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1. Introduction

More than 300 million people and 170 million people are chronically infected with hepatitis B
virus (HBV) and hepatitis C virus (HCV), respectively. To eradicate those viral infections, both
prophylactic and therapeutic approaches are required. In HBV infection, there are global
programs for prophylactic vaccination. However, some subjects, especially under immuno‐
compromized state, are unable to acquire ant-HBs antibody (Ab) with conventional vaccina‐
tion, and several attempts to improve the immunogenicity of HB vaccine have been made. On
the other hand, development of effective prophylactic HCV vaccine has not been achieved
mainly because of high rates of escape mutations within HCV envelope genes. We first focus
on the recent development of prophylactic vaccine for HBV and HCV infections.

In the second half of the review, we summarized immunotherapeutic approach for both viral
infections. Neither HBV nor HCV is cytopathic, and hepatitis is caused by the host immune
response against virus-related peptides expressed on hepatocytes in conjunction with human
leukocyte antigens (HLA). In acute self-limiting hepatitis, a broad immune response occurs
that is strong enough to eradicate the virus or suppress viral replication [1], indicating that
efficient induction of anti-viral immune response could have a potential to control viral
infections. However, in chronic hepatitis, there are many mechanisms that hamper the antiviral
immune response leading to persistent viral infection.

In chronic HBV infection, strong long-term viral suppression can now be achieved with various
nucleoside and nucleotide analogs. However, there are some problems that must be solved in
the near future. One of the problems in the treatment of nucleos(t)ide analogs is a low rate of
HBe seroconversion even after long-term administration in HBeAg+ patients. Moreover,
reactivation rate of HBV replication is high in both HBeAg+ and HBeAg– patients after cessation
of the treatment, although drug-free viral controls would be better than long-term adminis‐
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tration of the drugs in terms of control of medical costs and avoidance of adverse effects of
these agents. Therefore, it would be beneficial to achieve long-term viral eradication even after
cessation of nucleos(t)ide analogs in combination with efficient immunotherapy.

On the other hand, antiviral oral drugs, such as protease inhibitor or polymerase inhibitor
showing potent antiviral ability [2], have been developed for chronic HCV infection. However,
not all patients treated with these drugs could achieve sustained virological response and high
medical cost for each patient is a global serious problem. Effective immunotherapy combined
with these drugs may improve their antiviral effects and control medical costs also in hepatitis
C.

2. Problems and recent advances in HBV vaccination

2.1. Non-responder for HBV vaccine (Table 1)

In HBV infection, HBV is transmitted at a high incidence rate by parenteral, percutaneous or
sexual contact. Therefore, primary protection is very important and universal vaccination
regardless of maternal HBsAg status is recommended. Most of countries have introduced HBV
vaccination into their national immunization programs and more than 80% of infants have
received HBV vaccine three times. In Taiwan, universal vaccination program of all newborns
was introduced in 1986. After twenty years of the program, the rate of chronic HBV infection
decreased from 9.8% to 1.2% and the risk of childhood HCC has been decreased by 70% [3, 4].

Host factors

Age > 40 years

Obesity

Smoking

Genetics, certain HLA types

Other medical conditions

Diabetes

Cirrhosis

Renal failure

Conditions requiring immunosuppressive therapy

Unrecognized chronic HBV infection

Technical

Subcutaneous administration

Freezing of vaccine

Table 1. Causes of non-responder to HBV vaccine
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Non-responder for HBV vaccination and vaccine escape mutants are important problems to
be focused in the future. The general recommendation for non-responders is to repeat a three-
dose schedule; 50-75% is expected to respond to the second dose. Non-responders to the second
dose should be evaluated for underlying chronic HBV infection. For hemodialysis patients,
response may be improved by using double-dose vaccine [5]. Intradermal administration have
been tried to improve the effectiveness of vaccination but is technically difficult [6] and long-
term efficacy has not been demonstrated. Several trials to improve the effectiveness of HBV
vaccination particularly in hemodialysis patients have been investigated (Table 2). Combined
use of granulocyte macrophage-colony stimulating factor or levamisole as an adjuvant of HBV
vaccination is a promising strategy [7-9]. New chemical adjuvant has also shown an excellent
potential [10-12]. On the other hand, Interleukin (IL)-2 is not shown to be effective when used
as an adjuvant [13,14]. Recently, a new HBV vaccine including preS lesion, which is known as
an essential site for HBV-entry to hepatocyte, has been tried [15,16].

Materials Mechanism Effectiveness ref

Adjuvant

GM-CSF dendritic cell activation Meta-analysis: OR 4.63 [7]

Levamisole interferon inducer Meta-analysis: OR 2.43 [8]

upregulation of defective immune

function
Meta-analysis: OR 2.77 [9]

Interleukin-2 enhanced cellular immunity RCT: no significant effect [13, 14]

HB-AS04
upregulation of CD86, increased

cytokine
RCT: Significant at month 3 [10]

(aluminium salt, monophosphoryl lipid (MPL)) RCT: Significant [11]

HB-AS02
TLR4 agonist, improve antigen

presentation
RCT: Significant [12]

(MPL, QS21: extract from Quillaja saponaria)

Pre-S

Sci-B-Vac/BioHepB block HBV-entry to hepatocyte? preS1 antibody 50~60% positive [15, 16]

(preS1/PreS2/preS)

GM-CSF;granulocyte macrophage-colony stimulating factor, OR; Odds ratio, RCT; randomized controlled trial, TLR; toll-
like receptor

Table 2. Human trials to improve the effectiveness of HBV vaccination

2.2. Escape mutant

Mutations in the small-S protein, commonly glycine to arginine substitution at codon 145
(G145R), have been found in some children born from mothers infected with hepatitis B [17].
Although these mutants have been found in many parts of the world, the prevalence appears
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to be low and decline in the efficacy of HBV vaccine has not been reported. However, a recent
report showed that the mutant HBV was transmitted by sexual contact with a subject who had
received universal HBV vaccination [18]. Application of HBV vaccine including preS protein
to block infection of HBs mutant could be an effective strategy and should be investigated in
the future.

3. Recent advances in HCV vaccine

In the analysis of secondary HCV infection after spontaneously clear primary infection,
increased rate of spontaneous viral clearance and broader T-cell responses was found [19].
Actually, an animal study using chimpanzee showed that T-cell vaccine elicits effective
immunity against HCV challenge thorough early CD4+ and CD8+ T-cell response [20]. These
indicate the induction of protective memory responses against HCV during natural infection
and also suggest a possibility for the development of effective prophylactic HCV vaccines.

B-cell response against HCV through the production of neutralizing antibodies has been
analyzed for the development of HCV vaccine. In acute HCV infection, the detection of
neutralizing antibodies and consequent rapid clearance of HCV had been reported [24]. On
the other hand, delayed induction of these neutralizing antibodies has been shown in patients
developing chronic HCV infection, [21]. These observations represent that the neutralizing
antibodies could not control HCV infection and there are escape mechanisms of HCV from
those antibodies. Actually, rapid evolution in the envelope glycoprotein sequences has been
demonstrated as the mechanism of HCV evasion [22]. The HCV envelope glycoproteins, E1
and E2, have proven to be the essential region not only for viral attachment but also for viral
endocytosis into hepatocytes [23]. Hypervariable region (HVR) is known to be located at the
N-terminus of E2 region and is highly immunogenic and the region is necessary for binding
to scavenger receptor class B type I (SR-BI), a lipoprotein receptor molecule involved in HCV
entry [24,25]. Furthermore, conformational epitope within E2 is known to be conserved among
various genotypes of HCV and is necessary for binding to CD81 [26,27]. While, E1 displays a
relatively high degree of conservation within subtypes, also suggesting a high degree of
intergenotypic cross-neutralization potential [28].

CD4+ and CD8+ T-cell are also important in viral clearance [29-31]. CD4+ T-cells against
conserved protein epitopes, such as HCV core, nonstructural (NS)3, NS4 and NS5, have been
associated with self-limited infection of HCV. Trials for HCV prophylactic vaccines can be
divided into two strategies to induce T-cell response or neutralizing antibodies, but both
should be addressed together for an effective prophylaxis strategy. Since acute HCV infection
is usually asymptomatic and is not associated with liver failure, prevention from acute to
chronic HCV infection is another key goal of vaccine development.

Preclinical evaluation of prophylactic vaccine has been performed in chimpanzee, the only
established model for the study of HCV infection in an immunocompetent host. These
preclinical trials and the results are summarized in Table 3. Not only humoral responses but
also cellular responses were elicited by vaccination, leading to viral clearance after HCV
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challenge [20,32-37]. Because many chimpanzees spontaneously resolve acute hepatitis C in
unvaccinated control groups, definite conclusions for the efficacy of HCV vaccination should
be analyzed in human studies. Most vaccine candidates were successful in inducing immune
response and reducing viral load. However, protection of infection following challenge with
heterologous strains was limited. Although these limited protection shows the difficulty in
developing a vaccine against different isolates, these preclinical trials certainly provides
information on potential and design of vaccine candidates. As phase I human clinical trial, E1/
E2 vaccine adjuvanted with MF59 (an oil-in-water emulsion) was administered to healthy
adults, and neutralizing antibodies could be induced without adverse events [38]. Further‐
more, these antibodies showed the neutralizing capacities against heterologous virus strains
[39]. Further trials should be made for the development of effective HCV vaccines.

Materials Outocome ref

E1/E2 protein 21 vaccinated/24 controls [32]

2/12 chronic infection after homologous challenge

1/9 chronic infection after heterologous challenge

Strong humoral immune response

15/24 chronic infection in controls

DNA plasmid: E2 2 vaccinated/1 controls [33]

2/2: viral clearance

High anti-E2 antibodies in one vaccine

E2-specific CD4 T-cell response in the second

DNA plasmid: Core-E1-E2, NS3-5 6 vaccinated/2 controls [34]

2/6: viral clearance

HCV-specific antibody and T-cell response

Reduced peak viral load in all animals

1 sterilizing immunity: high anti-E2 and strong cellular

response

1/2 controls: viral clearance

Adenovirus NS3-NS5B 5 vaccinated/5 controls [20]

4/5: viral clearance after 18 months

Peripheral and intrahepatic CD8 T-cell response

3/5 controls: viral clearance

HCV like particle: Core E1-E2 4 vaccinated/4 controls [35]

4/4: viral clearance after 12 months

HCV specific CD4 and CD8 T-cell response
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Materials Outocome ref

1/4 controls: viral clearance

DNA plasmid: Core E1-E2 NS3 4 vaccinated/2 controls [36]

1/4: viral clearance

Reduction of HCV load in serum and liver

Strong HCV CD4 response

Anti-E1 and anti-E2 specific antibodies

Vaccinia virus Core E1-E2-P7 -NS3-NS3 4 vaccinated/2 controls [37]

1/4: viral clearance after homologous

T-cell response: vigorous IFNγ production and moderate

proliferation

Table 3. Preclinical trials of HCV vaccines in chimpanzees

4. Immnunotherapy for viral hepatitis and vaccine development

To develop efficient immunotherapy, understanding of immune response for eradication or
suppression of hepatitis virus during acute hepatitis is important. Moreover, the immuno‐
suppressive mechanisms leading to persistent viral infection need to be analyzed.

4.1. Immune response in acute viral hepatitis

Immunological analysis has been extensively performed in transgenic and chimpanzee models
of acute HBV infection. In one model, transgenic mice, in which infectious HBV virions
replicate in the liver with expression of all HBV-related antigens, were injected with HBsAg-
specific cytotoxic T lymphocytes (CTLs) that had been induced in nontransgenic mice. The
transgenic mice produced interferon (IFN)-γ and tumor necrosis factor (TNF)-α, which purged
viral RNA and DNA without destroying infected hepatocytes [40,41]. Importantly, this
noncytolytic clearance of intracellular HBV is more efficient at controlling HBV replication
than the killing of infected hepatocytes. This was confirmed in a chimpanzee infection model
[42] and incubation phase of acute hepatitis B in humans [43].

The same is essentially true in acute HCV infection. Multispecific and vigorous CTL responses
against HCV antigens are important for successful eradication of the virus. Moreover, a
CD4+ T cell response at an early stage of acute infection and persistence of the response are
apparent in acute infection [44]. In contrast to acute HBV infection, the majority of patients
with acute HCV infection progress to persistent infection, and the mechanisms underlying
failure to eradicate the virus have been analyzed. The failure of CD4+ T cell function is a key
factor in HCV persistence and CD4+ T cells from persistent infection do not produce Th1
cytokines, such as IFN-γ and IL-2, but produce IL-4 and IL-10, clearly distinct from those seen
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in patients with recovery [45]. Moreover, an early and strong Th1 response has been shown to
play an important role in disease resolution.

The contributions of CD4+ and CD8+ T cells to the control of viral infection were analyzed in a
chimpanzee model of acute hepatitis B and C by depleting either T cell population with
monoclonal antibodies (Abs). The data showed that both CD4+ and CD8+ T cells are required
for virus elimination [46,47].

4.2. Hierarchy of T cell response in viral hepatitis

The antigen-specificity of the T cell response to HBV in acute hepatitis has been analyzed, and
it is clear that acute viral hepatitis involves a vigorous CTL response to multiple epitopes in
the viral nucleocapsid, envelope, and polymerase proteins, while these are not seen in patients
with chronic hepatitis [1]. Although multi-specificity of the CTL response is characteristic in
acute hepatitis, there is known to be a hierarchy of epitope-specific CD8+ T cell responses
determined by cytokine production after peptide stimulation. In acute hepatitis B, CD8+ T cell
response to HBc18-27 (HLA-A2 restricted epitope) is dominant followed by the response to
polymerase epitope (455 – 463), whereas envelope epitopes are always subdominant [48]. The
hierarchy is clearly distinct from that observed in chronic hepatitis, in which the CD8+ T cell
response to envelope epitope (183 – 191) is always dominant. Interestingly, chronic hepatitis
patients with lower HBV DNA levels in the serum show greater responses to HBc18-27 than
those with high HBV DNA. These findings imply that the T cell response to HBcAg is important
for viral control, which is important for designing peptide vaccines for the treatment of chronic
HBV infection.

In acute HCV infection, the CTL responses were directed against multiple viral epitopes, in
particular within the structural (core) and nonstructural (NS) regions of the virus (NS3, NS4,
and NS5), and the CTL frequencies were higher in patients with acute infection [30,49]than in
those who develop persistent infection. The hierarchy of HCV epitopes has not been analyzed
extensively, but resolution of primary infection in the chimpanzee was shown to be associated
with a dominant CD4+ T cells response against epitopes including NS3 (GYKVLVLNPSV) [50].

4.3. Immune response in chronic viral hepatitis

In contrast to acute hepatitis, the T cell response to HBV is weak and is narrowly focused in
chronically infected patients [51], suggesting that it may be a cause of persistent infection.

HBV-specific helper and CTLs are barely detectable in peripheral blood of patients with
chronic hepatitis B (CHB) [52], possibly due to exhaustion by high viral load or tolerance to
HBV.

In contrast to chronic HBV infection, CTL response against various HCV epitopes including
core and envelope and NS regions can be detected in chronic HCV infection, especially in liver-
infiltrating lymphocytes [53]. Although intrahepatic CTL response was shown associated with
low viral load [54], the CTL response is not enough to terminate HCV infection possibly due
to the presence of immunosuppressive mechanisms similar to chronic HBV infection.
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4.4. Immunosuppressive mechanisms responsible for persistent hepatitis virus infection

4.4.1. Regulatory T cells (Tregs)

In HBV infection, significant accumulation of CD4+CD25+FoxP3+ Treg cells in the liver was
found in patients with chronic HBV infection. Moreover, patients with high viral load have
a higher proportion of Tregs in the liver [55], suggesting that intrahepatic Tregs suppress
antiviral  immune  responses  in  the  liver  in  chronic  hepatitis  B  virus  infection.  In  HCV
infection, several groups have also shown a higher frequency of CD4+CD25+ regulatory T
cells in the blood of chronically HCV-infected patients versus recovered or healthy individ‐
uals [56,57] and the presence of CD4+FoxP3+ T cells in the liver of chronically HCV-infect‐
ed patients [58].

4.4.2. Programmed Death-1 (PD-1)

PD-1 is a surface receptor critical for the regulation of T cell function [59,60]. Binding to PD-1
by its ligands PD-L1 and PD-L2 results in the antigen-specific inhibition of T cell proliferation,
cytokine production, and cytolytic function, leading to exhaustion of T cells.

Intrahepatic HBV-specific CD8+ T cells express higher levels of PD-1, and upregulation of
intrahepatic PD-1/PD-L1 is associated with liver inflammation and ALT elevation [64].
PD-1/PD-L1 blockade increased CD8+ T cell proliferation and enhanced IFN-γ and IL-2
production by intrahepatic lymphocytes [61].

In chronic HCV infection, circulating and intrahepatic HCV-specific CD8+ T cells were found
to express high levels of PD-1 [62], and PD-1 expression level in the liver is higher than that in
peripheral blood. Increased expression of PD-1 is associated with CD8+ T cell dysfunction, and
functional restoration is achieved by blocking the signal from PD-1 [63]. Interestingly, HCV
core protein induces PD-1 and PD-L1 on T cells from healthy donors [64], indicating that
immunosuppressive ability of HCV core protein is mediated by the upregulation of inhibitory
molecules on T cells. Increased PD-1 expression on HCV-specific CTLs was reported to be
significantly associated with poor response to antiviral therapy [65].

4.4.3. IL-10

IL-10 is an important cytokine with anti-inflammatory properties, and is produced by activated
monocytes/macrophages and T cell subsets, including Treg and Th1 cells [66]. In chronic HBV
infection, HBcAg stimulates the production of IL-10, which negatively regulates HBcAg-
specific Th17 cell responses in CHB patients [67].

In HCV infection, HCV proteins have been shown to induce IL-10 from monocytes in patients
with chronic HCV infection, leading to suppression of antiviral immune response [68].

4.4.4. T-cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3)

Recently, an inhibitory molecule, Tim-3, has been reported. A high frequency of Tim3-
expressing CD4+ and CD8+ T cells are found in chronic HBV infection, and the frequency of
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Tim-3+ T cells was positively correlated with the severity of liver inflammation, and negatively
correlated with plasma IFN-γ levels [69]. Tim-3 was also highly expressed on CD4+ and
CD8+ T cells in HCV infection, with the highest levels seen on HCV-specific CTLs. Tim-3
expression is associated with reduced Th1/Tc1 cytokine production, and blocking the Tim-3 –
Tim-3 ligand interaction could enhance CD4+ and CD8+ T cell proliferation in response to HCV-
specific antigens [70].

4.4.5. Dysfunction of Dendritic Cells (DCs)

In patients with CHB, maturation of DCs from peripheral blood of patients after incubation
with cytokines is lower than that of normal subjects with lower expression of HLA-DR and
costimulatory molecules in the former population [71], leading to low allostimulatory function
of DCs from CHB patients. Interestingly, impaired function of monocyte-derived DCs from
patients with CHB could be reversed by inhibiting viral replication with nucleoside analogs
such as lamivudine [72]. Type 2 precursor plasmacytoid dendritic cells (pDCs), which are the
most important cells in antiviral innate immunity, were also reported to have quantitative and
qualitative impairment in patients with chronic HBV infection [73]. Recently, HBV itself was
shown to inhibit the functions of pDCs [74].

In chronic hepatitis C, DCs from patients also show impaired immunostimulatory function,
which could be induced by HCV [75] or NS4 protein [76]. Monocyte-derived DCs from HCV
patients were shown to induce proliferation of CD4+CD25+FoxP3+ regulatory T cells, which
limit proliferation of HCV-specific T lymphocytes [77]. DCs in HCV patients thus inhibit T cell
responses via a variety of mechanisms.

5. Immunotherapeutic trials for viral hepatitis

Previous basic analyses and human trials in HBV infection are listed in Tables 4 and 5,
respectively, and those in HCV infection are summarized in Tables 6 and 7.

Animal model Immunotherapy Results Ref

Peptide vaccination

HBV transgenic mice

A synthesized fusion peptide,

consisting HBcAg18-27 and

HIV Tat49-57 adjuvanted

with CpG ODN

Decreased in serum HBV DNA levels and

the expression levels of HBsAg and

HBcAg in the liver

[79]

Protein vaccination

HBV transgenic mice HBsAg vaccine

Most of the mice showed reduction of

HBV DNA levels and disappearance of

HBeAg and HBsAg

[83]
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Animal model Immunotherapy Results Ref

Woodchuck hepatitis Virus

infection

Combination of vaccine of

HBV large surface protein

and clevudine

Restored T-cell response to Pre-S and S

region.
[85]

Mice
Chimeric HBsAg-preS1

protein

Primed both HBcAg-specific T cells and

antibodies to preS1.
[86]

Balb/c and HBV transgenic

mice

Chimeric HBsAg-preS1

protein

Induced strong anti-HBc and moderate

anti-preS1 immune response, and

reduced HBsAg and HBV DNA in HBV-Tg

mice.

[96]

Balb/c mice

Chimeric protein with HBcAg

and carboxy terminus of the

Hsp65

Induced moderate anti-HBc immune

response and strong HBcAg-specific T

cells response.

[97]

Balb/c and HBV transgenic

mice

HBsAg, HBcAg and heat

shock protein gp96

Decreased serum HBsAg and HBcAg

expression in hepatocytes by 45% and

90%, respectively. Decreased serum HBV

DNA to below or close to the detection

limit.

[98]

Balb/c and HBV transgenic

mice

Fusion protein with protein

transduction domains from

HIV-1-Tat and HBcAg

Induced HBcAg-specific CTLs and

enhanced production of IFN-γ, IL-2, IL-4

and IL-10. Reduced HBV DNA and HBsAg

in the serum and HBsAg expression in

liver tissue of HBV transgenic mice.

[99]

DNA immunization

Woodchuck

DNA vaccine expressing

WHsAg was administered by

electroporation

Induced dose-dependent antibody and T

cell responses to WHsAg more efficiently

than conventional hypodermic needle

injection.

[104]

Acute DHBV infection

DNA vaccine expressing

DHBc and Pre-S/S and

entecavir

Boosted with fowl poxvirus

vectors expressing DHBc and

Pre-S/S

Cleared DHBV infection at a rate of

100%.
[105]

Chronic DHBV

infection

DNA vaccine encoding the

HBV large envelope and/or

core protein with or without

lamivudine

Reduced viremia and liver DHBV cccDNA

in 33% of ducks.

Seroconversion to anti-pre S in 67% of

ducks showing cccDNA clearance.

[106]

HBV transgenic mice
DNA vaccine expressing

HBcAg fused to extracellular

Reduced serum HBV DNA and HBcAg in

the liver. Clearance of serum HBsAg was

also observed.

[107]
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Animal model Immunotherapy Results Ref

domain of CTLA-4. Mice were

challenged by pAAVNBV1.2

HBV transgenic mice

DNA vaccine expressing

HBsAg fused to extracellular

domain of CTLA-4.

Serum levels of HBsAg and HBV DNA

were decreased by induction of anti-HBs

Ab and HBsAg-specific CD8+ T cell

response.

[108]

DC immunization

HBV transgenic mice
Activated bone marrow-

derived DCs
Broke CTL tolerance to HBsAg. [121]

HBV transgenic mice
HBV-specific peptide-pulsed

DCs

Reduced in the serum HBsAg and HBV

DNA.
[122]

HBV transgenic mice
Anti-CD40 agonistic

monoclonal Ab

Induced noncytopathic inhibition of HBV

replication mediated by antiviral

cytokines (IL-12 and TNF-α) produced by

activated intrahepatic APCs.

[123]

Cytokines and adjuvants

HBV transgenic mice Recombinant IL-12
Markedly inhibited HBV replication in

the liver.
[132]

HBV transgenic mice
α-galactosylceramide that

can activate NKT cells

Induced complete inhibition of HBV

replication.
[133]

HBV transgenic mice Recombinant IL-18

Inhibited HBV replication

noncytopathically, mediated by

activation of resident intrahepatic NK

cells and NKT cells.

[134]

Gene therapy

HBsAg transgenic mice
Lentivectors expressing

HBsAg and IgFc fusion Ag
Induced seroconversion to anti-HBs. [100]

Adjuvant

HBV transgenic mice
Cationic lipid DNA complexes

and HBsAg

Suppressed HBV DNA in hepatocytes

non-cytopathically.
[101]

Woodchuck

Cationic liposomes and non-

coding DNA was

administered with WHsAg

intramuscularly

Induced rapid and high Ab and T cell

response to WHsAg.
[102]

CpG ODN; CpG oligodeoxynucleotide, WHV; woodchuck hepatitis virus, DHBV; duck hepatitis B virus, cccDNA; covalently
closed circular DNA, DC; dendritic cells, CTL; cytotoxic T lymphocytes, APC; Antigen-presenting cells, NKT; natural killer
T, Ig; immunoglobulin

Table 4. Immunotherapeutic approaches for animal models of HBV infection
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Immunotherapy Results Ref

Peptide vaccination

A vaccine with HBc18-27 peptide

comprised of a T-helper cell epitope

and two palmitic acid residues

Low levels of CTL activity were induced but no significant

changes in liver biochemistry or viral serology were

observed.

[80]

Protein vaccination

PreS2/S (GenHevac B) or S

(Recombivax).

HBe/anti-HBe seroconversion was observed in 13% and HBV

DNA negativity was in 16% of the treated patients.
[84]

Oral administration of HBV envelope

proteins (HBsAg+preS1+preS2)

Induced histological improvement in 30%, HBeAg negativity

in 26.3% and HBsAg-specific T cell proliferation in 78% of

the treated patients.

[87]

Combination of lamivudine and HBsAg

vaccine

Induced sustained negativity of HBV DNA in 1/4 of the

patients.
[88]

The combination with lamivudune and

HBsAg vaccine in HBeAg+ cases

No improvement of HBe seroconversion rate was observed

in comparison with lamivudine therapy alone.
[89]

Combination of lamivudine and HBsAg

vaccine

HBV DNA became undetectable in 64% of the patients, and

was decreased in the remaining patients.
[90]

Intradermal HBsAg vaccine and

laimvudine in combination with IL-2

Induced significant HBV DNA loss in the serum in two of five

of the treated patients.
[91]

IFN-α-2b monotherapy (9 months) or

IFN-α-2b plus pre-S2/S vaccine

Induced greater reduction in HBV DNA in patients with

combination HBV therapy than those who received IFN-α-2b

monotherapy.

[92]

Complexes composed of yeast-derived

hepatitis B surface antigen (HBsAg)

and antibodies

HBeAg seroconversion rate was 21,6% and was correlated

with decrease of HBsAg and HBV DNA.
[93]

HB preS/S vaccine (GenHevac B)

Caused no effect on HBV DNA and seroconversion of HBeAg

to HBeAg in the immunotolerant phase of children with

chronic HBV infection.

[94,95]

DNA immunization

DNA vaccine encoding HBV envelope

protein

Induced an increase in HBV-specific IFN-γ-secreting T cells in

nonresponders to conventional therapies, and HBV DNA

levels were transiently decreased in 50% of vaccinated

patients.

[109]

DNA vaccine encoding PreS and S in

patients with lamivudine breakthrough

Induced IFN-γ-producing T cells specific for preS or S antigen.

Two of 10 patients showed seroconversion to anti-HBe.
[110]

DNA vaccine encoding HBsAg followed

by recombinant modified vaccinia virus

Ankara expressing HBsAg

Failed in decrease in AST or ALT and did not reduce HBV

viremias.
[111]

DC immunization
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Immunotherapy Results Ref

Activated DCs from PBL pulsed with

HBsAg

Induced anti-HBs and HBsAg-specific cellular immnunity in

some patients.
[124]

PBL-derived DCs from chronic hepatitis

B incubated with a cocktail of

cytokines: IL1-β, PGE2, IL-6 and TNF-α,

and pulsed with HBsAg or HBcAg

Induced autologous T cell proliferation and Ag-specific IFN-γ

production.
[125]

Peripheral blood-derived DCs,

activated with GM-CSF and IL-4 pulsed

with HBsAg.

Both patients with normal and elevated ALT responded

equally to DC vaccine and 53% of the patients showed

induction of HBeAg negativity.

[126]

Activated DCs from PBL with GM-CSF

and IL-4, pulsed with two peptides,

HBc18-27 and PreS2 44-53.

Undetectable HBV DNA was achieved in 46.3% and 3.13%

of HBeAg- and HBeAg+ patients, respectively. ALT

normalization was observed in 69% and 30.5% of HBeAg-

and HBeAg+ patients, respectively.

[127]

Cytokines

GM-CSF
Safe and tolerable up to 1.0mg/kg body weight, and

induced HBV DNA negativity in 4/8 patients.
[135]

Combination therapy with GM-CSF and

HBsAg vaccine in HBV carrier children
Significantly reduced serum HBV DNA. [136]

High dose of IL-12 (0.5μg/kg) HBV DNA clearance was observed in 25% of the patients. [137]

Combination of IL-12 and lamivudine

Stimulated T cell response to HBV with IFN-γ production.

However, IL-12 was unable to suppress re-elevation of HBV

DNA after cessation of lamivudine.

[138]

Combination of IL-12 and IL-18

Stimulated IFN-γ production by CD4+ T cells isolated from

peripheral blood in response to HBcAg, and the effect was

greater than those observed with either cytokine alone.

[139]

Thymosin-α 1(Talpha1)

Combination of Talpha1 and IFN-α

No significant differences was observed as compared with

IFN-α monotherapy with respect to HBeAg seroconversion,

changes in histology, normalization of ALT or loss of HBV

DNA.

[140]

Talpha1 alone

At 12 months after cessation of therapy, 36.4% of patients

treated with 1.6mg of Talpha1 achieved ALT normalization,

15% achieved HBV DNA clearance by transcription-

mediated amplification, and 22.8% achieved clearance of

HBeAg.

[141]

Comparative effect of Talpha1 and IFN-

α

Talpha1 treatment was more effective in achieving ALT

normalization and HBV DNA negativity at the end of the

follow-up period than IFN-α.

[142]
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Immunotherapy Results Ref

Combination of Talpha1 and

lamivudine

No any additional antiviral effect compared with lamivudine

monotherapy as assessed by HBe seroconversion and the

emergence of viral breakthrough.

[143]

Combination therapy with lamivudine

and Talpha1

Induced significantly higher rates of ALT normalization,

virological response, and HBeAg seroconversion than

lamivudine monotherapy.

[145]

CTL; cytotoxic T lymphocytes, GM-CSF; granulocyte macrophage-colony stimulating factor

Table 5. Immunotherapeutic trials for chronic HBV infection in humans

Animal model Vaccine Results Ref.

Protein vaccination

Chimpanzee

Recombinant HCV-like

particles containing core, E1

and E2 proteins

Increased in peripheral and intrahepatic

T cell proliferative responses against the

HCV proteins.

[35]

DNA immunization

HCV transgenic mouse

model

The combination of DNA

vaccination encoding HCV

core and mouse IL-2

Broke tolerance against HCV and

activates previously tolerant T cells.
[112]

Mice expressing HCV

antigens in the liver
HCV NS3/NS4 DNA vaccine

Induced HCV-specific CD8+ T cells

expressing IFN-γ and CCR5 and cleared

HCV NS3 expressing hepatocytes.

[113]

Mice

Murine DCs with CFm40L

transfected with adenovirus

encoding HCV NS3

Induced CD4+ and CD8+ T cell response

against HCV NS3.
[114]

Mice

DCs transfected with

adenovirus encoding HCV

NS3

Induced multiepitopic CD4+ (Th1) and

D8+ T cell response and down-regulated

the expression of HCV RNA in the liver.

[115]

Balb/c and HLA-A2.1

trangenic mice

DCs transfected with

adenovirus encoding HCV

NS3

Induced NS3-specific cell mediated and

humoral immune response.
[116]

Chimpanzee with HCV-

challenge

Recombinant adenoviral

vectors encoding the HCV

NS3-5B (genotype 1b) and

with NS3-5B–encoding

plasmid DNA in a combined

modality regimen

HCV NS3-NS5, HCV-specific T cells

appeared earlier, maintained better

functionality, and persisted at higher

frequencies. The T cells controlled HCV-

challenge.

[117]

DC immunization
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Animal model Vaccine Results Ref.

HCV transgenic mouse

model

DCs treated with peptide

inhibitors of IL-10
Induced strong anti-HCV T cell responses [128]

Gene therapy

C57BL/6 and BALB/c mice

Adenovirus-besed HCV

vaccine by fusing HCV NS3 to

MHC class II chaperone

protein invariant chain

Induced CD8+ T cells expressing IFN-γ,

TNF-α, IL-2, CD27 and CD127. The CD8+

T cells protected mice from infection

with recombinant vaccinia virus

expressing HCV NS3 of heterologous 1b

strains

[129]

Table 6. Immunotherapeutic approaches for animal models of HCV infection

Immunotherapy Results Ref.

Peptide vaccination

A vaccine, IC41, containing 7 relevant

HCV T cell epitopes and the Th1

adjuvant poly-L-arginine

Induced HCV-specific Th1/Tc1 responses in a subset of HCV

patients not responding to or relapsing from standard

therapy. However, only a minimal decrease in HCV viremia

was induced by the vaccination.

[81]

Vaccination with a peptide derived

from HCV core protein

Induced both cellular and humoral responses in nearly all

HCV patients with different HLA class I-A alleles, and

reduced serum ALT and AFP levels in 29% and 50% of

patients, respectively.

[82]

DNA vaccination

A new vaccine, CIGB0230, consisting of

a mixture of plasmid expressing HCV

structural antigens and HCV

recombinant core protein

Induced specific T cell proliferation and IFN-γ production in

73%. More than 40% of the vaccines showed improvement

of liver histology, despite persistent detection of HCV RNA.

[99]

DC vaccination

Human DCs from HCV-infected

patienst with CFh40L transfected with

adenovirus encoding HCV NS3

Induced CD4+ and CD8+ T cell response against HCV NS3 in

HCV-infected patients
[114]

Monocyte-derived DCs loaded with

lipopeptides consisting of HCV-specific

HLA-A2.1-restricted CTL epitopes

Induced HCV-specific CD8+ T cell responses with IFN-γ

production in PBL in HCV patients in whom conventional

IFN-based therapy has failed. However, ALT levels were not

elevated and viral load was not decreased.

[118]

Human DCs infected with adenoviral

vectors harboring HCV core and NS3

Induced CD4+ and CD8+ T cell response against HCV core

and NS3 in healthy subjects
[130]

Human DCs infected with adenoviral

vectors harboring HCV NS genes

DCs transfected with adenovirus NS3/NS4 efficiently

induced HCV-specific immunity in healthy subjects
[131]
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Immunotherapy Results Ref.

Cytokine

Talpha1

Patients with chronic HCV infection who had been

nonresponders to prior IFN-α and ribavirin were treated with

Talpha1, PEG-IFN α-2a, and ribavirin for 48 weeks. Twenty-

four percent of the treated patients with genotype 1

achieved a sustained virological response.

[144]

Blockade of inhibitory signals

Blocking PD-1, CTLA-4 and IL-10

combined with therapeutic vaccination

Synergistically enhanced functional CD8+ T cell response

and improve viral control in chronically infected mice.

Moreover, addition of stimulatory signals, such as IL-2, could

further increase the efficacy of the therapy in chronic viral

infection

[146]

Combined blockade of CTLA-4 and

PD-1

Combined blockade of CTLA-4 and PD-1, but not blocking of

either molecule, can reverse CD8+ T cell exhaustion in HCV

infected patients

[147]

Blocking Tim-3/Tim-3 ligand

Blocking Tim-3/Tim-3 ligand induced intrahepatic T cell

proliferation and IFN-γ production in response to HCV

antigens in HCV-infected patients

[70]

Blockade of Tim-3 on human HCV-

specific CTLs

Blockade of Tim-3 on human HCV-specific CTLs fron HCV-

infected patients increased cytotoxicity against an HCVAg-

expressing hepatocyte cell line that expresses HCV epitopes

[149]

Gene transfection

Human T cells transduced with HCV

TCR specific for HCV NS3 1071-1081

(HLA A2-restricted epitope)

T cells recognized the peptide and produced IFN-γ, IL-2 and

TNF-α in healthy subjects
[119]

Two adenoviral vectors expressing NS3,

4 and 5 proteins from HCV genotype

1B

Induced HCV-specific CD4+ and CD8+ T cells subsets

secreting IL-2, IFN-γ, and TNF-α and could be sustained for at

least a year after boosting.

[120]

Recombinant virus

Recombinant poxvirus vaccine,

TG4040, that expresses the hepatitis C

virus (HCV) proteins NS3, NS4, and

NS5B.

It was safe and well-tolerated. It induced HCV-specific

immune response and a transient decrease in HCV viremia

(>1log) in 33% of HCV-infected patients.

[103]

CTLA-4; cytotoxic T lymphocyte antigen-4, PD-1; programmed death-1, Tim-3; T cell Immunoglobulin and Mucin domain
containing-3

Table 7. Immunotherapeutic approach for chronic HCV infection in humans
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5.1. Suppression of viral replication

High viral load has been shown to suppress CD4+ and CD8+ T cells in addition to induction of
Tregs, which could be reversed by antiviral therapy [78]. Therefore, immunotherapy followed
by restoration of virus-specific T cell response with antiviral therapy could be more efficient.

5.2. Induction of immune response to hepatitis virus

5.2.1. Peptide immunization

A fusion peptide consisting of HBc18-27 and HIV Tat49-57 was synthesized, and the vaccina‐
tion induced significant anti-viral effect in HBV transgenic mice [79]. However, in humans,
peptide vaccine containing highly immunogenic HBc18-27 administered to CHB patients,
showed disappointing results [80], because there was no induction of a significant antiviral T
cell response.

In HCV infection, a vaccine, IC41, containing 7 HCV T cell epitopes and the Th1 adjuvant
induced HCV-specific Th1/Tc1 responses in chronic HCV patients, but anti-viral effects were
minimal [81]. Another HCV vaccine with a peptide derived from HCV core protein induced
both cellular and humoral responses in HCV patients and reduced serum alanine aminotrans‐
ferase (ALT) and alpha-fetoprotein (AFP) in some patients [82].

5.2.2. Protein immunization

In a model of HBV in transgenic mice, HBsAg vaccine in complete Freund’s adjuvant once a month
for 12 months induced reduction in HBV DNA, and the disappearance of HBeAg and HBsAg in
most mice treated [83]. Interestingly, some mice developed anti-HBs in the sera. However, several
human trials with HBsAg vaccine showed limited efficacy if used as monotherapy.

Recently, HB vaccine containing not only S protein but also preS has been used with increased
immunogenicity [84-88], or has been combined with lamivudine [89,90], IL-2 [91] or IFN-α [92]
leading to potential improvement of clinical efficacy [93-95]. Moreover, vaccines containing
HBcAg have been developed, and some showed significant anti-viral effect in HBV transgenic
mice [96-99]. Because T cell response to HBcAg is important for viral control, these vaccines
may have a promising immunothepapeutic potential also in humans. Recently, some trials to
enhance the immunogenicity of HBV vaccine in combination with adjuvant or by using viral
vectors have been made [100-102].

In HCV infection, a recombinant poxvirus vaccine expressing HCV NS3, NS4 and NS5B,
TG4040, has been recently developed [103] and administered to HCV patients. The vaccine
was safe and induced HCV-specific cellular immune response and reduction in viremia. These
data are encouraging, and further large scale clinical trials need to be done.

5.2.3. DNA immunization

Injection of plasmid DNA has been shown to strongly elicit both cellular and humoral immune
responses. DNA vaccine is now shown to be safe and well-tolerated, and has been tried in
humans with some encouraging anti-viral effects both in mice and humans [104].
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In a model of duck hepatitis B virus infection, DNA vaccine encoding HBV large envelope
and/or core protein was shown to induce reduction in not only viremia [105] but also cccDNA
in the liver in one third of ducks receiving DNA monotherapy or combination treatment along
with lamivudine [106]. This finding is encouraging because clearance of cccDNA from the liver
is the goal of treatment for HBV infection, but is difficult to achieve using IFN-α or nucleoside
analogs. More recently, DNA vaccine expressing HBcAg or HBsAg in combination with
extracellular domain of CTLA-4 have been developed and showed significant anti-viral effects
in HBV transgenic mice [107,108]. In humans, safety and therapeutic potential of DNA vaccines
have been already explored in chronic HBV carriers [109-111].

In HCV infection, DNA vaccine encoding HCV core and IL-2 breaks tolerance and activates
previously tolerant T cells in HCV transgenic mice [112]. NS3-specific T cells were induced by
DNA immunization in mice models [113-116]. In chimpanzee models, NS3-specific T cells were
also induced and HCV-challenge could be controlled [117]. In HCV patients, a new DNA
vaccine, CIGB0230, consisting of a mixture of plasmid expressing HCV structural antigens
induced HCV-specific T cell response and improved liver histology [118]. Furthermore, trials
to elicit HCV-specific T cells response by transduction of HCV-specific T cell receptor or by
new type vaccines have been made [119,120].

5.2.4. DC immunization

DCs are specialized antigen-presenting cells that can induce strong immune responses in T
and B cell. We have previously shown that activated bone marrow-derived DCs can break CTL
tolerance to HBsAg in HBV transgenic mice [121]. Thereafter, several immunotherapies with
activated DCs have been applied in both animals and humans. In a recent study performed in
HBV transgenic mice, peptide-pulsed DCs were shown to significantly reduce the concentra‐
tions of serum HBsAg and HBV DNA [122], indicating therapeutic potential in chronic HBV
infection. Moreover, when intrahepatic antigen-presenting cells, including DCs, were activat‐
ed by injection of anti-CD40 agonistic Ab, HBV replication was inhibited by a noncytopathic
mechanism possibly through production of antiviral cytokines such as TNF-α and IL-12 [123].
Although no CTL response against HBV antigens was reported in this study, the in vivo
activation of DCs could be an alternative way for inducing antiviral immune responses
including possible activation of CTLs against HBV. In humans, injection of activated DCs
loaded with HBV peptide or protein achieved the induction of HBV-specific immunity
[124,125] and a reduction in HBV DNA level in some patients [126,127]. HBeAg negativity was
achieved in more than half of the treated patients in one study [126].

In HCV infection, DCs treated with peptide inhibitors of IL-10 were shown to induce strong
anti-HCV T cells response in HCV transgenic mice [128], suggesting a strategy to augment the
immunogenic function of DCs. Recently, murine DCs infected with adenovirus encoding HCV
NS3 were used as vaccines, and showed induction of NS3-specific T cell response and antiviral
effect [129]. In humans, DCs infected with adenovirus vectors harboring HCV core or NS genes,
especially NS3, were administered in healthy subjects [130,131] and HCV patients [114,118],
and those DCs induced CD4+ and CD8+ T cell response in both populations. Although
preparation of activated and mature DCs incurs financial costs and requires experienced
researchers, immunotherapy with DCs is a promising method.
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5.2.5. Cytokines and Thymosin-α1 (Talpha1)

Cytokines, such as IL-12 [132] and IL-18 [133], and the activation of NKT cells [134] were shown
to inhibit HBV replication noncytopathically in HBV transgenic mice. In humans, GM-CSF
[135,136] and IL-12 [137-139] have been used for treatment with some antiviral effects. They
have been used as monotherapy or in combination with HBsAg vaccine or lamivudine.

Talpha1, a synthetic 28-amino acid peptide, is able to enhance the Thl immune response and
also exerts a direct antiviral mechanism of action. It has been used for the treatment of chronic
HBV [140-143] and HCV [144] infection in humans, and showed antiviral effect with some
efficacy. Although antiviral effect by the addition of Talpha1 to lamivudine or IFN-α therapy
was controversial, a meta analysis demonstrated that the combination therapy with lamivu‐
dine and Talpha1 showed significantly higher rates of ALT normalization, virological re‐
sponse, and HBeAg seroconversion as compared with lamivudine monotherapy [145]. It is of
note that HBeAg seroconversion rate was 45% in the combination group, which was signifi‐
cantly higher than that with lamivudine monotherapy (15%).

5.2.6. Blockade of inhibitory signals

There have been several basic attempts to improve the efficacy of immunotherapy. Among
these reports, augmentation or restoration of T cell response by blocking the inhibitory signals
have been extensively analyzed in vitro. It has been demonstrated that exhausted T cells

•Viral suppression by antiviral drugs 
•Blockade of immunoinhibitory signals 

High viremia 

Exhaustion of immune response 

Induction of immunosuppressive 

mechanism 

•  Regulatory T cells 

•  Up-regulation of CTLA-4 expression 

•  Up-regulation of PD-1 expression 

•  Up-regulation of Tim-3 expression 

•  Up-regulation of CD244 expression 

•  Enhanced IL-10 production 

• Dysfunction of DCs 
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express not only PD-1, but also CTLA-4 [146,147], CD244 [148] or Tim-3 [70,149], and blocking
of these molecules in combination could be better than blocking any single molecule to achieve
full activation of the exhausted T cells.

6. Conclusion

There have been several advances in immunotherapy and vaccine development both for
prophylactic and therapeutic purposes in HBV and HCV infections and some of the data are
promising. For therapeutic purposes, viral suppression, stimulation of antiviral immune
response with vaccines with peptides, proteins, plasmid or DC, blockade of immunoinhibitory
signals must be combined to achieve desirable antiviral effects (Fig.1). Further studies are
required to explore the best protocols and their most efficient combinations to become a
promising and practical treatment.
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