed to air pollution. In 2010, urban traffic air quality stations recorded NO2 and PM 

concentrations above legal limits in 44% and 33% of situations respectively [13]. 

 

1.1.2 Key policies for improvement transportation networks efficiency  

 

One of the main challenge for road transportation system is the urban sprawl, as it brings 

about greater need for individual modes, which has congestion and environmental 

consequences [14]. All available evidences determine categorically that urban sprawl has 

accompanied the development of urban areas across Europe over the past 50 years. 

Portugal is identified as case of moderate increases of population but accompanied by a 

large expansion of urban areas [15]. To reverse this trend the implementation of "smart 

growth” policies is strongly recommended. However, the results of intelligent strategies on 

land use and smart planning can only be effective in the medium-long term.    

Commonsensically, the market introduction of greener technologies and alternative fuels 

is a promising strategy in order to reduce emissions. Nevertheless, two main problems 

arise: I) more eco-friendly vehicles do not necessarily imply less congestion, ii) the market 

penetration rate of these vehicles is being lower than desirable.  The full-scale deployment 

of clean energies has been delayed by three main obstacles: the high retail cost of vehicles, 

a low level of consumer acceptance and the lack of infrastructure for recharging and 

refueling [16].  The European Commission (EC) through the WHITE PAPER for 

transportation assumes that more efficient vehicles and cleaner fuels are unlikely to 

achieve on their own the necessary cuts in emissions [1]. 
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Therefore, a more efficient management of existing infrastructures has been identified as 

a key policy with great potential to reduce emissions. These measures may include 

behavioral changes in the operation of vehicles (eco-driving) as well as the choice of routes 

with lower emissions impacts associated. In this context, the Eurovignette directive 

proposes a "user pays" and a "polluter pays" principle for heavy duty vehicles in Europe 

[17]. In order to encourage the move to transportation patterns with lower environmental 

impacts, the tolls price will vary according the vehicles’ emissions, the distance travelled, 

and the location and the time of road use.  In fact, drivers have not always enough 

information to identify among numerous routes, what is best for the economy and the 

environment. However, with smart pricing of externalities for all modes and means of 

transportation, they could make the correct choice just by selecting for the low-priced 

solution.  

Upgrading the existing infrastructure through the utilization of improved traffic 

management and information systems is in many cases the cheapest way to enhance the 

overall performance of the transportation system [9]. Several measures such as the 

implementation of better electronic route planning and real time environment information 

delivery are strongly recommended. In this context, the European Commission plans to 

develop a strategy for investment in “new navigation, traffic monitoring and 

communication services to allow for the integration of information flows, management 

systems and mobility services”. In the urban context, a mixed strategy involving land-use 

planning and smart pricing schemes are also appointed as a solution to increase the 

efficiency of the European roads [1]. In fact, nowadays there is a strong need to make 

highway travel as efficient as possible. New traffic assignment methods play a decisive role 

in order to increase the efficiency of road networks. In these circumstances, it is 

fundamental to develop mechanisms that help route choice, either in the user's 

perspective or in the perspective of system optimization. It should be noted that the 

efficiency of a given network can be considered in several ways. In addition to the 

traditional concepts of time and travel distance, energy and pollution concerns should also 

be considered.  
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Thus, this investigation rests on some key considerations: 

 Despite technological innovations the transportation system has a significant 

impact on the economy, the environment and the health of populations 

 The urban sprawl and the barriers to penetration of new fuels contribute to a 

success rate in reducing emissions below the desirable 

 It is urgent to improve the efficiency in the transportation network through the 

improved use of the existing infrastructures. 

 

1.2 RESEARCH OBJECTIVES    

 

On the basis of the evidence currently available, it seems fair to suggest that the 

implementation of eco-navigation systems has a considerable potential to reduce 

emissions of certain pollutants.  However, there is a lack of understating on how the 

optimization route choices can allow an integrated minimization of different pollutants, 

under different contexts of traffic demand and network configuration. Furthermore the 

system wide-impacts of implementing eco-routing systems are still unknown.  This work is 

meant to develop a combined empirical and analytical research capable of advancing 

knowledge on how can efficient route choices and traffic management strategies may 

contribute to a minimization of fuel consumption and atmospheric emissions. 

GPS technology is increasingly being used for transportation-related studies. The use of 

GPS equipped-vehicles to collect traffic information becomes progressively cost-effective, 

so it is possible to collect traffic information in a large-scale and then incorporate this 

information in appropriate traffic and emissions models.  Simultaneously, the increases in 

computing performance have yielded more practical use to be made of microsimulation 

traffic models, which allows a more refined analysis. The output of these models can be 

assimilated in instantaneous emissions models to evaluate the consequences of different 

traffic management policies applied to the road network.  The present thesis aims to take 

advantage of these recent technological advances, in order to provide information based 



 

 

 University of Aveiro 

8 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

on experimental data, and to develop analytical models that might contribute to a more 

efficient use and management of the road infrastructure. 

This thesis, predominantly, focuses on increasing the understanding on the following 

issues:   

 How can route selection influence the emissions output in different spatial and 

temporal contexts?  

 How can Intelligent Transportation Systems be used to provide eco-routing 

information? 

 What strategies of traffic management can be applied to improve the efficiency of 

road infrastructure in terms of traffic performance, energy consumption and 

emissions? 

 

Initially, this work provides an in-depth analysis of a broad set of case-studies, covering 

different scales, under different traffic conditions. The contents include vehicle dynamics 

data processing,   statistical analysis on driver behavior, and the impact of route choice on 

emissions over different circumstances such as free-flow, recurrent congestion and non-

recurrent congestion.  Then, current state-of-the-art traffic and emissions models are used 

to estimate fuel consumption and emissions over different traffic management scenarios.  

The results of these models will be used in turn, to apply methodologies for optimizing 

traffic assignment under environmental objectives. 
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1.3 CHAPTER STRUCTURE   

The structure of this thesis is shown in Figure 2. 

 

Figure 2 Chapter structure.  

 

Chapter 2 offers a review of relevant literature on route choice and traffic assignment with 

environmental goals. A review of the most significant literature on traffic and emissions 

modelling platforms is also provided. Finally, noteworthy research on eco-ITS strategies 

and a synthetic review of patented work on eco-routing systems is also presented.  Chapter 

3 presents the research design, the conceptual framework of this work and an overview of 

methodologies.  Chapter 4 and 5 are predominantly empirical. In chapter 4 the impact of 

route choice on emissions at three different spatial scales and under different 

circumstances of traffic congestion is analyzed. Moreover, further variables such as driving 
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behavior, and vehicle type and are also considered.  Chapter 5 uses also empirical data to 

provide an environmental perspective of the impacts of the introduction of tolls in a 

motorway. By using analytical tools and state-of-the art traffic simulators, chapter 6 

explore tools for providing eco-routing information and presents an integrated 

microsimulation platform for assessing innovative traffic managements systems. While 

both chapters 4 and 6 focus on the impact of individual choices carried out over different 

case-studies, chapters 7  discusses and provides eco-routing strategies and traffic 

management strategies taking into account network wide impacts.  In Chapter 8, the results 

are discussed from an overall perspective. Furthermore suggestions for further research 

are pointed out.  

The vast majority of the contents presented in Chapters 4 to 7 are published or submitted 

to international peer-reviewed journals (Table 1). However, in order to eliminate repetition 

of contents, to follow the conceptual structure of the thesis, and for reasons of comfort of 

reading, some contents were note included and their order of presentation does not 

necessarily follow the same order of the articles. The nomenclature of some parameters 

was also modified to follow a coherent structure throughout the text. 

Some of the research presented in this study has been carried out under the framework of 

the SMARTDECISION project. The candidate has participated specifically in the following 

tasks: 

- Design of experimental research.  

- Participation in field tests (covering approximately 10000 km). 

- Empirical data management, development of a framework for estimation of 

emissions and traffic performance, data analysis and statistical analysis. 

- Collaborative participation in traffic modelling, network design, calibration and 

validation. 

- Development of traffic optimization tools, analysis and discussion.  
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Table 1 Relationship between the structure of chapters and published/submitted articles  

SECTION REFERENCE PAPER 

 

4.1 

 
Bandeira, J. M.; Almeida, Tiago G.; Khattak, Asad; Rouphail, Nagui M. C oelho, Margarida C. 
Generating Emissions Information for Route Selection: Experimental Monitoring and Routes 
Characterization. Journal of Intelligent Transportation Systems, v. 17, n. 1, p. 3-17, 2013.  
DOI:10.1080/15472450.2012.706197 

 

4.2 

Bandeira, J. M.; Carvalho, Dário; Fernandes, Paulo; Fontes, Tânia; Pereira, Sérgio R.; Rouphail, 
Nagui M.; Khattak, Asad J.; Coelho, Margarida C. Empirical assessment of route choice impact on 
emissions over different road types, traffic demands, and driving scenarios. Accepted for publication in 
International journal of sustainable Transportation, In press, 2013. 

 

5. 

 
Bandeira, J. M.; Coelho, Margarida C .; Pimentel, Miguel; Khattak, Asad J. Impact of Intercity Tolls in 
Portugal – An Environmental Perspective. Procedia - Social and Behavioral Sciences, v. 48, n. 1, p.1174- 
1183, 2012. DOI: 10.1016/j.sbspro.2012.06.1093  

 

6.1 

 
Gazis, Andreas; Fontes, Tânia; Pereira, Sérgio R.; C oelho, Margarida C.; Bandeira, J. M. Integrated 
Computational methods for traffic emissions route assessment. 
Proceedings of the 5th AC M SIGSPATIAL International Workshop on Computational Transportation 
Science - IWC TS '12., AC M Press, 2012, p. 8-13. 
DOI: 10.1145/2442942.2442945 

 

6.2* 

Fontes, Tânia; Fernandes, Paulo; Bandeira, J. M.; Pereira, Sérgio R.; Khattak, Asad J.; C oelho, 
Margarida C . Are eco-lanes a sustainable option to reducing emissions in a medium-sized European 
city?. Accepted (March 19, 2013) for publication in Transportation Research Part A: Policy and Practice, 
In 
press, 2013. (*only the methodological section has been considered)  

 

7.1 

 
Bandeira, J. M.; Fernandes, Paulo; Fontes, Tânia; Pereira, Sérgio R.; Khattak, Asad J.; Coelho, Margarida C 
. Assessment of eco traffic assignment strategies in a urban corridor. Submitted (Oct 15, 2013) for 
Publication in Transportation Research part C. 

 

7.2 

Bandeira, J. M.; Coelho, Margarida C .; Khattak, Asad J.; Pereira, Sérgio R.; Fontes, Tânia; Fernandes, 
Paulo. An "Eco-Traffic" Assignment Tool. Selected  (Jun-14, 2013) for publication as a book chapter of  
Springer series - Advances in Intelligent Systems and Computing.  
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2  LITERATURE REVIEW    

The literature review is divided into three main sections. Taking into consideration that a 

significant part of the research effort is related to emissions modeling to assess route 

choice impacts, section 2.1 describes the most significant multi-scale applications for 

emissions and fuel consumption. In turn, section 2.2 reports the most recent advances 

linking microscopic traffic and emissions models. Section 2.3 focuses on existing research 

on route choice traffic assignment under energy consumption and environmental 

concerns. Finally, the most important conclusions of the literature review are summarized.  

2.1 EMISSIONS AND TRAFFIC MODELS 

 

State-of-the-art energy and emission models could be categorized as macroscopic, 

microscopic or mesoscopic. This section provides a brief summary of the most important 

modeling platforms that are employed nowadays.   

2.1.1 Macroscopic Models 

 

Macroscopic models are useful for estimating average emission rates at a regional level 

[18] and are typically based on simplified mathematical expressions integrating aggregated 

vehicle kinetic characteristics such as average speed over a driving cycle and average 

emission factors [19]. However, the use of standard driving cycles makes this type of model 

less suitable for the evaluation of the impacts of transient traffic interruptions [18]. COPERT 

[7], MOBILE [20],  EMFAC [21], ATERMIS [22]  and TREM [23] are all examples of macro-

scale models.    

COPERT model was developed by the Laboratory of Applied Thermodynamics - Aristotle 

University of Thessaloniki [24] and was designed to produce annual national emission 

inventories for on and off road mobile sources. This model is also part of the 

EMEP/CORINAIR Emission Inventory Guidebook [7]. This Guidebook is intended to support 
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reporting under the EU directive on national emission ceilings.  Inputs for a typical COPERT 

run include country fuel, country monthly temperatures, country, Reid vapor pressure, 

country cold-start parameters, activity data fleet, activity data traffic, and activity data 

evaporation share. Outputs from COPERT include the calculation of annual emissions of 

pollutants for all CORINAIR road traffic source categories for all defined territorial units and 

road classes. Pollutants analysis incorporates exhaust emissions of CO, NOX, VOCs, CH4, 

CO2, NH3, sulfur oxides, diesel exhaust particulates (PM), polycyclic aromatic hydrocarbons 

(PAHs), and persistent organic pollutants, dioxins, furans, and heavy metals contained in 

the fuel (lead, cadmium, copper, chromium, nickel, selenium, and zinc). Finally, non-

methane VOCs are split into alkanes, alkenes, alkynes, aldehydes, ketones, and aromatics. 

MOBILE is an emission factor model developed by United States Environmental Agency (US 

EPA) to calculate emission rates for the highway motor vehicle fleet under a wide range of 

conditions. MOBILE employs current vehicle emission testing data collected by the EPA, the 

California Air Resources Board (CARB), automobile manufacturer, and from Inspection and 

Maintenance tests.  This model also simulates the impact of different petroleum 

characteristics on vehicle emissions. A major characteristic of MOBILE is the addition of 

“off-cycle emissions,” which involve aggressive driving with the air conditioning on [25]. 

The combination of the emissions factors estimated by vehicle types with activity data 

provides information that can be used in the development of emissions inventories or as 

inputs to air quality [20]. MOBILE6 is an emission factor model for predicting mass per unit 

of distance of Hydrocarbons (HC), CO, NOX, CO2, Particulate Matter (PM), and toxics from 

light duty vehicles, heavy duty vehicles and motorcycles under a range of conditions. 

However, it should be emphasized that MOBILE was replaced by the new modelling tool 

MOVES. 

EMFAC, a model developed by CARB, is another travel-based model with similar structure 

and functions as the MOBILE model. EMFAC calculates emissions inventories for pollutants 

from LDGV and LDDV vehicles operating in California. This model is able to estimate both 

current year and back-cast and forecasted inventories for the calendar years 1970 to 2040 

[26].  Emissions estimates are made for over 100 different technology groups and are 

reported for three distinct vehicle classes segregated by usage and weight [27]. EMFAC 
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calculates the emission rates of total organic gas, reactive organic compounds, HC, CO, NOX, 

PM, PM10, PM2.5, lead, SO2, CH4, and CO2. EMFAC model outputs are generally used for 

project-level air quality assessments [27].  

ARTEMIS tools were developed for three major purposes: (a) classical emission inventories 

(at the regional or national scale, per month or year), (b) scenario calculation for evaluating 

the consequences of different measures (time series over years), and (c) inputs for air 

quality models for assessing local and temporal impacts on the environment. The tools 

simulate the majority of the pollutants regulated (CO, HC, NOX, PM, Pb, SO2) as well as the 

fuel consumption and non-regulated pollutants (CO2, methane, ammonia, benzene, 

toluene, xylene, polycyclic aromatic hydrocarbons, PM in size and number, 1.3-butadiene, 

acetaldehyde, acrolein, benzopyrene, ethylbenzene, formaldehyde, hexane). The model is 

able to simulate hot, cold start and evaporative emissions [22,28]. 

The Transport Emission Model for Line Sources (TREM) was developed at the University of 

Aveiro, to estimate emissions produced by road traffic with high temporal and spatial 

resolution [23]. Emission rates for several atmospheric pollutants and fuel consumption are 

estimated as a function of average speed. Different technologies (engine type, model year), 

engine capacities, and three road segment types are distinguished. The model is principally 

designed for line sources. Consequently, roads are considered as line sources and emissions 

induced by vehicles are estimated separately for each road segment taking into 

consideration detailed information on traffic flow. TREM results have also been used as 

inputs of air quality models [23,29]. 

2.1.2 Microscopic Models 

Emissions during specific traffic events, (such as during phases of high acceleration) have 

been shown to have a great impact on emissions. Although the duration of such events is 

frequently only a few seconds, the emission level may be a multiple of the level during 

normal operation. This is particularly true for current gasoline vehicles with closed-loop 

catalytic converters, which have commonly a low basic emission level but show episodes  

of high emissions during open-loop operation [30]. Microscale models aim to provide 

accurate emissions estimates at the operation level. This category of models can be 
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subdivided into load-based models and regression based models. Whereas the former 

types usually calculate emissions by simulating physical and chemical processes, the latter 

use linear or non-linear functions that employ primarily immediate speed and acceleration 

or alternatively modal variables as explanatory input factors [31]. 

2.1.2.1 Regression based models 

 

One widely used approach based on regression based models is the estimate of emissions, 

through the concept vehicle specific power (VSP). VSP was a concept introduced by 

Jimenez-Palacios [32] in 1985, which is a upgrade of the "Positive Kinetic Energy" concept 

proposed by Watson et al. [33] (1983)  and the "Specific Power", used by the EPA defined 

as speed * acceleration [34]. 

 VSP has also been shown to be a useful explanatory variable for estimating 

variability in emissions, especially for CO2, NOX, and CO [35,36].  VSP approach has been 

used in several other studies, including for modeling of emissions over short road segments 

[37], the assessment of the influence of route selection and driver behavior on pollutant 

emissions and fuel consumption [38], or the evaluation of the effect of traffic signal control 

strategies on vehicle emissions by integrating a microscopic traffic simulation model [39].  

VSP modeling approach is part of a set of externally observable variables based models that 

have practical value for traffic management or simulation applications [40]. Recently VSP 

approach was used to estimate real-time roadway emissions estimation using visual traffic 

measurements [41]. 

 In 2010, EPA has presented MOVES 2010 in which emissions rates are a direct 

function of VSP. The objective of this tool is to provide a precise estimate of emissions from 

mobile sources under a wide range of user-defined conditions, and to help the user to 

answer "what if" questions such as "How would particulate matter emissions decrease on 

a typical weekday if truck travel was reduced during rush hour?" or “How does the total 

hydrocarbon emission rate change if a specific fleet switches to gasoline from diesel fuel?”  

[42].  MOVES 2010 can be used to estimate national, state, and county level inventories of 

local air pollutants, greenhouse gas emissions and some mobile source air toxins emitted 



 

Department of Mechanical Engineering 

17 LITERATURE REVIEW 

by highway vehicles. Additionally, MOVES2010 can make projections for energy 

consumption (total, petroleum-based, and fossil-based) and it is also able to cover a range 

of pollutants on a multiple-scale analysis [42]. 

 The model VT-Micro developed at Virginia Tech was designed to integrate traffic 

model simulator outputs, transportation planning models, and environmental impact 

models [43]. This tool estimates the instantaneous fuel consumption and HC, CO and NOX 

emission rates for vehicles, based on their instantaneous speed and acceleration. These 

two elements have been shown to have significant impacts on fuel consumption and 

emission rates.  A drawback of this approach is that it does not consider road grade. 

However, this model may consider grade effects on vehicle emissions by accounting for the 

additional acceleration factor in the direction of the vehicle movement as a consequence 

of the grade. Eq. 1 describes the general concept of the equations employed by the VT-

Micro model to calculate the instantaneous emission rates and fuel consumption. Two sets 

of coefficients are used for this equation: coefficients for accelerating, idling, and cruising 

and coefficients for deceleration [25]. 

𝑀𝑂𝐸𝑒 =

{
 
 

 
 ∑∑exp(𝐿𝑖,𝑗

𝑚 ∙ 𝑣𝑖 ∙ 𝑎𝑗) 𝑓𝑜𝑟 𝑎 ≥ 0

3

𝑖=0

3

𝑖=0

∑∑exp(𝑀𝑖,𝑗
𝑚 ∙ 𝑣𝑖 ∙ 𝑎𝑗)

3

𝑖=0

3

𝑖=0

 𝑓𝑜𝑟 𝑎 < 0

 
Eq. 1 

 

MOEe - Instantaneous fuel consumption or emission rate (L/s or mg/s), 

Lm
i,j = Model regression coefficient for MOE “m” at speed power “i” and acceleration power 

“j”, 

Mm
i,j = Model regression coefficient for MOE “m” at speed power “i” and deceleration 

power “j”, 

v - Instantaneous speed (km/h), 

a - Instantaneous acceleration (km/h/s). 



 

 

 University of Aveiro 

18 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

VeTEES (Vehicle Transient Emissions Simulation Software), is another example of a micro-

scale that takes into account vehicle instantaneous speed. Its emissions rates are based on 

engine test benches for three cars.  VeTESS computes emissions and fuel consumption on 

a second-by-second basis for a particular vehicle on a given speed profile and it is based on 

a detailed calculation of the engine power necessary to drive a given vehicle over any 

specific route [44].  However, although this method tries to consider the transient 

generation of emissions, the model predictions have demonstrated to be relatively 

inaccurate [45].   

Other models have been conceived to accurately model specific criteria air contaminants.  

For instance, MicroFacNOx is a tool specifically designed for estimate NOX emissions. The 

model converts driving cycle-based emission rates to real-world emissions by applying 

correction factors for such parameters as speed, ambient temperature, fuel composition, 

fleet composition and fraction of distance travelled with a cold engine [46].  

2.1.2.2  Load-based models 

One of the most representative and widely accepted modal and instantaneous emission 

models is the Comprehensive Modal Emissions Model (CMEM) developed at the University 

of California, Riverside. CMEM is a modal model designed to accurately estimate light-duty 

vehicle (LDV) emissions as a function of the vehicle’s operating mode [43]. The model is 

capable of predicting emissions for numerous types of LDVs.  Furthermore it is able to 

calculate second-by-second tailpipe (and engine-out) emissions and fuel consumption for 

a wide range of vehicle and technology categories in different condition states (e.g., 

functioning properly, deteriorated, malfunctioning) [47]. The main advantages of this 

model are its ability to predict vehicle emissions modally, its simplicity and transparency 

[27].  This model was built from an in-house dynamometer test on 300 real-world vehicles. 

Three dynamic variables, instantaneous speed, grade, and accessory use (such as air 

conditioning), were used as input operating variables. Instantaneous emissions were 

defined as the product of three components: fuel rate (FR), engine-out emissions indexes 

(gemission/gfuel), and catalyst pass fraction CPF Eq. 2 [48] . 
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𝑡𝑎𝑖𝑙𝑝𝑖𝑝𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐹𝑅 ∙ (
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑔𝑓𝑢𝑒𝑙

) ∙ 𝐶𝑃𝐹 Eq. 2 

Where: 

FR - fuel-use rate in grams/s;  

gemissions/gfuel - grams of engine-out emissions per grams of fuel consumed; and 

CPF - the catalyst pass fraction, defined as the ratio of tailpipe to engine-out emission 

A potential weakness of CMEM is the lack of updates for heavy-duty vehicles. Due to its 

demanding data requirements, CMEM must be regarded as a research-grade model [27]. 

EcoGest is a Visual Basic based software which allows the estimation of the energy use and 

emissions of vehicles under real world driving cycles. This is a road vehicle tank-to-wheel 

analysis tool that may be integrated with well-to-tank models [49]. The model uses 20 key 

input factors including, vehicle characteristics, transmission type, engine characteristics, 

exhaust after-treatment, ambient temperature, road topography and vehicle occupancy. 

The model database includes several steady-state fully-warm engine maps of fuel 

consumption and exhaust emissions of HC, CO and NOX. EcoGest is capable to disaggregate 

fuel consumption and emission by mode (acceleration, cruise, deceleration and idle) and 

to simulate alternative fuels [49]. 

ADVISOR 2002 uses the Matlab environment with Simulink [50]. The modeling scheme is 

similar to that EcoGest. A catalytic converter model corrects the engine-out emissions and 

calculates the tailpipe emissions. The main difference when compared to EcoGest is that 

the database maps are transient maps (covering cold and fully warm regimes). Some engine 

maps in the database have information only on fuel consumption, therefore not allowing 

the simulation of emissions. ADVISOR’s main advantage is its ability to simulate hybrid and 

fuel cell vehicles [50]. 

2.1.3 Mesoscopic Models 
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As stated above, the majority of the macroscopic models are based on simplified 

mathematical expressions to simulate energy consumption and emissions rates which in 

turn depend on average link speeds.  As a result of this fact, these models are not able to 

consider transient changes in a vehicles’ speed and acceleration level as it moves on a road 

network.  A particular problem takes place when comparing drive cycles with the same 

average speeds, as identical emission rates would then be estimated for all cycles despite 

differences in the second-by-second speed profiles.   Although microscopic models are able 

to overcome some of these limitations, they can be often time consuming and require a 

considerable level of input data. Therefore, a number of mesoscopic tools were developed 

attempting to fill the gap between macro and micro simulation. In other words, these 

modeling tools are more precise than macroscopic models but less data demanding than 

microscopic models.  

Coelho et al. [51] developed a mesoscopic modeling platform focused on the analysis of 

vehicle groups and traffic flows rather than individual vehicle movements (TEDS). This tool 

provides an overall evaluation of emissions caused by traffic interruptions such as pay tolls, 

roundabouts, and traffic signals, under any traffic demand patterns. Emissions estimates 

are based on the Vehicle Specific Power concept. 

 Based on VT-micro emission rates, the VT-meso model estimates average LDV fuel 

consumption and emission rates on a link-by-link basis with three independent variables, 

specifically: average travel speed, average number of stops per unit distance, and average 

stop duration  [52].  The MEASURE Model is a GIS-based program which the main 

objective is to provide researchers and planners with means of evaluating reduction 

strategies of emissions [53]. This model includes two principal components: 1) start 

emissions module and 2) on-road emission module. Emission rates are based on a refined 

tree-based regression analysis of vehicle emission test data from EPA and California Air 

Resources Board. On-Road emission module estimate vehicle emissions based on different 

operating modes: idle, cruise, acceleration, and deceleration [53]. Table 2 summarizes 

some of the main advantages and drawbacks of the micro, meso and macro models found 

in literature.  
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Table 2 Summary of some drawbacks and advantages of road traffic emissions models and their scale and 
category  

Scale Name Category Main Disadvantages Main Advantages 
M

ac
ro

 

COPERT SB 
Less suitable for the evaluation 
of micro scale impacts. 

Extensive range of pollutants. Friendly 
user interface 

MOBILE SB 
Limited Database, inaccurate 
PM estimations 

Output able to be incorporated in air 
pollution models at various scales 

EMFAC SB 
Modelling system tailored 
specifically to California 

Able to estimate both current year and 
forecast inventories 

ARTEMISE SB 
Less suitable for the evaluation 
of micro scale impacts 

Scenario calculation tool. Easy 
incorporation of the outcome in air 
quality models 

TREM SB User interface 
Extensive range of pollutants. Outcome 
can be easily incorporated in air quality 
models 

M
ic

ro
/M

ac
ro

 

MOVES SB & VSP 
Designed just for the US 
scenario / “close-box” 

Multistage and able to include fuel life 
cycle calculations 

M
ic

ro
 

VSP RB Little detail on fleet categories 
Database consisting of data from on-
board and laboratory dynamometer 
measurements. 

VT-MICRO RB 
Base model does not consider 
road grade  

Possibility of being incorporated within 
microscopic traffic simulation models 

VETESS RB 
Inaccurate emissions 
prediction 

Ability to compute emissions and fuel 
consumption second-by-second  

CMEM LB 

Demanding data requirements 
and Inaccurate emissions 
prediction at specific 
situations. 

Ability to predict vehicle emissions by 
modes for numerous types of LDV 

ECOGEST LB 
Limited ability to predict short-
term emissions of local 
pollutants 

Ability to simulate alternative fuels and 
cold-start emissions 

ADVISOR  LB 
Information only on fuel 
consumption for some engine 
maps 

Capability to simulate hybrid and fuel cell 
vehicles  

M
e

so
 

TEDS VSP 
Limited singularities (only tolls 

plazas, traffic signals and 1 
lane roundabouts). 

Capability to provide emissions impacts 
of traffic flows in a corridor, including 

different  traffic singularities 

VT-Meso VT -Meso Focused only on LDV 
Ability to estimate emission rates on a 
link-basis, function of average travel 

speed, average, stop duration 

Measure 
EPA data 
base 

Impacts of grade are not 
considered 

To evaluate motor vehicle reduction 
strategies based on different operating 

modes 
Note: SB – Speed base, AK – Aggregated kinetic, RB – Regression based; LD – Load Based   



 

 

 University of Aveiro 

22 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

2.2 LINKING MICROSCOPIC TRAFFIC AND EMISSIONS MODELS  

 

Recently, the increases in computing performance have yielded more practical use of 

micro-simulation traffic models, which allows a more refined analysis and improve the 

accurateness of the total emission estimations. The output of these models can be 

incorporated in microscale emissions models to evaluate the consequences of different 

traffic management policies applied to the road network, such as traffic signal coordination 

route diversion, variable speed limits, Advanced Traffic Information Systems and lanes 

management. In this section is not intended to perform a comparison of the performance 

of the most common traffic models, but rather, an overview of the type of work that is 

being done on microscopic simulation of traffic and emissions.   

Table 3 summarizes the most relevant studies that linked microscale traffic models with 

external emissions models. In addition to the main variables analyzed and highlights of each 

study, the following data is provided: case study (real or theoretical), scale (intersection; 

road segment; or network), and traffic / emissions models used.  

The majority of the studies linked PARAMICS [54] and VISSIM [55] traffic models with 

CMEM or MOVES emissions models, but other studies integrated different traffic models 

such as DRACULA [56], AIMSUN [57], INTEGRATION [58] with Mobile, EMFAC and VT-micro 

emission models [59–61].  Considering the cited studies in Table 3, VISSIM and PARAMICS 

are used in 50% and 30% of the studies respectively.  Regarding the emissions models, 

CMEM has been widely used (one third of cases), but recently the MOVES and the VSP 

approach have been increasingly used.  

Although almost all studies have been based on real case studies, the large majority of 

them did not evaluate the capability of the traffic models to capture the real-world vehicle 

power distributions. However, recent research [62] suggests that the VISSIM model tends 

to produce more aggressive acceleration and decelerations than in real-world.   
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Table 3 Relevant literature on integration of microscopic traffic and emissions models 

Ref. 
CS Scale 

Traffic 
model 

Emissions 
Model 

Variables/traffic management scenarios evaluated and 
highlights 

R T I R N V P O C M V O 

[19]             
Traffic signal strategies, Bus lane – Emissions can increase in 

some cases 

[63]             
HOV lane configuration - Freeway with continuous access of HOV 

lane produce lower emissions 

[59]             
Roundabouts vs. Traffic signals - CO2 emissions depend upon 

turn demand and overall demand 

[60]             Dynamic traffic management measures – 

[64]             
Intelligent Speed Adaptation - Net results with no significant impact 

on pollutant emissions 

[61]             
Traffic Signal coordination, Types of bus stop – How to minimize 

emissions at traffic intersections? 

[62]             Baseline scenario - Model calibration 

[65]             Driver behavior - Aggressive driving produced more emissions. 

[66]             
Road capacity/Traffic flow - Impacts are negligible for clean 

vehicles 

[67]             Traffic signal timing - Impact on pedestrian exposure to emissions 

[68]             
Traffic management at road maintenance - Life Cycle Assessment 

should be considered 

[39]             Signal coordination - Impact on emissions 

[69]             
Road capacity/Traffic congestion - Indicators with the best 

descriptive capabilities are identified 

[70]             
Traffic signal coordination - Reduction in emissions more 

correlated with stops than delay 

[71]             
Traffic signal timing - Most of the emission savings come from a 

reduction in the number of stops 

[72]             
Traffic signal timing - Emissions can be reduced by about 5% to 

12% 

[73]             
Lane configuration/traffic signal coordination - Long-run 

emissions reductions are dubious 

[74]             
Speed, fleet, traffic volume - Reducing traffic demand by 20% led 

to 23% in CO2 reduction 

[75]             
Road capacity / Traffic flow - Link speed data provide better 

estimates of emissions 

[76]             
Traffic flow - Pollutant concentrations in street canyons and 

backyards 

[77]             
Speed limit; traffic signal coordination - CO2 and NOX reduction 

from 10% to 25% 

[78]             Alternative fuels - Considerable reductions in emissions 

[79]             
Traffic signal - Green wave allows reductions between 10% and 

40% 

[80]             
Roundabout vs. Traffic signal - Emissions with roundabout are 

higher than simple pre‐timed signal 

[81]             
Electronic toll collection - Reduces the overall network air pollution 

only in the short term 

[82]             
Intelligent speed adaptation - Allows CO emissions up to -48% and 

travel time +6% 

[83]             
Based incident-management- ITS strategies should be more 

weighted 

[84]             Green routing – Emissions reduction but with higher travel times 
Note: CS: Case study, R: Real; T: Theoretical; I: Intersection; R: Road segment; N: Network; P: PARAMICS; Vi VISSIM; O: Others; C: CMEM; 
M:MOVES/VSP; V: Versit+.  
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The traffic management policies analyzed are very different, however the coordination of 

traffic lights is the topic most frequently analyzed.  Taking into consideration the main 

theme of this thesis, just one study has integrated microscopic traffic and emissions models 

to evaluate the impact of traffic assignment strategies and efficient route choices. Guo et 

al [84] have developed  an integrated platform combining the Transportation Analysis and 

Simulation System (TRANSIMS) and MOVES to approximate “green user equilibrium,” and 

to investigate the impact of market penetration on the likely environmental benefits of 

green routing. 

2.3 ROUTE CHOICE AND TRAFFIC ASSIGNMENT WITH ENVIRONMENTAL OBJECTIVES 

Firstly, in this section the scientific published works on route choice and traffic assignment 

with environmental goals are summarized. Then, some considerations about the patented 

work in this field are presented.  

2.3.1 Scientific papers 

Usually drivers take into account two main criteria when they select a specific a route: 

travel times and travel costs [85]. There is clear evidence that exposure to travel 

information is related to the higher likelihood of adjusting planned travel [86].  Nagurney 

and Dong [87],  argued that it is realistic to assume that a number of drivers could consider 

an environmental criterion into their decision-making process with the increasing 

environmental concerns. Using a logit based stochastic user equilibrium (SUE) model under 

traveler information provision, a study has estimated the marginal cost pricing policy for a 

certain link from an economic, behavioral, and environmental viewpoints [88]. From an 

economic perspective Gaker et al.  [89], concluded that trip-specific information related 

with greenhouse gas emissions has considerable potential of increasing sustainable 

behavior. The authors have quantified the “value of green” at around $0.50/pound of GHG 

avoided. Sharma & Mishra [90] highlighted that emission pricing on routes may be 

implemented ensuring that it does not adversely impact the composite network and the 

road user’s travel costs.  
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Table 4 Relevant research on the impact of route choice in terms of emissions and energy use. 

Ref. Study location Environmental 
Goals 

Emissions 
Estimation 

Highlights 

[58] Virtual Fuel, CO2 m (VT-micro) Savings in fuel consumption of 15 % 
using the Integration model 

[91] Virtual Generic NA Development of a multimodal network 
eq. model with emission pollution 
permits 

[92] Virtual CO M [f(av speed)] Development of a trip-assignment 
model. Emissions savings over the 
European Union up to 25% %- 

[93] Virtual CO2 M [f(av speed)] Emissions savings (up to 28%) if  vehicles 
are routed taking emissions into account 

[94] Virtual NOX, VOC, CO M [f(av speed)] When a network is designed for minimal 
travel time, NOx and CO emissions can 
increase 

[95]  Virtual Fuel, CO2 M [f(av speed)] Extension of the classical Vehicle Routing 
Problem (VRP). Significant CO2 savings. 

[96] Virtual CO M [f(av speed)] CO emission with minimized travel time 
when drivers take longer routes with low 
speed profiles 

[97] Virtual CO2 m (CMEM 
adapted) 

Macroscopic models can provide 
inaccurate information to eco-drivers. 

[38] Two OD pairs 
North Carolina, USA 

Fuel, CO2, NOX, 
HC, CO 

PEMS & m (VSP) NOX savings up to 24% (comparing 
alternative routes over different periods) 

[84] Metropolitan network 
Greater Buffalo-Niagara, 

USA 

Fuel, CO  m (Moves) Assessed the impact of market 
penetration rates eco-routing vehicles 
on the system-wide 

[98] Urban network  
Taipei, Taiwan 

CO M (Local survey) Development of a traffic-assignment 
method with multiple-objective decision 
making 

[99] Urban network  
Ottawa, Canada 

CO M [f(av speed)] To minimize CO during peak hours, the 
system travel time may increase 2% 

[100] Urban network Lund, 
Sweden 

Fuel, CO2 m (VETESS) 8.2% fuel savings by using a fuel-
optimized navigation system. 

[101] Highway system Los 
Angeles CA, USA 

Fuel, CO2, NOX, 
HC, CO 

m (CMEM) A time minimization path can minimizes 
emissions (CO2 savings up to 42%) 

[102] Arterial and Highway 
Northern Virginia, USA 

Fuel, CO2, NOX, 
HC, CO 

M&m (VT-micro, 
CMEM, Mobile6) 

Savings over the European Union 
condition up to: CO2 7%, NOX 15%, HC 
44%, CO 50% 

[103] Virtual + Urban network  
College Station, TX, USA 

CO M (Mobile 6.2) Potential for reduce emissions 
concentrations with a marginal increase 
in travel time 

[104] Arterial and Highway 
Zoetermeer, Holland 

Fuel m (VT-CPFEM) A provincial route can offer av. time 
savings of 25% and fuel savings of 45% 

[105] Metropolitan network 
Cleveland-Columbus,OH 

USA 

Fuel m (VT-micro) When 20% of eco-routing vehicles are 
assigned on the network, vehicles 
consume higher fuel levels. 

M – Macroscopic, m – microscopic, PEMS – Portable Emissions Measurement System  

Several studies have examined roadway congestion in terms of lost productivity and 

wasted fuel. More specifically, in the last two decades, there has been a growing interest 

in the effect of route choice in reducing emissions. Table 4 lists the most relevant studies 
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carried out in the field of route choice optimization, taking into account energy and 

emissions.  

In 1993,  Tzeng and Chen [98] carried out one of the first studies focusing the relationship 

between route-choice (or traffic assignment) and air quality. The authors tried to establish 

the most advantageous flow patterns using three objectives: time, travel distance, and 

emissions, particularly CO [98]. By means of multi-objective decision making and nonlinear 

programming techniques, a set of non-inferior solutions were generated. Then, an 

eigenvector weighting method was applied to solve continuous cases by performing simple 

pair wise comparisons. It should be noted that the developed model takes into assumption 

a system optimization in which a central controller is able to manage the traffic in a way 

that is most favorable from a system point of view. 

In 1994, Rilett and Benedek  [99] have studied the implications of using advanced traffic 

management system (ATMS) and advanced traffic information systems (ATIS) on traffic 

networks namely with regard to traffic congestion and other transportation by-products 

such as noise and air pollution. ATMS could be applied to achieve the environmental goals 

in either an active or passive way. While in the active method there is a centralized route 

guidance system (RGS) which informs drivers which routes they must follow, a passive 

system consist of an electronic toll collection system in which drivers are charged for their 

amount of emissions generated. Without denying the limitations of macroscopic traffic 

models, the authors pointed out that there would be a tradeoff between the reduction of 

the system travel time and pollution. In 1998, the same researchers explored this issue 

taking into account the advent of ITS [99]. Several methods of traffic assignment were 

tested on a calibrated network, using several approaches such as user equilibrium (UE) or 

system optimum (SO). CO emissions optimization was compared with UE and SO based on 

travel time. The researchers demonstrated that the traffic flows of the SO assignment 

based on CO emissions condition were roughly equivalent to the flows of the UE and SO 

conditions within a small error range. 

Nagurney et al, [106] developed a multi-class and multi-criteria traffic network equilibrium 

model with an environmental criterion. The model was the first considering  elastic travel 
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demands in the presence of a permit or license market system, in order to reduce pollution 

emissions and  taking into consideration both compliant and noncompliant behavior. 

Using a macro scale emission model, Sugawara and Niemeier [92] designed an emission-

optimized traffic assignment model using CO emission factors based on average speed. The 

experimental results showed moderate reduction in system-level vehicle emissions under 

emissions-optimized trip assignment compared with the conventional time-dependent UE 

and SO models. The researchers also concluded that the emission optimized assignment is 

more efficient when the network faces low or moderate levels of congestion. In these 

situations it is possible to save up to 30% CO emissions whereas in situations of high 

congestion, the reduction is only about 8%. This can be explained by the fact that under 

emissions-optimized conditions, less traffic volume is assigned to the freeway, since 

emissions levels are especially high at free flow speed.  

Ericsson et al. [100] estimated the potential for reducing fuel consumption and CO2 

emissions, by means of a navigation system in which the optimization of route selection is 

based on the reduction of fuel consumption rather than the conventional shortest time or 

distance. The empirical analysis was based on a large database of real traffic driving 

patterns associated to the street network in the Swedish city of Lund. The classification of 

street types was based on several categories describing the function and origin of the road 

network in terms of: street function, type of environment, speed limit, density of traffic 

signals, traffic-calming measures and traffic flow conditions. The fuel consumption was 

estimated for each individual driving pattern using two vehicle simulation models 

(microscopic engine map models), VETESS and VETO. By means of the network analyst tool 

in ESRI’s Arc View program (based on Dijkstra’s algorithm [107]) the routes between the 

origin and destination were optimized considering: (1) the lowest fuel consumption, (2) the 

shortest time, and (3) the shortest distance. Then, the lowest fuel consumption routes were 

generated and compared with the original route which allowed concluding that trips based 

on a fuel optimized navigation system could save, on average, approximately 8 % of fuel. 

Moreover, it was reported that in approximately 50% of trips, the drivers do not choose 

the most fuel-efficient route. 
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In 2008, Ahn and Rakha [102], realized that the majority of previous research efforts have 

applied basic travel time functions and mathematical expressions to compute emissions 

rates based on average link velocities without considering momentary changes in a 

vehicle’s speed and acceleration. To overcome some of these limitations in evaluating the 

impact of route choice, the researchers used and compared two microscopic models 

(CMEM and VT-Micro) and the macroscopic model MOBILE6. Two types of routes (highway 

or arterial) were tested using a probe car that kept the average speed of the traffic stream. 

Travel data were recorded at a 1-s resolution [102],. The study has demonstrated that 

macroscopic emission estimation models can generate inaccurate conclusions because the 

transient vehicle behavior along a route is not considered. This research also suggests that 

an emission/energy optimized traffic assignment can considerably improve emissions 

compared with typical UE and SO assignment methods. It was also shown that a slight 

section of the path involves a high engine-load condition which generates a considerable 

increase in emissions. This fact suggests that by reducing high-emitting driving behavior, 

emissions can be reduced considerably. Figure 3 shows the average total emissions for both 

routes according to the modeling tools used.  

 

Figure 3 Estimated emissions and fuel consumptions on study corridors. Retrieved from [102]. 

The results of the microscale models demonstrate that the less time consuming highway 

route choice is not the best option from an environmental and fuel consumption point of 
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view [102]. In 2011, the same authors have also presented a framework for modeling eco-

routing strategies [58]. 

Barth et al. [101] developed an environmentally-friendly navigation system. Firstly, the 

researchers collected an extensive vehicle activity data (second-by-second position and 

speed) using GPS-equipped probe vehicles. Then, through the CMEM microscopic model, 

functional relationships were established between the microscale speed patterns of 

individual vehicles and macro scale traffic measurements such as average traffic speed, 

density, and flow. Using these developed relationships between macro and microscale 

parameters, the system is able to estimate representative speed trajectories for different 

levels of measured congestion. Network-wide routing algorithms were developed in order 

to minimize energy consumption and emissions. Since energy and emissions are frequently 

higher at lower congested speeds, a congested (but shorter) path may not be the most 

environmentally friendly. In contrast, moderate congestion often provides a better choice 

from an environmental perspective. 

Zhang et al. [103] modeled the emission levels in every location of a hypothetical network 

considering the influence of multiple links on global air quality. In order to consider 

mutually the travel cost and on-road emissions, the authors employed an additive objective 

function. Then, a genetic algorithm was implemented to solve the complex optimization 

problems with non-linear terms. The concept of a cell-based was also introduced to model 

emission concentrations in order to either the average emission, or the maximum emission 

could be considered in the optimization process.  The researchers concluded that the 

developed optimization model is able to help the reduction of CO emissions concentration 

in the locations with worst environmental conditions which be accomplished with a minor 

increase in travel time and average emission concentration. 

Other authors have focused on minimizing emissions in specific fleets. In 2010, Figliozzi [93] 

has created a new system (emission vehicle routing problem – EVRP) aiming the 

minimization of pollutant emissions from commercial vehicles. Here, a heuristic is 

proposed to decrease the level of emissions. CO2 emissions are based on a polynomial 

expression that relates real-world CO2 emissions and travel speed profiles. Previously, 
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Tavares et al [108] developed a guidance system for minimum fuel consumption by using 

geographical information systems (GIS) and 3D route modeling software for the waste 

collection fleet of Cape Verde. The emission factors were based on COPERT macro-scale 

model. 

The majority of research has been focused on limited study areas which require further 

evaluation under a wider range of driving circumstances. All study’s conclusions pointed 

out that route choice has a significant impact on emissions and energy use. However, few 

studies have addressed the effect of rush periods on emissions [109]. The distribution of 

vehicle speeds and accelerations in traffic diverge by type of road facility and amount of 

traffic volume, generating large discrepancies in emission levels [110]. Possibly, this fact 

has contributed to some inconsistency on literature about this issue. On one hand research 

studies [38,77,101] point out that time minimization paths often also minimize energy use 

and emissions. On the other hand different work [99,104,111] verified that frequently the 

faster alternatives are not the best from an environmental viewpoint.  

In addition to evaluate the impact of route choice in terms of emissions, it is also important 

to assess the effect of information on drivers' route-choice actions. This is particularly 

important since its effectiveness is dependent on a reliably system that is perceived as 

convenient by those affected by traffic problems [112].  

Although ATIS have the intention of providing more precise real-time information, it is 

doubtful whether drivers would ever have total confidence in these systems. Considering 

the complexity of developments in the field of ITS,  Höltl and Stefanraises [112] have raised 

the interesting  question: “At what point do users start feeling overloaded and no longer 

able to handle all functionalities, ultimately rejecting using them?” Previous research point 

out that drivers adjust their behaviour according the accuracy level of information being 

provided [113]. Khattak et al. [114] established that driver’s behaviour change with their 

personal characteristics and the purpose of the trip which could be an advantage to ATIS 

performance.  

Informed drivers are more prone to risk-seeking and have greater understanding of the 

travel time variability. By contrast, drivers with no information show to be more risk-averse 
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and less sensitive to variability [115]. Overall, It has been demonstrated that ATIS may 

overcome behavioural inertia and the employ of ATIS has demonstrated to yield lower 

system travel time and congestion levels [114]. However, persuade drivers to following 

eco-friendly route suggestions based on advanced driver assistance systems (ADAS) might 

be a difficult task since these systems do not provide visible direct effects. Hence, it is 

important to consider the attributes that ultimately make it useful and efficient from a 

user’s point of view  [112].  

 

2.3.2 Patented work 

 

Recently numerous patents related to eco-navigation systems have been registered 

worldwide. This confirms the importance of this issue in traffic management systems, 

aiming the reduction of energy consumption and pollutant emissions.  

In recent times, several cities have taken measures to reduce air pollution by limiting the 

access of vehicles into certain critical areas. For example, such restrictions may be 

implemented by means of toll systems in which the driver of a vehicle is charged for entry 

into that area. For example, such restrictions may be implemented by means of toll systems 

in which the driver of a vehicle is charged for entry into that area. Consequently, an issue 

of major interest among navigation systems is to provide information and encourage 

drivers to avoid restricted emissions areas. 

Instead of charging, Ayyildiz and Willrnbrock [116] from Deutsche Telekom proposed an 

alternative electronic solution to convince drives to use alternative routes and traffic 

modes with lower emissions impacts.  The proposed device generates an urban traffic-

related emission map in the form  of yellow / green / red colored graphical layers, 

representing diverse CO2 emission environments within the road network in order to the 

user decide which route he should select to get the highest bonus (savings in public 

transportation and parking fees). However, in this approach is not considered the fact that 

drivers can emit more emissions, for instance, by selecting longer routes in order to avoid 
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the red emissions zones. No much detail is available about the process of emission 

calculation [116].  

A inventor [28] has registered a European patent consisting of a navigation system that 

includes a storing unit for storing vehicles emission data. The device also includes a routing 

processing unit (CPU) for dealing with the emission data and for calculating the best route 

taking into account the vehicle type. Thus, this device can assist the driver in finding an 

appropriate route to a destination taking into account the existence of restricted road areas 

such as low emission zones (LEZ). A similar prototype was patented in US one year earlier 

[117].  

The dynamic calculation of emissions under different road conditions is very important for 

providing accurate information on environmental impacts. In this context, a navigation 

device capable of calculating carbon emissions was patented. The estimation of CO2 

emissions is performed by using a set of pre-determined coefficients for road conditions, 

weather and vehicle parameters. Ginsberg [118] developed a system for automatic 

detection of road conditions yielding the minimization of emissions by determining 

whether proposed routes may be less efficient due to weather conditions.  In South Korea, 

an eco-route planning and guidance method have been developed to indicate the optimum 

route (for energy saving) based on real driving conditions.  This method takes into account 

real time traffic information and weighted values based on each road segment grade [119]. 

Gas mileage information, exhaust gas emission amount information, and real time traffic 

information is guided to the user using the searched eco driving route information. With 

similar objectives a Japanese patent presents a navigation method for indicating the best 

energy-saving route. In this case, fuel consumption on each link is calculated by using a 

function that depends on fuel type,  travel time,  average road grade,  distance,  vehicle 

weight, and the acceleration energy based on the number of stops [120].  Inventors from 

Toyota Motor Corp. patented a navigation system and an onboard navigation device which 

can accurately calculate and minimize the amount of gas emissions from a vehicle [121]. A 

system for identifying an environmentally-friendly and/or fuel saving travel route, was 

patented by  Barth & Boriboonsomsin, [122] from the University of California. This system 
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relates to vehicle navigation systems that utilize fuel use and emissions criteria as a 

parameter to determine directions between two locations.  

2.4 SUMMARY OF LITERATURE REVIEW 

 

Initially, a summary of available computational tools to analyze the impact of traffic 

management policies was conducted. This review led to the identification of the best tools 

that were applied during this research work. The second phase was based on the scientific 

literature focused on the impact of route choice under a perspective of energy efficiency 

and emissions. The main conclusions of the literature review are summarized in the 

following points:  

- Regarding emissions modeling, the use of instantaneous emission models has been 

identified as the most appropriate method to evaluate different operational traffic 

scenarios, particularly, regression based models proved to be most efficient in the 

assessment of traffic management strategies under transient states of traffic 

conditions.  

- Although travel time and costs are the aspects that have more influence on route 

choice decision, a sector of society would consider environmental issues in route 

selection decision process. 

- From an individualistic perspective, there is potential for significant reduction of 

emissions and fuel consumption based on user route information. From the 

perspective of system optimization both scientific and technical literature have 

suggested the implementation of  several methods to meet environmental goals, 

such as dynamic road pricing systems, variable message signals (VMS), and 

electronic incentives to eco-drivers. 

- There is a lack of integration between experimental and analytical research. In 

general, empirical studies are focused on limited study areas under specific traffic 

conditions, without the capacity of assessing the network performance and a wide 

range of driving patterns conditions. On the other hand, the majority of analytical 
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research is based on traffic modeling tolls which are rarely validated in terms of field 

data, namely vehicle’s dynamics.  

- To the author´s best knowledge, very few publications can be found in the literature 

that addresses the issue of minimizing local pollutants and greenhouse gases 

simultaneously.  

- There is an extensive range of patented systems to calculate and transmit 

information to users on routes with fewer emissions and/or with certain 

restrictions.  However, no applications were found focused on the effective impacts 

of all emissions impacts an integrated way.  

The previous literature highlighted the potential and applicability of a correct route choice 

as a tool for reducing emissions.  This study aims to evaluate this potential under different 

contexts and then to develop a framework for future implementation of sustainable traffic 

management policies. Therefore, the research herein will contribute new knowledge to this 

this field, by including a more extensive analysis, different scales, driving contexts, traffic 

demands and different types of vehicles. Taking into account the identified gaps in the 

literature, namely the lack of integration between experimental and analytical research, a 

strong empirical component will be integrated with state of the art analytical models and 

optimization tools.  The conceptual structure of this work will be discussed in the next 

chapter. 
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3 RESEARCH DESIGN AND METHODOLOGY 

The purpose of this chapter is first to outline the conceptual framework of the thesis, and 

second to describe the study domain and the common methodological concepts to the 

following chapters of the study.  

3.1 OVERVIEW OF CONCEPTUAL STRUCTURE  

 

This thesis has two main parts. The first one is predominantly empirical, using field data 

(vehicle dynamics) as the main source of information. The second part, predominantly 

analytical, is mainly based on output data of traffic models. 

The empirical component aims to assess the potential of appropriate route choices for 

energy and emissions savings. Simultaneously, the use of equipped GPS-probe-vehicles as 

a valid method to generate accurate information on emissions in different links of the 

network is assessed.  

The analytical component attempts to evaluate the potential of traffic models to generate 

detailed emissions information and to extrapolate results from an individual perspective to 

the whole system under analysis. The output of these models is then used to explore 

different traffic assignment methods, in terms of emissions and network performance. 

Both components are evaluated under different constraints and contexts as schematized 

in Figure 4. The impact of route choice is empirically assessed in three distinct scenarios 

(urban, intercity and metropolitan area). All routes have been evaluated under free flow 

conditions and under recurrent congestion.  A specific event of extreme and unexpected 

congestion has been also analyzed from the environmental point of view.  

The second-by-second data on vehicle’ dynamics were used to estimate the emissions of 

gasoline and diesel light vehicles. The effect of driver behavior on emissions was also 

evaluated.  
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Figure 4 Summary of the methodology 

In a second phase, analytical models were used to assess different routing and traffic 

assignment strategies.  Similarly, this analysis has been conducted over different scenarios 

and under different traffic demands. The average fleet composition observed in each study 

area was used to estimate the overall impacts on emissions. 

Summarizing, the empirical component of the thesis provides a practical assessment of the 

potential for fuel consumption and emissions minimization based on correct route choices.  

In a second step, these data are used to validate traffic models that enables to extend the 

analysis from historical data towards stochastic simulations, and therefore from an 

individual to a system perspective. 

A wide variety of different research methods are applied for answering the research questions, 

including field work, traffic, emissions and fuel consumption modelling and traffic assignment 

optimization.  The fundamental methods are explained in the next sections, however, 

additional methodological details can be found in chapters 4, 5, 6 and 7. 
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3.2 STUDY DOMAIN 

The data used in thesis to estimate energy and emissions impacts of route choice behavior 

were collected in Aveiro, Oporto suburban region (Portugal) and Hampton Roads, Virginia, 

USA. Table 5 shows the study areas, total distance covered, and the period of analysis in 

each scenario:  Urban (U), Intercity (I) and Metropolitan area (M).  Data for approximately 

13 200 km of road coverage over the course of 222 hours have been collected. In order to 

ensure realistic options, for all origin/destination pairs (OD pairs), the study routes were 

selected based on a web trip-planning software (Google-maps) suggestion.  

 

Table 5  Study areas, distance and the period of analysis in each scenario 

Scenario Urban Intercity Metropolitan 

Location City of Aveiro, Portugal Oporto suburban region Hampton Roads, VA USA 

OD-Pairs Centre<->suburbs Aveiro<->Porto Norfolk<->Chesapeake 

Nº of routes 3 4 2 

Distance traveled (km) 550 11000 1650 

Periods 
Jan. - Mar.  2010 and 2011, 

Sept. 2011 
Jan. - Mar.  2010/2011,  Sept. 2011 Feb. 2012 

 

For each case different routes were selected: motorways (m), highways (h), urban roads 

(u) and arterial roads (a). To identify each route the following notation was used: the first 

capital letter identifies the study area and the second lower case letter identifies the 

dominant type of road on each route. Figure 5 and Figure 6 show the map and photos of 

representative sections of the study routes, respectively.  
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Figure 5 Study routes map and Average Daily Traffic (2012): a) intercity (Oporto-Aveiro): Im1, Im2, Ih and 
Iu; b) urban routes (Aveiro centre and suburbs): Um, Ua and Uu and c) Metropolitan (Norfolk-Chesapeake): 
Ma and Mm. Metropolitan routes are subdivide according VDOT segments. 
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Figure 6 Photos of representative sections of each route 

To analyze the impacts of route choice decisions on an urban scale, three alternative routes 

(Um, Ua, and Uu) in Aveiro, Portugal were monitored. The city of Aveiro is a medium sized 

urban area (55,000 inhabitants) [123], in which urban traffic has demonstrated to be 

strongly connected with air pollutant levels [124]. All monitored routes, shown in Figure 5 

, connect the city center (C) to a point located in the suburbs (S).  A Origin-Destination (OD) 

survey [125] has shown that the main point of attraction during the morning peak hour is 

located in the south of the urban center (university). Thus, a significant part of the 

population living in the north of this area has to cross or bypass the urban core to reach 

this area.  While Route Ua is predominantly (56%) on motorway A25, Route Ua essentially 

traverses arterial road N109. Finally, Route Uu is located entirely in a compact urban 

environment. All routes were tested and analyzed separately in both directions, Centre to 
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Suburbs (CS) and Suburbs to Centre (SC), because of the significant distance changes of 

each way related to traffic constrains.  

In order to identify the energy and environmental impacts of route choice at the intercity 

level, GPS and video data of 4 parallel routes (Im1, Im2, Ih and Iu) were collected between 

Aveiro and Oporto, Portugal. Route Im1 extends over 77 km and it consists virtually entirely 

of motorways. During the first period of field work, Motorway A1 was the only section 

where there was a toll of 3.15 €. This section had an average daily traffic (ADT) of 

approximately 20,000 vehicles [126] Route Im2 is also 77 km long and traverses the A29 

motorway that runs parallel to the A1. This option was widely used until September 2010, 

because this motorway had no tolls (unlike A1). The ADT on A29 ranges from around 33 

000 vehicles in the southern sections to 73,000 in the northern sections. There are other 

distinctive features of A29 such as considerable areas of speed limit of 100 km/h, lower 

quality of pavement and more interchanges. After the introduction tolls the ADT has 

decreased approximately 50% [126]. 

Route Ih is the longest, 86 km in length, (34% of the distance is on motorways and 66% on 

the highway N1). Highway N1 runs north through towns and industrial zones with a 

considerable number of ramps and intersections, but some new 3-lane sections bypass the 

intermediate towns. Route Iu uses essentially N109 and the majority of the distance of the 

route (approximately 90%) is done on roads crossing built-up areas of towns and villages. 

All intercity routes have similar characteristics in both directions. To estimate the ADT on 

these routes, 7 hours of video data were collected at 6 key points of Ih and Iu during the 

evening rush hour. Using a peak hourly factor of 8.22% [127], it was estimated that Iu has 

an ADT of 11,500 and Ih of 17,500 vehicles per day (vpd). 

With respect to the metropolitan area, two alternatives routes in Hampton Roads, VA, 

(Figure 5c) were considered. Route Ma is mostly performed on arterial roads crossing 

downtown Norfolk. Regarding route Mm, 70% of the route distance is done on a motorway. 

Although route Mm presents more intersections, the majority of them are accesses to 

residential neighbourhoods with little impact on the main road. The ADT are clearly higher 

on USA routes, reaching values higher than 180,000 vehicles per day in some sections [128] 
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(Figure 5c). These routes have high quality data on traffic volumes for all road segments 

and characteristics [128] which allows a detailed analysis of the traffic volume impact on 

emissions. Table 6 presents some key route characteristics, based on video data and 

satellite images (Google earth). 

Table 6 Characteristics of the analysed routes. 

Route 

  

Length Speed limit (km/h)                    
(% of distance) 

Nº of lanes 
 (% of distance) 

Intersections Ramps 

(km) 50or 
64 

70 
80 

90 
96 

100 
120 

2 3 4 6 8 Total Tl R On Off 

Im1 77 2 - 7 91 2 - 83 7 8 9 1 3 26 26 

Im2 77 2 - 7 91 2 - 87 11 - 9 1 2 35 33 

Ih 87 2 58 7 33 48 12 33 7 - 135 20 7 48 58 

Iu 76 23 68 6 3 88 - 2 10 - 275 46 19 47 45 

Um-
CS 

6.9 29 13 - 58 29 - 71 - - 11 1 4 5 6 

Um-
SC 

5.8 32 2 - 66 32 - 68 - - 10 1 3 3 2 

Ua-CS 6.4 66 34 - - 45 - 55 - - 10 1 5 11 15 

Ua-SC 5.7 63 37 - - 39 - 61 - - 8 1 3 9 11 

Uu-CS 4.3 100 - - - 60 - 40 - - 15 3 5 6 5 

Uu-SC 4.1 100 - - - 60 - 40 - - 15 3 5 8 7 

Ma 21 47 34 19 - 2 - 14 47 37 55 27 0 12 13 

Mm 29 30 - 70 - 5 - 31 59 5 47 17 0 17 17 

Note: Tl – Traffic lights; R - Roundabouts 

3.3 RECORDING VEHICLE DYNAMICS AND ROUTE CHARACTERISTICS  

 

Road tests were performed during weekdays under dry weather conditions during the 

months of February, March and April of 2010 and 2011. According to traffic volume data 

[124,128], the peak period in the Portugal (PT) site was considered between 7-9 AM and 5-

7 PM while in USA the peak period was considered between 6-8 AM and 4-6 PM. Thus, all 

trips whose departure time was within this time range are defined as peak hour tests. The 

off peak tests occurred between 10 AM-5 PM (PT) and 9 AM-4 PM (USA). The USA tests 

were performed using a unique driver, while in the Portuguese case-studies, different 

drivers and vehicles were used (Table 7).  
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Table 7 Probe vehicles characteristics 

Local  Probe Vehicle Engine size (l) power (cv) 

Intercity/ Urban Toyota Prius 1.5  77 + 58 (electric 

engine) 

OPEL Corsa  1.2 80 

VW Polo 1.2 70 

Toyota Yaris 1.4 90 

Metropolitan Nissan versa 1.8 110 

 

As shown in Figure 7, GPS equipped-vehicles were employed to traverse the different 

routes to collect second-by-second trajectory data required for microscopic analysis. 

Simultaneously, route videotaping was performed, with the purpose of characterizing each 

route from various aspects and specific traffic events that can influence instantaneous 

emissions and fuel consumption. 

Driving styles and behaviour were controlled to match the “average car” driving style  [129] 

in which the test vehicle travels according to the driver’s judgement of the average speed 

of the traffic stream. 

The GPS equipment used in this study has an active high sensitivity antenna with an 

accuracy of 1 to 5 m and a 5 Hz update rate.  Speed and acceleration data were gathered 

directly from the GPS data logger. Altitude data were obtained through a Digital Elevation 

Model based on the geographic position (GPS Visualizer). Generally, the signal losses were 

not significant, so they did not affect the overall results. For 99% of cases, the horizontal 

dilution of precision (HDOT) was within 2 m. 
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Figure 7  Scheme used for routes videotaping and GPS data logger location 

3.4 TRAFFIC MODELLING  

 

VISSIM 5.4 model [55] was applied to simulate individual vehicle movements. This model 

was selected because of the possibility to define different road-user behavior parameters 

and sub-models for different vehicle types and traffic controls. Furthermore, it allows 

different vehicles performance such as desired maximum braking and acceleration per 

vehicle and class as well as to produce the requested data for the emission models [55]. 

Once the process of calibration and validation of the traffic model takes into account traffic 

some results obtained in Chapter 4, a more detailed description of the traffic modeling can 

be found in section 6.2. 

 

3.5 EMISSIONS ESTIMATION 

 

Micro-scale dynamic emissions models can be classified into load-based and regression 

based models. The vehicle specific power (VSP) methodology is an example of the latter. 

The computational efficiency of this type of models makes them more widely used in 

calculating energy and emissions factors associated with traffic planning projects [31].  
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3.5.1 Definition of vehicle specific power (VSP)  

According to Palacios [32], VSP is defined as the instantaneous power per unit mass of the 

vehicle. The instantaneous power generated by the engine is used to defeat the rolling 

resistance and aerodynamic drag, and to increase the kinetic and potential energies (KE 

and PE) of the vehicle. It is equivalent to the product of speed and equivalent acceleration, 

including the effects of roadway grade and rolling resistance, plus a term for aerodynamic 

drag which is proportional to the cube of the instantaneous speed [32]. 

𝑉𝑆𝑃 =

𝑑
𝑑𝑡
(𝐾𝐸 + 𝑃𝐸) + 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 ∙ 𝑣 + 𝐹𝐴𝑒𝑟𝑜𝑑𝑦𝑛𝑖𝑚𝑖𝑐 ∙ 𝑣

𝑚
 

 
Eq. 3 

 
<=> 𝑉𝑆𝑃 =  

𝑑

𝑑𝑡
(
1

2
𝑚∙(1+𝜀𝑖).𝑣

2+𝑚𝑔ℎ)+𝐶𝑟𝑚𝑔∙𝑣+
1

2
𝜌𝑎𝐶𝐷𝐴(𝑣+𝑣𝑤)

2∙𝑣

𝑚
     

 <=> 𝑉𝑆𝑃 = 𝑣(𝑎(1 + 𝜀𝑖) + 𝑔 ∙ sin(arctan(𝑔𝑟𝑎𝑑𝑒)) + 𝑔𝐶𝑟) +
1

2
𝜌𝑎 ∙

𝐶𝐷.𝐴

𝑚
(𝑣 + 𝑣𝑤)

2 ∙ 𝑣 3 

 

Where: 
m - vehicle mass 
v - vehicle speed 
a – vehicle acceleration 
εi  - "Mass factor", which is the equivalent translational mass of the 
 rotating components (wheels, gears, shafts, etc.) of the power train.                            
(The suffix i indicates that εi is gear-dependent). 
h - altitude of the vehicle 
grade - vertical rise/grade length 
g - acceleration of gravity (9.8 m/s2) 
CR - coefficient of rolling resistance (0.0135 -dimensionless) 
CD - drag coefficient (dimensionless) 
A - frontal area of the vehicle 
Pa - ambient air density (1.207 kg/m3 at 20°C) 
Vw - headwind into the vehicle 

 
The units of VSP are power (W) per unit of mass (kg) equivalent to kW/ton (Eq. 4). Using 
characteristic values for all parameters, the Eq. 5 is obtained: 
 

𝑉𝑆𝑃 (
𝑘𝑊

𝑇𝑜𝑛
=
𝑊

𝐾𝑔
=
𝑚2

𝑠3
) 

 
Eq. 4 

 
 

𝑉𝑆𝑃 = 𝑣(1.1𝑎 + 9.81 𝑠𝑖𝑛(𝑎𝑟𝑐𝑡𝑎𝑛(𝑔𝑟𝑎𝑑𝑒)) + 0,81 ∙ 0.0135) +
1

2
1.207 ∙

 0.0005 ∙ (𝑣 + 𝑣𝑤)
2 ∙ 𝑣  <=> 

 
 

  Eq. 5 𝑉𝑆𝑃 = 𝑣. 1.1𝑎 + 9.81 𝑠𝑖𝑛(𝑎𝑟𝑐𝑡𝑎𝑛(𝑔𝑟𝑎𝑑𝑒)) + 0.132 + 3.02 ∙ 10−4

∙ (𝑣 + 𝑣𝑤)
2 
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Finally, ignoring the term headwind into the vehicle (vw) the follow expression is achieved 
(Eq. 4). 
 
𝑉𝑆𝑃 = 𝑣[1.1𝑎 + 9.81 𝑠𝑖𝑛(𝑎𝑟𝑐𝑡𝑎𝑛(𝑔𝑟𝑎𝑑𝑒)) + 0.132] + 0.000302 × 𝑣3   Eq. 6 

The emission factors for LDGV used in this research were based on a modelling 

database consisting of about 232000 seconds of data from on-board and laboratory 

dynamometer measurements.  Using these data, a conceptual modelling based on different 

VSP interval ranges was developed in order that each pollutant has a different sensitivity 

to each VSP mode.  The categorization of VSP in 14 modes has been  selected as being the 

most appropriate approach to facilitate the design of a modelling system [130]. Ideally, 

each mode should have a statistical significantly different average emission rate from any 

other mode. Furthermore, no single mode should explain more than approximately 10 % 

of total emissions. Table 8 shows VSP categorized into fourteen discrete modes. 

Table 8  Definition of VSP mode (122) 

VSP 
MODE 

DEFINITION 
(KW/TON) 

1      VSP < -2 

2 -2 <=VSP< 0 
3 0 <=VSP< 1 
4 1 <=VSP< 4 
5 4 <=VSP< 7 
6 7 <=VSP< 10 

7 10 <=VSP< 13 
8 13 <=VSP< 16 
9 16 <=VSP< 19 

10 19 <=VSP< 23 
11 23 <=VSP< 28 
12 28 <=VSP< 33 
13 33 <=VSP< 39 

14  <=VSP< 39 
 

Figure 8 shows the distribution of VSP modes according to different levels of acceleration.  

Negative VSP values are characteristic of descending roads or negative accelerations. VSP 

mode 3 corresponds to emissions in idling situations, whereas the higher levels of VSP 



 

 

 University of Aveiro 

46 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

correspond to a combination of the following factors, high-speed, hard acceleration and 

steep slopes. 

For each road grade, the upper plateau  represents all sets of speed and acceleration values 

(s,a) leading to VPS higher 39 kW/ton. In practice, these extreme VSP values  are not 

commonly reported [18,38].  The bottom horizontal level corresponds to (s,a) pairs leading 

to  VSP values  lower than -2 kW/ton. The area of this level tends to increase with 

downward slopes while the opposite occurs with the upper level. 

   

 

Figure 8 VSP modes according different levels of speed and acceleration and for road grad 0, -5 and +5% 

 

3.5.2 Emission rates 

  

This work focuses mainly on light duty vehicles (LDV). Figure 9 illustrates average modal 

emission rate in the VSP mode for LDGV with engine sizes smaller than 3.5 L [130]. Since 

each pollutant has a different sensitivity to the modal definition there are various situations 
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in which a mode can contribute about 10 % of the total emissions of one pollutant but a 

considerably lower fraction of the total emissions for another pollutant, as demonstrated 

in Figure 9. For instance, the VSP bins 12, 13 and 14 represents about 30% of the total CO 

emissions and only 15 % or less of the total NOX, HC, and CO2 emissions.  

 

 

Figure 9 Emission rates for LDGV with engine displacement < 3.5 L [130]. 

Recent research has demonstrated that VSP approach is also useful for modelling emissions 

from LDDV [18].  A quantification of average emission rates is presented in Figure 10. 
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Figure 10 Emissions rates for LDDV with engine displacement =1.8 L [18,131].   

   

Since the sample sizes of the emission rates corresponding to VSP modes 12–14 was very 

small [18]; the resulting modal averages for these modes were estimated based on a 

quadratic regression [131]. Total emissions produced during a trip are estimated based on 

the average time spent in each VSP mode, multiplied by the respective emission factor (Eq. 

7).  

𝐸𝑃 = ∑ 𝑛𝑖𝑋𝑃𝑖
14
1                 Eq. 7 

Where: 
EP = Total emissions pollutant P (g) 
i=VSP mode (1 to 14) 
n= time spent on each VSP mode i (1 to 14) (s) 
XP = Emissions rate (g/s) (of the pollutant P from a particular vehicle) for VSP mode i 
 
Figure 11 shows the ratio between the emissions rate at each VSP mode and its 

corresponding emission rate for the VSP mode 14. Emission rates increase monotonically 

for positive VSP values. The only exception to the increase of emission rates with positive 

VSP are the CO emission rates for diesel vehicles. Coelho et al. [18] found that CO emissions 

seem to be more affected by speed changes and high accelerations compared to other 
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pollutants. For the higher VSP modes CO emissions of LDGV increase considerably. This is 

because a high power demand often leads to a richer mixture, implying that there is 

insufficient oxygen to oxidize out CO (and HC) in the catalytic converter. In this situation, 

the tailpipe CO emissions can be very high which leads to a much higher average emission 

rate in mode 14 than for other modes [132]. Using different vehicle emissions databases 

the results can be easily updated for a different range of light vehicles based on the VSP 

distribution observed among the study routes.  

 

 

Figure 11 Normalized Emission Factors (EF) to VSP Mode 14 by pollutant and vehicle 

VSP is a time-based model, i.e. emission factors are calculated per unit of time. Generally 

emissions factors increase monotonically with VSP values as demonstrated in Figure 11. 

However, emissions per unit of distance may follow an opposite pattern. To illustrate this, 

Figure 12 compares fuel consumption and CO emission factors per unit of time and 

distance. In the latter, speed and acceleration pairs VSP values outside the range 

considered (-2kW/ton, +39 kW / ton) - horizontal plateaus in the right figure) were excluded 

in order to avoid skewed results. For example, the emission factors (g/km) of all speed 

acceleration pairs with very high accelerations and a high speeds would present emissions 

factors lower than the actual values because the scale had been exceeded. 
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Figure 12 Fuel consumption (gasoline and Diesel) and emissions rates (CO from LDGV) per unit of time (left) 
and distance (right) 

In relation to fuel consumption per distance, a tendency for decrease in fuel rates with 

speed is observed until certain speed values. Particularly, for a null acceleration, the speed 

which minimizes fuel the consumption is 80 km/h for LDGV and 60 km/h for LDDV. 

Regarding CO, the optimum speed is 59 km/h. However, both time-based and distance-

based diagrams show that CO emissions are considerably more sensitive to accelerations.  
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3.5.3 Data processing 

 

For each trip performed, second-by second data of speed, acceleration and altitude were 

incorporated into a spread sheet designed to calculate emissions and automatically provide 

some statistical data of each test performed.  Data is automatically organized into a serious 

of tables allowing an easy export to more advanced statistical software (such as SPSS). 

Subsequently, new inter-route descriptive statistics and analyses of variance are performed 

in order to assess the significance of a number of variables such as route choice, driver, and 

test vehicle. These data will be discussed in detail throughout the next chapters. Overall 

emissions data across the study routes are presented by means of box plots in appendix B. 

Outliers have been removed from the analysis of route choice impacts under free flow and 

recurrent congestion. 

 

3.6 NORMALIZATION OF EMISSIONS COSTS AND DEVELOPMENT OF AN ECO-FRIENDLY 

INDICATOR FOR ROUTE CHOICE  

 

During the current research it was found that the optimization of different pollutants based 

on route choice can dictate different paths. In this context, different approaches for 

normalizing the emission impacts of each pollutant were assessed.  Several sources  [133–

135] for assessing damage impacts per mass of pollutant emissions, at the national scale 

were considered (Table 9). Certainty, it would be more accurate to use data based on the 

effect of each pollutant at a higher spatial resolution. Thus, these methods must be 

considered as preliminary approaches to ponder the health and social impacts of emissions, 

and considering the full range of uncertainties specific of each method.  
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Table 9 Environmental costs and human health impacts caused by emissions. 

 ECONOMIC COST   HEALTH IMPACT  

 (2012 USD/g) [134] (2000 €/g) [135] (DALYs/kg) [133] 

NOX 0.02480 0.00540 1.7200 

HC 0.00827 0.00070 0.0248 

CO 0.00416 ------ 0.0141 

CO2 0.00007 0.000025 0.00406 

PM 0.22920 0.220000 7.2600 

 

The US Department of Transportation presented a framework for conducting benefit-cost 

analysis of real-time information systems [134] .  The costs associated with each pollutant 

are available to HC, CO, NOX, PM and CO2. This approach applies different techniques based 

on social cost of carbon (for CO2), social benefits (HC) and contingent valuation (NOX, CO 

and PM). The monetary value changes over time in accordance with the source 

information’s predicted values by year. In this work, data from 2012 were used. 

 A previous study [135] provides emissions cost information, by considering  country-

specific meteorological and national  population densities (including Portugal). It should be 

noted that the suggested approaches are not per se absolute and adequate means of 

estimating local or regional air quality and health impacts. The atmospheric chemistry 

related to ambient concentrations of the above mentioned pollutants is very complex. A 

more complex simulation structure (such as full-scale photochemical modelling) is 

necessary to offer the required spatial and temporal detail to accurately estimate their 

associated health and welfare impacts [136]. 

A comprehensive study on human health impact of different pollutants is outlined in Eco-

Indicator 99 report [133]. This study provides a method for assessing, normalizing and 

weighting a very extensive range of substances according to various damaging effects.  To 

assess the human health effect of all studied pollutants in the present thesis the egalitarian 

perspective was selected. In this methodology each perspective is composed in three 

damage categories. The damage category “human health” is subdivided in six 

subcategories, such as carcinogenic effects, respiratory effects caused by organic 

substances, respiratory effects caused by organic substances, damages caused by climate 
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change, by ionizing radiation and by ozone layer.  The egalitarian perspective was chosen 

since it considers most of the pollutants analysed on human health impact category. The 

used data for assessing damage costs per mass of pollutant and GHG emissions is 

summarized in Table 9. 

Depending of the selected cost criteria, the general equation to compute the Cost 𝐶 of the 

amount of a certain set of pollutants P (g) according a particular weighting criterion 𝜔𝑖 

associated to each pollutant (see Table 9) is given by (Eq. 8): 

 

C =∑Pi(ωi)

i=n

i

 

 

Eq. 8 

 

An additional method for weighing the impact of different pollutants has to do with real 

time conditions in the region of the trip. This can be an interesting approach if one want to 

give more importance to the most critical pollutants in a given region. Moreover. pollutant 

concentration limits have human health impacts implicit in their values [137]. This 

approach will be simulated by looking at the observed conditions of pollutants in a specific 

day (section 6.1.3). Accordingly, different weights to the vehicles’ predicted emissions were   

assigned. 

3.7 IMPLEMENTATION OF THE METHODOLOGY 

 

All study areas described in section 3.2 will be evaluated empirically in chapters 4 and 5. In 

particular, a characterization of each route is done, and total emissions produced in each 

alternative route are estimated. In all routes, second-by-second vehicle dynamics were 

monitored using GPS-equipped vehicles as described in 3.3. GPS data recorded on urban 

and intercity routes will be in turn incorporated into computational models described in 

Chapters 6 and 7. Data recorded on metropolitan routes will be mainly used for describing 

emissions under different traffic demands (section 4.2), and in situations of unexpected 

congestion (section 4.3). Using the data collected in intercity and urban scenarios, a 

computational platform using historical data of emissions is presented in section 6.1. In 
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Section 6.2 the implementation of an integrated microsimulation traffic and emission 

modelling platform is described in detail. 

 All calculations of emissions (whether derived from GPS data (chapter 4) or from traffic 

model (chapter 7) have followed the methodology described in section 3.5.  Different 

methodologies for weighting the impacts of emissions (section 3.6) were used throughout 

the various chapters.  
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4 EMPIRICAL EVIDENCES OF ROUTE CHOICE IMPACT ON 

EMISSIONS  

 

This chapter describes second-by-second vehicle dynamic data recorded in the previously 

described study areas.  Then, a methodology based on the Vehicle Specific Power (VSP) 

concept was used to estimate the emissions impact. On-board video footage recorded 

route features and traffic incidents.  

Section 4.1 explores a way to generate information about emissions and other route 

characteristics for drivers faced with a choice of routes under free flow conditions. Two 

different vehicles and drivers traversed several urban and intercity routes to enable the 

consideration of the influence of driver variability and vehicle dynamics. A sensitivity 

analysis to assess the impact of road grade is also performed. 

Although eco-routing has been shown as a promising strategy to reduce emissions, during 

peak-periods, with limited additional capacity, the eco-friendliness of various routes may 

change. Section 4.2 explores this issue empirically by comparing total emissions during 

peak on non-peak periods. In total, approximately 13,300 km of GPS data were considered 

in three different OD pairs. 

Usually transportation studies on emissions are conducted over normal conditions of 

network operation, namely during free-flow or recurrent congestion. In Section 4.3 an 

analysis of emissions under unexpected and extreme congestion circumstances is 

performed. 
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4.1 ROUTE CHOICE IMPACTS UNDER FREE FLOW CONDITIONS  

 

A lack of knowledge on driver variability and vehicle dynamics impacts among routes with 

different characteristics and scales (urban and intercity contexts) was found.  Specifically, 

the impact of these factors on the development of future sustainable traffic guidance 

systems has not been addressed in depth.  

Many of the devices allowing eco-friendly navigation that have emerged are based on fuel 

savings and lowering CO2 emissions [138,139] , which is an important improvement with 

respect to the issue of global warming. However, current eco-routing devices do not for 

the most part consider the impact on local pollutants, which have direct effects on human 

health. Thus, it is necessary to improve the knowledge based on the role that driver 

variability or vehicle dynamics play in choosing an environmentally friendly route in an 

integrated way. Based on different case studies, this section examines how emissions vary 

across alternative routes.  

This eco-information is intended to empower travellers who want to use emissions as an 

additional criterion for their route selection. It also can help traffic managers take into 

account environmental concerns. The pollutants considered in this study include CO, CO2, 

HC, and NOX.  

Before the presentation of results, additional details on fieldwork and the development of 

a classification system of routes in several parameters are provided.  Then a comparative 

analysis of the routes considering different criteria, including travel time, emissions per 

time and distance, and VSP modal distribution is described.  Additionally, a classification 

system of routes considering a range of different criteria is presented.  Finally, an analysis 

about the impact of driver and vehicle on emissions and travel time is performed and a 

classification system of routes is presented.  
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4.1.1 Methodological details 

4.1.1.1 Field work campaign 

This section consider field experiments during off-peak periods (10:30 AM - 1:00 PM and 

2:30 PM – 5:00 PM), in order to analyse the inherent characteristics of the routes without 

the influence of significant changes in traffic. The use of minimum samples size guarantees 

that the average travel time obtained from the test vehicle is within a specified error range 

of the true average travel time for the entire vehicle population. The travel time data 

collection handbook from FHWA [129] presents typical minimum sample sizes for various 

combinations of confidence level and acceptable relative error in motorways (Table 10) and 

arterials (Table 11). 

Table 10 Illustrative Test Vehicle Sample Sizes on Motorways [129].   

ADT per lane 90% Confidence ± 10% 
Error 

95% Confidence ± 10% 
Error 

95% confidence ±- 5% 
Error 

Less than 15000 5 6 15 

15000 to 20000 6 8 21 

Greater than 20000 10 14 47 

 

Table 11 Illustrative Test Vehicle Sample Sizes on Arterial Streets [129].    

Traffic Signal Density (nº. of 
signals per 1.61 km) 

90% Confidence ± 10% 
Error 

95% Confidence ± 10% 
Error 

95% confidence ±- 5% 
Error 

Less than 3 5 6 15 

3 to 6 6 8 25 

Greater than 6 9 12 37 

 

Commonly specified relative errors are ± 10% for planning and policy-level studies [129].  

Therefore, taking into account the ADT observed in the intercity and urban  routes (<20.000 

vpd/lane) and traffic signal density (<6 TL/1.6 km), the minimum sample size in each OD 

pair to ensure a 95 % confidence level with less of  10% error is 8 runs.   In the urban and 

intercity routes 10 and 12 trips were performed respectively.  Approximately 4000 km of 

road tests were covered during weekdays under dry weather conditions between March 



 

 

 University of Aveiro 

58 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

and April 201.  In total three distinct data sets were considered: DAV1 (Driver A – Vehicle 

1); DBV1 (Driver B – Vehicle 1); and DAV2 (Driver A – Vehicle 2). 

 

4.1.1.2 Route ranking characteristics 

 

During the experimental phase, an important set of factors that can influence travellers’ 

route choice were collected.  To summarize this information, a classification system that is 

easily understood by users was developed. 

For each factor a score of (0) was assigned to the worst route and a score of (1) was 

assigned to the best route. For the intermediate routes a linear interpolation was 

performed in order to assess their closeness to the extreme routes, by assigning each route 

a value between 0 and 1. Considering this score, a qualitative classification from 0 to 5 stars 

was developed.  

 

4.1.2 Average speed and travel time 

 

Considering the significant distance changes of each way related to traffic constrains, the 

results of travel time and average speed for urban routes will be analysed separately. For 

intercity routes, since these differences are not significant (and taking into consideration 

the purpose of this section) the data are analysed together. However, descriptive statistical 

analysis of travel times categorized by each OD pair and direction are provided in appendix 

A. Table 12 summarizes speed and travel time data observed during the fieldwork.   
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Table 12 Travel time and speed statistics 

  Urban CS Urban SC Intercity 

    Um Ua Uu Um Ua Uu Im1 Im2 Ih Iu 

Tr
a

ve
l t

im
e 

(m
in

) 

𝑿̅ 7.2 8.1 8.4 5.4 7.0 8.0 48 51 80 97 

95th  
Percentile 

7.7 8.8 10.0 6.0 7.5 9.0 51 63 89 104 

5th  
Percentile 

6.6 7.5 7.0 5.0 6.3 7.1 45 45 74 91 

SD 0.5 0.5 1.3 0.4 0.5 1.3 1.8 4.2 5.0 2.4 

T-
student-
95th CI 

±0.1 ±0.1 ±0.3 ±0.1 ±0.1 ±0.2 ±1.2 ±4.2 ±3.2 ±2.4 

Sp
ee

d
 (

km
/h

) 

𝑿̅ 56.4 47.1 29.4 63.2 48.9 28.4 96 91 65 46 

95th  
Percentile 

61.5 50.5 33.6 67.5 44.9 31.8 101 100 70 49 

5th 
Percentile 

52.9 43.7 24.6 57.7 44.9 25.4 91 73 59 43 

SD 4.2 3.4 4.8 5.9 3.8 2.0 4.8 5.5 5.0 4.2 

T-
student-
95th CI 

±3.2 ±2.6 ±3.6 ±4.4 ±2.9 ±1.5 ±4.1 ±4.6 ±4.2 ±3.5 

n (DAV1, 
DBVI, 
DAV2) 

4,3,3 4,3,3 3,3,3 3,3,3 4,3,3 3,3,3 4,4,4 4,4,4 4,4,4 4.4.4 

𝑿̅ DAV1 56 47 28 63 47 28 99 95 66 46 

𝑿̅   DBV1 55 48 31 61 51 27 97 89 64 45 

𝑿̅   DAV2 60 48 32 67 67 32 94 89 66 47 

𝑋̅ – mean, SD Standard Deviation, CI – Confidence Intervals, CS – Centre Suburbs, SC – Suburbs – Centre.  

 

Despite being the longest route, Um is the fastest option allowing travel time savings of 

33% and 23% (SC direction) when compared with Routes Uu and Ua, respectively.  The 

travel time standard deviation and T-student confidence intervals suggest that there is 

more variability of travel time on Route Uu.  Changes in average speed in relation to 

alternative drivers and vehicles were not found.   In the opposite direction results are 

similar but with less difference between the routes. 

Concerning intercity routes, the motorway options Im1 and Im2 are less time consuming 

than the alternative routes. Compared to the closer alternatives, Route Im1 yields 40% time 
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savings in relation to Route Ih, and Route Im2 yields 47% savings compared with Route Iu. 

The travel time standard deviation and 95th percentile confidence interval suggests that 

Routes Im2 and Ih have lower reliability. Although Route Iu is the shortest, the travel time 

is higher than other routes. However, this route presents more uniform travel times 

compared with Route Ih.  With the exception of motorways routes in which DBV1 shows a 

lower average speed comparing with DAV1 and the slight reduction of average speed for 

DAV2, no significant changes were observed.    

 

4.1.3 Total emissions 

 

Emissions of the monitored routes focused on CO2, CO, and HC emissions from LDGVs, and 

NOX from LDDVs (the major sources of each pollutant).  Figure 13 provides a general 

description of average emissions according to driver and vehicle. 

No significant changes in CO2 are observed, mainly for routes driven towards the suburbs 

(CS); however, RC has the lowest emissions.  Since the highest emission rates per distance 

were verified for this route, the shorter distance is a strong factor for total CO2 emitted. 

Regarding intercity trips, the faster routes performed on motorways are more 

environmental friendly with respect to CO2 emissions and fuel consumption.  

Regarding NOX emissions from LDDVs, the slower routes (Routes Uu and Iu) present 

average reductions of about 35%, compared with the fastest alternatives. However, for 

Route Uu, the reduction is related with the shortest distance, while for Route Iu, the 

difference lies primarily in the reduction of speed, since the distance is similar to Routes 

Im1 and Im2.  

The analysis of total CO emissions suggests that there is a trade-off between travel time 

and CO emissions. Both urban and intercity routes show higher CO emissions if the route 

leads to faster driving. Although the travel times were approximately the same, a more 

aggressive driving style of Driver B yielded increased CO emissions by about 50 % for Route 
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RA. For intercity routes, combining a smoother driving style on a route with lower speeds 

enabled a two-thirds reduction of CO emissions.  

 

 

Figure 13 Total emissions per vehicle - a) urban b) intercity routes (Total Average; DAVI – Driver 
A Vehicle 1; DBV1 – Driver B Vehicle 1; DAV2 – Driver A Vehicle 2) - T-student 95% CI intervals. 
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In relation to HC emissions in the urban setting, Routes Ua and Uu show lower emissions, 

with slight variations depending on the travel direction (22% and 15%). Route R4 is the 

intercity route with the lowest HC emissions. Although the emission factors per distance 

for Routes R3 and R4 are quite similar, Route R3 is penalized because it is the longest.  

Overall, under uncongested situations, a combination of an appropriate route and 

smoother driving styles can result in emissions reductions of CO2-25%, CO-68%, NOX-40% 

and HC-29%.  At the intercity scale, quicker routes lead to fuel and CO2 emissions savings. 

However, these options may considerably increase CO (150%), NOX (46%) and HC (23%) 

emissions. 

4.1.4 Emission rates analysis as a function of distance 

 

To analyse emission rates profile, Route Ih was selected as a case study, due to its variability 

in road characteristics along the route. First the impact of road type on emissions is 

examined, and then the impact of road grade on different pollutants is assessed.    Route 

Ih has been divided into 6 main sections corresponding to the following characteristics: 

[S1], [S5] – Motorway at free flow speed  
[S2], [S4] – 2-lanes highway crossing intermediate towns  
[S3] – 2-3 lanes highway bypassing intermediate towns   
[S6] – Motorway with high traffic volume - Oporto Ring  
 

Figure 14 provides an example of speed, altitude and emission profiles for a trip performed 

on Route Ih.  In addition to CO2, the focus was on CO emissions from LDGVs and NOX from 

LDDVs since they are main sources of these pollutants.  
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Figure 14 a) Average speed of a generic vehicle per km and section, and altitude profile, b) CO and CO2 
average emissions per km and section (LDGV), c) NOX and CO2 average emissions per km and section 
(LDDV).  

a) 

b) 

c) 
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As far as emissions from LDGVs, is concerned a complete opposite behaviour in CO2 and CO 

emissions is observed. On motorways CO2 emissions rates are lower, but the amount of CO 

emitted per kilometre in these sections is considerably higher. Regarding CO2 emissions 

from LDDV, it should be emphasized two aspects: 1) emissions are consistently lower than 

those of gasoline vehicles, 2) there is less pronounced deviations along the various road 

sections. This confirms the well-known fact that accounting for the difference in energy 

density, the overall efficiency of the diesel engines is still greater than the gasoline engines. 

Regarding emissions from LDDV, NOX emissions rates are lower in the slower sections [S2, 

S4]. As explained before NOX emissions are mainly produced due to the increase of engine 

load especially at high temperatures. 

A sensitivity analysis to assess the impact of road grade was performed.  Thus, by artificially 

changing the altitude to a constant value (slope = 0%) the emissions from a hypothetical 

flat roadway surface scenario and from the real situation were compared (see Table 13).  

Assuming that the patterns of acceleration and speed remained constant, CO (+166%) and 

NOX (+102%) are the pollutants most penalized by the positive road grade. For a LDGV the 

average positive slopes of 3.2% lead to an increase of CO2 emissions, on the order of 38%. 

Diesel vehicles seem more sensitive to the road grade than gasoline vehicles. Considering 

emissions on the entire route, the distance of the descent sections is not enough to offset 

the increase in emissions caused by the positive grades. 

Table 13 Percentage change in CO2, CO and NOX emissions relative to 0% grade for a generic LDDV and 
LDGV 

      LDDV LDGV 

  Av. Slope (% of distance) CO2 NOX CO2 CO 

Downward -3.3% 44% -46% -45% -25% -37% 

Upward 3.2% 49% 63% 102% 38% 166% 

Total 0.1%   8% 24% 6% 56% 

 

In summary, the emission profiles vary considerably over the route, strongly depending on 

the characteristics of each roadway section. Opposing outcomes between CO2 and CO 
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emissions from LDGV were observed. Considering the sections S2 and S5, the road grade 

explains 34% and 62% of the difference between the emissions factors of CO2 and CO, 

respectively. However, even ignoring the effect of the slope, the sections with higher traffic 

volume or lower capacity (e.g. S2) have the highest fuel consumption rates and thus higher 

CO2 emissions.  

4.1.5 Impact of Driver and Test Vehicle on emissions 

  

In order to analyse the impact of driver variability, vehicle and route choice, linear 

regression models were estimated. These models predicted total emissions and average 

speed using dummy (0, 1) explanatory variables.   Each dummy variable (route, driver, and 

vehicle) was compared to the reference base case, which was coded as “0". In this case, 

Route 1, Driver A and Vehicle 1 (DAV1) were considered the reference level.   

The relevance of route choice, driver variability and vehicle are analysed over the intercity 

context.  Linear regressions were performed to predict total emissions and average speed 

(Table 14), considering all trips performed for intercity routes. The adjusted R2 parameter 

varied from 0.74 to 0.97.  Route selection is the most important factor connected with 

emissions and speed (or travel time), and route Im2 show no significant difference from Im1. 

CO emissions from LDGV and NOX emissions from LDDV appear to be dependent on the 

driver profile.  CO2 and HC emissions are not statistically significant with respect to driver 

(P values> 0.1). The emission patterns of these pollutants suggest that they are less 

sensitive to the driving variability than CO and NOX. Average speed is confirmed to be 

independent of both vehicle and driver.   

All local pollutant emission rates showed statistical significance regarding the vehicle used 

during the field tests.  Since average speed, and hence travel time is shown to be 

independent of the driver and the vehicle, this dependency is likely a consequence of 

vehicle characteristics on driving behaviour affecting the profile of accelerations and 

decelerations. The presence of an automatic gearbox in Vehicle A and a manual 

transmission in Vehicle B could help to explain such variations. 
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Table 14 Regression Models Results 

    Unstandardized 
Coefficients1 

Standardized 
Coefficients2 

t Sig.   

    B Std. 
Error 

β   

Travel 
Time 

(Constant) 48.5 2.241  21.661 0.000   
Im2 4.7 2.588 0.094 1.803 0.088 * 
Ih 33.5 2.588 0.678 12.946 0.000 ** 
Iu 51.2 2.588 1.036 19.773 0.000 ** 
DBV1 1.4 2.241 0.030 0.614 0.547   
DAV2 -1.0 2.241 -0.022 -0.446 0.661   

LDGV CO2 (Constant) 12029 189.683  63.414 0.000   
Im2 465 219.027 0.128 2.124 0.048 ** 
Ih 3368 219.027 0.925 15.376 0.000 ** 
Iu 3117 219.027 0.857 14.232 0.000 ** 
DBV1 279 189.683 0.083 1.470 0.159   
DAV2 -391 189.683 -0.117 -2.062 0.054 * 

LDGV CO (Constant) 198.3 13.197  15.029 0.000   
Im2 13.2 15.239 0.093 0.868 0.397   
Ih -38.8 15.239 -0.273 -2.545 0.020 ** 
Iu -118.0 15.239 -0.832 -7.746 0.000 ** 
DBV1 40.1 13.197 0.307 3.036 0.007 ** 
DAV2 -20.8 13.197 -0.160 -1.580 0.132   

LDGV HC (Constant) 3.82 0.148  25.896 0.000   
Im2 0.22 0.171 0.189 1.290 0.213   
Ih 0.20 0.171 0.170 1.163 0.260   
Iu -0.56 0.171 -0.478 -3.264 0.004 ** 
DBV1 0.45 0.148 0.419 3.038 0.007 ** 
DAV2 -0.28 0.148 -0.264 -1.913 0.072 * 

LDGV NOX (Constant) 70.47 2.499  28.196 0.000   
Im2 2.02 2.886 0.075 0.701 0.492   
Ih -2.46 2.886 -0.092 -0.854 0.405   
Iu -22.43 2.886 -0.836 -7.771 0.000 ** 
DBV1 6.73 2.499 0.273 2.694 0.015 ** 
DAV2 -4.33 2.499 -0.176 -1.732 0.100 * 

Note. Significance indicated by: ∗90% confidence. ∗∗95% confidence 

4.1.6 Route ranking 

 

                                                      
1  for a one-raw-unit increment on a predictor, the outcome variable increases (or if B is negative, decreases). 
2  for a one-standard deviation increment on a predictor, the outcome variable increasess (or decreases) by some number 

of SD's corresponding to what the β coefficient is . 
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A general rating of indicators for all intercity routes is presented in Table 15 that 

distinguishes between parameters that are usually known to the driver (such as travel time, 

distance, and cost) and other parameters that were analyzed during this research and may 

be disseminated through ATIS.  The classification related to emissions assigned in Table 15 

was developed considering the global average of total pollutant emissions, shown in white 

bars of Figure 13 for intercity routes.  

The road safety indicator takes into consideration the available data which include the 

number of fatalities and serious injuries that occurred in the study routes over 2010 [140].  

The Equivalent Property Damage Only (EPDO) crash rate was employed and adapted to 

address only accidents with fatalities and serious injuries. Thus, the annual number of 

crashes at each severity level was multiplied by a weighting factor (4 to deaths, and 1 to 

serious injuries) and divided by the average annual traffic to convert into the crash 

frequency – EPDO [141]. 

Table 15 Implementation of a route rating system to the study intercity routes 

Routes Im1 Im2 Ih Iu 

Travel time ***** **** ** ° 
Distance **** **** ° ***** 

Cost ° ***** **** **** 
T. Time Variability ***** ° ** *** 

Preservation ***** **** ** ° 
Singularities ***** **** ** ° 

Incidents ***** **** ** * 
Crash rate frequency (2010) ***** *** ° * 

CO2 Emissions ***** **** ° * 
CO Emissions ° * ** ***** 
NOX Emissions *** ° **** ***** 
HC  Emissions * ° * ***** 

***** Best; º Worst  

 

For those routes examined, the different rated parameters in Route Im1 establish a fairly 

regular pattern. This route is competitive for almost all categories as evidenced by the fact 
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that 8 of its 11 parameters rate four or five stars, thus replicating the advantages of using 

the motorway:  higher safety levels, high pavement quality, no interruptions from traffic 

lights or roundabouts, higher speed, and high reliability. Moreover, this route yields the 

lowest CO2 emissions. By contrast, HC, NOX, and particularly CO emissions take on their 

highest values. The presence of tolls is also negative for this route.   

Route Im2 yields almost the same advantages described for Route Im1. Furthermore, this 

route also provided a key benefit in terms of cost since it had no tolls. However, compared 

to other alternatives, Route R2 has a greater variability of journey times as a result of the 

higher traffic volumes it serves. Like Route R1, this route has good ratings for CO2, and poor 

classification for the other pollutants.  

Route Ih receives an intermediate grade, meaning that it is a better option than Route Iu, 

but worse than the alternative motorway routes.  This route presents the worst ratio of 

injury severity crashes normalized by traffic volume.  Route Iu is advantageous for 

minimizing emissions of CO, HC, and NOX.  For CO2 emissions and fuel consumption, Routes 

R3 and R4 are worse alternatives. 

In summary, there is a trade-off between reductions of CO2 and other pollutant emissions. 

Moreover, routes that reduce CO, HC, and NOX emissions are characteristically unfavorable 

to the drivers, inviting slower speeds, high number of crossings and a higher density of 

incidents and crash frequencies.  
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4.2 ROUTE CHOICE IMPACTS UNDER RECURRENT TRAFFIC CONGESTION  

 

Previous research studies indicate that it is not possible to generalize conclusions, 

considering limited study areas. Thus, more research is needed to evaluate a wider range 

of driving patterns conditions, namely at different periods of the day. A more extensive 

analysis including different scales, and different traffic volumes, as performed here, may 

better reflect the reality and improve the knowledge to develop further traffic 

management strategies. 

In this section the impacts of route choice decision during peak and off peak periods are 

explored.  The main objective is to evaluate the potential of eco-routing systems under 

situations of recurrent congestion and under saturated networks.  Recurrent congestion is 

generally the consequence of factors that act regularly or periodically on the transportation 

system, such as daily commuting [142].  According the user equilibrium theory, travel times 

tend to be equal among the various alternatives as the network is becoming more 

congested. Thus, what could happen to the differences in emissions? Is there potential for 

significant emission reductions? This section focus on the following research questions: 

 Is there a potential for significant emissions savings during traffic congestion 

periods and in different contexts?  

• How do traffic volumes affect emissions on different types of roads? 

• How does modal distribution of a microscopic emission model vary over different 

periods of time and in different contexts? 

• Can recurrent congestion affect the choice of an eco-friendly route? 

4.2.1 Methodological details 

 

The following results were based on road tests performed during weekdays under dry 

weather conditions during the months of February, March and April of 2010 and 2011. In 
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addition to the Urban (U), and intercity routes, the OD pair on the Metropolitan area of 

Hampton Roads, VA in USA is analysed.  

 According to traffic volume data [29,128], the peak period in the Portugal (PT) site was 

considered between 7-9 AM and 5-7 PM while in USA the peak period was considered 

between 6-8 AM and 4-6 PM. So, all trips whose departure time was within this time range 

are defined as peak hour tests. The off peak tests occurred between 10 AM-5 PM (PT) and 

9 AM-4 PM (USA). The USA tests were performed using the same driver, while in the 

Portuguese case-studies, different drivers and vehicles (small family vehicles) were used.    

A statistical test has been conducted to assess if VSP modal distribution between peak and 

off peak periods differed significantly on all routes performed. Since the number of data 

sets (number of seconds of the route) is higher than 30 the two-sample Kolmogorov-

Smirnov test (K-S test) for a 95% confidence level is appropriate to assess if the  probability 

distributions of two samples are different  [143].  

In order to normalize the emission impacts of each pollutant, both for Portugal [135] and 

USA routes [144], specific data on damage cost per mass of pollutant emissions, at the 

national scale was considered. Additional details and the values used to normalize the 

emission impacts can be found in section 3.6. An eco-friendly indicator for route choice 

bases on the predicted damage cost is presented.  

4.2.2 Total emissions per route 

 

In this section, the predicted emissions savings by pollutant that may occur by choosing an 

appropriate route are presented. The influence of the average speed on emissions is also 

examined.  

Before analyzing the results in terms of emissions, a brief analysis of routes characteristics 

in terms of speed, and number of stops is performed. Table 16 presents the average and 

standard deviation of speed, the average time spent in different speed intervals and the 

average number of stops for off peak and peak periods.  
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Table 16 Observed average speed, percentage of time spent in specific speed intervals and typical numbers 
of stops during off peak and peak periods.  

 
  Speed (km/h) Speed range  

(% of time) 
Nº stops Nº of stops 

  𝑿̅ 𝑺𝑫 0-20 
km/h 

21-50 
km/h 

51-90 
km/h 

91-130 
km/h 

𝑿̅ per km 

Im1 
 

Off peak 96.4 3.4 4% 5% 16% 75% 6 0.07 

Peak 89.8 6.5 9% 7% 17% 67% 9 0.12 

Im2 
 

Off peak 94.7 6.2 3% 7% 20% 70% 4 0.06 

Peak 89.6 4.9 5% 9% 23% 63% 5 0.07 

Ih 
 

Off peak 65.4 3.7 8% 22% 48% 22% 11 0.13 

Peak 55.5 4.4 17% 28% 38% 17% 29 0.34 

          

Iu 
 

Off peak 46.0 1.8 14% 39% 46% 1% 31 0.41 

Peak 40.6 2.9 20% 42% 38% 0% 53 0.70 

Um 
 

Off peak 59.1 6.9 13% 36% 26% 25% 4 0.56 

Peak 48.7 6.7 27% 32% 21% 19% 5 0.75 

Ua 
 

Off peak 48.1 3.3 13% 32% 57% 0% 3 0.45 

Peak 38.9 4.1 29% 30% 41% 0% 6 1.00 

Uu 
 

Off peak 29.0 3.2 33% 52% 15% 0% 5 1.30 

Peak 26.0 3.7 42% 46% 12% 0% 8 1.90 

Ma 
 

Off peak 45.1 4.4 30% 21% 37% 12% 29 1.36 

Peak 42.6 8.2 36% 22% 31% 11% 44 2.04 

Mm 
 

Off peak 66.9 4.0 12% 11% 39% 38% 10 0.34 

Peak 56.1 7.7 21% 17% 45% 17% 14 0.48 

 
𝑋̅ – mean, SD Standard Deviation. 

As expected, average speed decreases for all routes during peak periods. The higher 

difference is observed at the routes Ih, Ua and Mm. Moreover the share of time traveling 

at lower speeds increases considerably in these routes, as well as the number of stops 

during peak period.   

Table 17 presents the potential reductions/increases in emissions and environmental costs 

impact [135,144] for each OD pair.  To address possible trade-offs between travel time and 

emissions minimization, each route is compared with the fastest route for each OD pair. 

Since results were relatively similar in both directions of each OD scenario, just one 

direction is presented. The data are split by vehicle type (LDDV and LDGV), OD pair/route, 

and time period (off peak and peak).  
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Table 17 Total emissions per vehicle (CO2, CO, NOX HC), estimated environmental damage cost (ED) and 
travel time (TT) per route during off peak and peak periods. 

 

 

Vehicle Route Period CO2 (g) CO (g) NOX (g) HC (g) ED ($)
TT 

(min)

Off peak 11543 1,54 73,90 0,928 0,688 48,8

Peak 11704 1,55 74,78 0,938 0,697 49,2

Off peak -3% -3% -2% 2% -3% 50,9

Peak -2% -2% 0% 6% -1% 54,3

Off peak 11% 18% -9% 16% 0% 80,1

Peak 12% 22% -10% 22% 0% 90,9

Off peak -3% 10% -34% 13% -21% 97,2

Peak -1% 14% -34% 20% -20% 108,3

Off peak 1187 0,17 5,74 0,098 0,098 8,1

Peak 1135 0,17 5,47 0,094 0,094 8,1

Off peak -16% -12% -28% -10% -22% 8,2

Peak -5% -1% -17% 7% -11% 9,9

Off peak -25% -21% -35% -12% -30% 8,5

Peak -18% -14% -28% 2% -23% 10,0

Off peak 4378 0,636 21,355 0,357 0,842 28,4

Peak 4778 0,681 25,426 0,431 0,971 33,7

Off peak -10% -9% -11% 0% -10% 31,6

Peak -8% -8% -7% 2% -7% 38,0

Off peak 12072 217,03 12,57 4,014 0,372 48,8

Peak 12203 220,20 12,71 4,053 0,377 49,2

Off peak -1% 3% -3% 2% 2% 50,9

Peak 2% 7% -1% 6% 6% 54,3

Off peak 25% -25% 0% -1% 20% 80,1

Peak 30% -29% -1% 1% 24% 90,9

Off peak 23% -59% -22% -18% 14% 97,2

Peak 29% -61% -21% -14% 19% 108,3

Off peak 1429 11,60 1,12 0,340 0,042 8,1

Peak 1377 10,66 1,05 0,329 0,040 8,1

Off peak -10% -41% -23% -19% -12% 8,2

Peak 4% -29% -12% -3% 2% 9,9

Off peak -15% -47% -31% -22% -17% 8,5

Peak -4% -38% -25% -9% -7% 10,0

Off peak 5158 45,08 4,07 1,266 0,660 28,4

Peak 5813 64,19 4,68 1,597 0,803 33,7

Off peak -5% -12% -12% -2% -8% 31,6

Peak -3% -6% -10% 0% -5% 38,0

L
D

D
V

Im2

Ih

Iu

Um

Ua

Uu

Ma

Mm

L
D

G
V

Im2

Ma

Mm

Um

Ih

Iu

Uu

Im1

Im1

Ua
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In the intercity routes (Aveiro-Porto), the motorway options (Im1 and Im2) are clearly less 

time consuming than the alternative routes (Ih and Iu). Compared to the closer alternatives 

and during off peak periods, route Ih has a mean travel time 64% higher in relation to route 

Im1, and route Iu has a mean travel time 90% higher than Im2. During peak periods these 

differences are increased to 85% and 100% respectively. Taking into account the specific 

OD pair under analysis, it seems that the network is not going toward the user equilibrium. 

This can be explained by the local and regional traffic with different origin and destinations 

during peak periods, leading to higher travel time in these routes.   

Regarding LDGV, CO2 emissions data show that motorway routes (Im1 and Im2) lead to less 

CO2 emissions (thus, fuel consumption). However, as described in Chapter 2, NOX and CO 

emissions are mainly generated during acceleration events at higher speeds such as 

observed on motorways. Therefore, in this case there is an evident trade-off between CO2 

and local pollutants minimization, since the routes that minimize local pollutants are the 

slower routes Ih and Iu. For local pollutants, the effect of peak demand is more obvious on 

the motorway routes Im1 and Im2. For Ih and Iu the local pollutants emissions do not change 

significantly during the peak period.  

Concerning urban routes, the peak demand effect is more evident on route Uu (center-

suburbs), although it is still the best route considering the minimization of pollutants 

emissions. This route yields the highest emissions rate per distance but its shorter length 

leads to a reduction in total emissions of all pollutants. On route Um a high variability in 

NOX emissions was noticed which can be to a certain extent explained by different driving 

behaviors.  A detailed analysis of speed and emission profiles has shown that slight changes 

in driving behavior (frequent speed oscillations and more sudden accelerations) can 

produce significant differences in both NOx and CO emissions rates. 

Regarding metropolitan routes (Norfolk-Chesapeake), Mm has the highest total emissions. 

Both at off peak and peak, Ma yielded CO2 emissions saving from 7% up to 10% and CO 

savings of up to 12%. A more detailed analysis showed that on route Ma, CO emissions are 

mostly produced during the 6 km motorway section included in this route due to high 

engine-load conditions. Evaluating the average emission rates per distance CO2 and CO 
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emissions rates on Ma were found to be 1.27 and 1.18 times higher than route Mm. 

However, route Mm is 1.30 times longer than Ma, which makes this route more 

environmentally friendly in terms of total emissions produced.  

Regarding the vehicle type, in terms of environmental damage (ED) costs, LDGV in Europe 

presents about 50% lower values than LDDV in the same routes. This is mainly explained 

by the lower NOX emissions levels produced by the gasoline vehicles. In USA, this difference 

is reduced to approximately 20% because CO emissions (produced principally from LDGV) 

are more valued [144]  than in the European approach for monetization of emissions  [135]. 

For all OD pairs and both type of vehicles a slight decrease in the relative and environmental 

damage costs among the various routes during peak periods is observed. However, both 

costs and emissions savings are still significant.  

Figure 15 shows the evolution in terms of emissions per kilometer of a global (CO2) and 

local pollutant (CO) from LDGV as a function of average speed. Peak and off peak tests are 

displayed in solid and transparent background symbols, respectively.  Motorway routes are 

displayed in blue squares and blue lozenges, arterial routes in red triangles and urban roads 

in golden circles.  

For all OD pairs a general trend of decreasing CO2 emissions (inter route and intra route) 

with average speed is clear. However, according to the literature [145] for average speeds 

values beyond the experimental range (>100 km.h-1), CO2 emissions would tend to 

increase again. In the case of intercity routes, the increase between the routes Iu and Ih is 

caused by variations in slope most significant in the latter. It can be also observed that 

during the peak period, CO2 total emissions show a higher increase on the national roads 

(Ih, Iu), due to higher congestion and travel times. 

Although there is a higher variability in comparison to CO2 emissions, it is visible a general 

trend to emissions increase with speed in the intercity and urban contexts (Figure 15a and 

Figure 15b). A higher variability for both pollutants emissions values is observed in 

metropolitan routes, namely in Ma, as can be confirmed by the dispersion of emissions 

data points in Figure 15c. This can be explained by the fact that a significant distance of Ma 
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is travelled through downtown and covering more signalized intersections. This leads to a 

certain unpredictability in the speed profile. 

 

 

Figure 15 CO2 and CO emissions factor (g/km) vs. average speed (km/h) for LDGV during off peak and peak 
periods for: a) Intercity routes (dir.: Oporto-Aveiro); b) Urban routes (dir.: centre-suburbs); c) Metropolitan 
routes (dir.: Norfolk-Chesapeake).  

4.2.3 Eco-routing indicator 

A suggestion for an eco-friendly route indicator summarizing the previous findings is 

presented in Table 18. Regarding intercity routes the most striking factor is that the best 
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eco-friendly route depends on the type of vehicle. While for LDGV, route Im1 is the best to 

minimize the environmental damage, for LDDV the most eco-friendly route is Iu. Two main 

reasons contribute for this: a) in this indicator (European context), CO emissions are not 

valued; b) in terms of CO2 emissions (and fuel consumption), LDDV are not as penalized by 

stop and go situations as LDGV.  

Table 18 Eco-friendly route indicator based on Environmental Damage costs. 

 

It is also possible to confirm that for all areas and for each type of vehicle, the eco-friendly 

route do not change between peaks and off peak. However, in the metropolitan area the 

most sustainable choice is to travel during off peak hours since during peak period both 

routes are always worse options than traveling during off peak.  Finally, for almost cases, 

selecting a route with less environmental damages implies a higher travel time. The 

exception where this trade-off is avoided is for LDGV in the intercity context. 

4.2.4 Link-based emissions 

 

Link-based emissions were estimated for peak and off peak hours, using the second-by-

second field data for all road segments on metropolitan routes, where detailed traffic data 

were available (Figure 16). Thus routes Ma and Mm have been subdivided in 23 and 15 

sections according VDOT classification (Ma1 - Ma23; Mm1 –Mm 15). Although not 

statistically significant, in the majority of the sections, CO2 emissions during peak are 

consistently higher than during off peak. Mm-4 and Ma-12 are the segments where the 

highest increase at peak hour is experienced. This can be explained by the frequent traffic 
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jams that occur at peak hours since these links serve as connector to the belt roads I-64 

and I-264/I-464, respectively. In I-464 segments (Ma13 to Ma17), there are no significant 

differences between peak and off peak, because even at peak period, a low 

volume/capacity ratio is maintained. On the other hand the I-64 segments (Mm5 to Mm14) 

are more vulnerable to higher traffic volumes, particularly on the northern sections Mm6 

and Mm8. A slight decrease up to 8% (but not statistical significant) in emissions at peak 

period is observed in a small number of sections of route Ma. Furthermore, the average 

speed during peak is higher than during off peak periods. A detailed analysis of speed data 

has shown that this occurs due to the coordination of traffic lights, thus less time spent at 

the red lights in certain arterials during peak hours.  

 

Figure 16 CO2 emission factor (g/km) (CI 90%) and average speed (km/h) during off peak and at peak 
periods for Ma and Mm segments. 
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Figure 17 shows CO2 and NOX emissions under different traffic volumes on an arterial and 

a motorway. It was estimated that in each motorway lane, there is a capacity of 1,700 

vehicles per hour (vph) and in each arterial lane, 850 vph (considering an average g/r ratio 

for through traffic of 0.50).  

The analyzed arterial segment is a 4-lane road with 500 m long covering three signalized 

intersections, one of which is at the interchange with the motorway I-64 (Mm4). Figure 16 

shows that this is the road segment of route Mm presenting a higher difference in CO2 

emissions between peak and off peak. Mm9 segment corresponds to a 3-lane I-64 section 

which extends over 2000 m. According to VDOT data, during the peak period both 

segments have been classified as operating in Level of Service (LOS) E. 

 

 

Figure 17 CO2 (from LDGV) and NOX (from LDDV) emissions (g) as function of traffic volume (vph) for an 
arterial and a motorway segment.  

For the arterial segment, emissions and average speed remain relatively constant up to a 

certain traffic volume level. From that point emissions start to increase exponentially. A 

third-order polynomial was used to fit the data points, shown as solid lines in Figure 17. 
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Although more data points are needed to define a statistically valid trend, these results are 

consistent with previous research [92]. A detailed analysis of speed profiles have 

demonstrated that on Mm4 segment the emissions are strongly dependent of traffic 

congestion, namely the coordination between the traffic flow with the timing of traffic 

signals.  Analyzing the ascending phase of the curve, for higher traffic volumes (>900 vph) 

it can be seen that the increase of one vehicle per hour generates an average increase in 

NOX emissions of 0.1%. 

On the motorway segments, relatively high correlations between CO2, and traffic volumes 

were found and the same trend is observed. Thus, for traffic volume close to the capacity 

estimated, CO2 emissions start to increase. Moreover, a strong correlation between 

average speed and CO2 emissions was found which is consistent with previous research 

[145]. Nevertheless, correlations for local pollutants were not found. It has been shown 

shows that although the average speed remains relatively constant in free flow situations, 

NO and CO emissions show a higher variability.  Figure 18 demonstrates that slight speed 

variations produce a significant impact on local pollutants, namely NOX from LDDV. Thus, 

in similar sections the air quality could be improved significantly by minimizing high-

emitting driving behavior. 

 

Figure 18  Speed and NOX emissions profiles over time for two sample tests with similar average speed (94 
km/h). 
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4.2.5 Analysis of speed data and VSP modal distributions 

Since the frequency of occurrences of each VSP mode controls the total of emissions 

estimated, it is important to understand how VSP modes distribution varies across routes.  

 The columns charts shown in Figure 19 display the average time spent in each VSP mode 

during off peak and peak periods, with the respective standard deviation. The line charts 

above represent the relative contribution of each VSP mode for the total of CO2, CO, and 

HC emissions from LDGV and NOX from LDDV - the major sources of each pollutant. As 

described in section 3.5.1, Modes 1 and 2 represent deceleration modes (negative VSP 

values), whereas mode 3 represents idling or low speeds situations. Modes 4 to 14 describe 

different combinations of increasing and positive accelerations 

For each OD pair, key route attributes are considered. Ma and Mm have comparable travel 

times but Ma is 27% shorter. Im1 and Iu have a similar length, but during peak and off peak 

Im1 allows more than 50% of time saving in relation to route Iu. Route Um is the longest 

urban route but with less travel time.  

Regarding the VSP modes frequency, the routes Um, Im1 and Mm (routes which are 

performed essentially on motorways) have a uniform VSP modes distribution compared 

with routes Uu, Iu and Ma predominantly driven on built-up areas. In the former cases, the 

reduction of speed shifts the distribution towards lower VSP modes. For instance, on Iu 

about 20% (during peak) and 14% (during off peak) of the time is consumed in idling or low 

speed situations and just 4% of the travel time is spent on VSP modes higher than 7.  

The greatest difference between peak and off peak and the higher standard deviations 

intervals occur in VSP mode 3. This is more notorious in route Uu, Iu, and Ma, due to the 

higher number of intersections, illegal parking, work zones and other incidents leading to 

stop and go situations.  
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Figure 19 Relative contribution of each VSP mode for CO2, CO, NOX, and HC emissions at peak period (line 
charts) and VSP modes frequency (column charts) with SD intervals.  
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Each VSP mode contributes differently to the emission of the various pollutants. The 

distribution of CO2 according to the VSP mode follows approximately the same trend of the 

relative frequency distribution of VSP modes. However, CO emissions are mostly generated 

during the occurrence of the higher VSP modes. For instance on Ma, more than 55% of CO 

emissions are generated during the occurrence of the VSP modes 12-14 which represent 

nearly 3% of the travel time. The contribution of each VSP mode for the remaining local 

pollutants (NOX - LDDV, and HC - LDGV) showed a comparable behavior to CO emissions, 

but less sensitive to the higher modes. 

For intercity routes, the D-value of K-S test to 95% confidence level indicated that routes 

Im2, Ih and Iu have not the same distribution on the two periods evaluated (p-value of 

0.0275, 0.0001, and 0.011). Im1 did not present significant differences, since during off peak 

and peak an adequate capacity is available (p=0.999). Regarding the urban scenario, all 

routes have shown no significant differences (p-values ranged from 0.12 to 0.18). The 

metropolitan routes showed the highest difference on VSP modes distribution (p-value = 

0,000). This can be justified by the higher traffic volumes and congestion situations that 

occur during the peak periods in both routes. 

 

4.2.6 Implications for future eco-routing strategies 

 

The results have shown that emissions can be considerably reduced if travelers choose eco-

friendly routes. In the hypothetical extreme case of everyone choosing an eco-friendly 

route, a shift to all-or-nothing assignment from user equilibrium (UE) assignment may 

occur, producing an opposite result to the desired. However, although the results cannot 

be generalized for locations with different characteristics, the empirical results suggest that 

the route with lowest emissions during peak and off peak hours is the same and there is 

room for significant emissions savings during peak hour. Although some specific links of the 

analyzed networks were found to be close to saturation, the difference between total 

emissions produced in each route suggests that the designated eco-routes may 

accommodate a limited number of green routing users. Thus, for realistic market 
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penetration scenarios of eco-friendly navigation systems, they might have sufficient 

capacity to accommodate demand without increasing emissions in the network.  

On the other hand, the selection of the eco-friendly route is not always obvious. For 

example, the intercity routes that yield CO2 savings might also lead to substantial increases 

in other pollutants, such as CO and NOX. Furthermore, even during peak periods and for all 

case-studies, the routes that lead to a minimization of local pollutants are those that mainly 

cross urbanized areas, avoiding motorways. This fact will involve a careful assessment of 

potential externalities that may arise from a purely dedicated navigation system based on 

emissions minimization, since higher volumes of traffic crossing urban areas may lead to 

urban environmental degradation and worse levels of road safety.   

Thus, in addition to the environmental information that can be provided to the drivers, 

some alternative traffic management strategies may be implemented to improve traffic 

operations. Moreover, the policies focused on eco-traffic assignment must necessarily be 

accompanied by efforts to promote eco-driving.  The implementation of speed 

management/harmonization techniques on motorways aiming at reducing excessive high 

speeds and consequent high emissions levels can be helpful. It can also facilitate the 

minimization of the trade-off between the minimization of fuel/CO2 emissions and other 

pollutants, and make less attractive (from the total emissions perspective) the routes that 

cross the urban centers.  

When there is no real-time information, pre-trip planning programs can consider the 

variability of emissions on each link, based on different time periods and estimate the best 

route for a specific period. Clearly, this is only a valid option, assuming that the impact of 

these programs will not have a substantial impact on the equilibrium of the network. In a 

more advanced Intelligent Transportation System (ITS) scenario, in which vehicles are 

routed dynamically in the network, the changes in traffic volumes between the various 

routes can be significantly higher. In this scenario, one must consider the road segments 

capacity and the network configuration, in order to assess the system-wide impacts on 

emissions. Real-time or historical link based-emissions, such as the information generated 
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in this study, can be incorporated in pre-trip planning software to determine the most eco-

friendly route. 

4.3 UNEXPECTED CONGESTION 

In previous sections, the behaviour of various pollutants in free-flow conditions and 

recurrent congestion were analysed. This information is useful for predicting the 

performance of the examined routes under normal operating conditions. In this section, 

the behaviour of various pollutants under a situation of unexpected congestion (UC) is 

analysed. The case study is the route Mm. Due to a security exercise at the military base of 

Norfolk (the world's largest naval station), one lane of the main arterial serving the military 

base was reserved.  This change has caused considerable congestion in part of the 

metropolitan road network during the morning rush hour including several sections of 

route Mm. The test carried out in this period was analysed separately and compared with 

a regular test conducted during a similar period under recurrent congestion (RC) (7h30 

AM). 

4.3.1 Analysis of speed data and VSP modes distribution  

Figure 20 shows a comparison of second-by-second speed data logs and VSP modes under 

RC and UC.   Under RC there are three points in the vicinity of three interchanges where an 

increase in traffic density and lower speeds are observed (see yellow arrows in Figure 20). 

The red arrow indicates the local where the reduction of capacity took place during the 

event, while the white arrow indicates the point where the congestion shocking wave 

started. From that point, there is a significant increase in congestion levels and speed 

decreases sharply.  It is also possible to verify the increase in the frequency of lower VSP 

modes over the traffic congestion zones.  Figure 21 shows average speed over distance.  

The average speed was calculated in sections of 290, corresponding to one hundredth of 

route length). 
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Figure 20 Second-by-second data point of speed and VSP modes under recurrent congestion and 
unexpected congestion 

 

Figure 21  Average speed over recurrent and unexpected congestion scenarios. 
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4.3.2 Emissions behaviour  

Figure 22 illustrates the cumulative difference of travel time over distance, and the relative 

difference in cumulative emissions between unexpected and recurrent congestion.  At this 

stage, the analysis is focused on the emissions of CO2, CO and HC from LDGV and NOX from 

LDDV, the main sources for each pollutant. Delays compared to recurrent congestion 

situation had begun to be observed after 20% of the total distance had been covered.  In 

the end, a delay of almost 144 min (travel time 388% higher than under RC) was observed. 

The bottleneck has caused a more significant impact on fuel consumption (and thus CO2) 

and HC emissions. While the emissions of these pollutants have increased by 200%, CO and 

NOX increased 36% and 110 %, respectively.  

 

 

Figure 22 Cumulative delay over distance and relative difference in cumulative emissions between 
unexpected and recurrent congestion.  

In order to examine the source of these differences, Figure 23 shows the relative change 

between the frequencies of VSP modes under UC and RC. Figure 24 indicates the 

contribution of each mode for each pollutant in both RC and UC tests.  

-50%

0%

50%

100%

150%

200%

250%

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100
C

u
m

u
la

ti
ve

  E
m

is
si

o
n

s 
d

if
fe

re
ce

D
e

la
y 

 (
m

in
) 

Percentage of distance traveled 

Delay (min)

HC LDGV (%)

CO2 LDGV (%)

NOX LDDV (%)

CO LDGV (%)



 

Department of Mechanical Engineering 

87 EMPIRICAL EVIDENCES OF ROUTE CHOICE IMPACT ON EMISSIONS 

 

Figure 23 Difference of VSP modes distribution between unexpected and recurrent congestion. 
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.

 

Figure 24 Relative amount of CO2, CO, HC and NOX emitted in each mode vsp under RC and UC. 

 

Regarding the Influence of vehicle type under unexpected congestion LDGV presents a 

lower relative increase than LDDV for NOX and HC. For CO2 (and fuel use) there is a less 

significant variation in LDDV.  

Regarding CO, LDDV present a considerable worse behaviour (more variation), however 

the absolute amount of emission is less than two orders of magnitude in comparison to 

LDGV. This can be explained because diesel engines produce lower amounts of carbon 

monoxide since they operate in excess air.  

Overall, using a weighing factor based on economic costs [144] it appears there is a less 

significant variation in LDDV (Figure 25). 
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Figure 25 Variation in emissions under UC for LDGV and LDDV 
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However, some limitations must be considered when implementing these systems. 

Namely, it was observed that the selection of an eco-friendly route selection is not always 

clear since: 

• The eco-route could depend on the type of vehicle used; 

• In some cases the routes that allow a minimization of pollutants can cross urbanized 

areas. This fact should involve a careful assessment of potential externalities that may arise 

from a purely dedicated navigation system based on emissions minimization; 

• In the intercity OD pair, a trade-off between CO2 vs. local pollutants minimization 

has been observed. Therefore, it must be emphasized, that the concept of “eco-friendly” 

should not be strictly confined to CO2/fuel consumption. 

Regarding the analysis of emissions behaviour under extreme situations of traffic 

congestion, HC and CO2 have shown to be the pollutants more affected by extreme 

congestion.   

This chapter has focussed on different parameters of route choice impacts under different 

traffic conditions.  The next chapter will apply a similar methodology, based on second-by 

second GPS data and the VSP model, to explore the impact of the introduction of tolls on 

route choice and its consequences in terms of emissions and energy use on the road 

network.  
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5 USING EMPIRICAL DATA TO ASSESS THE IMPACT OF INTERCITY TOLLS 

ON EMISSIONS 

Innovative road pricing schemes are suggested as a way to promote the use of public 

transportation and the gradual introduction of alternative propulsion systems [1]. 

However, the introduction of extensive, national road pricing systems should involve 

careful impact analysis [14].  Regarding sustainability impact assessment, the European 

Union (EU) requests a detailed evaluation of the full effects of a policy proposal that should 

comprise the estimation of economic, environmental and social consequences [1].  

In the standard traffic network equilibrium model, a marginal-cost toll can drive a user 

equilibrium flow pattern to a system optimum [146]. In terms of environmental impacts, 

several studies have focused on the emissions impact assessment of cordon tolls 

introduction in urban areas [147–150]  and it has been demonstrated that road pricing 

shows potential as an air quality management tool. However, limited research has been 

conducted to address the emissions impact of tolls introduction in intercity corridors. 

Therefore, the introduction of tolls on a Portuguese motorway, and over the current 

intercity study domain, was a valuable opportunity to assess its consequences in different 

contexts.  More specifically, this section aims to estimate the impact of tolls introduction 

in terms of: 

- Traffic distribution changes on the network 

- Speed performance in different segments during different periods  

- CO2, NOX, CO and HC emissions and fuel consumption for light duty vehicles (using 

a micro-scale modeling approach) 

 

5.1 STUDY AREA DESCRIPTION  

A new electronic toll collecting system has been introduced on several motorways in 

Portugal (which were toll free before 15 October 2010).  One of these cases is the A29 
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motorway (Im2 route in the current work notation), which connects the cities of Aveiro and 

Oporto. To connect these cities, there are four parallel alternatives roads (A1-Im1, A29-Im2, 

N1-Ih and N109-Iu) that can be accessed via A25 (see Figure 26). In addition, a rail system 

with 50 daily connections is available as an alternative.  The study area was divided into 6 

sections (S0-S5), based on the latitude of the A1 interchanges and coinciding with the main 

East-West axes that cross the four main alternative routes (Figure 26). Figure 27  (left) 

shows the ADT on the motorways, before and after tolls introduction.  Until September 

2010, A29 was the favorite option for the majority of drivers because unlike A1, this 

motorway had no tolls.  After the tolls were introduced on A29, about 50% decrease in the 

ADT was observed. Since A29 has a higher number of interchanges, the average traffic in 

each main section was estimated. As there was no traffic monitoring on the national roads, 

Figure 27 (right) provides an estimate of ADT on these routes. The ADT values before the 

introduction of tools were based on traffic volume data available in noise impact reports 

[151] (S1-S4 for N109 and S4 for N1). For the remaining sections without the availability of 

information, 7 h of video data at 6 key points of Ih and Iu hour were collected during the 

evening peak hour.  Using a peak hourly factor of 8.22% (EP, 2010), the ADT was estimated. 

 

Figure 26 Study routes map, sections considered for analyses, and toll fees introduced on A29 (Im2) 
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Figure 27 ADT traffic before (B) and after (A) tolls introduction on A29, A1, and c) estimated ADT in N109, 
N1 sections (based on EP, 2011 and noise reports) $ - After tolls introduction 

 

After the introduction of tolls, it is still unknown the exact number of drivers that have 

abandoned the motorways and selected other options including the traffic diversion to 

alternative free-toll roads, changes for other modes or destinations and cancelled trips. 

Thus, the error bars sets the possible maximum and minimum range values of the ADT after 

the introduction of tolls.  

Figure 28 provides a scheme of the traffic flows studied in this section. This research 

focused specifically on the impacts caused by the traffic diversion from A29 to the 
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data on the N109 and the N1 were available, different scenarios of traffic distribution 
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after tolls introduction on A29 was calculated based on the traffic increase observed on the 

A1. This assumption is strengthened by the fact that, the ADT was relatively stable (before 

the introduction of tolls) and there were no significant changes in the transportation 

network. During the last quarter of 2010, a 4.5% increase in the number of passengers 

transported by rail was observed in the rail system parallel to the previous free motorway.  

However, the effect of the recent rises in public transportation fees and the reduction in 
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depending on conditions (Spears et al. 2010). However, considering the high degree of 

uncertainty of these values, different scenarios considering several levels of traffic 

reduction are presented.  It was assumed that the traffic fleet composition remains 

identical after tolls introduction.  

 

Xi - ADT that used to travel on section si of A29 and changed to A1, Yi - ADT that used to 
travel on section si of A29 and changed to N109, Zi - ADT that used to travel on section si of 
A29 and changed to N1, TR - ADT that used to travel on section si of A29 and changed to 
other modes/ cancelled the trip. 

Figure 28 Scheme of the studied traffic flows  

To characterize fleet composition (namely diesel and gasoline passenger vehicles 

proportion), statistical data of Portuguese Automotive Commercial Association [152] were 

used. Thus, it was considered that light duty gasoline vehicles (LDGV) and light duty diesel 

vehicles (LDDV) represent 54.6% and 45.5% of the light duty fleet composition respectively. 

Since this research is focused on Light Duty Vehicles (LDV), heavy vehicles and motorcycles 

were not considered. According traffic data on a southern section of N1, LDV represent 

80% of the fleet composition [127]. 

5.2 FIELD DATA COLLECTION AND EMISSIONS ESTIMATION 

 

Three distinct data sets were collected for all routes in both directions - NPH tests (Non-

Peak Hour) - February, March, and April 2010,  - PHB tests (Peak Hour Before tools 

introduction) - September, and October 2010, - PHA tests (Peak Hour After tools 

introduction) - February, March, and April 2011.  The peak period was considered to occur 

between 7:00-9:00 AM and 5:00-7:00 PM. The off-peak test runs were conducted between 

10:00 AM-5:00 PM. 
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Table 19 indicates the number of tests as well as travel times and average speed data 

according to route and period. All field tests considered in the study were carried out during 

weekdays under dry weather conditions. Due to rainy weather, road works or road 

accidents the set of valid PHB tests on A1 and N1 was rather limited.  It is possible to verify 

that the toll-free alternative roads N1 and N109 lead to a considerable increase in travel 

time. While the introduction of tolls has caused a reduction in travel times on A29, no 

significant changes were observed among the alternative routes. Although the data field 

collection took place between the Aveiro and Porto city centres, this analysis will focus 

essentially on sections S1 to S4 that contain A29 sections with new electronic tolls. 

Emissions estimation was based on VSP methodology which was described in previous 

sections.  

Table 19 Number of test runs (n), speed and travel times during field data collection (m – mean; P95 - 
Percentile 95%)    

  Travel time (min) Average Speed (km/h) 

  NPH PHB PHA NPH PHB PHA  
3NPH 

PHB PHA 

 N   N  N  𝑿̅ P95 𝑿̅ P95 𝑿̅ P95 𝑿̅ P95 𝑿̅ P95 𝑿̅ P95 

A1 (Im1) 12 2 16 48 52 49 51 51 57 96 103 95 100 91 96 

A29 (Im2) 12 8 16 51 68 64 83 51 56 91 101 75 93 90 95 

N1 (Ih) 12 3 16 80 90 97 103 94 108 65 71 54 57 56 62 

N109 (Iu) 12 7 16 97 104 108 117 110 130 46 49 42 47 41 45 

𝑵 −𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒆𝒔𝒕𝒔, 𝐗 −𝐦𝐞𝐚𝐧 𝐏𝟗𝟓 −  𝟗𝟓𝐭𝐡 𝐏𝐞𝐫𝐜𝐞𝐧𝐭𝐢𝐥, NPH – Non Peak Hour, PHB, Peak Hour Before the 

introduction of tolls, PHA - Peak Hour Before the introduction of tolls 

5.3 AVERAGE SPEED AND EMISSIONS PER SECTION  

Figure 29 a) shows the average speed on two representative sections (S3 and S4), routes 

and time period in which the test run were carried out. Figure 29) b and c) shows the 

average total CO2 and CO emissions produced for one generic LDGV.  For both sections it is 

clear that the speed is mainly dependent on the route choice. However, a higher variability 

in section 4 was noticed due to higher congestion levels near Oporto suburbs.   The average 

speed on A29 is higher after tolls introduction, due to the average 50% decrease in the 

traffic volume.  During peak hour this difference is statistically significant (p=0.05) on 

section 4 of A29 where a higher reduction of traffic volume was detected.  In fact, after the 
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introduction of tolls, a free flow regime is observed on both motorways. On the other hand, 

a slight decrease in average speed (but not statistically significant) was observed on N109. 

  

 

 

Figure 29 a) Average speed, b) CO2 and c) CO emissions per vehicle (LDGV)   according to section, route and 
period (includes T-student 95% confidence intervals). 
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It is clear that for all sections the motorway options (A1 and A29) lead to CO2 savings when 

compared with the national roads (N1 and N109).  However, regarding CO, NOX and HC, 

emissions an opposite trend is observed.   A comprehensive analysis of the time spent in 

each driving VSP mode showed that the higher frequency of high VSP modes on motorways 

leads to a significant increase in local pollutant emissions.  On the other hand the higher 

travel time and a high occurrence of VSP modes 3 and 4 (caused by situations of idling and 

slow speeds) on national roads lead to an increase in fuel consumption and CO2 emissions. 

Emissions factors per link are also primarily dependent on the route choice whereas the 

time period does not have a significant impact. 

5.4 EMISSIONS AND FUEL CONSUMPTION IMPACT OF TOLLS INTRODUCTION 

The impact of tolls introduction in terms of emissions and fuel consumption was analysed 

taking into account the traffic diversion from A29 to the alternative routes. It should be 

noted that on alternative routes, no statistically significant (95% level) differences in 

emissions factors were found regarding the introduction of tolls during peak hour periods. 

This can be explained because i) A1 motorway absorbed a substantial portion of the traffic 

and had enough capacity to accommodate the extra demand, ii) the remaining traffic was 

distributed evenly on alternative roads without significantly increasing traffic flows.  A 

rough estimation of the traffic volumes per hour during the peak period was carried out. It 

was found that after the introduction of tolls, the traffic volumes per hour/lane may not 

exceed 1100 vehicles over the sections 1-4 of N1 and N109. This fact suggests that the 

capacity of the infrastructures is not clearly reached and consequently the speed and 

emission factors remain relatively stable.  

Thus, it is reasonable to assume that, in terms of total emissions, the main impacts are 

related to the vehicles that previously used A29, but after the introduction of tolls may 

have moved to other routes with different emissions profiles. Table 20 shows the 

estimation of daily differences in total emissions after introduction of tolls, which is based 

on Eq. 9 for all pollutants.  Since it is unclear how many drivers have diverted to national 

roads, emissions changes were calculated according distinct traffic reduction levels and 
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considering that the traffic volume diversion from A29 was correspondingly distributed 

among N1 and N109.   

𝐷𝐸𝐶𝑖  =  𝐷𝐸𝐴𝑖𝑖 − 𝐷𝐸𝐵𝑖 Eq. 9 

Where: 

𝐷𝐸𝐵𝑖 = (𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖). 𝑘. 𝐸𝑖/𝐴29/𝑃𝐻𝐵+(𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖). (1 − 𝑘) 𝐸𝑖/𝐴29/𝑁𝑃𝐻 Eq. 10 

𝐷𝐸𝐴𝑖 = {𝑥𝑖. 𝑘. 𝐸𝑖𝐴1 𝑃𝐻𝐴 + 𝑥𝑖(1 − 𝑘). 𝐸𝑖𝐴1 𝑁𝑃𝐻+} 

+(1 − 𝑇𝑅){𝑦𝑖. 𝑘. 𝐸𝑖𝑁109 𝑃𝐻𝐴 + 𝑦𝑖(1−𝑘). 𝐸𝑖𝑁109 𝑁𝑃𝐻+𝑧𝑖. 𝑘. 𝐸𝑖𝑁1 𝑃𝐻𝐴 + 𝑧. 𝐸𝑖 1 𝑁𝑃𝐻} 

Eq. 11 

Where: 
 
i – Section i (S1 to S4) 
DEBi - Daily Emission before toll introduction on section i  
DEAi - Daily Emissions after toll introduction on section i 
DECi - Daily Emission change on section i 
Ei- Average total emissions on section “i” on Route A29/A1/ N1/N109 during NPH/ PHB/ PHA 
k – Traffic Volume Ratio at Peak hour  
TR- Traffic reduction (shift to public transportation and avoided trips)  
xi – Estimated ADT  that used to travel on section si  of A29 and changed to A1 
yi - Estimated ADT volume that used to travel on section si  of A29 and changed to N1 
zi - Estimated ADT volume  that used to travel on section si  of A29 and changed to N1 
 

Table 20 Estimated net changes in daily (system) emissions after the introduction of tolls by section according to 

different scenarios of traffic reduction   

TR CO2  
(TON/DAY) 

NOX 

 (KG/DAY) 
CO  

(KG/DAY) 
HC 

 (KG/DAY) 
FUEL 

(106€/YEAR) 
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 Total 

0% 16 27 47 82 -53 -9 0 4 -346 -541 -1 81 -4 -6 1 1 3.58 

5% 3 4 40 66 -56 -86 -2 1 -352 -555 -3 75 -4 -6 1 1 2.32 

10% -10 -2 34 5 -59 -92 -3 -2 -358 -569 -5 69 -4 -7 0 0 1.06 

20% -35 -65 20 18 -65 -13 -6 -9 -38 -596 -9 56 -5 -7 0 0 -1.46 

TR -Traffic reduction scenarios: O% - All traffic that diverted from motorways, shifted to the N1 and N109. 5% 10% 20% - Percentage of 

drivers that diverted from A29 (section i) but did not select N1 or N109  (choose the shift to public transportation or avoided the trip)  

 

Regarding CO2 emissions and fuel consumption, the introduction of tolls has caused a 

negative impact on these parameters.  In road sections 3 and 4 even with a hypothetical 

20% decrease in traffic volume, the emissions would increase. These sections are 

particularly sensitive because there is a higher density of intersections and traffic lights 

leading to the increase of the fuel consumption and CO2 emissions. The last column of Table 
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20 shows the estimation user’s annual fuel costs related to the change in the traffic 

distribution. This estimation was based on the average gasoline and diesel prices in 

Portugal, on the October 21, 2013.  It is clear that the introduction of tolls leads to the 

decrease of local pollutants emissions, namely NOX and CO which is consequence of less 

traffic circulating on motorways. It should be noted that the differences in section 3 and 4 

were minimized because a significant volume of traffic has changed to A1 where speed 

limit is higher than A29 (120km/h - A1; 100 km/h - A29) leading to an increase in local 

pollutants emissions.  Figure 30 shows the relative impact of tolls introduction and different 

levels of traffic reductions (considering all sections). 

 

Figure 30 Relative changes in total (system) emissions (due to tolls) on all routes for different levels of 
traffic reduction. 

  

Since it was demonstrated that at different periods (with different traffic volumes) 

emissions did not vary substantially, it was assumed that in the sections analysed, the 

emissions vary linearly with traffic volume.  Regarding CO2 emissions, only for traffic 

reduction values higher than 17%, it is possible to offset the emissions increase related to 

the traffic diversion from the A29 (Im2) to the national roads (Ih and Iu).  Concerning local 

pollutants, considerable reductions are achieved for all scenarios. A what if-analysis of 

different and extreme scenarios of traffic distribution among the national roads N1 and 
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N109 was performed. However, given that the emissions factors in N109 and N1 are 

relatively similar, a little impact on total emissions between the extreme cases (100% of 

traffic shifting to N109 and 0% for N1 and vice-versa) was observed (up to 3% for CO2 and 

5% for local pollutants).  

5.5 CONCLUDING REMARKS 

This chapter has provided an empirical assessment of the impact of tolls introduction on 

an intercity corridor. Based on second-by-second vehicle dynamics data collected 

immediately before and after tolls introduction, emissions and fuel consumption for a 

generic light passenger vehicle were estimated. Then, taking into account the ADT data 

from motorways, an extrapolation of total emissions change was done. 

More than the period of the day (peak and non-peak) and the presence or absence of tolls, 

the selection of a specific route has shown to be the most important factor regarding the 

emissions factors on the analysed sections. Seemingly, although 25000 vehicles per day 

have shifted from A29 to alternative routes and modes, the new traffic distribution after 

the introduction of tolls had no significant impact on the performance of network in terms 

of speeds, travel times, and emissions factors. Thus in terms of total emissions the main 

changes are the result of the traffic deviation from A29 to the alternative routes. Since it is 

unclear the volume of traffic reduction caused by the introduction of tolls, different 

scenarios of traffic reduction were performed. It was found that unless there was a 

significant decrease in traffic volume (higher than 17%), CO2 emissions and energy 

consumption may increase up to 10%. For local pollutants, a significant decrease (between 

15% and 40%) is expected considering only the traffic volume that left the A29. 

While in Chapters 4 and 5, the impacts of the choice of route have been based on a set of 

pre-defined routes, in chapter 6, empirical data will be incorporated into computational 

models in order include additional environmental criteria into existing routing algorithms.  
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6 INCORPORATING EMPIRICAL DATA ON COMPUTATIONAL 

METHODS FOR ROUTE IMPACTS ASSESSMENT 

 

With the increased adoption of GPS and mobile computing, increasingly sophisticated 

routing solutions are becoming mainstream. Although research into adding environmental 

factors to route planning had been going on before the recent technological leap, current 

commercial applications usually just focus on shortest path or minimum travel time.   

The main objectives of this chapter are: i) to investigate how empirical data can be 

exploited for developing eco-routing strategies; ii)  to develop an integrated simulation 

platform of traffic and emissions, validated with real world data.  

Section 6.1 focuses on the integration of multiple computational tools towards the 

objective of assessing emission impacts of different links and then compute optimal eco-

routing solutions.  Data from real life GPS tracks was integrated with traffic emission 

modelling for multiple pollutants (NOX, HC, CO and PM10) to investigate different routing 

strategies.  

On the other hand, in Section 6.2 it is intended to employ GPS empirical data to calibrate 

and validate an integrated microsimulation platform of traffic and emissions.  Figure 31 

clarifies these conceptions. Fundamentally, this chapter establishes the link between the 

empirical assessment of  route choice that have been  performed in chapter 4, and the 

analytical approach that will be conducted in chapter 7 to analyse eco-traffic management 

strategies.  

Both works presented in this study have been conducted under the scope of the 

SMARTDECISION project. 
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Figure 31 Integration of empirical data with different computational platforms used in chapter 5. 

 

6.1 INTEGRATED COMPUTATIONAL METHODS FOR TRAFFIC EMISSIONS ASSESSMENT AND 

ECO-ROUTING INFORMATION 

 

In previous chapters, empirical GPS data have been integrated with traffic emission models 

to investigate different route choice impacts in terms of emissions. This assessment was 

based on a set of pre-established paths. However, a real eco-navigation algorithm (focused 

on emissions minimization) should be based on environmental cost functions to generate 

a set of alternative paths. Additionally, one of the main conclusions is that different 

pollutants can dictate different best routes. Hence, strategies for assigning relative weights 

to pollutants are incorporated in the routing algorithm.  

Real world GPS data from the intercity context has been processed on three different 

platforms: C# on Visual Studio, ArcGIS and MATLAB.  

The post processing work has been allocated between the platforms as follows: 

• ArcGIS: GIS platform for storing, manipulating and visualizing map data; 

GPS data

ArcGIS: GIS platform 
storing, manipulating 

and visualizing map data

C#: Platform for emissions calculation

MATLAB: Route Planning 
and data analysis 

VISSIM: traffic 
simulation

MS Excel and SPSS
Statistics, model 

evaluation, optimization.

Section 6.1 Section 6.2

Chapter 4 (empirical 
data)

Chapter 7 (Eco Traffic 
Management strategies) 
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• C# (Visual Studio): numerical computing environment used to implement the 

emission calculations using VSP and CORINAIR [7] methodologies; 

• MATLAB: numerical computing environment used for integration, route planning 

and data analysis. 

 

6.1.1 Study domain and emissions estimation 

 

In this section, second-by-second GPS data recorded in the urban and intercity contexts 

over peak and off peak periods (approximately 11550 km) have been considered. 

Additionally, in order to allow the switch between itineraries at various points of the 

network, four new road sections (N224, N223-N227, A41, A29) connecting the previous 

study routes (Im1, Im2, Ih, Iu) have been considered (see Figure 32). Vehicles equipped with 

GPS were driven in these roads, in both directions, totalling extra 650 km of GPS data.   

Emissions modelling has been implemented using two different methods: a) VSP 

methodology for instantaneous speeds and b) the CORINAIR3 methodology for average 

speeds [7]. To estimate average emissions per link, the VSP methodology was applied in 

97% of this network, whereas the CORINAIR methodology was used in the remaining 3% 

where GPS data were not available. (These sections correspond to certain motorway and 

highway interchanges). CORINAIR methodology was also used to estimate PM emissions 

used due to the lack of accurate information on VSP emission factors for particulate matter 

(PM) from LDGV. Figure 33 outlines the methodologies used to estimate emissions.  

 

                                                      
3 Hot emissions (g/km) for Euro 1 and later gasoline and diesel passenger cars are calculated as a function of 
speed.  The generic functions are: 
Gasoline: EF = (a + c * V + e * V²)/(1 + b * V + d * V²)  
Diesel: EF = (a + c * V + e * V²)/(1 + b * V + d * V²) + f/V  

The values for the coefficients of the function can be found elsewhere [7]. 



 

 

 University of Aveiro 

104 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

 

Figure 32 Study domain 

 

Figure 33 Layout of the methodologies used to estimate emissions 



 

Department of Mechanical Engineering 

105 
INCORPORATING EMPIRICAL DATA ON COMPUTATIONAL METHODS FOR ROUTE 

IMPACTS ASSESSMENT 

Under the R&D project SMARTDECISION, a C# code was developed to compute the second 

by-second data using GPS data, vehicle characteristics and to generate emissions 

information per link. Data is organised in terms of vehicle type with one data structure per 

type. Each type contains groups of two dimensional matrices, where each matrix 

corresponds to the weights of the map’s graph. Once all the emission data have been 

calculated through the C# implementation of VSP and CORINAIR, each link of the network 

acquires new attributes.  

The original geospatial map can be visualised as a weighted graph, the weights of whose 

edges correspond to the lengths of each road network segment. With the addition of the 

emission data, each link acquires multiple features; depending on the selected criterion for 

optimization (e.g. distance, time, pollutants or fuel consumption).  Since GPS data have 

been recording during peak and off peak periods, these attributes can represent different 

periods of congestion according the time of day. All these criteria are integrated as shown 

in Figure 34. 

  

Figure 34 Overall structure of map data. 
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Data are organised in terms of vehicle type, which in turn contains groups of two 

dimensional matrices. Each matrix corresponds to the weights of the map’s graph. Thus, all 

matrices code for the same topological map but each one contains different link attributes.  

Data are divided in two main categories, time independent (e.g. distance) and time 

dependent (Travel time, CO2, NOX, HC, PM). Time dependent data is organized in a set of 

24 matrices (one per hour) for each criterion used.  

In order for a route to be estimated, the data structure appropriate to the vehicle type in 

question is selected. Then, the appropriate criterion is chosen and, if time dependent, the 

matrix corresponding to the hour of day required is selected.  

 

6.1.2 Route Planning 

 

Once the data have been organised as described, route planning can be implemented using 

MATLAB.  In this approach, a static matrix for each criterion is used. Thus, the route 

planning assumes that the following two conditions are satisfied: a) the eco-routing 

vehicles are not enough to change the conditions of the network operation, b) conditions 

are assumed to remain constant during the overall travel time of each eco-routing vehicle.   

Taking into consideration the type of vehicle, time of day and a pair of origin/destination 

(O/D) nodes, the appropriate matrix is used, and a shortest path is calculated for each 

criterion graph search algorithm. 

The graphshortestpath function of MATLAB’s Bioinformatics Toolbox offers different graph 

theory tools and algorithms that can be used for purposed of  route optimization, such as 

the Dijkstra [153] and Bellman-Ford [154]. Both algorithms have returned similar results in 

terms of minimizing the selected criteria. However, Bellman-Ford is slower than Dijkstra's 

algorithm for the same problem. In fact this algorithm is more suitable for handling graphs 

in which some of the edge weights are negative numbers, which is not the case of the 

current map structure.  Previous research has demonstrated the feasibility of estimation 

optimal routes based on Dijkstra algorithm with extended data structure [100,155]. 
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The Dijkstra algorithm calculates the shortest path between two points on a network using 

a graph made up of nodes and edges. It assigns to every node a cost value, set it to zero for 

source node and infinity for all other nodes.  

The algorithm can be defined by the following steps [99]:  

1. Start with the source node: the root of the tree.  

2. Assign a cost of 0 to this node and make it the first permanent node.  

3. Examine each neighbour node of the node that was the last permanent node.  

4. Assign a cumulative cost to each node and make it tentative.  

5. Among the list of tentative nodes:  

 i) Find the node with the smallest cumulative cost and mark it as permanent. A 

permanent node will not be  

ii) Checked ever again, its cost recorded now is final.  

iii) If a node can be reached from more than one direction, select the direction with 

the shortest cumulative cost.  

6. Repeat steps 3 to 5 until every node becomes permanent 

6.1.3 Case study – Assessing different criteria for minimizing local pollutants impacts 

 

In this section different strategies for the minimization of pollutants with direct effect on 

human health are analysed. The paths calculated this way offer a different mix of criteria 

costs which can have very different value ranges. Two  different approaches for assigning 

relative weights to each pollutant were considered: human health impact – based on eco-

indicator 99 [133] and current atmospheric pollutant concentrations (see section 3.6 for 

further details about the eco-indicator 99 methodology). 

The origin is in the city of Oporto and the destination in the city of Aveiro. Figure 35 shows 

the predicted emissions of the different pollutants for a light passenger gasoline vehicle at 

9 AM. Thicker lines indicate higher predicted emissions of a pollutant for a given network 

segment. 

 



 

 

 University of Aveiro 

108 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

 

Figure 35 Pollutant estimations for NOX, CO, HC and PM10 (from the left to right) at 9 AM. 

 

 

Figure 36 Best paths for various criteria at 9 AM. 

 

Figure 36 shows the best paths for the different criteria. Note that, while there are 5 criteria 

(4 pollutants and distance), there are only 4 best paths. This is because HC and PM have 

the same best path (path 4), while the path for best distance (path 1) does not coincide 

with a best path for any pollutant.  
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 The relative values for the criteria are shown in Figure 37 where each criterion is expressed 

as a percentage of its best (lowest) value. It can be observed that there is little variation in 

distance across the paths. The longest path (2) is only 3% longer than the shortest path (1). 

In contrast, the highest variability among the pollutants is exhibited by CO, whose worst 

value (at path 4) is 93% higher than its best (path 3). The lowest variability among the 

pollutants is exhibited by NOX, whose worst value (path 1) is 10% higher than its best (path 

2). 

  

 

Figure 37 Relative values of the criteria expressed as percentages of their lowest value. 

In order to assess which of these paths a vehicle should actually take, these results must 

somehow be compared.  

The first comparison strategy is based on health impact as laid out in Eco-Indicator 99 (see 

section 3.6).  The values for all pollutants and paths are shown in Figure 38. Since PM levels 

are much lower than the other pollutants, a log10 scale graph was selected in order to all 

pollutants emissions be shown more clearly.  
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Figure 38 Absolute values for NOX, CO, HC, and PM10 for different paths. 

 

Using the weights of Table 9 (eco-indicator 99 [133]), the health impacts can be calculated 

by multiplying the mass value of each pollutant with the corresponding damage value 

(Figure 39).  This methodology express the Damage to Human Health as the number of year 

life lost and the number of years lived disabled. These are combined as Disability Adjusted 

Life Years (DALYs) [133]. Taking into account the relative damage assigned to each 

pollutant, shows that this approach almost completely remove the dominance of CO and 

replace it with NOX, while HC and PM become negligible. Because the variation in NOX 

among the paths is lower than in CO, the overall variation among the paths is lowered.  

Considering this method for normalization of emissions impacts assessment, paths 2 and 3 

outperform the others.  
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Figure 39 Health impact of NOX, CO, HC, and PM10 for different paths. 

The second strategy is related to current atmospheric pollutant levels. For this example, air 

pollution levels in the city of Aveiro on the 16th of July 2012 were selected.  The historical 

data available in this case are NO2
4, CO and PM10. On this day, NO2 was at 17% of its limit 

value, while CO and PM10 were at 2.8% and 68%, respectively.  

Two straightforward weighting strategies have been explored here. In the first case (Figure 

40a) the weights are taken directly from the limit value percentages (LVP) (e.g. 0.17, 0.028 

and 0.68 for NO2, CO and PM10 respectively). In this case, there is a slight increase in the 

importance of NOx relative to CO, and PM10 becomes more noticeable. However, CO still 

dominates the sum, making paths 2&3 (corresponding to best NOX and best CO 

respectively) the highest ranked.  

However, a transport decision maker may want to prioritize the pollutants whose 

concentration in the atmosphere is closer to the legal limits. The optimal criteria for 

selecting a path can be more heavily biased towards the pollutants closer to their limit by 

raising the weights to some exponent. To illustrate this Figure 40 b-d shows the same 

scenario but, in these cases, the percentages have been raised from 2 to the 4th power. 

The effect of CO becomes negligible and PM10 becomes the dominant criterion as the 

                                                      
4 Although the concentrations ratio NO / NO2 can vary over time, for purposes of demonstration of the 
methodology, NOX emissions are associated with values of concentration of NO2. 

0

0,005

0,01

0,015

0,02

0,025

1 2 3 4

D
A

LY
S 

NOX CO HC PM10



 

 

 University of Aveiro 

112 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

exponent increases. In the extreme case (4th power) path 4 (best HC & PM10) becomes 

the highest ranked path. 

 

Figure 40 Relative impacts for different paths of NOX, CO and PM10 with weights based on current 
concentrations and different exponents.  

 

6.1.4 Discussion  

 

The main objective of this section was to integrate different computational tools to identify 

the best routes based on multiple pollutants present in traffic emissions. This study was 

predominantly descriptive of the methodology, only investigating one type of vehicle, at 

one time of day (implying a particular congestion level) and one O/D pair. However, this 

structure can accommodate multiple O/D pair analysis, vehicle types and congestion levels.   

Two different strategies of assigning weights to these pollutants have been analysed: i) 

based on health impacts according to Eco-Indicator 99 and ii) based on real time 

atmospheric pollutant concentration levels. The first strategy is more suited to an offline 

decision making application. In the absence of updated data for the region of interest, a 
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lookup table of the impacts of a small number of pollutants can allow to identify a route 

based on reasonably realistic criteria. These results should be seen as a normalization 

method to assess different pollutants effects.  The real effects of pollution depend on 

several factors including the built local environment of each link. 

The second strategy is, in effect, a more general case, since information on air quality levels 

can  updated in real time and  legal limits for each region reflect  health based standards 

built into them [137].  It should be noted that for this method to be used appropriately, the 

contribution of a pollutant specifically due to traffic has to be taken into account.   

Especially for large urban centres, pollution forecasting is already a reality, and air quality 

data can be straightforwardly exported to similar computational platforms.  

 

6.2 DEVELOPMENT OF AN INTEGRATED PLATFORM FOR MICROSIMULATION OF TRAFFIC AND 

EMISSIONS  

The main objective of this section is to develop an integrated microscopic modeling 

platform calibrated with real world data to assess both traffic and emissions impacts of 

future ATMS. The empirical work based on traffic and road inventory data collection was 

used to calibrate and evaluate an integrated microscopic simulation platform. 

The road network of Aveiro was selected to test the integrated simulation platform.  Two 

main reasons support this choice: i) the network dimension and ii) data availability for 

calibration and validation. Moreover, studies conducted in medium-sized cities show that 

traffic problems are not just phenomena of the large metropolis [156]. One typical problem 

is that population densities are not high enough to support efficient public transportation, 

further increasing the demand for individual transportation.  Therefore, ATMS are needed 

to increase the efficiency of these networks. 

6.2.1 Data collection  
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To calibrate the traffic-emissions simulation platform, empirical data on vehicle dynamics, 

collected in the urban area have been considered. Additionally traffic volume and traffic 

signals timing have been monitored.  

 

 Vehicles dynamics: 550 km over 15 hours of GPS data collection on Routes Ua, Um 

and Uu were covered (see section 413.3). Additional tests were performed in more 

10 road segments (37 km) across the study network for the model validation in 

terms of total emissions.   

 Traffic volume monitoring: traffic was counted in 14 strategic points of the study 

network. Based on these data, time dependent Origin/Destination (O/D) matrices 

were defined for each intersection; 

 Traffic signals timing: cycle length and phasing were measured six times in the traffic 

lights  

Figure 41 presents the simulation study domain, which covers an area of 3.9 x 4.5 km2, and 

the main roads that were considered. VISSIM 5.30 model was applied to simulate individual 

vehicle movements.  VSP methodology was used to estimate emissions based on real data 

from field tests and on the data provided by traffic model. In the framework of the 

SMARTDECISION project, a C# console application was developed to compute second-by-

second vehicle dynamics data from VISSIM output for emissions estimate. Total emissions 

for passenger cars were calculated considering 57.5% of gasoline and 42.5% of diesel 

vehicles [152]. Data on vehicle dynamics from VISSIM and field tests were compared for 

the three urban routes. Due to the flat terrain, a road grade of zero was assumed. This 

approach generates a maximum error of 5% in the calculation of the emissions of all 

pollutants. 
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Figure 41 Study domain and data collection points (Aveiro, Portugal). 

    

6.2.1.1 Calibration and validation  

 

The model evaluation was made in two steps: calibration and validation. While the first 

step is focused on the driver behaviour parameters, the following step is related with traffic 

volumes, travel time, speed profile and VSP mode distributions. Calibration and validation 

were based on different datasets. Therefore, 47 points were used for calibration while the 

remaining points were used to validate traffic volumes, as illustrated on Figure 41. The 

same procedure was applied for travel times and average speeds.  

In the calibration step a preliminary number of runs was selected applying the method 

suggest by Hale [157]. This method is based on the simulation results from a preliminary 

number of runs where the mean sample variance is compared to a predetermined 

confidence interval (CI) based on the t-distribution. As suggested by Hale [157], 10 initial 

random seeds runs were previously considered. Regarding simulation resolution, a fixed 
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value was assumed (10 times steps/sim.sec) due to the input of VSP model (second-by-

second). 

For the calibration of driver behaviour parameters the strategy recommended by the 

FHWA  [158] was adopted. Firstly, the driver behaviour parameters as car-following 

(average standstill distance, additive and multiple part of safety distance) and lane-change 

were tested in order to assess their effect on travel times and on speed rates. By an initial 

sensitivity analysis, no relationship was found between lane change parameters and those 

measures. To evaluate the goodness of fit, the Root Mean Square Error (RMSE) between 

observed travel times and simulated mean speed was applied. Several methods are 

suggested  for finding the value of a single parameter that minimizes the squared error 

between the model and the observations [158]. Among these methods,  the golden section 

search method (see appendix C1) was selected to obtain the optimal parameter value 

[158]. After several runs, the subsequent car-following parameters were obtained: additive 

and multiple part of safety distance by 1.95 m and 2.95 m, respectively, and a value of 1.60 

m for the average standstill distance. 

In the validation step, the estimated traffic volumes, travel times and speed profiles were 

compared with the observed data. To compare means and overall “goodness of fit” of those 

measures, the GEH Statistic test [158] and the Root-Mean-Square Error (RMSE) parameter 

were used.  For this comparison 15 points of study domain were selected. For travel times 

and speed means, the “floating car runs” method suggested by the FHWA [158] was applied 

in order to guarantee an adequate number of data samples with a 95% confidence level. 

The final step of the validation process was focused on the comparison between the 

relative frequency of observed and estimated VSP mode distributions. The VSP modes 

distribution was computed using the values collected during the field campaigns and using 

the VISSIM outputs. Since the number of data sets (number of seconds of the route) is 

roughly higher than 30, the two-sample Kolmogorov-Sminorv test (K-S test) for a 95% 

confidence level is appropriate to quantify the distance between empirical functions of 

those samples [159]. The null distribution of K-S test is calculated under the null hypothesis 

that the observed and simulated VSP modes are drawn from the same distribution. 
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6.2.2 Model evaluation 

 

The statistical indicators of the integrated platform have shown valid results. The model 

performance is evaluated based on travel time, average speed and VSP mode distributions. 

Table 21 shows the comparison between observed and estimated means for travel times 

and speed. In this case, the GEH statistics test lower than 0.50 was yielded for both 

parameters on each route evaluated. The highest travel times differences between 

observed and estimated values were recorded on routes Um (C->S) and Uu. The results 

indicated that 10 runs per simulation were adequate. 

 

Table 21 Observed and estimated values for travel times and speed means and number of floating car runs. 

Route N 
(NMIN) 

Travel times (s) Speed (km/h) 

Observed 
(95%CI) 

Estimated 
(95%CI) 

GEH

 
Observed 
(95%CI) 

Estimated 
(95%CI) 

GEH

 

Um 
(CS) 

22 
(3) 

477.33 
(±16.79) 

480.64 
(±10.82) 

0.15 52.00  
(±1.56) 

51.35  
(±1.26) 

0.09 

Ua 
(CS) 

16 
(6) 

597.59 
(±32.81)  

590.50 
(±23.57) 

0.29 38.50  
(±2.11) 

38.58  
(±1.39) 

0.01 

Uu 
(CS) 

22 
(5) 

613.36 
(±30.51) 

604.18 
(±19.06) 

0.37 25.77  
(±1.29) 

27.33  
(±1.08) 

0.30 

Um 
(SC) 

16 
(4) 

515.33 
(±16.74) 

528.38 
(±16.74) 

0.57 42.23  
(±4.42) 

40.50  
(±1.23) 

0.27 

Ua 
(SC) 

18 
(7) 

565.88 
(±20.50) 

568.44 
(±22.81) 

0.11 38.65  
(±1.85) 

37.69  
(±1.39) 

0.16 

Uu 
(SC) 

18 
(3) 

543.77 
(±39.52) 

551.67 
(±11.99) 

0.34 26.96  
(±1.45) 

26.59  
(±0.99) 

0.07 

 
Notes: NMIN: Minimum number of required floating car runs; 95%CI: Confidence Interval at 95%; GEH: Geoffrey E. Havers Statistics test. 
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Figure 42  Cumulative probability in terms of discrete distributions for Observed and estimated VSP modes 
distribution (with standard deviation intervals) for: (a) Route Um (C->S); (b) Route Ua (C->S); (c) Route Uu 
(C-S); (d) Route Um (S-C); (e) Route Ua (S->C); (f) Route Uu (S->C). 
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Figure 42 displays the cumulative probability in terms of discrete distributions for observed 

and estimated VSP mode distributions, with the respective standard deviation among 6 

different routes. Note that the two-sample test is one of the most useful and 

nonparametric methods for comparing two samples, as it is sensitive to differences in both 

location and shape of the empirical cumulative distribution functions of the two samples. 

VSP distributions followed the same trend in both approaches. 

The highest absolute differences were found for modes 2 and 4 (modes with reduced 

speeds and decelerations or low accelerations) on routes A and B (C->S and S->C). This can 

be explained due to higher deceleration rates simulated in the traffic model confirming the 

findings of Song et al. [62]. Concerning mode 4, this difference arises from the fact that 

when the simulated vehicles reach the cruising speed they maintain a constant speed, while 

in reality there are more fluctuations in speed which enhance the occurrence of different 

VSP modes.  

The two-sample K-S test (D-value) to a 95.0% confidence level indicated that routes Uu (C-

>S) and (S->C) have similar distributions. In these cases, D-values for these routes were 

0.068 (D-critical = 0.078) and 0.078 (D-critical = 0.082), respectively. For a 97.5% confidence 

level, the observed and estimated VSP distributions of all routes did not show significant 

differences.  

Additional GPS data in 10 different links of the network have been used to validate the 

model in terms of total emissions estimation. In terms of pollutants emissions, the 

maximum relative differences between observed (GPS data) and simulated (VISSIM) range 

between 8% for CO2 and 9% for NOX and CO.   

6.3 CONCLUDING REMARKS 

 

In section 6.1 multiple computational methods have been integrated to identify the best 

routes based on multiple pollutants present in traffic emissions. Emissions were estimated 

based on real life GPS data and emission models. Since the optimising of different 

pollutants can dictate different routes, two different strategies of assigning weights to 
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these pollutants have been analysed: i) based on health impacts according to Eco-Indicator 

99 and iii) based on atmospheric pollutant concentration levels. 

While the simple inclusion of an additional cost factor is not very innovative in terms of 

routing algorithms, the developed computational modelling structure is an important 

contribution to i) understand the potential externalities of different routing strategies, ii)  

include methods for balancing emissions costs, and iii)  host future real-time information. 

Section 6.2 presented an integrated platform for modelling traffic and emissions calibrated 

with real world datasets, to assess future Traffic Management Strategies. After a rigorous 

calibration process, the model was validated in terms of speeds, volumes, travel time and 

VSP modal distribution.  

The main purpose of this computational framework is to evaluate different policies for 

sustainable traffic management. Under the scope of the SMARTDECIOSION project the 

impact of introduction of  eco-lanes in the urban network of Aveiro has been assessed 

[160]. The output of this platform has been incorporated into air quality models. (Dias et 

al.)  On the other hand, this tool will allow extending the evaluation of route choice impacts 

from the individual to the system point of view.  The next chapter will apply some results 

based on this platform.  
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7 ASSESSMENT OF ECO-TRAFFIC MANAGEMENT STRATEGIES 

 

The introduction of eco-routing systems has been suggested as a promising strategy to 

reduce greenhouse gases and local pollutants emissions. While it would be utopic to 

achieve a system optimum scenario in a whole network, nowadays different Intelligent 

Transportation Systems and road pricing strategies have shown to be effective in 

optimizing traffic operations over certain corridors.  Based on this assumption, section 7.1 

seeks to analyse the impacts of eco-routing guidance strategies, operating for the origin-

destination pair with higher demand in the urban network of Aveiro.  The objective of this 

section is to answer the following questions: a) What are the most appropriate route 

guidance strategies to minimize fuel consumption and environmental damage costs; b) 

What are the potential environmental benefits in terms of emissions damage cost and CO2 

emissions; c) What is the extent of variations in system travel time.   

Drivers routing decisions can be influenced to minimize environmental impacts by using, 

for instance, dynamic and intelligent road pricing schemes. In section 7.2, a tool for traffic 

assignment taking into account eco-routing purposes is presented. The main goal of this 

work is to identify the best traffic volume distribution that allows a minimization of 

environmental costs for a given corridor with predetermined different alternative routes. 

To achieve this, an integrated numerical computing platform was developed integrating 

microscopic traffic and emission models. The optimization tool employs non-linear 

techniques to perform different traffic assignment methods. The model was applied to 

representative sections of the intercity network, simulating three levels of traffic demand 

and three different strategies for traffic assignment.  

 

7.1 ASSESSMENT OF ECO TRAFFIC MANAGEMENT STRATEGIES IN A URBAN CORRIDOR 

Over the last decades, several empirical and modelling studies have been performed 

addressing the impact of route selection and traffic assignment in terms of emissions and 
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fuel use. In chapter 2.3, a summary of important research on this topic is presented. Overall 

the majority of studies have identified a great potential for emissions reduction based on 

an appropriate route choice [38,58,92,93,100–104] and even during peak periods [161]. 

However, one of the main questions is how to put in practice the lessons learned from 

scientific research. In recent times, several ATMS are being proposed and implemented to 

reduce air pollution. In urban context, well-known examples are based on restrictions 

implemented by means of toll systems (such as in London). Other cities such as Lisbon have 

implemented limited traffic zones to vehicles that have an European Emissions Standard 

lower than EURO 2 [162]. However, minimizing overall emissions based on an appropriate 

route choice has proved to be a difficult process to implement. 

What has arisen from the literature review is that a considerable number of studies have 

reinforced the relevance of the eco-routing concept since the selection of an appropriate 

route can lead to significant emissions reduction. However, frequently the route 

optimization with environmental constraints can lead to contradictory results [163].  

Regarding eco-traffic assignment systems, the first studies assessing the implementation 

of  eco-navigation in large scale have found that  these systems may lead to the occurrence 

of unexpected results such as increased fuel consumption [164]. Although there is a 

considerable number of patented technologies on eco-navigation solutions [28,117–

120,165,166], and patented systems to encourage drivers choosing more sustainable 

routes [116], there is a lack of knowledge on eco-routing systems impacts.  

Therefore, the main objective of this section is to evaluate the environmental impacts and 

network performance of the implementation of an eco-traffic assignment in an urban 

corridor. Hypothetically, to increase the acceptance of this program, commuters could 

receive an electronic card bonus transferable to use in different contexts such was 

suggested in a patent application [116].  

7.1.1 Methodological details 

Figure 43 shows the main steps of the methodology which consists of two distinct phases: 

1) at link level - traffic and road inventory data collection and development volume-

emission-functions by using an integrated and calibrated platform of micro simulation; 2) 
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at network level - traffic flow optimization and evaluation of scenarios. The integrated 

traffic-emission microsimulation platform (presented in section 6.2) has been used to 

evaluate the baseline scenario and to develop link performance functions. The process of 

calibration and validation of this platform is described in 6.2.1.1 .Then; several scenarios 

related with the implementation of eco-routing strategies were evaluated to compare the 

efficiency of these ATMS under different levels of acceptance and network saturation. 

 
Figure 43 Overall methodology for traffic assignment 

 

Section 7.1.2 provides additional details about the study domain.  Then, the process for 

generating link performance functions is presented in 7.1.3. The process of optimization of 

traffic flow is described in 7.1.4. 

 

7.1.2 Study domain and field campaigns   

The urban network of Aveiro was used as case-study. Previous research conducted in this 

area has empirically addressed the impact of individual route choice in terms of emissions 

(chapter 4). Later an integrated platform for traffic and emissions simulation was 

developed to assess the effectiveness of implementing ATMS (section 6.2). This work uses 

this modelling platform, to assess the impacts of implementing an eco-traffic assignment 

system. 

Traffic Model / 
GPS Data

Emissions 
Model

VDF (Time, 
Speed) 

VEF (CO2, NOX, 
CO, HC, PM)

Weighing Criteria 

Traffic
Assignnment

Link Level – Development of Volume dependent 
functions

Network Level



 

 

 University of Aveiro 

124 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

A Origin-Destination (OD) survey [125] has revealed that the key point of attraction during 

the morning peak hour is situated in the south of the urban centre (university). 

Consequently, drivers commuting from the northern area have to cross or bypass the urban 

core to reach this area. Figure 44 shows the network map, the main alternative routes and 

key characteristics of the main links (volume during peak hour q, capacity C and distance).  

The network under analysis contains the three routes studied previously namely: Um (O-A-

D), Ua (O-C-E-D), and Um (O-A-D). However, an additional link connecting route Ua and Uu 

was added. This new connection has created a fourth alternative route.  This route 

comprises a section (OC) which is common to route Ua, and another section (BD) which 

match route Uu. Given this mix of typologies, this route will be referred as Umx.  

  
Figure 44 Study network area (top right) and simplified network for the assignment optimization process. 

 

 

7.1.3 Link performance analysis - Traffic and emissions simulation  
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The integrated traffic-emission microsimulation platform presented in section 6.2 has been 

used. This platform allows estimating second-by-second emissions based on vehicle’s 

dynamics (speed, acceleration/deceleration and road grade). 

VISSIM was used to simulate the traffic dynamics of light duty vehicles and light commercial 

vehicles which were found to represent 97% of all vehicle types operating on the network 

[29].  Total emissions were calculated considering 45% of light duty  gasoline  vehicles 

(LDGV), 35 % of light duty diesel vehicles (LDDV) and 20% of light commercial Diesel vehicles 

(LCDV) [152]. Due to the flat topography of the network, a road grade of zero was assumed. 

NOX, CO, HC, and CO2 total emissions by link can be derived based on the time spent in 

each VSP mode multiplied by its respective emission factor (Eq. 12). 

𝑃 𝑙𝑖𝑛𝑘 𝑙 =∑𝑛𝑖 {(𝑓 × 𝑒𝑃,𝑖)𝐿𝐷𝐺𝑉 + (𝑓 × 𝑒𝑃,𝑖)𝐿𝐷𝐷𝑉 + (𝑓 × 𝑒𝑝,𝑖)𝐿𝐶𝐷𝑉}

14

𝑖=1

 Eq. 12 

Where: 

𝑓 - Share of vehicle types in the fleet (%); 
ep - Emissions factor of pollutant p  for  VSP mode i  according each vehicle type, (g/s). 
P – Total  (NOX, or CO, HC, and CO2) emissions generated on link l (g) for a given period of 
time. 
ni - time (seconds) spent on mode i for all vehicles using the link l. 
 

Due to the lack of accurate information on VSP emission factors for particulate matter (PM) 

from LDGV, the CORINAIR methodology [167] was used.  

 

7.1.3.1 Environmental cost functions  

 

To minimize the problem of environmental contradictory objectives in optimizing routes, a 

method to weigh the cost of each pollutant is presented (i). Then the process for generating 

VEF and Volume Damage Functions (VDmF) is described (ii).  

 
 

i)  Monetization of emissions costs 
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In addition to the estimation of emissions individually, a strategy to consider the relative 

impact of each pollutant was followed. The monetization of emissions externalities 

(environmental impact of emissions) was based in the AERIS report [134] (see further 

details in chapter 3.6). This approach is suggested for the assessment of different ATMS 

such as dynamic Emission Pricing and dynamic eco-routing [134].  However, it should be 

noted that a hypothetical implementation of these policies would require further research 

to adjust the actual costs of each pollutant according to the characteristics of the study 

area. 

VSP methodology was adapted to calculate directly the emission damage costs based on 

VSP modes frequency. Thus, for each VSP mode, and for a set of pollutants P, a general cost 

factor was calculated considering the fraction of each vehicle type (f), the respective 

emission factor (ep) and the specific cost for each pollutant/gas (cp) (see Eq. 13). Figure 45 

shows the estimated environmental damage cost according to the VSP mode with the 

respective contribution each pollutant. Total emissions were calculated considering 45% of 

gasoline passenger vehicles (LDGV), 35 % of diesel passenger vehicles (LDDV) and 20% of 

light commercial Diesel vehicles (LCDV).  

𝐷𝑣𝑠𝑝𝑖 =∑𝑐𝑝 {(𝑓 × 𝑒𝑝,𝑖)𝐿𝐷𝐺𝑉 + (𝑓 × 𝑒𝑝,𝑖)𝐿𝐷𝐷𝑉 + (𝑓 × 𝑒𝑝,𝑖)𝐿𝐶𝐷𝑉}

𝑃

𝑝=1

 

Eq. 13 

 

𝑫𝒗𝒔𝒑,𝒊 - Damage cost of VSP mode i ($/s); 

cp - Cost factor for the associated with the emission of the pollutant p ($/g); 
f - Share of vehicles in the fleet; 
ep - Emissions factor for a vehicle type, pollutant p and VSP mode i (g/s); 
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Figure 45 Total Environmental Damage for each VSP mode and respective contribution of pollutants. 

 
The Environmental Damage (ED) cost in a particular link and over a certain period of time 

is given by Eq. 14.  

𝐸𝐷𝑙𝑖𝑛𝑘 𝑙 =∑(𝑛𝑖 × 𝐷𝑉𝑆𝑃𝑖)

14

𝑖

+ 𝑃𝑀 × 𝐶𝑃𝑀    Eq. 14 

 
Where:  
ED – Total Environmental damage on link l (USD)  
ni - time spent on mode i for all vehicles using the link l (s); 
Dvsp,i - Damage cost of VSP mode i (USD/s); 

PM – Estimated PM emissions (g) based on CORINAIR methodology (g) for all vehicles using 
the link l  
CPM - Cost factor for PM emissions (USD/g) 
. 
 

ii) Development of Volume-Delay-functions and Volume- Emissions-Functions 
 
Traffic control approaches based on on-line optimization require fast and accurate models 

for traffic flow [168]. Once the traffic model was validated, Volume-Delay-Functions (VDF), 

Volume-Emissions-Functions (VEF) and Volume-Damage-Functions (VDmF) for each main 

road segment were defined. The main objective is to develop accurate relationships which 

can be straightforwardly applied in the traffic flow optimization under environmental 

concerns.  
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These functions use the traffic volume as an independent variable and travel time (VDF), 

emissions (VEF), and damage costs (VDmF) as dependent variables. It should be 

emphasized that VDF were only used to estimate the equilibrium conditions on the 

network. VEF and VDmF were applied to optimize the flow distribution of eco-routing 

vehicles among the four alternative routes (see Figure 44). For developing these functions, 

different traffic demands scenarios (progressive increments of 20 vph using 5 random seed 

runs) over each main link of the network were performed. 

For VDF the widely used Bureau of Public Roads (BPR) [169] functions  were applied (Eq. 

15). The equation parameters were optimized to get a deeper insight of each link 

performance.  This optimization is conducted by minimizing the Root Mean Square Error 

between observed/simulated and predicted values of travel time. Please see appendix C2 

for a more detailed explanation.  

𝑡 = 𝑡0  (1 + 𝛼 (
𝑄

𝐶
)
𝛽

)   
Eq. 15  

  

Where: t - Travel time for traffic flow Q, ; t0 - travel time at free flow; C – Capacity; 𝛼; β  - 

dimensionless parameters.  

By conducting a regression analysis, a cubic polynomial function was shown to be 

appropriated to interpolate the traffic volume with total ED costs and CO2 emissions over 

the eight segments analysed (R2 > 0.94 p-value < 0.05).  

Figure 46 shows an example of a VDmF for the segment AD. Additional VDmF for the 

remaining sections can be found in Appendix D. 
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Figure 46 Volume Damage Function for link AD 

  

It should be noted that in practice, such high correlations will be not easy to find (as 

demonstrated in section 4.2.4). Although VISSIM is a stochastic model, a higher 

homogeneity in emissions generated over different traffic volumes is observed. However, 

both empirical tests and traffic simulation approaches have shown that for the considered 

ranges of volume/capacity ratios, a polynomial cubic equation is the best model (higher 

coefficient of determination) relating the effect of the volume and emissions change. 

However, it must be noted that this solution may be not necessarily convex for all set of 

pollutants analysed.  

 
 

7.1.4 Traffic flow optimization  

 
The integrated platform for traffic and emissions microsimulation has allowed describing 

in detail the environmental performance of each link according to different traffic 
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demands. The traffic assignment process is programmed independently in a spread sheet-

based format (Microsoft Excel ®). For networks of similar size such as the one considered 

in this study, this method allows greater flexibility, speed data processing, and it is user-

friendly for potential practitioners.  

The main idea behind this system is to focus on the optimization of the traffic on key urban 

routes that converge to the zone of higher activity in morning peak hour. In such scenario, 

the commuters to the selected area would receive voluntarily the indication of which route 

they should follow during the commute, to minimize the emission impacts in these 

corridors. Hypothetically, to increase the acceptance of this program, commuters could 

receive an electronic card bonus transferable to use in different contexts such was 

suggested in [116].   

For traffic assignment under UE, an iterative process based on the Wardrop’s first principle 

[170] 5 was followed i.e., for each iteration, only the path with minimal costs, has a vheicle 

assigned to it. Thus, according to the purpose of each traffic assignment scneario, VDF 

(travel time), VED (CO2) (which is directly correlated to fuel consumption)  and VDmF (ED) 

were used to determine which route enables the minimization of individual impacts of each 

additional eco-driver approaching the network. Under this eco-routing guidance system no 

driver can unilatereally reduce his travel impacts (ED costs or CO2 by shifting to a diiferent 

route.  For an OD pair, the equilibrium can be solved incremntally, step-by-step,  for each 

upcoming eco-routing vehicle (Eq. 16). After each step, link-based impacts (ED costs or CO2 

emissions)  are recalculated based on link volumes. 

𝑞𝑒𝑟
𝑙 = {

1, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑙 ∈  𝑢 ∀ 𝐶𝑙  ∈  𝑢 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 
Eq. 16 

Where: 

𝑞𝑒𝑟
𝑙  is the number of eco-routing vehicles guided to link l  belonging to the route u that 

minimizes user impacts (ED cost or CO2), and containing all links with available capacity C 

higher than 0.    

                                                      
5  The journey times (or costs) in all routes actually used are equal and less than those which would be 

experienced by a single vehicle on any unused route  
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The minimization of the system environmental damage (SED) is achieved by assigning the 

eco-routers (qer) on the network in such a way that the sum of total ED cost caused by eco 

routing vehicles and non-eco-routing vehicles (q+qer) in all links  (L) of the network is 

minimized (Eq. 17). The constraints ensure that the maximum capacity on each link is not 

reached (Eq. 18), the non-negativity of traffic flow (Eq. 19) and conservation of eco-routers 

flow (Eq. 20) for each node of the network.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑆𝐸𝐷(𝑞𝑒𝑟) =∑𝐸𝐷𝑙𝑖𝑛𝑘 𝑙

𝐿

𝑙

 
 

Eq. 17 

 

Subject to: 

∑𝑞𝑒𝑟 + 𝑞

𝐿

l

≤ 𝐶𝑙 

 

Eq. 18 

 

𝒒𝒆𝒓,𝒍  ≥ 𝟎   Eq. 19 

 
For a set on notes  

∑ 𝒒𝒆𝒓 = ∑ 𝒒𝒆𝒓
𝒐𝒖𝒕 𝒐𝒇 𝑵𝒊𝒏𝒕𝒐 𝑵

  

Eq. 20 

 

 
Where: 
qer - Traffic volume of eco-routing vehicles (vph); 
q - General traffic flow (vph); 
Cl - Estimated maximum capacity for link i (vph). 
 
The minimization of CO2 emissions of the system follows the same procedure used for SED 

but considering specific VEF for CO2 adjusted to each link. Since fuel consumption is directly 

related with CO2 emissions, the flow patterns that minimize fuel consumption minimize 

CO2 as well. 

A Genetic Algorithm (GA) was chosen to solve the ED and CO2 network problem. Previous 

research found that GA outperform several optimization strategies to solve continuous 

similar problems [94,171]. Even though this approach is a random search technique, it 

exploits the historical information to find a new search point with expected enhanced 
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performance. Because of its simplicity, minimal problem restrictions and minimal 

assumptions on search space, global-approach, and implicit parallelism, GA can be 

straightforwardly applied to assignment traffic problems. An additional advantage is that 

GA approach yields the use of any mathematical form for the cost functions. Moreover, 

this approach allows for explicitly imposing capacity constraints on each link [172]. 

The optimization was performed in Solver with MSOffice which employs multiple variations 

of four different cross-over strategies. To solve the design model, mutation rate was set to 

0.01, and the population was set to 100. The number the iterations is set such that the 

objective function was no longer improving in each scenario. Recent literature 

demonstrated that these parameters work well in analogous problems [94]. A more 

detailed description of the structure of GA and its implementation can be found the 

appendix C3. 

7.1.5 Scenarios 

The simulated scenarios include:  

a) Two different levels of eco-routing vehicles (750 and 1500 vph - corresponding  
to approximately 50 and 100% of the traffic with this OD pair, respectively) 

  b) two different levels of network saturation (average volume/capacity (V/C) of 50% 
and 80%).  

 
Under these circumstances, two routing guidance strategies (UE and system Optimum 

(SO)) with two different objectives (minimization of ED costs and CO2) were tested.  

UE scenarios assume that each eco-routing vehicle approaching the network is routed to 

the path that minimizes its individual costs in terms of travel time, ED and CO2. Therefore, 

the traditional concept of UE is adjusted for considering either ED costs or CO2 and it is 

simulated that all eco-drivers are routed to minimize their own environmental impacts. As 

stated previously, under this system no eco-driver may lower his impacts by changing his 

recommended route. 

 SO scenarios are based on the assumption that the population of eco-routing vehicles is 

controlled by the system and these vehicles are routed to minimize system ED costs and 

system CO2. Therefore, possibly these drivers would have different available routes with 
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lower costs and impacts.  Although one can consider the SO assignment unrealistic, 

theoretically , variable speed limits, road pricing systems, or different types of incentives, 

can be implemented to optimize (or at least move towards a better direction) the traffic 

flow distribution in a certain corridors.  

Table 22 summarizes the objectives and assumption of each scenario.  

Table 22 Assumptions, application and objectives of each scenario 

 UETT* UEED UECO2 SOTT SOCO2 

ASSUMPTIONS Users have perfect 

knowledge of 

Travel time 

- Travel time on a 

given link is a 

function of the 

flow on this link. 

- Users are informed to follow the 

route that minimizes their impacts 

(ED costs or CO2) 

 

- ED costs and CO2 are  function of 

the flow on each link  

- Users are informed to follow the 

route that minimizes overall 

network impacts (ED costs or CO2). 

 -ED costs and CO2 are function of 

the flow on each link.  

APPLICATION Non-eco routing 

vehicles  

Eco-routing vehicles  

 

Eco-routing vehicles 

 

OBJECTIVE Minimize 

individual User 

Travel Time 

Minimize the ED cost / CO2 

emissions of each eco-driver.   

Minimize system ED costs / CO2 

emissions. 

 Reference scenario  

The UETT scenario will be considered as reference due to several reasons. First of all, a key 

assumption of user equilibrium is that travellers have perfect information about road 

conditions, which indeed can be considered generally true for commuters. It should be 

highlighted that this work is focussed on an OD pair mainly used by commuters on a 

weekday. Secondly, this work assumes the existence of real time traffic monitoring 

stations, so in drivers could be informed (for ex. using VMS) on real time traffic conditions. 

Finally,  similar studies also use UETT as reference scenario [84,164]. 

Different equilibrium flow distributions are presented in section 7.1.6. In section 0, an 

overall evaluation of different traffic assignment strategies on network performance, 
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emissions and ED costs will be conducted.  Finally, the main results and their implications 

are discussed in section 7.1.8.  

 

7.1.6 Equilibrium distribution  

 

In this section, UE distribution based on travel time (TT), ED costs and CO2 is presented.  

Figure 47a presents the traffic distribution over the 4 alternative routes considering the 

travel time as the decision factor for traffic assignment.  If demand is less than 600 vph, all 

vehicles are assigned to the Um (motorway route OAD), then R4 (OCBD) is becoming 

competitive, and for more than 850 vph, Ua (OCED) begins to be chosen. Until 1500 vph 

Route Uu (OBD) is not considered as it entails more travel time that the remaining routes.   

Figure 47b illustrates the traffic distribution assuming that all incoming eco-routing vehicles 

are informed of environmental impacts on each route. Accordingly, eco-routing vehicles 

are suggested to the route which allows reducing their own impacts. In this case, Uu would 

be the selected for all eco-drivers until a demand of approximately 800 vph. At this 

moment, Um turns into a valid option for eco-routing vehicles. Ua and Umx are not eligible 

since under the considered demand levels, the ED costs are always higher than Um and Uu.  
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Figure 47 Distribution of equilibrium traffic flow under different parameters: a) travel 

time, b) environmental damage costs, c) CO2. 

In Figure 47c it is assumed that eco-drivers will choose the route that minimizes their CO2 

emissions.  Until a traffic demand of 250 vph, the urban route Uu is the alternative with 

lowest CO2 levels.  For a traffic demand higher than 250 vph, fuel consumption rises 
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considerably and Um presents a more competitive alternative. The arterial route Ua is 

competitive for demands higher than 750 vph, while Umx is never considered. 

These results are in line with the empirical assessment in which has been demonstrated 

that in spite of the fact that route Uu is the slower route, this is the alternative that enables 

emissions savings for all pollutants, principally for NOX and CO.  Furthermore, since the 

relative differences in CO2 emissions (compared with the remaining pollutants) were also 

lower), as it would be expected, this route becomes less competitive from lower demand 

levels, when CO2 is the unique criterion for route assignment. 

7.1.7 Assessment of traffic assignment strategies on network performance, emissions and 

environmental damage costs  

In this section, the overall impacts in terms of system travel time, travel time of eco-routing 

vehicles, total ED costs and CO2, according to different traffic assignment strategies are 

presented. Table 23 shows the overall impacts for different levels of network saturation 

and eco-routing vehicles. Assuming that user’s route choice behaviour is primarily affected 

by travel time (TT), each traffic assignment strategy will be compared to UETT scenario.  

For moderate levels of network saturation (V/C-50%), SO traffic assignment based on ED 

costs yields a reduction up to 5% in total ED costs and SO CO2 assignment allows a reduction 

of 12% in CO2 emissions compared to UETT scenario. Moreover, the total system travel time 

for SO CO2, is lower than under UETT. This  is a classic example that there may be traffic flow 

patterns with lower travel times than the UETT [173]. This paradox is not only true for travel 

time. Interestingly, under UETT, system ED costs and system CO2 emissions are lower than 

under UEED and UECO2. An explanation for this is the fact that if when an eco-routed vehicle 

changes to a specific route, their own improvement is lower than the additional costs 

inflicted on the other travellers. For these network conditions, SOCO2 demonstrated 

satisfactory performance for all parameters tested.  
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Table 23 Overall impacts for different levels of network saturation and eco-routed vehicles (lines) under 
different traffic assignment strategies (columns). 

   Route guidance strategies 

   UE SO  
Network 

Saturation  
Eco 

routing 
acceptance 

 TT  ED  CO2  ED  CO2  

50% 1500 vph System TT  (h) 514 532 531 532 477 
Travel Time qer (h) 92.9 95.9 96.7 95.4 90.3 

System ED (USD) 168.9 175 183.6 160.2 161.1 
System CO2 (ton) 3.8 4.4 4.3 3.5 3.4 

80% 1500 vph System TT (h) 726 881 711 690 718 
Travel Time qer (h) 94.9 149 94.3 93.5 94.3 

System ED (USD) 239 235.1 224.7 214.5 245 
System CO2 (ton) 6.5 9.1 6.4 7.1 6.1 

80% 750 vph System TT (h) 726 810 730 720 737 
Travel Time qer (h) 46.0 75.0 44.0 50.1 47.9 

System ED (USD) 239 232.4 226.7 226 244.6 
System CO2 (ton) 6.5 9.8 8.1 7.1 6.2 

 

For higher levels of network saturation (80%), SO ED yield 11% reduction in ED costs, but 

an increase in system CO2 emissions of 8% is observed. Instead SOCO2 assignment allows a 

decrease of 7% in CO2 emissions but leads to an increase in ED costs of 2%. The optimization 

of traffic distribution to minimize CO2 and ED costs presents different solutions. For all 

traffic assignment strategies based on CO2 the travel time is not increased compared with 

UETT.  

The last scenario simulates that 50% of drivers follow an eco-route recommendation, and 

the remaining 50% are distributed according UETT. SO assignment results show the same 

pattern of the previous network circumstances. However, ED costs reduction is decreased 

to 6% and CO2 reduction to 5 %. It should be noted that for optimizing ED costs the travel 

time of eco-routers is considerably increased.  

Figure 48 presents the evolution of a) SED costs, and b) system CO2 emissions, under 

different UE assignment strategies for an average network saturation of 80%.   
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Figure 48 Evolution of a) environmental damage costs and b) CO2 emissions under different UE assignment 
strategies. 
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costs of eco-drivers would be lower than if drivers selected their route based on CO2 
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costs information, CO2 emissions are considerably increased (Figure 48b). This can be 
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lower speeds and lower frequency of high VSP modes. However, when this route becomes 

more congested, CO2 emissions increase faster than ED costs.  

Figure 49 shows the relative difference of system travel time (STT) under UED and UECO2 

routing strategies compared with UETT.  

 

Figure 49  Evolution of the relative difference of system travel time (STT) of UEED and UE CO2 compared with 
UETT  

Regarding the UECO2 strategy and for different levels of demand there are no significant 

differences in the STT compared with UETT. In all cases the relative difference to UETT is less 

than 5%, so the network would be constantly operating close to the normal UE conditions 

in terms of travel time.  Regarding the eco-routing scenario based ED costs, it is possible to 

verify that for demand levels higher than 700 vph, there are more significant differences 

between STT of UEED, and STT of UETT. This difference increases progressively to 

approximately 25% to 1,500 vph. 

 

7.1.8 Discussion  
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performance of the main corridors in a medium-sized city. The previous results showed 

that it is easier to keep a network under equilibrium in (terms of travel time) if the objective 

is focused on reducing CO2  emissions of each individual driver. By contrast if the aim is the 

integrated reduction of ED costs, it has been demonstrated that for demand higher than 

700 vph networks becomes instable in terms of the travel time. 

The overall impacts on the network according to the traffic assignment strategy suggest 

that SO assignment yields a higher reduction on emissions compared with UE. Although 

this fact is not surprising, it is interesting to note that under UE distribution, providing 

information of different parameters can help minimizing others goals. For instance, Table 

23 (see 80%, 1500 qer case) shows that if every eco-routing vehicles followed the route that 

allows minimizing their CO2, the total system TT could be reduced. Instead SED can be 

higher if drivers are routed with the objective of minimizing their own ED costs. These 

findings are in line with previous work [105]  which demonstrated that for certain levels of 

market penetration of eco-routing vehicles, fuel use  can be higher than under the standard 

UE travel time.  

An extrapolation of these results suggests that a sustainable traffic management will be 

more efficient if it is addressed macroscopically (e.g. dynamic road-pricing schemes) than 

by providing eco-routing devices based on the individual cost minimization. However, this 

fact must be supported by a stronger theoretical framework and tested in more case-

studies. 

 

7.2 ECO-TRAFFIC MANAGEMENT SYSTEMS IN AN INTERCITY CORRIDOR  

7.2.1  Introduction 

 

A more efficient management of existing infrastructures has been identified as a key 

strategy to reduce emissions. In previous sections it has been demonstrated that these 

strategies may include behavioural changes in the operation of vehicles (eco-driving) as 

well as route selection with lower emissions impacts associated. 
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In a more realistic picture, a more efficient (environmentally) traffic distribution could be 

performed in certain corridors wherever is possible to implement intelligent toll systems 

that may lead to a better allocation of traffic. Yin and Lawphongpanich [174] demonstrated 

that there always exists a (non-negative) tolling system that leads to a traffic distribution 

with minimum emissions. Recently an optimal emission pricing model to reduce emissions 

in a given transportation network was proposed by Sharma & Mishra [90].  

This section presents an eco-traffic assignment tool used to define the most sustainable 

traffic distribution, given a total demand provided by the user, among n routes linking an 

Origin/Destination pair (OD). This optimization can be performed using different criteria 

and assignment methods. In a further step this optimal distribution may be integrated with 

previous research such as [90,174], to estimate optimal emission pricing schemes under 

different levels of traffic demand. A case study is presented based on a simplification of the 

intercity OD pair presented before. It should be noted that this methodology can be 

extended to larger networks, provided that there are human and computer resources to 

develop equations applied to each link of the network. 

7.2.2 Methodological details 

 

This section presents the methodology for the development of an eco-traffic assignment 

tool. First, a brief description of the case-study network is provided.  Then, the process for 

the development explanation on the development of Volume-Delay functions (VDF) and 

Volume-Emission functions (VEF) is explained. Finally, the optimization methods and the 

criteria available for eco-friendly traffic assignment strategies are described.  

7.2.2.1 Network characteristics 

 

The case study is based on a stylized road network that consists of four sections of one 

kilometre of length with different capacities. Four representative sections of the intercity 

routes network were simulated in a microscopic traffic simulator. Specifically, four routes 

were analysed:  
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Rm1 - Motorway with three lanes and with an average toll cost of €0.08/km;   

Rm2 -Motorway with two lanes and one interchange, with a toll cost of €0.064/km;  

Rh - Highway with one and two lanes sections and one interchange; 

Ru -Road in an urban environment with one lane in each direction, five intersections 

and one traffic light.  

It should be highlighted these segments do not represent any particular section. However, 

they simulate typical characteristics (number of interchanges, intersections, number of 

traffic lights, number of lanes, toll price per km) observed in the analysed routes Im1, Im2, 

Iu and Iu.  The purpose of this section is not to provide absolute information about the 

routes studied, but rather explain the methodology that may be extended to a larger scale 

in further research. Figure 50 presents the links configuration of the simulated network.   

 

 

Figure 50 Layout of alternative routes. 

 

7.2.2.2 Volume-Delay and Volume- Emission functions  
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The evaluation of traffic performance under different traffic demand levels was performed 

using the platform micro-simulation previously described.  VDF and VEF for each link must 

be defined before the optimization process is started. These functions use the traffic 

volume as an independent variable and both travel time (VDF) and emissions (VEF) as 

dependent variables. Following the same procedure described in the previous section, 

different scenarios of traffic volumes using different links can be performed using 

commercial microscopic traffic models or real world GPS data using probe vehicles. 

 By conducting a regression analysis a cubic polynomial function was shown to be 

appropriated to interpolate the traffic volume with total pollutant emissions and other 

traffic parameters (P).  Figure 51 outlines a VEF for a local pollutant (NOX) and Figure 52  

GHG (CO2) respectively. Table 24 presents the respective regression parameters.  

 

 

Figure 51 Volume Emission Functions for NOX 
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Figure 52 Volume Emission Functions for CO2 

 

Table 24 Regression Parameters of NOX and CO2 VEF 

NOX r2 F sig   CO2 r2 F sig 

Rm1 0.996 576 <0.001   Rm1 0.998 1123 <0.001 

Rm2 0.999 112495 <0.001   Rm2 0.999 219682 <0.001 

Rh 0.959 55 <0.001   Rh 0.951 45 <0.001 

Ru 0.997 762 <0.001   Ru 0.997 739 <0.001 

 

Regarding NOX emissions, Rh and Ru routes have lower emission levels than the motorway 

routes. Although these segments do not simulate any specific section, this trend is in line 

with overall emission values estimated from experimental data (GPS data) in intercity 

routes. For higher demands (>1000 vph) these routes exceed the emissions levels observed 

on motorways.  As regards CO2 emissions, there is an equilibrium among the various routes. 

However, for higher demands, total emissions produced on motorways are less than on Rh 

and Ru. 

The likely traffic distribution in the network can be assessed through the traditional 

volume-delay (or cost) functions and the User Equilibrium (UE) model formulation. In this 

platform, an additional tool to optimize the most widely used VDF parameters of the BPR 
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[169] (Eq. 15), and Conical [175]  (Eq. 21) functions is available. This optimization is 

conducted by minimizing the Root Mean Square Error between observed/simulated and 

predicted values of travel time (see further details in appendixC2). Figure 53 outlines 53 

the estimated Volume-cost functions for the alternative routes. 

𝑡 = 𝑡0  (1 + 𝛼 (
𝑉

𝐶
)
𝛽

) 
Eq. 15 

𝑡
𝑡

𝑡0
= 2 + √(1 −

𝑉

𝐶
)+β2 − 𝛼 (1 −

𝑉

𝐶
)

− β 

Eq. 21 

Where: 

 t - Travel time for volume V;  
t0 - travel time at free flow;  
C – Capacity;  
𝛼; β  - dimensionless parameters.  
 

 

Figure 53 Estimated Volume-cost functions for the alternative routes. 
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A wide range of criteria is available to optimize the traffic distribution among alternative 

routes in a corridor, according to criteria and methods selected by the user. In addition to 

traffic performance parameters (travel time, speed, and traffic density), individual 

pollutants (CO, NOX, HC, PM), and Greenhouse Gases (CO2), three integrated optimization 

approaches are available based on: a) economic cost; b) health impacts; and c) air quality 

levels.  A more detailed explanation on the methodology for normalization of emissions 

impacts can be found in section 3.6. By default, the parameters for weighting pollutants 

effects (economic cost and health impacts-indicator) are based on literature [133,134], and 

are shown in Table 9, page 52.  

In this analysis it is assumed that all drivers have the same attributes and the same access 

to information. Consequently the standard user equilibrium (UE) techniques will be used 

for modelling the drivers that select their routes on the basis of their own objectives.  In 

addition to the traditional UE approach, two different optimization goals are considered: 

System Equitable (SE) and System Optimum assignment (SO). In the first case, the traffic 

distribution between the OD pair is achieved at the same cost for all routes. This concept 

was introduced by Rilett and Benedek [99]  in 1994 and has as main goal to distribute 

equitably the negative effects of traffic among the alternative routes. Moreover, a 

maximum amount of pollution in the total network or in a specific link can be defined first. 

This objective is attained by minimizing the standard deviation (among the alternative 

routes) of the cost associated with the selected criterion. Both Eq. 22 and Eq. 23  exemplify 

the optimization process taking into account the criterion “Integrated Environmental 

Damage Cost”.  

In the second method, the traffic assignment is performed with the aim of maximizing the 

overall benefit of the whole network (Eq. 23). This objective is attained by minimizing the 

total of the system environmental damage costs. This approach indicates a lower bound 

for the amount of pollution impacts possible, and allows the planners to identify how close 

to the optimum scenario they are. The constraint functions ensure that the overall and the 

specific capacity of each link is not exceeded, the non-negativity and the user-defined total 

demand is met (Eq. 27 -Eq. 29) 
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Min √
∑ ( 〖𝐸𝐷𝑖−𝐸𝐷̅̅ ̅̅ )〗

2𝑛
𝑖−1

𝑛−1
 

Eq. 22 

 

Min ∑𝐸𝐷𝑖

n

i

 
Eq. 23 

 

Where: 

ED =  ∑∑PjCPj

m

j

n

i

 
Eq. 24 

 

𝑃𝑗𝑖(𝑉𝑖)=(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑗𝑖 + 𝑏1𝑗𝑖𝑄𝑖 + 𝑏2𝑗𝑖𝑄𝑖
2 + 𝑏3𝑗𝑖𝑄𝑖

3) Eq. 25 

𝑄𝑖 = 𝑄𝑇 𝑥𝑖 Eq. 26 

Subject to: 

∑ 𝑄i

n routes

i

= QT 
Eq. 27 

∑ 𝑥1 

n routes

i

= 1 
Eq. 28 

 

𝑄i ≤ Ci Eq. 29 

Where: 

bij – Estimated Parameters of the model equation 
Ci - Capacity of route i (vph);  
CPj - Cost of the pollutant j released in the air (€/g);  
ED - Economic Damage cost (€); 
 m - Nº of pollutants considered; 
 n - Nº of alternative routes;  
Pji - Total emissions of the pollutant j produced on route i (g);  
Qi - Total traffic volume on route i (vph); QT - Total Demand (vph); xi - Relative flow on route 
i. 
 

Depending on the complexity of the optimization process two optimization strategies can 

be selected. The Generalized Reduced Gradient (GRG) Nonlinear Solving based on Lasdon 
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and Waren’s code [176], selects a basis, determines a search direction, and performs a line 

search on each major iteration – solving systems of nonlinear equations at each step to 

maintain feasibility. For more complex problems (non-convex), MS Excel provides an 

evolutionary algorithm to optimize the relative flows (xi) that minimize the selected 

objective function. The use of a population of solutions helps the optimization processes 

algorithm avoid becoming "trapped" in a local optimum (Frontline Systems Inc., 2013).   

7.2.2.4 Scenarios  

Three traffic assignment scenarios were assessed. The first one simulates the likely traffic 

distribution using the user equilibrium formulation (UE). In this scenario each user seeks to 

minimize his costs without considering environmental issues. The second scenario 

simulates an optimized traffic distribution scenario (SO) with the aim of minimizing the 

overall cost of emissions produced on the network. In the third scenario, a SE assignment 

is performed. Here, the pollution impacts are equally distributed over the various routes. 

For each scenario, three distinct traffic demands are analysed: low demand, 1,000 vph; 

moderate demand, 4,000 vph; and high demand 10,500vph.  

7.2.3 Results and discussion 

 

In this section, examples of model outputs are discussed. Firstly, the relative contribution 

of each pollutant for the total environmental economic costs and the eco-indicator is 

analysed. Then, the evaluation of an optimization based on environmental costs is 

conducted.  

7.2.3.1 Optimization parameters  

Different approaches were tested to solve the non-linear problem, the GRG method, and 

genetic algorithms (GA) using a set of recommended settings [177,178], Table 25 

exemplifies the optimization time and the objective function value. It can be seen that the 

GRG method is considerably faster than the use of evolutionary algorithms, since this non-

linear problem was convex. For non-convex problems, the employ of GA can produce more 

reliable results and avoid be trapped in a local minimum.  
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Table 25 Optimization time and objective function result (total integrated cost using different optimization 
tools). 

Assignment strategy System Equitable (SE) System Optimum (SO) 

Optimization method  GA [177] 

 

GA [178] GRG GA [177] GA [178] GRG [176] 

Optimization time (s) 67 65 2 104 63 9 

Relative flow R1 25.3% 25.3% 25.4% 27.8% 30.4% 29.8% 

R2 17.3% 17.5% 17.4% 11.8% 10.4% 10.7% 

R3 13.1% 13.4% 13.1% 6.7% 6.3% 6.6% 

R4 25.3% 25.3% 25.4% 27.8% 30.4% 29.8% 

Final result ($) 0  0  0 652 653 669 

 

 

7.2.3.2 Relative impact of pollutants under UE 

 

Figure 54 and Figure 55 and present the environmental impact costs and the health impacts 

related with each pollutant among the alternative routes. In this case the total impacts 

were estimated using the traditional UE assignment for a total traffic demand of 4,000 vph. 

Each bar is an alternative route and each pollutant a different segment of the bar.  

In terms of mass, all pollutants exhibit very distinct orders of magnitude and CO2 is by far 

the most abundant. However, when translated in economic terms, the weight of CO is 

considerable higher. Considering the health impact, the influence of PM and CO2 are 

comparable but in this case NOX is clearly the pollutant with major impacts. Considering 

this perspective, HC and CO are negligible. 

 It should again be emphasized that these figures are based on different studies and 

adopted for different realities. Regional factors such as population densities or land use 

type influence the environmental costs impact factors, but this is beyond the scope of this 

thesis.  
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Figure 54 Health impact of pollutants (DALYS) over different routes under UE distribution (4000 vph) 

 

Figure 55 Environmental costs of pollutants over different routes under UE distribution (4000 vph) 

 

7.2.3.3  Optimization of environmental costs under different levels of demand  
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In order to exemplify the implementation of the proposed method, an analysis of various 

scenarios to minimize the environmental costs under different demands are presented. 

Figure 56 to Figure 58 show the traffic distribution for each scenario according different 

growing demands and the total cost of pollution over similar conditions. Each bar is a 

different traffic assignment scenario and the contribution of each route is shown in a 

different coloured segment. The relative change (%) of users' total costs between SE or SO 

assignments and the UE scenario is shown by the grey triangles.  

Regarding the low congestion scenario, (Figure 56) an optimized traffic distribution would 

allow about 18% reduction of emissions impacts with a marginal impact in the users cost 

(1%). This situation occurs because the alternative Rh offers a good alternative in terms of 

environmental costs without a considerable increase of travel time.  On the other hand, 

the S.E. assignment would imply an increase in both SED costs (32%) users costs (16%). This 

increase is driven by the diversion of traffic to the route Iu. 
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Figure 56  Flow distribution (%) for each traffic assignment under low demand (top) and Environmental 
costs and relative increase in total users cost in comparison to UE (bottom)  

Under moderate demand (57), the SO assignment yields 33% reduction of pollution costs 

with 5% increase in total users cost compared with the UE assignment. This situation occurs 

by shifting a considerable amount of traffic from Rm2 to Rm1 with higher road capacity but 

higher toll costs. The SE scenario would allow a slight reduction (-2%) in the total 

environmental costs (compared with UE assignment) but an increase in user costs of 24%.  
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Figure 57 Flow distribution (%) for each traffic assignment under moderate demand (top) and 
Environmental costs and relative increase in total users cost in comparison to UE (bottom)  

 

Considering the higher congestion scenario (Figure 58), there is no significant road capacity 

to allow considerable improvements in emissions reduction. In this case, the SO assignment 

has a similar distribution with the UE case. Naturally, the potential of minimizing costs 

associated with pollution decreases when the V/C ratio for the OD pair is close to 1.  
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Figure 58 Flow distribution (%) for each traffic assignment under high demand (top) and Environmental 
costs and relative increase in total users cost in comparison to UE (bottom) 

 

In general, an optimization of environmental impacts requires an extra effort in terms of 

users’ cost. Accordingly, it can be concluded that the toll rates scheme can be improved 

taking into account environmental criteria. 
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7.3 CONCLUDING REMARKS 

 

The main objective of this chapter was to explore different approaches to bring 

environmental issues into the standard traffic assignment techniques.  

In section 7.1, an integrated micro-simulation platform based on state of the art traffic and 

emissions simulations was used to generate volume-delay functions and volume-

emissions-functions.  Then, these functions were used to explore eco-strategies that are 

appropriate for emissions reduction over a critical OD pair in an urban network.  Two traffic 

assignment procedures were tested: 1) minimize the individual impacts of each eco-routing 

vehicle approaching the network, 2) minimize the overall impacts of the network based on 

an optimization of the flow patterns of a subpopulation of eco-routing vehicles. 

Regarding the first approach, it was demonstrated that under certain conditions (traffic 

congestion levels, density of eco-routing vehicles, and characteristics of the eco-friendly 

route) the optimization focused on updated information on ED costs and CO2 can lead to 

worse results than the traditional UETT approach. In these circumstances the eco-routing 

information should only be provided ensuring that individual savings outweigh the total 

potential increases of the remaining vehicles. 

For a network operating at moderate levels of saturation, 100% of eco-routing vehicles 

could generate an overall reduction of 11% system CO2 emissions when compared with the 

standard UE travel time. This value tends to be lower (4-6%) as the number of eco-routing 

vehicles is reduced to half or the network is becoming more congested respectively. Both 

for eco-routing vehicles, and for general traffic, the travel time is not affected significantly. 

If the objective is to minimize the system environmental damage (SED) costs, the traffic 

optimization would allow a reduction of approximately 10% in SED costs. However, this 

scenario may lead to considerable increases in travel time of eco-routing vehicles and non-

eco-routing vehicles.  

The proposed SO traffic assignment may force the network to a permanent state of 

instability, since the population of eco-routed vehicles would select their route based on 
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updated traffic data.  Even if assuming that UE is the likely state, it is useful to describe 

what such an ED or fuel consumption-minimizing state might look like.   This methodology 

and the generated information can be applied to other regions to quantify the impacts of 

the implementation of eco-routing strategies, and therefore help decision-makers better 

implement intelligent road traffic management policies. 

In section 7.2 a tool to help the traffic assignment in a certain corridor more efficiently and 

environmentally friendly has been developed. The most innovative factor of this tool is the 

ability to include the impacts of major pollutants in an integrated form according to user's 

needs. This instrument is not intended to replace the traditional traffic assignment models 

but rather complement them and contribute to a more effective management of traffic.  

The output of this model can be the basis for implementing intelligent traffic management 

measures. It is common knowledge that SO assignment is an unrealistic scenario since it 

assumes that drivers will collaborate in making their route choices considering the overall 

benefit of the complete network, instead of their own benefits. However, new traffic 

advanced information systems and smart road-pricing schemes may lead to a more 

efficient allocation of traffic in certain corridors by dynamically change the equilibrium 

conditions.  The case study has demonstrated that it is possible to significantly reduce 

environmental costs (30%) by changing the flow distribution along a corridor with 4 

alternative routes.  

Further research is needed to evaluate driver’s response to new eco-routing systems. 

Moreover, a methodology to adjust and estimate more accurately the effective impact of 

pollutant emissions according to the characteristics of specific links should be developed in 

future work. Then, the optimization procedure could be further improved by adjusting the 

capacity constraints; for instance, the maximum capacity of each link could be defined by 

considering the maximum amount permissible of environmental damage costs produced 

by a certain number vehicles.  
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8 CONCLUSIONS  

 

Firstly, this chapter summarizes the contribution of the research and provides answers to 

the main research questions raised at the beginning of this thesis.  Section 8.2 address 

transferability issues and work limitation and finally some unresolved issues that deserve 

future research attention are identified in section 8.3.  

 

8.1 CONTRIBUTIONS (METHODOLOGY AND RESEARCH QUESTIONS) 

 

A major contribution of this work has been the development of methods to analyze the 

impact of route choice under different energy and environmental criteria. A unique 

database from approximately 13,300 km of road coverage over the course of 222 h has 

been developed by considering a wide range of driving patterns conditions, namely at 

different periods of the day (peak vs. non-peak hour) and different scales (city, urban, and 

metropolitan). These data have been used to generate emissions information based on the 

instantaneous emissions model VSP. This method is more accurate since it reflects the 

transient emission rates under different operating modes, thus yielding a better estimate 

of vehicle emissions than speed-based emission models.  

In a second phase, emissions estimations based on GPS data were incorporated into 

Geographic Information Systems and state-of-the-art routing algorithms.  Different 

approaches to consider the specific impacts of several pollutants were suggested. 

Subsequently, an integrated traffic-emission microsimulation platform has been developed 

and validated with real world data including the distribution of vehicle’s operational 

modes. This modelling platform has been used to establish accurate models based on link-

based volume emissions functions. This original approach allows one to estimate with 

higher accuracy the performance of different links, under different demands and 

simultaneously enabling greater operational flexibility and speed data processing for 
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evaluating different traffic assignment and route guidance strategies.  Similar 

computational structures may become a user-friendly solution for assessing the 

sustainability of different ATMS.   

Overall this research contributes by comprehensively exploring and quantifying the 

potential environmental benefits of providing additional travel information to drivers. 

Furthermore, the insights gained from this study can also serve as the basis for 

implementing ATMS under environmental and traffic performance constraints.  The main 

research questions addressed in chapter 1 are summarized below. 

 

8.1.1 How can route selection influence the emissions output in different spatial and 

temporal contexts?  

 

Empirical tests have demonstrated that route choice can play a very important role in 

reducing fuel consumption and emissions. Regarding LDDV, from a strictly individual 

perspective, and for specific pollutants, empirical tests have shown that it is possible to 

reduce CO2 emissions by 10% in intercity and metropolitan routes and 25% in urban routes. 

Regarding NOX emissions, reductions of 35% in the urban and intercity scenarios and 11% 

in the metropolitan routes were observed. 

Regarding LDGV, the selection of an appropriate route has been shown to yield the 

reduction of 5% of fuel consumption (and CO2 emissions) in metropolitan routes, 15% in 

urban routes and 25% in the intercity context. The variations in CO range from 12% in 

metropolitan routes to 60% in the intercity corridor.  

For all OD pairs, the differences in emissions among all routes differences are to some 

extent reduced during peak hour. However, for both types of vehicle, and in the large 

majority of cases, emissions are statistically significantly different between the routes with 

the highest emission levels the routes yielding lower emissions. 
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Despite the positive results in terms of potential for emissions reduction based on an 

appropriate route choice, the overall results exhibit a number of important trade-offs that 

should be discussed. 

i) Fuel consumption and CO2 vs. local pollutants.  

This trade-off was particularly evident in intercity routes for LDGVs. This conflict would 

be more problematic in regions where high concentrations of local pollutants such as 

CO are usually observed.  However, this conflict could be reduced with an increasing 

market penetration of cleaner vehicles. Figure 59 shows the relative evolution of 

emissions factors since 1992.  It can be seen that since 1992 the reduction rate of 

average emissions factors of local pollutants (due to the application of end-of-

line technologies) has been considerable higher than CO2 emissions [179].  Thus, the 

contribution of the transportation sector to local pollutants emissions will be reduced 

considerably in the medium term.  Additionally local pollutants emissions can be 

reduced by applying speed management/harmonization techniques on motorways 

aiming at reducing higher speeds and consequent high emissions levels.  

 

Figure 59 Relative reduction of average emissions factors since 1992. CO, NOX and HC - data based on 
European emission standards) CO2 – data based on new vehicles sold in UE.  

 

ii) Eco-friendly route vs. travel time 
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Considering an eco-indicator for route choice based on economic cost of each pollutant, it 

was found that generally, the selection of an eco-friendly route leads to higher travel time. 

This fact could seriously limit the acceptance of eco-routing suggestions to a considerable 

number of drivers. However, if the eco-routing strategy is predominantly focused on CO2, 

this conflict would tend to decrease. Additionally, by reducing CO2 emissions drivers will 

reduce their fuel consumption, and therefore their travel costs. 

iii) Eco-friendly route vs. local impacts 

 In some circumstances the routes that yield a minimization of pollutants cross 

densely populated areas. This fact suggests that a careful assessment of potential 

externalities that may arise from a purely dedicated navigation system based on the 

minimization of total emissions is needed.  

iv) Eco-friendly route vs. Vehicle type 

Depending on the characteristics of the routes linking a certain OD pair, the eco-friendly 

route may differ according to the type of vehicle. For individual navigation devices, this 

issue can be easily resolved, by including specific information on different types of vehicle 

into routing algorithms.  For a centralized network management, the average fleet 

composition must be considered in order to maximize the effectiveness of advanced traffic 

management systems.  

8.1.2 How can Intelligent Transportation Systems be used to provide eco-routing 

information? 

 

Figure 60 outlines an ideal network equipped with different ITS to clarify where some of 

the research findings and methodologies can be applied.  

Several methods can be used to collect real time information on traffic performance and 

air quality indicators. Given the potential of smart vehicles, either through the use of 

nomadic devices and vehicle to infrastructure technologies (V2I), online traffic data could 

be fed into modelling systems, which will help traffic engineering’s forecast traffic 

emissions.  Alternatively or simultaneously, traffic monitoring stations (TMS) (A) could 
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transmit to a Traffic Management Center TMC (B), information on traffic speed and traffic 

volumes. At the same time, air quality stations (AQS) (C) broadcast real time information 

on air pollutants concentrations to the TMC, allowing to prioritize the most critical 

pollutants such as has been performed in chapter 6.1. 

A methodology based on VSP data such as demonstrated in section 6.1.3.  (or an alternative 

modelling tool)  can be employed to calculate real-time emissions across several road 

segments using the (speed, acceleration and road grade) data transmitted by probe 

vehicles. This information can be constantly updated and incorporated in routing 

algorithms such as was demonstrated in section 6.1. 

On the other hand, similar models to the one presented in sections 4.2.4, 7.1.3.1, 7.2.2.2  

(Volume-Emissions Functions) can be used to estimate real time emission information 

based on real time data on traffic volume. 

Real time or historical average emissions per road segment may be incorporated in pre-trip 

planning software in order to determine the most eco-friendly route. This information 

could be available on navigation routing systems such as GPS devices (D) and pre-trip 

planning software available online (E).  Using innovative traffic assignment methods such 

as described in chapter 7, dynamic road pricing schemes (F) can be used to improve the 

energy and environmental performance of the network. Additional route information could 

be summarized into different rating systems such as presented in section 4.1.6 and 4.2.3.   
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Figure 60 Integration of the methodology in an ideal network equipped with different ITS 

 

 

8.1.3 What strategies of traffic management can be applied to improve the efficiency of 

road infrastructure in terms of traffic performance, energy consumption and 

emissions? 

 

Both empirical and analytical results have shown that for limited levels of acceptance, the 

eco-routing strategies have significant potential to reduce emissions.  However, for higher 

demands of eco-routing vehicles, the overall network performance can be deteriorated.  

In fact, system environmental impacts can be higher if drivers are routed with the objective 

of minimizing their own ED costs.  The degradation in network performance caused by the 

self-interested behaviour of network users is being studied over the last decades by a 

considerable number of researchers.  The Price of Anarchy (term introduced by 
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Koutsoupias and Papadimitrio [180]) measures the ratio between average travel time 

under system optimum (centralized) and user equilibrium (decentralized system).  

In this study, it has been demonstrated that the deterioration of the network performance 

may be even more notorious when drivers are routed to reduce their individual 

environmental impacts as demonstrated in the case-study shown in Chapter 7.1.  This may 

be connected to the fact that when drivers are routed with the purpose of minimizing their 

own travel time, they are conducted to motorways with higher capacity. On the other hand, 

when drivers seek routes for minimizing their own environmental impacts, they can be 

routed to slower roads, with less capacity, where the impact inflicted on other users is 

significantly higher, even for lower traffic volumes. 

An alternative solution to overcome this issue would be to address the routing problem 

macroscopically i.e. by changing the equilibrium costs of routes (e.g. dynamic road-pricing 

schemes) towards more a more sustainable traffic distribution. The analysis carried out in 

section 7.2 has demonstrated that significant emissions reduction can be achieved by 

changing the network equilibrium in terms of perceived user’ costs. However, it is 

necessary to conduct further behavioural research to strengthen understanding of driver’s 

feedback to dynamic tolling systems. 

8.2 LIMITATIONS AND TRANSFERABILITY ISSUES   

 

Several limitations must be taken into account. All emission results presented in this report 

are tailpipe exhaust emissions that were based on emission factors that represent generic 

light passenger vehicles (gasoline and diesel). Although there is no consensus about which 

model is the most appropriated to use in traffic planning projects, VSP methodology has 

proven to be very useful in estimating micro-scale emissions [18,37,40]. One of the 

disadvantages found in literature review section, is that a finer categorization of emission 

rates is needed with regard to engine size, and vehicles mileages.  However, this handicap 

could be overcome with the predictable updates and more detailed emissions rates that 

should be available in the short term.  Moreover it should be noted that the data collected 
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in the experimental tests could allow future assimilation of another microscale models such 

as VT-micro [181] or CMEM [47]. The absolute values can be significantly different if one 

considers vehicles of different categories and mileages. Since the main objective was the 

development of a methodology rather than an exhaustive database of on-board emission 

rates for different patterns of vehicle dynamics, it was not necessary to consider all vehicles 

of the Portuguese fleet. Yet, more than calculating absolute values, the main objective of 

this work was to assess the relative impact of different operational aspects of networks 

performance in terms of emissions.  

Field tests were conducted based on the driver’s judgement of the average speed of the 

traffic stream. During free flow conditions the speed limits were respected. Logically, the 

study results can only be extrapolated assuming similar driving behaviours.  

Several strategies for weighting the impact of different pollutants appear throughout the 

various chapters.  It is not possible to determine which is more correct, since it depends on 

the main purpose of the study and the circumstances of each site. However, more research 

is clearly needed to develop more detailed and dynamic measures to assess the real 

impacts (health, environmental and socio-economic impacts) of different pollutants. 

One of the limitations of a primarily empirical study and based on specific study areas, is 

the ability to generalize from the field data on which the study has been conducted to a 

larger population. However, the applied methodology (use of test vehicles, 

microsimulation, statistical analysis and systematization of information) can be applied to 

provide eco-routing information in different OD pairs. Given the diversity and 

heterogeneity of the analysed scenarios, it may be expected that some conclusions of this 

study can be extrapolated to other contexts. Specifically the following findings can be 

generalized beyond the case study: 

1) The presented method on implementation of eco-routing information. 

2) The evidences of significant potential emission savings for eco-routing even during 

peak periods. 
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3) The assessment of the potential to accurately predict emissions of various 

pollutants in different types of roads based on GPS measurements and traffic volumes data 

(Volume-emissions functions). In Future, these VEF can be incorporated in routing and 

traffic assignment algorithms.  

4) The identification of drawbacks associated with eco-routing systems which have 

rarely been considered so far. 

 

8.3 FUTURE WORK 

 

The implementation of environmental policies in the transportation sector should consider 

the level of contribution of each externality and the geographical scale; otherwise some 

isolated measures may just move the problems elsewhere. Thus, a future crucial research 

topic would be to explore the nature of these dynamic externalities, in order to manage 

efficiently current road networks. Further research should focus on developing a platform 

to estimate and standardize the major impacts of road traffic, and support a sustainable 

use of existing infrastructures. Transportation related impacts can be integrated and 

continuously updated database supported by Geographic Information Systems (GIS) - 

Figure 61. 
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Figure 61 Integration of optimization tools with different layers of transportation-related impacts 

 

 

However, such platform should consider improved weighing criteria and new measures for 

assessing different transportation-related impacts (GHG, local pollutants, noise, and 

safety). Taking into account that some of the recommended eco-routes cross densely 

populated areas, further eco-routing algorithms needs to consider the real impacts of 

traffic by means of weighting factors assigned to each link, according to specific local 

vulnerability factors.  This method would allow considering additional objectives such as 

minimizing the number of homes exposed to high levels of traffic-related externalities such 

as pollutants and noise.  

Under the framework of the SMARTDECISION project, the emissions data was integrated 

into different air quality models, according to the scale of analysis. One of the main 

objectives was to assess if potential improvements on regional air quality modelling  related 

with the implementation of a more comprehensive methodology for traffic emission 

estimation would be obtained [182]. It has been found that improvements in air quality 
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results have been achieved by applying a detailed methodology for emission estimation 

(using VSP), mainly for PM10, CO and O3. However, further improvements can be made by 

increasing the detail in vehicle categories and testing alternative emissions modelling tools.  

The integrated traffic-emission modelling platform was validated in terms of speeds, 

volumes, travel time and VSP modal distribution. Despite this rigorous process of 

calibration and validation, it would be interesting to conduct a retrospective analysis of the 

models to predict link-based emissions over different traffic demands.   
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A DESCRIPTIVE STATISTICS FOR TRAVEL TIME  

A1 Urban routes 

  Um CS Ua CS Uu CS 

Statistics Statistic 
Std. 

Error 
Statistic 

Std. 
Error 

Statistic 
Std. 

Error 

Mean 464 13 532 14 538 19 

95% 
Confidence 
Interval for 
Mean 

Lower 
Bound 

436 
  

501 
  

495 
  

Upper 
Bound 

492 
  

563 
  

582 
  

5% Trimmed Mean 463   530   537   

Median 451   522   524   

Variance 1774   2119   4180   

Std. Deviation 42   46   65   

Minimum 407   476   428   

Maximum 541   623   672   

Range 134   147   244   

Interquartile Range 60   65   93   

Skewness 0.535 0.661 0.844 0.661 0.530 0.661 

Kurtosis -0.497 1.279 -0.092 1.279 1.073 1.279 

        
 
        

  Um SC Ua SC Uu SC 

Statistics Statistic 
Std. 

Error 
Statistic 

Std. 
Error 

Statistic 
Std. 

Error 

Mean 404 16 479 16 520 16 

95% 
Confidence 
Interval for 
Mean 

Lower 
Bound 

368 
  

443 
  

485 
  

Upper 
Bound 

440 
  

515 
  

555 
  

5% Trimmed Mean 406   477   518   

Median 427   458   507   

Variance 2864   2866   2692   

Std. Deviation 54   54   52   

Minimum 295   415   443   

Maximum 479   575   621   

Range 184   160   178   

Interquartile Range 80   90   80   

Skewness -0.762 0.661 0.511 0.661 0.561 0.661 

Kurtosis 0.189 1.279 -1.148 1.279 -0.069 1.279 
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A2 Intercity routes  

  Im1 AP Im2 AP Ih AP Iu AP 

Statistics 
Statisti

c 

Std. 
Erro

r 

Statisti
c 

Std. 
Error 

Statisti
c 

Std. 
Error 

Statisti
c 

Std. 
Error 

Mean 2965 21 3319 148 5707 177 6408 142 

95% 
Confidenc
e Interval 
for Mean 

Lower 
Bound 

2917 
  

2977 
  

5300 
  

6079 
  

Upper 
Bound 

3014 
  

3661 
  

6115 
  

6736 
  

5% Trimmed Mean 2964   3281   5713   6397   

Median 2955   3185   5805   6308   

Variance 3965   198225   280645   182678   

Std. Deviation 63   445   530   427   

Minimum 2897   2922   4847   5866   

Maximum 3056   4403   6465   7139   

Range 159   1481   1618   1273   

Interquartile Range 132   386   843   682   

Skewness 0.420 0.71
7 

2.137 0.717 -0.457 0.717 1 .717 

Kurtosis -1.527 1.40
0 

5.111 1.400 -0.550 1.400 0 1.400 

 

  Im1 PA Im2 PA Ih PA Iu PA 

Statistics 
Statisti

c 

Std. 
Erro

r 

Statisti
c 

Std. 
Error 

Statisti
c 

Std. 
Error 

Statisti
c 

Std. 
Error 

Mean 2921 56 2995 53 5175 112 6266 151 

95% 
Confidenc
e Interval 
for Mean 

Lower 
Bound 

2793 
  

2872 
  

4916 
  

5918 
  

Upper 
Bound 

3050 
  

3117 
  

5434 
  

6614 
  

5% Trimmed Mean 2910   2990   5186   6262   

Median 2882   2972   5195   6225   

Variance 27988   25289   113585   205535   

Std. Deviation 167   159   337   453   

Minimum 2763   2749   4514   5590   

Maximum 3278   3317   5644   7014   

Range 515 
  

568 
  

1130 
  

1424 
  

Interquartile Range 223 
  

176 
  

436 
  

731 
  

Skewness 1.431 .717 .709 .717 -.699 .717 .177 .717 

Kurtosis 1.678 1.40
0 

1.609 1.400 .933 1.400 -.507 1.400 
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A3 Metropolitan routes 

  Mm NC Ma NC Mm CN Ma CN 

    
Statistic 

Std. 
Error Statistic 

Std. 
Error Statistic 

Std. 
Error Statistic 

Std. 
Error 

Mean 28 2 31 1 27 1 26 1 

95% 
Confidenc
e Interval 
for Mean 

Lower 
Bound 

23 
  

28 
  

25 
  

25 
  

Upper 
Bound 

32 
  

33 
  

30 
  

28 
  

5% Trimmed Mean 29   30   27   26   

Median 28   31   26   26   

Variance 76   16   13   4   

Std. Deviation 9   4   4   2   

Minimum 0   25   24   23   

Maximum 40   40   37   30   

Range 40   15   14   7   

Interquartile Range 5   4   3   3   

Skewness -2.262 0.58
0 

0.884 0.616 1.977 0.616 0.177 0.58
0 

Kurtosis 7.863 1.12
1 

1.009 1.191 4.575 1.191 -0.824 1.12
1 
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B TRAVEL TIME AND EMISSIONS DATA BOXPLOTS 
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Table B1 Explanation of Box-and-Whisker Plots 

Group Summary Statistic  Feature of Box-and-Whisker Plot 

 

Maximum  

 
Endpoint of upper whisker 

 

Third quartile (75 75th percentile)  Upper edge of box 

 

Median (50 th percentile) Line inside box 

 

First quartile (25 th percentile) 
 

Lower edge of box 

Minimum  Endpoint of lower whisker 

Outlier - less than or equal to the first quartile minus 
1.5 times the interquartile range, or is greater than 
or equal to the third quartile plus 1.5 times the 
interquartile range.  
 

circle 

Outlier - less than or equal to the first quartile 
minus 3 times the interquartile range or greater 
than the third quartile plus 3 times the 
interquartile range, it is characterized as a far 
outlier 

star 
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B1 Travel time 

 

Figure A1 Boxplots for Average speed in all routers  
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B2 Urban routes - CO2, CO, NOX and HC from LDDV 
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B3 Urban routes - CO2, CO, NOX and HC from LDGV 
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B4 Urban routes – Fuel consumption from LDDV and LDGV 
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B5 Intercity routes - CO2, CO, NOX and HC from LDDV 
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B6 Intercity routes - CO2, CO, NOX and HC from LDGV 
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B7 Intercity routes – Fuel consumption from LDDV and LDGV 
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B8 Metropolitan routes - CO2, CO, NOX and HC from LDDV 
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B9 Metropolitan routes - CO2, CO, NOX and HC from LDGV 
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B10 Metropolitan routes – Fuel consumption from LDDV and LDGV 
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C IMPLEMENTATION OF ALGORITHMS 

 

C1 GOLDEN METHOD SEARCH FOR MODEL CALIBRATION 

 

 

 

 

C2  Calibration of Volume Delay Functions   

 

Although the Highway Capacity Manual [16] provides default parameters VDF functions 

according the type of road classification, often is not easy to find the correct parameters 

for a particular region with limited data.  For example, if there are 4 road classes there will 

be 8 parameters to be found. Nevertheless,  If there are 10 possible discrete values to test 

then, 108 runs would be needed to be perform [9].   

Thus, an optimization method is desirable to find the best VDF parameters. In this context, 

previous research has demonstrated that algorithms based on intelligent techniques have 

been efficiently employed. Particularly, genetic algorithms (GA) have become an 

increasingly used approach [17-19].  A comparative study suggested that GA shows 
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equivalent or better performance than other approaches like the sensitive based analysis 

(SBA) and the simulated annealing approach [20, 21].  

Regarding the calibration parameters, the root-mean-square error (RMSE) is commonly 

used to compare the experimental observations with the estimated observations  [22]. The 

Equation (1) shows how RMSE is determined where “O” denotes the observed vehicle 

counts, “E” symbolizes the estimated counts by the travel demand model and “N” 

represents the number of segments that contain observed counts. Acceptable RMSE values 

can vary between 30% to 40%, according the network size [23].    

 

 

C3 Basic structure of genetic algorithms  

 

Genetic algorithms are adaptive procedures to find the global optimum solution for an 

optimization problem.  The population members are strings or chromosomes, which as 

originally conceived are binary representations of solution vectors. GA undertakes to select 

subsets of solutions from a population [183]. 

 

 In order to set up the use of a genetic algorithm it is necessary to outline a representation 

of the problem genome, a means of scoring a fitness, and a means of reproduction [184]. 

Additional possibilities are to provide means of mutation and crossover to offer more 

flexibility to the algorithm. GA need a way to score its population which usually is also 

referred to as fitness. Numerous genetic algorithms preserve the strongest or highest 

scored genome, a strategy frequently denoted as elitism. The scoring and fitness operation 

within the GA also allow for removal of the unfit genomes. This is important, since the 

upcoming generations must derive from the higher scored or the more fit genomes [185].  

 

𝑅𝑀𝑆𝐸 = √
∑(𝑂𝑖 − 𝐸𝑖)

2

𝑁

∑𝑂𝑖
𝑁

⁄  (1) 
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Reproduction is another essential operation required for a genetic algorithm. Reproduction 

should incorporate two genomes within the population. The two parents should produce a 

number of descendants (off spring) that should be based on the two parent’s data. Often 

off spring is a binary mix of the parent’s values, but can be also new random values within 

a range of the parents. Relationship to the parents is important because this is what locates 

the local  minimums of the problem space [9]. 

 

Genetic mutation and crossover operations are also very convenient. These processes are 

designed to change offspring in a way that may possibly allow finding the local minimum 

area of the problem space.  Often mutations are random changes to a genome that are 

unpredictable, for example a random gene’s binary value would be flipped, or would be set 

to a new random number. Crossover is analogous processes to reproduction where two 

genomes swap values to produce a crossed genome in hopes that the better genes of one 

genome will be incorporated with another to yield better results [185]. Eventually if 

mutation or crossover is not executed the results could end up locking onto a local 

minimum and the GA would not be able to break away from this solution to find the global 

minimum [185]. 

 

A disadvantage of any evolutionary algorithm is that a solution is "better" only in 

comparison to other, currently identified solutions; such an algorithm actually has no 

concept of an "optimal solution," or any method to check whether a solution is optimal. 

This also means that an evolutionary algorithm never knows when to stop, aside from the 

length of time, or the number of iterations or candidate solutions [186].  Figure 1 shows 

the application of a genetic algorithm for of a network optimization based on 

environmental criteria [94]. Appendix Figure 2 outlines several procedures for evaluating 

the quality of the solutions given by the evolutionary algorithm. 
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Appendix Figure 1 Step by step procedure regarding the implementation of an evolutionary algorithm for 
solving the network optimization problem with environmental cost functions (adapted from [94]).   

 

1. Initialize population: 
Randomly set each gene in 

each of the chromosomes to 0 
or 1. This first set of 

chromosomes represents the 
initial population, popn.

2. Solve SO traffic assignment 
problem for each chromo-

some.

3. Calculate objective functions 
(System CO2, SED, etc)  for each 

chromosome in popn. If 
reached, stop. 

Else, go to Step 4.

Step 4: For each group of s 
chromosomes, keep the best 
chromosome as a parent for 

generation n+1.

5. Crossover: Let n = n+1. 
Generate K uniform (0,1) 

random numbers for each pair 
of “parents”

6. Mutation: Mutate each gene 
of each chromo- some in popn

with probability pm..

7 .Check stopping criterion: If 
reached, stop and go to 8. 

Else, go to Step 2.

8 .Evaluating of the solution 

Go to Steps A-E



 

 

 University of Aveiro 

208 ROAD TRAFFIC INFORMATION PLATFORM FOR ENERGY AND EMISSIONS SAVINGS 

 

Appendix Figure 2 Procedure for assessing the quality of the solution given by the 

evolutionary algorithm (adapted from [186]) .  

  

8a)  Check for better 
solutions in a reasonable 
length of time, by restarting 
the algorithm  from that last 
solution.

8b) Exploring  additional 
possibilities by Tightening 
the Convergence value, 
increasing  the Maximum 
Sub problems and Maximum 
Feasible Solutions.

8 c) Increase the diversity of 
the population and the 
portion of the search space 
that is explored, by  
increasing  the Population 
Size and/or the Mutation 
Rate.

8 d) Test  if GRG Solving 
method  finds similar 
solutions. If the GRG displays 
the message “Solver found a 
solution,” at least a locally 
optimal point has been 
found. 

8 e) Examine the Population Report. If the Best Values are similar 
from run to run with low Standard Deviations, this solution should 
be close to the global optimum. Since optimization tends to drive 
the variable values to extremes, if the solution is feasible and the 
Best Values are close to the Maximum or Minimum Values listed in 
the Population Report, this may indicate that the optimal solution 
has been found. 
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D LINK PERFORMANCE FUNCTIONS – TRAVEL TIME, ENVIRONMENTAL DAMAGE, AND CO2 

COSTS 
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CB BD 

Appendix Figure 3 Volume Env. Damage Cost Functions for the main links of the urban network  
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Appendix Figure 4 Volume Damage Cost Functions for the main links of the urban network  
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Appendix Figure 5  Volume-CO2 Cost Functions for the main links of the urban network  

 


