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1. Introduction

Mitochondria and plastids are eukaryotic organelles that possess their own genomes. The
existence of organellar genomes is explained by the endosymbiotic theory [1], which holds
that mitochondria and plastids originated from a-proteobacteria-like and cyanobacteria-like
organisms, respectively [2,3]. Organellar genomes are duplicated by the replication machi-
nery, including DNA polymerase, of the each organelle. The enzymes involved in the repli-
cation of organellar genomes are thought to be encoded by the nuclear genome and
transported to the organelles after synthesis [4].

DNA polymerase y (Poly) is the enzyme responsible for replicating the mitochondrial ge-
nome in fungi and animals [5,6]. Poly belongs to family A DNA polymerases, which share
sequence similarity to DNA polymerase I (Poll) of Escherichia coli. Animal Poly consists of
two subunits: a large subunit with DNA polymerase and 3'-5' exonuclease activities, and a
small subunit that enhances processivity and primer recognition. The activity of Poly is in-
hibited by N-ethylmaleimide (NEM) and dideoxy nucleotide triphosphate (ddNTP).

In the late half of the 1960s, the presence of organellar DNA polymerase was confirmed by
the measurement of DNA synthesis activity in isolated plant chloroplasts [7,8] and mito-
chondria of yeast and animals [9,10]. Since the 1970s, DNA polymerases have been purified
from the chloroplasts and mitochondria of various photosynthetic organisms (Table 1), with
biochemical data suggesting that plant organellar DNA polymerases and y-type DNA poly-
merases share similarities with respect to optimal enzymatic conditions, resistance to aphi-
dicolin (an inhibitor of DNA polymerase &, 0, and ¢), sensitivity to NEM, molecular size,
and template preference. Despite such observation, no gene encoding a homolog of Poly has
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been found in the sequenced genomes of bikonts, including plants and protists. Therefore,
the DNA polymerase of both mitochondria and plastids in photosynthetic organisms had re-
mained unidentified. Sakai and colleagues [11-13] isolated nucleoid-enriched fractions from
chloroplasts and mitochondria of tobacco leaves. They detected DNA synthetic activity in
the nucleoid fraction and showed that the apparent molecular mass of the polypeptide ex-
hibiting the activity was similar to Klenow fragment of DNA polymerase I (Poll) in E. coli.
After their suggestion, it was found that the genomes of bikonts, consisting of plants and
protists, encode one or two copies of genes encoding a DNA polymerase having distant ho-
mology to E. coli Poll. Homologs of this polymerase have been isolated in several plants, al-
gae, and ciliates. Because genes encoding this type of enzyme are present in both
photosynthetic eukaryotes and protists, we proposed to call this type of DNA polymerase
POP (plant and protist organellar DNA polymerase).

Optimal condition for

. .. 3'-5' Exo-
enzymatic activity Inhibition by
Year Organism (organelle) Mr (kDa) nuclease
MgCl,  NaClorKcl NEM (mM) -
pH activity
(mM) (mM)
1973 Euglena gracilis (cp)? 7.2 6 10-15
1979 Wheat (mt)® 110™ 7 5 150 5 yes
1980 Cauliflower (mt) < 150 1
1980 Spinach (cp)® 105" 8-9 0.1-1 100 2
1981 Wheat (mt)® 180™ 8 no
1984 Pea (cp)f 87m 12 120 1 no
1990 Soybean (cp & mt) 9 85-90" 8 125 strongly
1991 Spinach (cp)" 105" 1 yes
1991 Chlamydomonas (cp)' 110" 100 2 no
1993 Chenopodium (mt) 80-90" 10 125 1 yes
1995 Soybean (cp)* yes
2002 Pea (cp)! 70" 7.5 8 125 partially yes

Table 1. Previous studies on organellar DNA polymerases with no gene identification in plants and algae. cp,
chloroplast; mt, mitochondrion; NEM, N-ethylmaleimide. a-I: references [14-25]. "determined by gel filtration;
ndetermined by glycerol density gradient. Reproduced from [26].

2. Enzymatic characteristics of POPs

The isolation of POP was first reported in rice (Oryza sativa) [27,28] and later in several high-
er plants and algae, including thale cress (Arabidopsis thaliana) [29,30], tobacco (Nicotiana ta-
bacum) [31], red alga (Cyanidioschyzon merolae) [32], and a ciliate (Tetrahymena thermophila)
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[33]. POPs typically consist of 900-1050 amino acid residues and contain 3'-5' exonuclease

and DNA polymerase domains (Figure 1). In addition, POPs have an organellar targeting
peptide at the N-terminus.

5'-3' exo 3'-5'exo  DNA polymerase
_ | Escherichia coli [ [ I T T EEE  928aa
5 Eoar AB C
@ | Anabaena sp. PCC 7120 I [ Tl 977 aa
Arabidopsis thaliana_At1g50840 | 0 N [ 5 O | 0 R [+ P
Arabidopsis thaliana_At3g20540 [ ITTE KRN 1034 aa
Ostreococcus tauri I I 5 52 0 | 0 =T
o
Q| Cyanidioschzon merolae | T Bl B THEE  905aa
Dictyostelium discoideum [ [ [ TRl BN 1369 aa
Tetrahymena thermophila [ | I 988aa
Paramecium tetraurelia (T 1 B THTI  ss58aa
Plasmodium falciparum
E [ [ Primase] [ Helicase ] [T T PR 2016 22
Q| Theileria annulata
N [T TRTE 1786 aa
e
S | Homo sapiens [ 1 H [EEEHETEE | 1239aa

Figure 1. Schematic comparison of the structure of family A DNA polymerases. The colored boxes indicate domains
estimated from the Pfam database: pink, 5'-3" exonuclease domain; blue, 3'-5" exonuclease domain; orange, DNA pol-
ymerase domain; purple, primase domain; green, helicase domain. Yellow boxes indicate characteristic motifs in the
3'-5" exonuclease and DNA polymerase domains. Thatched boxes represent conserved sequences in POPs. Dotted and
striped boxes indicate conserved sequences in PREX and Poly, respectively. In Poly of Homo sapiens, a 3'-5" exonu-
clease domain was not found by Pfam, although 3'-5' exonuclease activity was reported for Poly [6]. This figure was
modified from [32] with permission of the publisher.

2.1. Properties of DNA polymerase activity

The properties of DNA polymerase activity of POPs have been examined using recombinant
[27,28,31] or native proteins purified from Cyanidioschyzon and Tetrahymena cells [32,33]. The
optimal concentrations of KCl and MgCl, for DNA polymerase activity are 50-150 and 2.5-5
mM, respectively, which roughly coincide with the values reported in previous studies for
organellar DNA polymerases in plants (Table 1). POPs display the highest activity with
Poly(dA)/oligo(dT) as a template. Poly(rA)/oligo(dT) could also serve as a template, indicat-
ing that POPs have reverse transcriptase activity. Poly also exhibits reverse transcriptase ac-
tivity, although the physiological importance of this activity remains to be elucidated.
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2.2. Processivity

Processivity is defined as the number of nucleotides added by a DNA polymerase per one
binding with the template DNA. POPs, in general, have high processivity values; for exam-
ple, the processivity of rice recombinant GST-POP and Cyanidioschyzon POP is 600-900 nt
and 1,300 nt, respectively [28,32]. In comparison, the Klenow fragment of E. coli Poll has
mid-range processivity of <15 nt [28]. POPs contain three additional internal sequences rela-
tive to other family A DNA polymerases (Figure 8). The role of the two extra sequences,
amino acid residues 635-674 (Insert I) and 827-852 (Insert II) positioned before motif A (Fig-
ure 8-1) and between motif A and motif B (Figure 8-2), were examined in rice POP [28].
DNA binding was decreased in Insert I and II deletion-mutant proteins, while DNA synthe-
sis activity and processivity were decreased only in the POP protein lacking Insert I. These
findings suggest that the high processivity of POPs may be due to the existence of the insert-
ed sequences. In animals, Poly consists of two subunits, a large subunit (PolyA) having
DNA polymerase and 3’-5" exonuclease activities and a small subunit (PolyB) that enhances
processivity and primer recognition [34]. Processivity of the Drosophila PolyA subunit is <40
nt, whereas that of Poly holoenzyme (PolyA and PolyB) is >1,000 nt [35]. In contrast to ani-
mal Poly, POPs display high processivity as a single subunit, and no accessory subunits of
POP have been identified to date [28,32].

2.3. Sensitivity to inhibitors

The effects of inhibitors, such as aphidicolin, NEM, dideoxyTTP (ddTTP), and phosphonoa-
cetate (PAA), on the DNA synthesis activity of POPs were evaluated [27,31-33]. Aphidicolin
is a specific inhibitor of DNA polymerases a, 0, and ¢ and acts through competition with
dCTP or dTTP [36,37]. The sulthydryl reagent NEM inhibits DNA polymerases a, v, 0, and ¢
[38], and has a half maximal inhibitory concentration (ICs,) of <0.1 mM for Poly. PAA is an
analog of pyrophosphate and interacts with viral DNA polymerases and reverse transcrip-
tases at pyrophosphate binding sites to create an alternative reaction pathway [39,40].
ddTTP severely inhibits DNA polymerases 3 and v, but only weakly impairs the activities of
DNA polymerases d and ¢ [41]. POPs are not inhibited by aphidicolin or NEM. The inhibito-
ry effect of ddTTP differs depending on the organism, with the 1C;, ranging from 4-615 uM
for POPs (Figure 2A). The activity of POPs is severely inhibited by PAA, as demonstrated by
IC;, values of 1-25 uM for several POPs (Figure 2B, C). In contrast, other family A DNA pol-
ymerases, including Poll and Poly, are not markedly inhibited by PAA, suggesting that
PAA is a useful marker for the classification of organellar DNA polymerases in unse-
quenced eukaryotes. T4 DNA polymerase and DNA polymerase & of Saccharomyces cerevi-
size, which are both family B DNA polymerases, are also not sensitive to PAA, but the
respective Motif A mutants of each protein, L412M (T4 DNA polymerase) and L612M (DNA
polymerase d of S. cerevisiae), are inhibited by PAA [42,43]. The mechanism of inhibition by
PAA has not been studied in detail for family A DNA polymerases, and the critical amino
acid residues involved in sensitivity to PAA in POPs are unknown due to the limited simi-
larity of family A and B DNA polymerases in the Motif A region.
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Figure 2. Effect of inhibitors, phosphonoacetic acid (PAA), and dideoxy TTP (ddTTP) on DNA synthesis activity (A). Half
maximal inhibitory concentration (ICs) for PAA or ddTTP (B). Tet_Mt, Tetrahymena thermophila mitochondria; Ath_Cp,
Arabidopsis thaliana chloroplasts, Klenow, Escherichia coli Poll Klenow fragment; CmPoll, Cyanidioschyzon merolae Po-
[I; Rat_Mt, rat liver mitochondria. Reproduced from [33] with permission.

2.4. 3'-5' Exonuclease activity

POPs have a 3'-5' exonuclease domain containing three conserved regions, Exo I, Exo II, and
Exo III (Figure 1), and this exonuclease activity has been demonstrated in rice [28] and Cya-
nidioschyzon [32]. In rice POP, replacement of Asp365 with Ala in the Exo II domain abol-
ishes nuclease activity, but has no effect on DNA polymerase activity. With regard to 3'-5'
exonuclease proofreading activity, POP shows relatively high fidelity for base substitutions
(10 to 10°; [28]). The primary structure of Poly appears to lack a 3'-5' exonuclease domain,
as indicated by the low E-value of 0.17 for this domain in human Poly determined using the
motif search software Pfam (http://pfam.sanger.ac.uk/). However, Poly possesses Exo I, Exo
II, and Exo III motifs in the N-terminus (Figure 1), and exhibits 3'-5' exonuclease activity and
high replication fidelity [6].

2.5. Subcellular localization

POP was first isolated as a plastidial DNA polymerase in rice, and its localization was con-
tirmed by immunoblot analysis using isolated plastids [27]. Subsequent studies using GFP-
fusion proteins and/or immunoblotting with isolated plastids and mitochondria
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demonstrated that POPs are localized to both plastids and mitochondria in Arabidopsis and
tobacco [31,44], and in the alga Cyanidioschyzon [32]. The mitochondrial localization of POP
in the ciliate Tetrahymena was also determined by immunoblotting [33]. Figure 3 shows all of
the known DNA polymerases found in the model plant A. thaliana and in humans. The nu-
clear-localized DNA polymerases involved in genome replication, DNA polymerase «, 0,
and ¢, are conserved in bikonts and opisthokonts, whereas the nuclear polymerases related
to DNA repair differ between organisms. POP and Poly are the sole replicational DNA poly-
merases in bikont or opisthokont organelles, where they also act as DNA repair enzymes.

Arabidopsis thaliana Human

Nucleus Nucleus

Mitochondria
s ey Replication

y Poptmsﬁwﬂ §

R Por usgzosio) T

Chloroplasts

Mitochondria

(@

Replication
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GR%WQ
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POP (At1g50840)

\_ J J
@ ramiy A (E. coli Pol | type)
. Family B (E. coli Pol Il type)

@ Family X

@ Famiy Y (E coli Pol IV, V type)

Figure 3. DNA polymerases of a model plant and human. Greek letters in colored circles corresponding to families
indicate eukaryotic DNA polymerases alpha to sigma.

2.6. The role of POP in vivo

POPs exhibit high processivity and 3'-5' exonuclease activity, and were originally thought to
function as organellar DNA replicases. This speculation was verified by analyzing POP mu-
tant of Arabidopsis [30], whose genome encodes two POP genes, At1g50840 and At3g20540,
whose protein products are each localized to both plastids and mitochondria (Figure 3). The
At1g50840-At3g20540 double mutant was lethal, while each single mutant had a phenotype
characterized as reduced DNA levels in plastids and mitochondria. In addition, only the
At3320540 mutant displayed elevated sensitivity to ciprofloxacin, which is an inducer of
DNA double-strand breaks (DSB). Together, these results show that two distinct POPs are
involved in genome replication for plastids and mitochondria, and that the product of
At3g20540 also functions as a DNA repair enzyme in both organelles. In rice, the repair ac-
tivity of POP was examined by a base excision repair (BER) assay using a recombinant pro-
tein, revealing that POP has 5'-deoxyribose phosphate (dRP) lyase activity [28]. Poly also
displays this repair activity [45].
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3. Role of POPs in cell-cycle regulation

3.1. Organellar genome replication in plant tissues

Nuclear genomes are replicated during the DNA synthesis phase (S phase), with the daugh-
ter genomes being distributed at the mitotic phase (M phase) to maintain ploidy levels. Ob-
servations of mitochondrial DNA stained with 4',6-diamidino-2-phenylindole (DAPI) and
microautoradiography using [*’H]thymidine have demonstrated that the DNA content and
synthesis activity in mitochondria change dramatically during cell proliferation. In the root
apical meristem of geranium (Pelargonium zonale), mitochondrial DNA in the promeristem,
which is located just above the quiescent center, maintain high levels of DNA. However, in
the upper root region, located immediately below the elongation zone, mitochondria contain
small amounts of DNA [46]. Similar results were reported for the root apical meristem of
Arabidopsis [47], tobacco [48], and rice [49], shoot apical meristem of Arabidopsis [50], and cul-
tured tobacco cells [48,51], in addition to plastids. In Avena sativa, plastid DNA is extensively
replicated in small cells of shoot apical meristem. Subsequently, as the cells increase in size,
plastid numbers increase, while the DNA levels within plastids decrease [52-54]. These re-
sults suggest that organellar DNA is predominantly replicated in the meristem, and that the
subsequent partition of organellar DNA to daughter cells does not coincide with the synthe-
sis of organellar DNA in cells outside of the meristem center. In multicellular plants, there-
fore, the replication of organelle genome is not synchronized with the cell cycle or even
organellar division.

3.2. Expression of POP in plants

The spatial expression patterns of POPs were analyzed in Arabidopsis and rice by in situ hy-
bridization, which revealed that POP genes are strongly expressed in the apical meristem of
roots and shoots, leading to high POP protein levels in these tissues [27,29]. In cultivated to-
bacco BY-2 cells, the amount of POP transcripts and proteins increases at the initiation of
plastidial and mitochondrial DNA replication [31]. These results indicate that POPs function
as the organellar genome replicase.

3.3. Red algal cell cycle

The unicellular red alga C. merolae contains a single plastid and mitochondrion [55], which
both have division cycles that are synchronous with the cell cycle. Synchronous cultures of
Cyanidioschyzon have been obtained by light-dark cycles [56]. Our group has also performed
synchronous culture of C. merolae [32,57] using an initial long dark period (30 h) to force the
cells into the G1 phase (Figure 4), followed by a 6-h light/18-h dark regime with bubbling
with ordinary air. However, due to the low nutrient levels, the conditions were not suffi-
cient to drive the cell cycle (Figure 4A). Two subsequent cycles of 6-h light/18-h dark with a
supply of 1% CO, enabled the cells to accumulate enough photosynthetic products to allow
progression of the cell division cycle, resulting in the synchronous division of cells 4-5 h af-
ter the start of the dark period (Figure 4B, C). Therefore, this culture method can discrimi-
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nate the effects of light from those of the cell cycle in photosynthetic eukaryotes, and
contains the cycle in which cellular nutrient level transitions from low to high (Figure 4B).

A. First cycle B. Second cycle C. Third cycle

Nutrient level: low -> low Nutrient level: low -> high Nutrient level: high -> high

[ G1 | G1 [sicem] G ] G1 [sic2M]  G1 |
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Figure 4. Cell cycle of Cyanidioschyzon and the expression of protein or mRNA related to organellar DNA replication.
Three cell cycle patterns (A, B, and C) with respect to the nutrient level are shown. The nutrient level was controlled by
aeration with or without the addition of CO,. These drawings are based on the data taken from [57]. The shaded and
white areas indicate dark and light cycles, respectively.

We have also determined the replication phases of nuclear, plastid, and mitochondrial DNA
by quantitative PCR using cyanobacterial DNA as an internal standard to estimate the abso-
lute amount of DNA (Figure 4, [57]). In the first cell cycle pattern, the level of nuclear and
organellar DNA was unaltered (Figure 4A). Nuclear DNA replicated at or near the M-phase
in the second and third cycles (Figure 4B, C). The replication of the mitochondrial genome
was synchronized with the cell cycle to some extent, with mitochondrial DNA beginning to
increase from the middle (second cycle) or beginning (third cycle) of the light phase, and
doubling at or near the M-phase, as was observed for nuclear DNA (Figure 4B, C). In con-
trast, plastid DNA replication continued throughout the entire cell cycle, even after cell divi-
sion was complete (Figure 4B, C). These results suggest that the replication of nuclear and
organellar DNA is initiated after the accumulation of sufficient nutrients by photosynthesis,
and that light alone does not serve as a replication signal for nuclear or organellar genomes.
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Therefore, C. merolae cells may have two checkpoints (or thresholds) based on their nutri-
tional state. The first checkpoint occurs during the G1/S-phase transition. Once cells over-
come this point, the nuclear and organellar genomes are targeted for replication. The second
threshold is specific for plastid DNA replication. After passage of the first checkpoint for
G1/S transition, plastid DNA replication proceeds if the cellular nutrient level exceeds the
nutritional threshold required for the replication process.

3.4. Expression of POP in the red algal cell cycle

We determined the expression of POP in synchronous culture of C. merolae. The protein
level of POP was very low in the first non-dividing cycle (Figure 4A), but continued to in-
crease from the second light period, and subsequently decreased during the dark period
(Figure 4B). In the third cycle, the protein level of POP appeared constitutive during the
cell cycle, although slight increases in the light phase and decreases in the dark phase
were observed (Figure 4C). A small peak in the POP mRNA level was detected during
the first light period (Figure 4A), with larger peaks appearing soon after entering the dark
cycle (Figure 4B, C). The large peaks of POP mRNA levels correlated with the rise in mi-
totic indices.

The transcript level of other possible genes related to organellar DNA replication in C.
merolae was also examined (Figure 4). Gyrase A and B, which are types of bacterial topoi-
somerase II, are related to both plastid and mitochondria genome replication in C. merolae
[58] and A. thaliana [59]. SSB is a bacterial single-stranded DNA binding protein that is lo-
calized to mitochondria in A. thaliana [60]. In plants, DNA primases have not yet been iso-
lated, although primase activity was detected in the chloroplasts of pea and the green
alga Chlamydomonas reinhardtii [61,62]. DnaB is a bacterial replicational helicase that is en-
coded in the plastid genome of C. merolae. Twinkle is a replicational helicase and is local-
ized to mitochondria in animals. Animal twinkle has only helicase activity; however, it is
predicted that twinkle in plants and protists might have both helicase and primase activi-
ties [63]. Changes in the expression of these genes were qualitatively similar with each
other, and were mainly stimulated by light. The expression pattern of these genes was al-
so similar to that of genes related to photosynthesis, respiration, nuclear DNA repair, and
ubiquitin in C. merolae [57]. In contrast, the expression pattern of POP transcripts was sim-
ilar to that of cell cycle regulatory genes, including nuclear replicational DNA polymer-
ase, mitotic cyclin, and mitotic cyclin-dependent kinase (CDK). Based on these findings, it
appears that the replication of organellar genomes might be controlled by the expression
of POP rather than that of other proteins related to organellar genome replication. Nota-
bly, the kinetics of replication differed for plastid and mitochondrial genomes; however,
the regulatory mechanisms controlling the replication of the two organelles remain to be
elucidated.
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4. Possible evolutionary history of organellar DNA polymerases in
eukaryotes

POP belongs to family A DNA polymerases, consisting of polymerases harboring sequence
similarity to bacterial Poll, such as Poly, DNA polymerase 0 (Pol0), DNA polymerase v
(Polv), and PREX (plastid replication and repair enzyme complex, [64]). PolO and Polv are
DNA repair enzymes and are localized to the nucleus [65,66]. PREX is an apicoplast (plastid
like organelle)-localized DNA polymerase in the malaria parasite Plasmodium falciparum and
contains a DNA polymerase domain, as well as helicase and primase domains (Figure 1 and
[67]). Figure 8 shows the alignment of the DNA polymerase domain of several family A
DNA polymerases. Although bacterial Poll, POP, and PREX share some homology, POP and
PREX contain specific sequences, and the domain structure is clearly different in each poly-
merase (Figure 1 and Figure 8). Poly shows low similarity to other family A DNA polymer-
ases, and has many Poly specific sequences.

Figure 5 shows a phylogenetic tree of family A DNA polymerases. From the tree, it is clear
that POPs belong to a well-defined clade that is evolutionarily separated from bacterial Poll.
Therefore, it can be concluded that POPs did not originate from Poll of cyanobacteria nor a-
proteobacteria. Although PREX may have originated from a red algal secondary endosym-
biont, their origin remains unclear, because PREX do not contain POP-specific sequences
(Figure 8). POPs are widely conserved in eukaryotes, including amoebozoa, that have a
close relationship with opisthokonts in phylogenetic analyses, but POPs have not been de-
tected in opisthokonts, including animals and fungi (Figure 6). This suggests that POP might
have originated before the diversification of photosynthetic eukaryotes. Pathogenic protists
of animals, including Blastocystis hominis and Perkinsus marinus, possess POP, while genome-
unsequenced pathogens, such as the green alga Prototheca, are likely to have POP. Therefore,
POP is expected to be a suitable target for killing these pathogens.

From the phylogenetic tree, we proposed an evolutionary model of organellar DNA poly-
merases (Figure 7). Initially, when the ancestor of eukaryotes acquired mitochondria, the el-
ementary mitochondrial replicase was likely bacterial DNA polymerase III (PolIll) (1 in
Figure 7A). PollIl was then replaced by a POP, and the host cell then used POP for the repli-
cation of organellar genomes (2 in Figure 7A). We presume that Pollll must have been intro-
duced upon the endosymbiosis event, but another possibility is that an endosymbiont or a
host cell had already possessed POP before endosymbiosis. But this idea is considered un-
likely because no bacteria having POP have been found so far. In this respect, it is of interest
to note that, based on phylogenetic analysis in family A DNA polymerases, it has been
postulated that Poly is of phage origin [69]. POP could also have been acquired from a virus.
In effect, the ultimate origin of the ancestral POP is still unknown. The phylogenetic tree
(Fig. 5) suggests that the closest relative of POP is Polv or Pol0O, which are present in various
eukaryotes. It is not impossible then that an ancestral polymerase in eukaryotic host di-
verged into POP, Polv and Pol©.
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Figure 5. Phylogenetic tree of POPs and other family A DNA polymerases. Reproduced from [32] with permission.
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Figure 6. Distribution of organellar DNA polymerases in eukaryotes. Taxons containing POP, Poly, PREX, and kineto-
plastida Poll are enclosed in light green, blue, orange, and purple boxes, respectively. The tree topology in this figure
was adapted from [68], and the figure was modified from [33] with permission.
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with permission.



300 The Mechanisms of DNA Replication

In the plastids of plants and algae, POP also replaced Pollll, and thus POPs are presently
found in most eukaryotes (3-5 and 6-8 in Figure 7A). In opisthokonts, however, POP was
replaced by Poly, whose origin is also unknown (4 in Figure 7A). Chromalveolates, consist-
ing of alveolates and heterokonts such as diatoms, must have had a POP for mitochondrial
replication before the occurrence of secondary endosymbiosis. Phylogenetic analysis sug-
gests that the POPs of diatoms are more closely related to red algal POP than the POPs of
ciliate Tetrahymena (Figure 5). The original POP might have been replaced by the POP of a
red algal endosymbiont in diatoms (13-16 in Figure 7C), whereas in ciliates, the original POP
has been retained (9-11 in Figure 7B).

Based on the genomic data obtained to date, Poly is found only in opisthokonts, indicating
that two different polymerases cannot co-exist, at least over a long evolutionary span. The
catalytic subunit of bacterial Pollll is also not encoded by eukaryotic genomes, although the
Pollll gamma subunit, which functions as a clamp loader in bacteria, is conserved in land
plants, such as A. thaliana, which has three gamma subunits, Atlg14460, At2g02480, and
At4g24790 [13]. One of the possible reasons why PollIl was replaced by POP may be the fact
that POP is a single polypeptide enzyme, whereas Pollll consists of ten subunits. Therefore,
the nuclear control of organellar DNA replication would be easier with nuclear-encoded
POP. This also raises the question: why was POP replaced with Poly? Unfortunately, al-
though we do not have a clear answer for this question, the replacement event might be re-
lated to the mechanism of organellar genome replication. In animals, three replication
modes have been proposed: the classical strand-displacement replication mode, a strand-
coupled mode, and a RITOLS (ribonucleotide incorporation throughout the lagging strand)
mode [70]. This contrasts with plant plastids, for which at least two modes of replication
have been proposed, namely rolling circle replication via a D-loop and recombination-de-
pendent replication [71]. Although the proposed replication modes in animals and plants re-
main to be confirmed, it is likely that the type of replication mode is different in the
organelles of animals (opisthokonts) and plants (bikonts). In opisthokonts, the replication
mode of organellar genomes of animals may have arisen before the replacement of POP
with Poly, with Poly being a suitable enzyme for the replication process of animals. Secon-
dary or tertiary endosymbionts do not exist among opisthokonts, a fact that may be due to
differences in the organellar genome replication mode or organellar DNA polymerase type.

5. Conclusion and prospects

POPs have been isolated as organellar-specific DNA polymerases in a number of photosyn-
thetic eukaryotes and ciliates. As the majority of biologists still believe that all mitochondrial
replication enzymes are Poly, the primary objective of this review was to introduce POP to
the wider research community. Although both POP and Poly are family A DNA polymeras-
es, their primary structures are quite different from one another. However, POP and Poly
display similar DNA polymerase activities that are characteristics of replicases, including
high processivity, 3’-5" exonuclease activity, and reverse transcriptase activity. Eukaryotes
containing a POP gene do not have a gene for Poly, and vice versa. In our hypothesis con-
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cerning the transitional evolution of organellar DNA polymerase in eukaryotes, POP was
proposed to be the primary organellar replicase and was then replaced by Poly in opistho-
konts. POP might have been replaced by PREX and kinetoplastida Poll in apicomplexa and
trypanosomes, respectively. Phylogenetic evidence suggests that organellar DNA polymer-
ases are easily replaced, unlike nuclear replicational DNA polymerases, which are con-
served in all eukaryotes.

The sensitivity of POP to DNA polymerase inhibitors clearly differs from that of Poly. To
date, POPs have been shown to be commonly inhibited by phosphonoacetate. The inhibition
mechanisms remained unclear for family A DNA polymerases, including POP, although it
was reported that motif A in the polymerase domain of family B DNA polymerases is in-
volved in the sensitivity to phosphonoacetate [42,43]. The detailed study of the inhibitory
mechanisms and structural analysis of POP are needed, although POP is likely to be con-
served in pathogenic bikonts, such as the green alga Prototheca and chromalveolata Blastocys-
tis. Determining the structural differences in essential enzymes between a pathogen and
host, and identifying pathogen-specific enzymes with no homologues in a host may identify
suitable targets for chemotherapy. Such an approach is needed for targeting the malaria par-
asite. Chloroquine, mefloquine, and quinine have been used as antimalarial drugs. These re-
agents inhibit the production of the malarial pigment hemozoin. In addition, dihydrofolate
reductase (DHFR) of malaria parasite is inhibited by proguanil and pyrimethamine. Howev-
er, drug-resistant mutants of the parasite have emerged, and a new drug and enzyme target
are therefore needed [72]. An apicoplast is non-photosynthetic plastid-like organelle that
contains 27-35 kb of DNA in apicomplexa, and DNA replication within apicoplasts may be a
good drug target, because apicoplasts harbors various essential metabolic pathways, such as
those involving fatty acids, isoprenoid, and heme [73]. In plants and protists, our knowledge
of the supporting players of organellar DNA replication, such as primase, helicase, topoiso-
merase, and single-stranded DNA binding protein (SSB), are limited. To understand the
mechanism and regulation of replication in plastids and mitochondria, it is necessary that
the composition of these enzymes in each organelle be determined. In addition, reconstitu-
tion of the replicational machinery of each organellar genome should be attempted. In hu-
mans, successful in vitro reconstitution of the mitochondrial DNA replisome, including Poly,
twinkle helicase, and SSB, was demonstrated [74]. The further development of organellar re-
plisome models in plants and protists may pave the way for greater understanding of the
replication mode and discovery of new antiprotozoan reagents.

In multicellular plants, genomes of organelles are replicated in meristematic tissues, but the
process is not synchronous with the cell cycle or even with organellar division. In the unicel-
lular red alga C. merolae, which contains a single plastid and mitochondrion, the expression
of POP appears constitutive during the cell cycle. POP is localized in both organelles, but the
kinetics of replication differs for plastid and mitochondrial genomes. Replication of the mi-
tochondrial genome is synchronous with the cell cycle to a certain extent, whereas replica-
tion of the plastid genome continues throughout the entire cell cycle. The organellar
replication is regulated by cellular nutrient levels, and POP protein levels are closely corre-
lated with nutrient levels. The mechanisms regulating the replication of plastids and mito-
chondria represent a new and exciting area of research in cell biology.
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Figure 8. Alignment of the DNA polymerase domain of family A DNA polymerases. Green, blue, and orange boxes

show specific sequences of POPs, DNA polymerase nu, and DNA polymerase gamma, respectively. Eco, Escherichia coli;
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S8102, Synechococcus sp. WH8102; Glv, Gloeobacter violaceus; A7120, Anabaena sp. PCC 7120; Tel, Thermosynecho-
coccus elongates; Ath, Arabidopsis thaliana; Osa, Oryza sativa; Ostu, Ostreococcus tauri, Cme, Cyanidioschyzon merolae;
Tet, Tetrahymena thermophila SB210; Pte, Paramecium tetraurelia; Ddi, Dictyostelium discoideum; Pyo, Plasmodium
yoelii; Pbe, Plasmodium berghei; Pfa, Plasmodium falciparum; Tpa, Theileria parva; Tan, Theileria annulata; Danio, Dan-

io rerio; Ppt, Physcomitrella patens; Tru, Takifugu rubripes; Xla, Xenopus tropicalis; Sce, Saccharomyces cerevisiae; Spo,
Schyzosaccharomyces pombe. Reproduced with permission [33].
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