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1. Introduction

The concept of gene therapy was first introduced in the mid-80s, and is based on the deliv‐
ery of genetic material (DNA or RNA) in the nucleus of patient cells, so that it is expressed
and produces a therapeutic effect.

Different approaches can be considered:

• Correcting defective function by supplying a functional gene to the cells, thereby directly
addressing the cause of a genetic disease.

• Transferring a gene encoding a therapeutic protein, in order to treat, prevent or slow the
progression of certain diseases.

• Introducing a gene leading to the death of a diseased cell

• Introducing antisense DNA inhibiting the formation of a protein or the replication of a vi‐
rus

Originally developed for monogenic diseases, and therefore associated with the compensa‐
tion of genes whose alteration is responsible for diseases, the concept of gene therapy has
rapidly expanded to the use of DNA as a new type of drug. Therefore, gene therapy leads to
indications which are far beyond the case of genetic diseases, since a DNA drug can, in prin‐
ciple, replace any medication which will control protein synthesis. Gene therapy seems an
alternative choice to fight against diseases currently treated imperfectly, or not treated with
conventional pharmaceutical approaches.

In addition, gene therapy has many advantages compared to the administration of recombi‐
nant proteins. Indeed, recombinant proteins are costly and their elimination from the blood
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flow is fast, while gene therapy leads to a long-term and potentially regulated production of
a therapeutic protein. Gene therapy also allows the localized expression of the transgene,
avoiding any risk associated with the presence of a systemic exogenous protein.

The main limitation of current gene therapy is the development of effective gene transfer.
Indeed, in order to reach the cell nucleus, the therapeutic gene has to cross several biological
barriers. Therefore, the success of any gene therapy requires the development of efficient
and appropriate methods and vectors for introducing the gene of interest into target cells.
The ideal vehicle for gene transfer must have the following properties: (1) specificity to tar‐
get cells, (2) localized gene delivery, (3) resistance to metabolic degradation and/or attack by
the immune system, (4) minimum side effects, and (5) eventually controlled temporal trans‐
gene expression [1].

Many methods of in vivo gene transfer exist and are generally classified into two main cate‐
gories: viral and non viral. Viruses are very efficient vehicles for gene transfer; however
their use is limited by high production costs and safety concerns, such as immune response,
possible pathogen reversion, mutagenesis and carcinogenesis. Considering these limitations,
the delivery of therapeutic genes to target cells by non viral approaches may be of great val‐
ue for the development of gene therapy. Among these approaches, in vivo electroporation,
also called in vivo electropermeabilization or in vivo electrotransfer, has proven to be one of
the simplest and most efficient methods for gene therapy, while at the same time being safe,
cheap, and easy to perform.

In vivo electrotransfer is a recent physical technique for gene delivery in various tissues and
organs, which relies on the combination of plasmid injection and delivery of short and de‐
fined electric pulses. This process results in the association between cell permeabilization
and DNA electrophoresis. Skeletal muscle have now been frequently electrotransfered, since
it offers promising treatment for muscle disorders, but also a way for systemic secretion of
therapeutic proteins, by converting skeletal muscles into an endocrine organ: the protein
produced can diffuse into the vascular system and circulate throughout the body to exert a
physiological and potentially therapeutic effect. Many published studies have demonstrated
that plasmid electrotransfer can lead to long-lasting therapeutic effects in various patholo‐
gies such as cancer, rheumatoid arthritis, muscle and blood disorders, cardiac diseases, etc...
Indeed, the physical method of electrotransfer allows for greater efficiency of gene transfer
after a single injection and improves protein expression by several orders of magnitude, as
compared to DNA injected in the absence of electrotransfer. Therefore, plasmid electrotrans‐
fer can be considered a powerful tool for gene therapy.

The scope of this chapter encompasses the methods of electrotransfer, its implementation,
mechanism, optimization and therapeutic applications.

2. Description of the electrotransfer technique

In 1982, E. Neumann and his collaborators demonstrated in vitro the possibility of introduc‐
ing DNA into cells using electrical pulses [2]. These electric pulses would cause the destabi‐
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lization and permeabilization of the plasma membrane of suspended cells, thus promoting
the entry of exogenous DNA into these cells. Two years later [3], the confirmation of this re‐
sult opened the way for the development of electroporation (or electropermeabilization) into
bacterial [4], fungal [5] vegetal or animal cells. This method is routinely used now. The opti‐
mization of electrical parameters is critical to allow transient permeabilization, together with
a satisfactory cell survival rate [6].

In initial studies, in vivo DNA electrotransfer has been tested in the skin in 1991, by the use
of exponentially decaying electrical pulses, and in 1996 in the liver using trains of short 100
µs pulses [7]. In 1998, four independent teams showed the effectiveness of electrotransfer
using pulses of long duration (5-50ms): in skeletal muscle, our team in collaboration with
that of Luis Mir [8] and Aihara [9], in tumors, Rols et al. [10] and in liver Suzuki et al. [11]. In
vivo DNA electrotransfer has now been successfully used in a broad range of target tissues
and organs including for example : arteries [12], skin [13], tendon [14], bladder [15], cornea
[16], the retinal cells [17], spinal cord [18]and brain [19].

Electropermeabilization can also be used to deliver chemical drugs into the cells: e.g. electro‐
chemotherapy in tumors, with the use of bleomycin, developed since 1991 [20]. Several clini‐
cal trials are underway [21], primarily for the treatment of subcutaneous or skin tumors [22,
23] and recently for the treatment of breast cancer with cisplatin [24] (For a review see [25]).

3. Mechanism of electrotransfer at the cell level

The technique of electroporation for the transfer of nucleic acids has been used since the 80s,
however its exact mechanism is not yet completely elucidated [26, 27]. At the cell level, it
seems that two phenomena occur: first the permeabilization of the cell to small molecules,
probably due to a destabilization of the cell membrane, and secondly the transport of DNA
by electrophoresis.

3.1. Permeabilization

The lipid bi-layer of the plasma membrane separates two solutions with very high ionic con‐
ductivity: the cytoplasm and the extracellular medium. Typically, at rest, the membrane po‐
tential difference (ΔVm0) is around -70mV. When an electric field is applied to a cell, the
resulting current induces an accumulation of electric charges at the cell membrane which
leads to a variation of thistransmembrane potential. And if the transmembrane potential ex‐
ceeds a certain threshold value, the cell membrane is disorganized and structural changes
occur. That is a necessary condition for an effective gene transfer [28].

Shall the cell be considered a hollow sphere where the thickness of the membrane is negligi‐
ble vis-à-vis the cell radius, then the transmembrane potential difference ΔVm induced by
an electric field is, as described by Schwann’s equation:
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Vm f.g.r.E.cosq. 1-exp -t( ( ))/tD = (1)

Thus, the transmembrane potential difference ΔVm is proportional to

• the cell radius (r)

• the magnitude of the electric field (E) (expressed in volts/cm)

• the cosine of (θ), its incidence angle,

• a cell shape factor (f)

• the conductivity of the medium (g)

• the pulse duration for which the electric field is applied (t)

• the charging time constant of the cell (τ).

If the membrane is seen as a pure dielectric object, g is equal to 1. Under the conditions used
for cellular electroporation, the pulse duration is significantly longer (of a few hundred mi‐
croseconds to a few milliseconds) than the charging time constant of the cell, which is of the
order of a few microseconds. The equation can be simplified to:

Vm = f. r.E.cosqD (2)

This transmembrane potential difference ΔVm is not uniform on the surface of the cell: the
induced transmembrane potential is maximal at the points of the cell facing the electrodes (θ
= 0 and π).

Figure 1. Theoretical model of the cell for electroporation: E, the electrical potential induces ΔVm, a transmembrane
potential difference which dependent on r, the radius of the cell and θ, the angle between the direction of electric
field and the normal to the tangent of the membrane of the cell at this point
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The membrane is off-balance and becomes transiently permeable when the sum: ΔVm0 (at
rest) + ΔVm (induced) reaches a threshold value of about 200mV [29]. Thus, the greater the
difference between the threshold value and the value applied, the greater the surface area is
permeabilized. However for a given electric field, beyond a certain angle, the ΔVm falls be‐
low the threshold value of permeabilization. The relationship between the applied electric
field and the permeabilized surface was demonstrated by in vitro fluorescent labeling of per‐
meabilized areas of the cell [30]. Moreover, these studies have shown that it is the face of the
cell toward the anode side which is permeabilized first, the negative potential of the cell be‐
ing in addition to that induced by the external electric field.

One theory suggests that the DNA enters into the cell through pores which are generated by
electrical stimulation [32]. The electropermeabilization creates relatively stable "electro‐
pores" [2, 33]. But these pores have never been visualized. The plasmid DNA may optionally
pass the membrane after a step of binding to the surface of the cell and by diffusion.

The second phenomenon necessary for gene transfer by electroporation is the electrophore‐
sis of negatively charged DNA.

3.2. DNA electrophoresis

The occurrence of an electrophoretic process has been demonstrated in vitro [31]. Various stud‐
ies have shown this electrophoretic effect: Klenchin et al. demonstrated that DNA has to be
present at the time of the pulses [31]. Furthermore, they showed that the transfection efficien‐
cy depends on the polarity of the electric field. Sukharev et al. also showed in vitro that short
pulses of high voltage (HV) induce membrane permeabilization but not transfection, whereas
long pulses at low voltage (LV) do not induce permeabilization or transfection. However, the
sequence “high voltage pulses followed by low voltage pulses” provides a transfection. An hy‐
pothesis is proposed that transfection of cells permeabilized by high voltage is only possible if
low voltage pulses can subsequently mediate DNA electrophoresis [34].

The role of permeabilization and electrophoresis was demonstrated directly at the cell level
by fluorescence microscopy [35]. This work shows that interaction between the membrane
and electropermeabilized DNA is induced in response to electrical pulses of a few millisec‐
onds. DNA electrophoretically accumulates on the cathode side of the cell without immedi‐
ately moving into the cytosol (Figure 1). Thus DNA must be present during the pulse and
electrophoresis induced by the electric field promotes its transfer through the membrane,
but it is only during the following minute that DNA crosses the electropermeabilized mem‐
brane [36]. There is a direct relationship between the DNA/membrane interaction and trans‐
fection efficiency: the larger the contact surface between DNA and the membrane, the higher
is the expression [27].

4. Mechanism of in vivo electrotransfer

In the early 90’s, the first studies about in vivo electroporation appeared. They primarily con‐
cerned the transfer of chemical molecules. The first real demonstration of in vivo cellular
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electropermeabilization was performed on tumors after injection of bleomycin, a cytotoxic
anticancer agent, [22, 37]. The effectiveness of bleomycin depends on its intracellular con‐
centration, but this drug penetrates poorly into cells. Therefore, a better penetration of bleo‐
mycin was measured after application of electric pulses to tumors, leading to an enhanced
desired cytotoxicity.

Most studies are pointing to a mechanism of in vivo electrotransfer comparable to the mech‐
anism of in vitro electrotransfer described above,which can be extended to the whole tissue:
several steps have to take place, including cell permeabilization beyond a threshold value of
local electric field. In 1999, we evaluated on one hand cell permeabilization following the ap‐
plication of electrical pulses by measuring the ability of muscle cells to capture a small radi‐
oactive hydrophilic molecule complexe of EDTA Chelating 51 chromium (51Cr-EDTA), and
on the other hand, transgene expression for evidence of DNA entry [38, 39]. The uptake of
51Cr-EDTA was similar whether injected thirty seconds before or after applying electrical
pulses. In contrast, DNA injected after the electrical impulses does not penetrate into cells.
This suggests that DNA must be present in situ at the time of electrical pulses to obtain an
efficient cell transfection, and that there is a direct, active effect of the electric field on the
DNA molecules to promote their entry into cells. Hence the current mechanistic hypothesis
of gene electrotransfer necessitates not only a permeabilization of cell membranes but also a
DNA electrophoresis.

This hypothesis is supported by the study of Bureau et al. [40] of gene electrotransfer in skel‐
etal muscle of mice with different combinations of long pulses of low voltage (LV, i.e. elec‐
trophoretic pulses) and short pulses of high voltage (HV, i.e. permeabilizing pulses). Only
the combination of a HV-pulse followed by a LV-pulse provided efficient gene transfer. Fur‐
ther studies confirmed that HV-pulses are related to permeabilization, while LV-pulses are
related to the efficiency of DNA electrophoresis [41]. The importance of cell permeabiliza‐
tion was also studied by magnetic resonance imaging using a gadolinium complex as con‐
trast agent (dimeglumine gadopentate): the zone of di meglumine gadopentate complex
permeabilization is identical to the area expression of electrotransfered DNA [42].

The destabilization of cell membranes and the electrophoretic effect are probably not the on‐
ly mechanisms involved in gene transfer by electroporation. Scientists have discussed the
importance of energy metabolism (ATP and ADP) for the passage of DNA through the per‐
meabilized membrane and its migration to the nucleus [28].

Other studies suggest a mechanism of DNA transport by endocytosis [43]. These same stud‐
ies show that transfection efficiency does not decrease if the electrical pulses are delivered
up to four hours after injection of DNA, while other studies show that most of the injected
DNA is degraded in first hours after injection [44]. We also confirmed that after an intra‐
muscular injection, most of the DNA is degraded and eliminated quickly. However, a small
proportion of DNA is preserved and provides a source of stable DNA which can been elec‐
trotransfered [45].

In summary, the molecular mechanism of in vivo DNA electrotransfer is still under investi‐
gation. It likely corresponds to multiple steps whose elucidation and understanding of re‐
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spective contribution could help to develop more effective electrotransfer strategies and
protocols.

5. Electrotransfer into practice

The in vivo electrotransfer technique is particularly easy to implement: a solution of plasmid
DNA (i. e. a circular nucleic acid) in isotonic saline (NaCl, 150mM) is injected into the target
tissue with a syringe, and electric pulses are then delivered by means of electrodes placed
on either side of the injection site and connected to a generator (Figure 2). Electrodes can be
either needles or plates.

DNA 
solution

Plates 
electrodes

Generator

Conductor 
gel

Tissue

DNA 
solution

Plates 
electrodes

Generator

Conductor 
gel

Tissue

Figure 2. Experimental set up for intramuscular plasmid electrotransfer in mice

This technique allows a site specific gene transfer. It is relatively efficient in skeletal muscle
and is applicable to many other tissues such as brain, liver, skin, bladder, kidney, lung, cor‐
nea, retina, testis, tumor tissue etc... for more details see [46]. Electrotransfer can also be
used in a wealth of animal models, ranging from rats and mice to sheeps [47] and cows [48]
and even fish [49].

5.1. Operating parameters

The efficiency of gene transfer depends on the target tissue, the delivered DNA and electric
pulses parameters. The aim is to deliver, into each tissue, electrical pulses that can cause the
permeabilization of cell membranes and DNA transfer, while remaining below the toxic
threshold. Otherwise, local cell death by necrosis of the treated cells would occur, followed
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by tissue regeneration, which would induce the loss of the benefit of the treatment (but with
no toxicity at the level of the whole organism). Therefore, optimal conditions for the DNA
electrotransfer in a targeted tissue result from a compromise between the efficiency of DNA
transfer and minimal cellular toxicity.

5.1.1. The electrodes

The choice of electrodes depends on the target tissue and the size of the treated animal. It is
critically important and should be carefully considered. For an electrotransfer on a small an‐
imal in a tissue such as skeletal muscle, or liver tumor, most experimenters use electrodes
made of two plates attached to a clamp (Figure 3, left). Indeed, this type of electrodes can be
easily applied externally on each side of the interested tissue. Because one key parameter is
the electric field, which is related to the ratio between the voltage applied and the distance
between electrodes, this latter distance should not be too large in order to avoid prohibitive
high voltage in vivo delivery. Thus, for animals of larger size, needle electrodes (Figure 3,
right) are more often used than external plates.

Figure 3. Examples of electrode plates for external use (left) and needle electrodes for internal use, designed by the
company Sphergen (right).

5.1.2. Electrical parameters

Knowing the magnitude and distribution of electric field is very important for both efficient
gene transfer and reduced toxicity. The distribution of the electric field is dependent on both
the tissue and the type of electrodes, which causes variations in the effective magnitude of
the field in the tissue area of interest. The electric field distribution is more homogeneous
when using plate electrodes than with needle electrodes, and for a given setting, the result‐
ing electric field is lower with needle electrodes that with electrode plates [38].

Moreover, it is necessary to determine, for each tissue and each species, the threshold values
of the electric field magnitude, i.e. the permeabilization threshold (reversible) and the cell
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damage threshold (irreversible), in order to define optimal electrical conditions for gene
transfer with minimal toxic effects. Micklavic et al. have developed a system combining nu‐
merical predictions and experimental observations in order to determine these thresholds in
the case of needle electrodes used in rat liver for drug delivery [50].

Different types of electrical pulses can be applied: unipolar square pulses, bipolar square
pulses, or pulses with exponential decay [51]. The exponentially decaying pulses, colloquial‐
ly referred to as “exponential pulses” are mainly used in vitro with a time constant depend‐
ent on the resistance of the incubation media. The square pulses are preferred in vivo, since
the voltage and pulse duration can be set independently of the electrical resistance of the
targeted tissue. Unipolar square pulses are the most widely used for electrotransfer experi‐
ments, while bipolar squares pulses are rather used for electrophysiology [52].

5.2. Toxicity

Tissue damage can be caused by electrotransfer and thus limits the efficiency of transfection
[53]. The cell permeabilization is the main toxicity factor: it leads to an inward diffusion of
the external medium as well as leakage of intracellular content, thus changing the composi‐
tion of the latter. This toxicity can be reduced by minimizing the duration and the extent of
permeabilization.

Other factors of toxicity have been described such as oxidative stress due to the formation of
free radicals near the electropermeabilized membrane [6, 54]. It was also shown that electro‐
transfer induced muscle damage dependent on the amount of DNA injected [55]; these le‐
sions disappear within two months after injection.

In our laboratory, histological analyzes of muscle slices have shown that the application of
electric fields optimized for gene transfer does not induce gene expression markers of stress
and cellular toxicity [56]. Other experiments have allowed to conclude that, even in opti‐
mized conditions, very little muscle damage is generated: few inflammatory lesions are ob‐
served with a maximum in the first seven days after the electrotransfer, but these disappear
rapidly in less than three weeks [57-58].

It is also possible to reduce the extent of damage by increasing the accessibility of DNA to
target cells. Indeed, studies have shown that improving the plasmid distribution leads to an
increase in transgene expression. Thus, the value of the electric field used can be reduced.
Better distribution can be obtained for example by pre-injection of hyaluronidase [59], an en‐
zyme that degrades hyaluronic acid, which is a major component of the extracellular matrix
[60]. This pretreatment allows for the same expression level, using lower voltages while re‐
ducing muscle damage [61]. A pre-injection of sucrose may also improve the distribution of
DNA, by creating spaces between the muscle fibers [62]. Similarly, a pre-injection of poly-L-
glutamate, an anionic polymer, seems to increase the internalization of the plasmid inside
the cell and/or to reduce its degradation [63], and therefore increases the expression of exog‐
enous gene.
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5.3. Target tissues

During recent years, electrotransfer has been applied in various animal species to many tis‐
sues, including skeletal muscle, skin, liver, lungs, kidneys, joints, brain, retina, cornea, etc...
[64]. The optimal parameters of a given electrotransfer should be determined based on the
cell type and species, since these parameters strongly depend on tissue organization and the
size of the transfected cells.

5.3.1. Skeletal muscle

One of the most widely used tissues for electrotransfer is skeletal muscle. The DNA electro‐
transfer into skeletal muscle was discovered independently by three teams [8, 9, 52]. Indeed,
skeletal muscle offers many advantages:

• a large, easy access;

• sets of muscle fibers are parallel to each other: many fibers might have an optimal orienta‐
tion relative to the electric field, which promotes even transfer across the entire length of
the fibers;

• unlike other cells, muscle cells have multiple nuclei flattened against the cell membrane,
which facilitates DNA trafficking to the nucleus;

• muscle fibers do not divide, ensuring long-term gene expression, notwithstanding the ab‐
sence of regeneration due to injury or cytotoxic immune response;

• finally, a major advantage of skeletal muscle lies in its ability to produce and release bio‐
logically active proteins into the bloodstream, due to the strong vascularisation.

Combined together, these features can turn muscle into systemic drug delivery system for
distant targets [65]. Interestingly, the cotransfection of multiple unlinked genes can be easily
performed by electroporation [66]. For examples of electrotransfer in skeletal muscle in vari‐
ous mammalian species see [46].

5.3.2. The skin

The skin is, as muscle, also a widely used tissue for DNA electrotransfer, mostly because:

• this tissue is easily accessible and a large area of tissue can be treated;

• keratinocytes, which are epidermal cells, can synthesize and secrete therapeutic proteins
that reach the bloodstream;

• by its natural function of a biological barrier, the skin contains cells that present antigens
and is therefore an organ of choice for applications in DNA vaccination;

• the epidermal cells have a short lifespan, which can be useful for treatments requiring a
brief period of expression.

However, skin structure [67] does not facilitate gene transfer. In particular, the top layer
(stratum corneum or horny layer) is a major barrier [68, 69]. But a high level of expression in
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the skin from a single injection could still be observed [70, 71]. Moreover Dujardin et al. have
shown that square or exponential pulses induce moderate and reversible effects on the skin
without inflammation or necrosis, while transiently permeabilizing the skin and thus allow‐
ing the passage of molecules [72].

5.4. Optimization of in vivo electrotransfer conditions

An important goal for gene transfer applications is the level and duration of gene expres‐
sion. To determine optimal conditions which maximize efficiency while reducing tissue
damage, different protocols have been used to improve the access of plasmids to targeted
cells. As already described, improved plasmid distribution in the skeletal muscle leads to an
increase in DNA expression. Accordingly, Cemazar et al. showed recently enhanced trans‐
fection efficiency of gene transfer by pretreatment of tumors with hyaluronidase and/or col‐
lagenase, two enzymes which modulate components of the extracellular matrix [73].

A secretion signal can be also added to the transgene sequence : we have recently shown
that by modifying the cellular localization of the produced protein by adding a secretory
signal, the production and secretion of this protein is enhanced, thus enhancing biological
effect [74].

We have also shown that codon optimization of the transgene (i.e. retaining the natural ami‐
no acid sequence but using the preferred host animal codons) leads to increase in the expres‐
sion of the protein of interest [74].

Another method to increase the stability of the protein produced in the blood circulation is
to increase its size in order to avoid kidney excretion. Thus, the construction of fusion pro‐
teins, for instance by fusing a therapeutic protein with an IgG constant [75], appears a sim‐
ple way to deliver enhanced levels of secreted proteins without altering their biological
activities.

The enhanced protein expression, and so their biological effects, also depends of the injec‐
tion regimen and the administered plasmid dose [74].

6. Applications of plasmid electrotransfer

DNA electrotransfer is a recent technique of has not yet successfully completed all stages of
clinical development, but this is progressing. The first Phase I human clinical trial has been
initiated in U.S. by the company Inovio Biomedicals, for the treatment of skin cancer [76].
Since then, the delivery of plasmid DNA encoding therapeutic genes has been tested exten‐
sively in preclinical melanoma models [77].

Applications designated as "therapeutic" which are mainly reported in the literature have
been demonstrated on animal models of human diseases. The main potential therapeutic
areas cover cancer [78], cardiovascular diseases [75], autoimmune diseases [79], monogenic
diseases [80], organ-specific disorders [81] and vaccination [82, 83]. Different examples show
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the efficiency of plasmid electrotransfer to produce therapeutic proteins in various patholo‐
gies [46]: all these experiments showed an improvement in symptoms of the relative disor‐
der.

6.1. Cancer

Cancer accounts for major field of application trials of gene therapy. Different strategies can
be broadly grouped into four main categories:

a. Stimulation of the immune response against a tumor [84],

b. Use of suicide genes [85-87];

c. Repair cell cycle defects caused by the loss of tumor suppressor genes or oncogene acti‐
vation [88],

d. Inhibition of tumor angiogenesis [89].

These strategies can be combined to obtain synergistic results. For example, a combination
of HSV-TK-suicide gene therapy and IL-21 immune gene therapy byelectrotransfer im‐
proves antitumor responses in mice [90]. Moreover, in vivo electrotransfer could be used in
combination with other strategies such as chemotherapy, because these two approaches use
different mechanisms to kill cancer cells, and thus a synergistic effect may be obtained.

Actually, electroporation of DNA encoding cytokines into tumors is extensively studied:
IL-12 [91], IL-18 [92], IFN-α [93] have been shown to reduce tumor growth and increase sur‐
vival times in different tumor models. Other interesting results are represented by the inhib‐
ition of tumor growth in various models with plasmids encoding metaloproteinase-3
inhibitor for the treatment of prostate cancers [94], or encoding endostatin for his therapeu‐
tic efficacy in mouse-transplanted tumors [95].

All  these  experiments  show the  potential  of  in  vivo  electrotranfer  for  cancer  treatment.
And the strategy used, i.e. the direct intra-tumoral plasmid electrotransfer, is well suited
for  the  local  production  of  therapeutic  proteins.  However,  since  the  efficacy  of  gene
transfer  into  tumor  cells  in  vivo  is  generally  low,  intramuscular  electrotransfer  can  also
be  efficiently  used  for  distal  tumor  treatment.  Indeed,  an  important  application  of  the
technique of  plasmid electrotransfer is  the protein secretion by skeletal  muscle:  the pro‐
duced protein,  such as,  for instant,  an immunostimulating cytokine,  can diffuse into the
vascular system and circulate throughout the body to exert a physiological effect, partic‐
ularly therapeutic. This distal approach may be very powerful for surgically inaccessible
tumors, such as head and neck tumors.

Finally, the intramuscular electrotransfer of a plasmid encoding the prostate membrane spe‐
cific antigen (PMSA) has been tested in a human clinical trial of prostate cancer active im‐
munotherapy [96]. DNA fusion-gene vaccination in patients with prostate cancer induces
high-frequency CD8 (+) T-cell responses and increases PSA doubling time [97].
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6.2. Monogenic diseases

Monogenic diseases with an identified defective gene have been the first diseases targeted
by gene therapy approaches. Among these diseases, Duchenne muscular dystrophy (DMD),
which is characterized by the absence of dystrophin, is a good model, since even a small
amount of dystrophin would be sufficient to reverse the clinical phenotype of the disease.
An approach to eventually restore this protein in patients with DMD is to introduce into
their muscles a plasmid encoding dystrophinc DNA. Pichavant et al. were the first to dem‐
onstrate local restoration of full-length dog dystrophin in dystrophic dog muscle by DNA
electrotransfer [98].

6.3. Hematopoietic factor deficiency

Erythropoietin (EPO) is another good candidate for gene therapy applications because a
small amount will produce the desired physiological effect of raising the hematocrit. Nu‐
merous studies, in particular by our own group, report efficient EPO secretion after plasmid
electrotransfer, with a therapeutic effect in anemia and beta thalassemia. The use of intra‐
muscular plasmid electrotransfer for EPO gene delivery in mice increased approximately 10
to 100-fold the expression of this gene, as compared to naked DNA alone [99, 100]. More‐
over with this method, the protein in circulation and hematocrit levels were stable for 2 to 6
months after a single injection of minimal amounts (as little as 1 µg) of a plasmid carrying
the mouse EPO cDNA. Several studies also showed that EPO expression could be regulated,
for instance by co-administering an EPO encoding plasmid under the control of a tetracy‐
cline-inducible promotor and a second plasmid carrying the reverse tetracycline-dependent
transactivator protein [100, 101]. All these studies exemplified that plasmid DNA electro‐
transfer can efficiently produce enough amounts of transgenic EPO in normal mice.

In collaboration with the group of Y. Beuzard, we have demonstrated the relevance of intra‐
muscular electroporation of an EPO-expressing plasmid in a mouse model of human β-tha‐
lassemia, a severe genetic disease, leading to a durable and dose-dependent phenotypic
correction of this severe genetic disease [102]. In addition, we have also shown that it is pos‐
sible to produce fusion protein by plasmid DNA electrotransfer [103]: indeed since the
bridging of two adjacent EPO receptors triggers a conformational change that initiates signal
transduction [104], we have hypothesized that the fusion of two EPO molecules might lead
an increase in intrinsic activity of EPO. Thus, we demonstrated that the injection of EPO
dimer encoding plasmid by electrotransfer in a skeletal muscle of β-thalassemic mice indu‐
ces an increase in the biologic specific activity of this EPO dimer in comparison with the ac‐
tivity of monomer [103].

Furthermore the secretion peak of therapeutic protein following DNA administration is po‐
tentially deleterious. We reported that muscular electrotransfer of low doses of plasmid can
be repeated several times to weeks or even months after the initial injection, and that this
strategy leads to efficient, long-lasting and non-toxic treatment of β-thalassemic mouse ane‐
mia avoiding the deleterious initial hematocrit peak and maintaining a normal hematocrit
with small fluctuation [105].
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In addition, Gothelf et al. demonstrate that gene electrotransfer to skin of even small
amounts of EPO DNA can lead to systemically therapeutic levels of EPO protein [106].

6.4. Cardiovascular diseases

Gene therapy is  an attractive strategy for the treatment of  cardiovascular disease.  How‐
ever, using current methods, the induction of gene expression at therapeutic levels is of‐
ten  inefficient.  Therefore  DNA  electrotransfer  directly  into  heart  may  enhance  the
delivery of therapeutic protein as shown the team of R. Heller : the electroporation meth‐
od ameliorates the delivery of a plasmid encoding an angiogenic growth factor (vascular
endothelial growth factor,  VEGF), which is a molecule previously documented to stimu‐
late revascularization in coronary artery disease [107]. Ayuni et al. demonstrated that, un‐
like  the usual  methods to  treat  coronary artery diseases,  electrotransfer  applied directly
into the beating heart enhances the delivery of a plasmid injected via the coronary veins
after transient occlusion of the coronary sinus [108]. These results show that in vivo  elec‐
troporation mediated gene transfer is feasible and safe,in particular to the heart.  Finally,
in  skin,  D.  Dean reported  that  using  electroporation  in  skin  enhances  delivery  of  plas‐
mid  DNA  encoding  fibroblast  growth  factor-2  (FGF-2)  to  induce  neovascularization  as
atherapy for ischemia in a rat model [109].

6.5. Eye diseases

The eye is an isolated organ difficult to reach via systemic administration. Eye diseases are
treated with intra- or periocular injections and these repeated injections bear the risk of ad‐
verse effects, mainly infections, and are poorly tolerated by the patients. The use of DNA
electrotransfer technique is therefore possible to deliver a local treatment. Our team associat‐
ed with an ophtalmology group has developed electrotransfer to the ciliary muscle, which is
a particular smooth muscle with some characteristics of striated skeletal muscle, for the local
treatment of inflammatory eye disease. This approach led to production and secretion of
therapeutic levels of TNFα soluble receptor in the ocular media, and not in the serum, thus
preventing clinical and histological signs in a rat uveitis model [110, 111]. Recently, supra‐
choroidal electrotransfer with a reporter plasmid to transfect the choroid and the retina
without detaching the retina has been reported [112]. Not only choroidal cells but also RPE,
and potentially photoreceptors, were efficiently transduced for at least a month, without oc‐
ular complications. This minimally invasive non-viral gene therapy method may open new
prospects for human retinal therapies.

6.6. Obesity and diabetes

As mentioned above, skeletal muscle can be an efficient platform for the secretion of eryth‐
ropoietin (EPO), which displays a variety of metabolic effects when it is expressed in supra-
physiological levels. Hojman et al. have proposed to overexpress EPO in muscle by
electrotransfer of plasmid in the aim to protect mice against diet-induced obesity and nor‐
malize glucose sensitivity, associated with a shift to increased fat metabolism in the muscles
[113]. Similar results were obtained after DNA electrotransfer of plasmid encoding the carni‐
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tine palmitoyltransferase 1 (CPT1), the enzyme that controls the entry of long-chain fatty ac‐
yl CoA into mitochondria: an overexpression of CPT1 led to enhance rates of fatty acid beta-
oxidation and improved insulin action in muscle in high-fat diet insulin-resistant rats [114].
In the same model, electrotransfer of the orphan nuclear receptor (Nur77) significantly amel‐
iorates the effect of this protein on glucose metabolism [115].

6.7. Vaccination and passive immunization by antibody production

The prospect of inducing an immune response to a protein expressed in vivo directly from
administered DNA vaccine represents an attractive alternative to other modes of vaccina‐
tion. Plasmid electrotransfer has been used in genetic immunization to produce antigenic
proteins. It is now well established that genetic immunization induces both durable cellular
and humoral responses [116]. This type of immunization is often developed for vaccination
(virus or antibacterial), for anticancer active immunotherapy, and also to induce in animals
the production with high yield of antibodies against a given antigen.

Since electrotransfer efficiently transfers genes compared to a single injection of plasmid,
improving antigenic protein expression by several orders of magnitude, the antibody tit‐
er  and the quality of  the immune response are also improved [117],  with an increasing
factor of 100 in mice after electrotransfer of a plasmid encoding a surface antigen of hep‐
atitis  B [118].  High titers of antibodies were also obtained in mice and rabbits after i.m.
electrotransfer of a plasmid encoding an envelope glycoprotein of hepatitis  C [119],  and
in mice after electrotransfer of a plasmid encoding a protein of Mycobacterium tubercu‐
losis  [120].  In the laboratory,  it  was shown that  i.m. electrotransfer of  a  plasmid encod‐
ing the influenza hemagglutinin induces a better immune response in mice that a single
i.m. injection [121]. And recently, we have assessed the potential of i.m. electrotransferin
mouse to produce neutralizing antibodies,  with high titer,  against  botulinum toxins,  the
most powerful poison in the world in present time [74].  We have optimized DNA elec‐
trotransfer for genetic immunization against botulinum antigen. This DNA immunization
has  been  used in  rabbits  to  induce  antibodies  production  which  is  compatible  with  in‐
dustrial  development  of  antiserum production  for  a  human therapeutic  use  (Burgain  et
al., unpublished results).These examples show that it is possible to obtain high titers neu‐
tralizing antibodies in animals by DNA electrotransfer.

Monoclonal antibodies are increasingly being used in a wide range of clinical applications in
the field of autoimmune disease, cancer and infectious disease. The production and secre‐
tion by electrotransfered muscle of monoclonal antibodies has been demonstrated by our
group and the one of I. Mathiesen, independently [83, 122]. These studies demonstrated that
the co-transfection of two naked plasmids encoding the heavy and light G immunoglobulin
chains led to the secretion of fully assembled and functional immunoglobulin molecules.
The successful neutralization of various pathogens resulted from monoclonal antibody se‐
cretion by electrotransfered muscle, raising the possibility of clinical passive immunization
applications.
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7. Conclusion

In vivo electrotransfer is a non-viral technique which has emerged as an efficient, user-
friendly and cheap gene transfer method which issuited for a wide range of tissues and spe‐
cies. Moreover, in vivo electrotransfer can be used for either local or distal effect by secretion
of the transgenic protein into the bloodstream. The skeletal muscle is able to produce func‐
tional proteins with adequate post-translational modifications, which means that the muscle
can be used as an endocrine organ for the production of therapeutic secreted proteins target‐
ing systemic diseases. It is now established that therapeutic levels of circulating proteins can
be reached in animal models. And since DNA does not induce any immune response, plas‐
mid electrotransfer can be repeated as often as desired (Scherman et al., unpublished re‐
sults).

The understanding of the precise mechanism of electrotransfer, the optimization of its reali‐
zation, the improvement of plasmids and of the structure of the encoded protein will bring
more efficiency and above all more safety to the method, should it be applied to humans.
Several clinical trials have been conducted and/or are still in progress. For more details see
http://www.clinicaltrials.gov/ct2/results?term=electroporation. These clinical trials are main‐
ly conducted against infectious diseases such AIDS, hepatitis B, malaria, dengue, influenza...
and various cancer types such as ovarian cancer or renal cancer, melanoma, cancers caused
by human papillomavirus... Thus, DNA electrotransfer appears as a powerful and promis‐
ing tool not only for gene therapy, but also for in vivo gene delivery at the laboratory level
within the frame of physiological studies.
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