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1. Introduction 

1.1. Adipose tissue as an endocrine organ 

Recent investigations from many species continue to reinforce and validate adipose tissue as 
an endocrine organ that impacts physiological mechanisms and whole-body homeostasis. 
Factors secreted by adipose tissue or “adipokines” continue to be discovered and are linked 
to important physiological roles (Ahima, 2006) including the innate immune response 
(Schäffler & Schöolmerich, 2010). In a number of recent experiments transcriptional profiling 
demonstrated that 5,000 to 8,000 adipose tissue genes were differentially expressed during 
central stimulation of the melanocortin 4 receptor (Barb et al., 2010a) and several conditions 
such as fasting (Lkhagvadorj et al., 2009) and feed restriction (Lkhagvadorj et al., 2010). In 
contrast, 300 to 1,800 genes were differentially expressed in livers in these three studies 
(Barb et al., 2010a; Lkhagvadorj et al., 2009, 2010). This degree of differential gene expression 
in adipose depots reflects the potential influence of adipose tissue as a secretory organ on 
multiple systems in the body. Furthermore, advances in the study of adipose tissue gene 
expression include high throughput technologies in transcriptome profiling and deep 
sequencing of the adipose tissue microRNA transcriptome (review, Basu et al., 2012). 

Recent proteomic studies of human and rat adipocytes have revealed the true scope of the 
adipose tissue secretome (Chen et al., 2005; Kheterpal et al., 2011; Lehr et al., 2012; Lim et al., 
2008; Zhong et al., 2010). With refined and advanced proteomics techniques, these studies 
have revealed that many of the adipose tissue secreted factors identified at the gene level do 
indeed encode secreted proteins (Chen et al., 2005; Kheterpal et al., 2011; Lehr et al., 2012; 
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Lim et al., 2008; Zhong et al., 2010). The presence of an N-terminal secretion signal peptide 
validates secreted proteins in conditioned media (Renes et al., 2009). In many of these 
studies, the presence or absence of a signal peptide was used to validate or identify truly 
secreted adipocyte proteins (Chen et al., 2005; Lehr et al., 2012; Lim et al., 2008; Zhong et al., 
2010). In these studies, the percentage of total apparent secreted proteins that were 
considered secreted (+ signal peptide) ranged from 39 to 75% and the total number of 
secreted proteins ranged from 164 to 263 (Chen et al., 2005; Lehr et al., 2012; Lim et al., 2008; 
Zhong et al., 2010). However, the signal peptide approach could underestimate the 
adipocyte derived proteins present in the extracellular space (review, Renes et al., 2009). For 
instance, a blocking strategy has been used to distinguish between true secreted proteins 
and proteins that simply “leak” from the cell (review, Renes et al., 2009). Continued 
development and refinement of proteomic approaches in the study of the adipose tissue 
secretome will ultimately confirm the endocrine status of adipose tissue. 

1.2. Adipose tissue as a modulator of gonadotropin secretion 

Adipose tissue plays a role in whole-body homeostasis by acting as an endocrine organ, which 
was clearly demonstrated with the discovery of leptin. Evidence indicates a strong link between 
neural influences and adipocyte expression and secretion of leptin and other adipokines such as 
other cytokines (interleukins), neurotrophic factors (ciliary neurotrophic factor, CNTF; brain-
derived neurotrophic factor, BDNF), insulin-like growth factor (IGF–I, and –II), binding protein 
(IGFBP-5), and neuropeptides such as neuropeptide Y (NPY) and nesfatin-1 (Table 1). 
Developmental changes in these relationships are considered important for onset of puberty. 
Leptin augments secretion of gonadotropins which are essential for initiation and maintenance 
of normal reproductive function, by acting centrally at the hypothalamus to regulate the 
gonadotropin-releasing hormone (GnRH) and neuronal activity. The effects of leptin on GnRH 
are mediated through interneuronal pathways involving NPY, proopiomelanocortin (POMC) 
and kisspeptin. Increased infertility associated with diet induced obesity or central leptin 
resistance are likely mediated through the kisspeptin-GnRH pathway. Furthermore, leptin 
regulates reproductive function by altering the sensitivity of the pituitary gland to GnRH. Other 
putative metabolic signals are circulating long chain fatty acid which can signal nutrient 
availability to the central nervous system (CNS) and alter feed intake and glucose availability. 

2. Free Fatty Acids (FFA) 

2.1. Long-chain fatty acids act in the CNS 

The control of appetite and metabolism in response to changes in nutrient availability occurs 
in part at the level of the hypothalamus (Barb et al., 1999, 2001a; Woods et al., 1998). Thus, 
macronutrients, such as carbohydrates and lipids, play a role in regulating peripheral 
concentrations of leptin and insulin (Ahima et al., 1996), which in turn has a direct effect on 
appetite and energy expenditure primarily through the hypothalamus (Barb et al., 2006; 
Woods et al., 1998). Levin et al. (1999) reported that hypothalamic neurons may directly 
detect nutrients. To that extent, treatment with a fatty acid synthase inhibitor reduced food  
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Regulatory – secreted factors Receptors 

adiponectin IFNG IL-5 ADIPOR2

adipsin IGFBP-1 IL-6 BMPR2

agouti IGFBP-3 IL-8 EDNRB

ANG IGFBP-4 leptin ESR1

ANGPTL2, 
ANGPTL4 

IGFBP-5 PAI-1 FGFR1, FGFR4 

RBP1, RBP4 IGFBP-7 RANTES GNRHR2

APO-A1 IL-10 RTN IFNGR1

APO-CIII IL-12 TGF- β, TGF-β3 IGF-IR, IGF-IIR 

APO-E IL-15 THBS1 IL-4R, IL-10R 

APO-R1 IL-18 TNFα PGRMC1

BDNF IL-1A VEGFC INSR

bFGF IL-1B visfatin NGFR

CNTF IL-1RN CTGF OB-rb

IGF-I, IGF-II IL-4 NPY THRA, THRA2, TSHR 

Chemokine ligands 
2, 3, 4, 12 

Compliment component 
1, 2, 4A, 6X, C7 

TGF-α EGFR 

BMP-4, BMP-15 CTRP4, CIQTN4 MCP-1 LDLR

RLN  PDGFD NUCB2, nesfatin-1 LHCGR

LPL   TLR 4

   AGTR1

Abbreviations: ADIPOR2 = adiponectin receptor 2, AGTR1 = angeotensin II receptor, ANG = angiotensin, ANGPTL = 
angiopoietin-like protein, APO = apolipoprotein, BDNF = brain-derived neurotrophic factor, bFGF = basic fibroblast 
growth factor, BMP = bone morphogenic protein, BMPR2 = bone morphogenic protein receptor 2, CIQTN4 = 
complement-c1q tumor necrosis factor-related protein 4, CNTF = ciliary neurotrophic factor, CTGF = connective tissue 
growth factor, CTRP4 = complement-c1q tumor necrosis factor-related protein 4, EDNRB = endothelin receptor type B, 
EGFR = epidermal growth factor receptor, ESR1 = estrogen receptor 1, GNRHR2 = gonadotropin-releasing hormone 
receptor 2, IFNG = interferon gamma, IGF = insulin-like growth factor, IGF-IR = IGF-I receptor, IGFBP = insulin-like 
growth factor binding protein, IL = interleukin, INSR = insulin receptor, LDLR = low density lipoprotein receptor, 
LHCGR = luteinizing hormone-choriogonadotropin receptor, LPL = lipoprotein lipase, MCP-1 = monocyte 
chemoattractant protein-1, NGFR = nerve growth factor receptor, NPY = neuropeptide Y, OB-rb = long form leptin 
receptor, NUCB2 = nucleobindin 2, PAI-1 = plasminogen activator inhibitor-1, PDGFD = platelet derived growth factor 
D, PGRMC1 = progesterone receptor membrane component 1, RANTES = chemokine (c-c motif) ligand 5, RBP = retinol 
binding protein, RLN = relaxin, TGF = transforming growth factor, RTN = reticulon, THR = thyroid hormone receptor, 
TLR = toll-like receptor, TNF = tumor necrosis factor, TSHR = thyroid-stimulating hormone receptor, VEGFC = 
vascular endothelial growth factor C. 
References: Barb et al., 2010a; Basu et al., 2012; Chen et al., 2005; Hausman & Hausman, 2004; Hausman et al., 2009; 
Lehr et al., 2012; Lim et al., 2008; Lkhagvadorj et al., 2009, 2010; Renes et al., 2009; Zhong et al., 2010 

Table 1. List of representative genes and proteins reported to be expressed by adipose tissue of 
humans, large animals, and rats. 
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intake and body weight in mice by reducing expression of NPY in the hypothalamus via a 
malonyl-Coenzyme A mechanism, which supports the idea that lipid metabolism in the CNS 
plays a role in the control of appetite (Loftus et al., 2000). Furthermore, long-chain Furthermore, 
long-chain fatty acyl CoAs (LC-CoAs), such as oleyl-CoA, can activate ATP-sensitive K+ 
channels in non-neuronal cells (Larsson et al., 1996). Circulating fatty acids gain rapid access to 
the brain, where they equilibrate with neuronal LC-CoAs (J.C. Miller et al., 1987; Rapaport, 
1996). They are then further metabolized via mitochondria β-oxidation or incorporated into 
phospholipids (J.C. Miller et al., 1987; Rapaport, 1996). Obici et al. (2002) hypothesized that fatty 
acids may signal nutritional status to selective neurons in the CNS and activate a feedback 
loop designed to curtail further influx of nutrients into the circulation. To that extent, Obici 
and coworkers (2002) reported that intracerebroventricular (i.c.v.) administration of the long-
chain fatty acid, oleic acid, suppressed glucose production and feed intake. In addition, this 
was accompanied by a reduction in hypothalamic expression of NPY. This neuronal circuit 
plays a role in maintaining energy homeostasis by switching fuel sources from carbohydrates 
to lipids and by limiting circulating endogenous and exogenous nutrients. Disruption of this 
circuit may play a role in obesity, type 2 diabetes and other endocrine abnormalities (for a 
review, see Obici, 2009), which are often accompanied by gonadotropin insufficiency. 

2.2. Regulation of gonadotropin secretion by long-chain fatty acids 

In the pig, feed deprivation results in a rapid mobilization of FFA from peripheral fat depots, 
but maintenance of euglycemia suggests increased hydrolysis of triglycerides and FFA 
oxidation resulting in a glucose sparing effect (Barb et al., 1997). We previously reported that 
metabolic response to acute feed deprivation occurred more rapidly in prepubertal gilts 
compared to mature gilts, likely because prepubertal gilts have a higher metabolic rate, 
smaller energy reserves and thus a greater nutrient intake requirement for growth (Barb et 
al., 1997). In mature animals, chronic feed restriction resulted in cessation of estrous cycles 
and lower concentrations of plasma insulin, increased levels of FFA and reduced LH pulse 
frequency compared to controls (Armstrong & Britt, 1987). This brings into question, 
therefore, if alterations in serum concentrations of FFA influence hypothalamic-pituitary 
function. To address this matter, prepubertal gilts received intravenous (i.v.) injection of a 
lipid emulsion which consisted of the following fatty acids: linoleic (65.87%), oleic (17.7%), 
palmitic (8.8%), linolenic (4.2%) and stearic (3.43%) acid. The fatty acid content of the lipid 
emulsion was comparable to that present in the circulation of the pig (Cera et al., 1989). Lipid 
emulsion injection enhanced the LH response to GnRH (Barb et al., 1991), whereas infusion of 
lipid emulsion at 1 hour intervals increased serum LH pulse amplitude without effecting LH 
pulse frequency (Barb et al., 1991). Dispersed cells of the anterior pituitary gland of the pig 
were cultured to determine whether the effects of FFA in vivo occur at the pituitary without 
the benefit of input from the CNS. The long-chain fatty acids, oleic and linoleic acids 
increased basal LH release. In contrast oleic acid suppressed the GnRH-induced release of LH 
(Figure 1). The response for linoleic acid was equivocal (Barb et al., 1995). These events seem 
to be mediated at the plasma membrane because oleic and linoleic acids did not block the 
forskolin-induced release of LH (Barb et al., 1995). These results may explain the altered 
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neuroendocrine activity observed during periods of feed restriction and fast. To that extent, 
administration of oleic acid into the third ventricle suppressed food intake and hypothalamic 
expression of NPY in the rat (Obici et al., 2002). 

 
Figure 1. Anterior pituitary cells from prepubertal gilts (n = 11) were cultured in the presence of media 
alone (C, control wells; basal secretion in absence of any treatment) or gonadotropin releasing hormone 
(GnRH) at 10-8 M.  Oleic or linoleic acid were included at 10-6 M, 10-5 M or 10-4 M in wells containing 
GnRH.  Pituitary cells were exposed to oleic or linoleic acid for 30 min before the addition of GnRH.  
Media was collected 4 h after GnRH treatment.  aDifferent from C (P < 0.03). bDifferent from GnRH 
alone (P < 0.03).  Data from Barb et al. (1995). 

An acute 28 h fast increased serum FFA concentrations, and decreased leptin pulse frequency 
but not mean concentrations of leptin in serum nor LH secretion in the ovariectomized 
prepubertal gilt (Barb et al., 2001b), while treatment with a competitive inhibitor of glycolysis 
suppressed LH secretion without affecting serum concentrations of leptin (Barb et al., 2001b). 
In contrast, short term feed restriction for 8 days decreased leptin secretion and LH pulse 
frequency in the mature ovariectomized gilt (Whisnant & Harrel, 2002). The ability of the pig 
to maintain euglycemia during acute fast may account for the failure of acute food 
deprivation to effect LH secretion (Barb et al., 1997). Although, leptin may serve as a 
metabolic signal which communicates metabolic status to the brain, the neuroendocrine 
response to acute energy deprivation may depend on age or mass of adipose tissue. 

3. Nesfatin-1 

3.1. Nesfatin-1 as an adipokine 

While searching for new satiety factors, Oh-I et al. (2006) discovered a troglitazone- (PPARγ 
ligand) stimulated transcript expressed in SQ-5 (lung squamous carcinoma cell line) cells 
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that was homologous to the nucleobindin 2 (NUCB2) gene, which codes for a DNA 
binding/EF hand/acidic protein (NEFA). The NUCB2 gene product is a 396 amino acid 
protein with several cleavage sites for prohormone convertase. Post-translational processing 
of the NUCB2 preprotein produces three cleavage products corresponding to amino acid 
residues 1-82, 85-163, and 166-396. Upon the observation that i.c.v. injection of the first 82 
amino acid cleavage product suppressed feed intake resulting in reduced body and fat 
depot weights in mice, Oh-I et al. (2006) termed the protein nesfatin-1 for 
NEFA/nucleobindin2-encoded satiety- and fat-influencing protein-1. 

Immediately upstream of the nesfatin-1 protein is a 26 amino acid signal sequence 
indicating that nesfatin-1 is likely a secreted factor that may have endocrine or paracrine 
action. Expression of NUCB2 mRNA is observed in predifferentiated 3T3-L1 cells (Oh-I et 
al., 2006; Ramanjaneya et al., 2010) and induction of differentiation resulted in a marked 
increase in expression of NUCB2 mRNA and secretion of nesfatin-1 into culture media 
(Ramanjaneya et al., 2010). Nesfatin-1 also is expressed and secreted from human and 
mouse adipose tissue explants (Ramanjaneya et al., 2010), with subcutaneous adipose tissue 
having greater expression of NUCB2/nesfatin-1 than omental adipose tissue (Ramanjaneya 
et al., 2010). Moreover, NUCB2 expression was greater in the adipocyte fraction of adipose 
tissue than in the stromal vascular fraction (Ramanjaneya et al., 2010) adding further 
support to the concept of nesfatin-1 as an adipose derived factor. Further studies are needed 
to define the precise roles of nesfatin-1, or the other NUCB2 gene products, in adipose 
tissue, but current evidence suggests involvement in chronic inflammatory response of 
adipose tissue associated with metabolic disease. Treating adipose tissue explants with 
energy partitioning hormones (insulin, dexamethasone) and cytokines, interleukin-6 (IL-6) 
and tumor necrosis factor α (TNFα), altered NUCB2 expression and nesfatin-1 secretion 
(Ramanjaneya et al., 2010). Furthermore, NUCB2 is involved in IL-1β stimulated release of 
soluble tumor necrosis factor receptor 1 to the extracellular space (Islam et al., 2006). 

It is important to note that NUCB2 mRNA and nesfatin-1 protein have been found to be 
expressed in several endocrine cells and glands throughout the body including gastric 
glands of digestive tract (Stengel et al., 2009a; Zhang et al., 2010), islet cells of the pancreas 
(Gonzalez et al., 2009), and Leydig cells of the testes (Garcia-Galiano et al., 2012). This is 
indicative of the role nesfatin-1 plays in gastric emptying and nutrient absorption (Stengel et 
al., 2009b), glucose utilization (Gonzalez et al., 2011; Nakata et al., 2011; Su et al., 2010), and 
testosterone production (Garcia-Galiano et al., 2012). At present, it is unclear how these 
tissues may contribute to circulating concentrations of nesfatin-1; however, given that 
adipose tissue is the largest endocrine organ of the body, the contribution that fat depots 
would have to plasma concentrations of nesfatin-1 seems obvious. Concentrations of 
nesfatin-1 in the blood are, for the most part, positively correlated with body mass index 
(BMI) in healthy human subjects (Aydin et al., 2009; Li et al., 2010; Ogiso et al., 2011; 
Ramanjaneya et al., 2010) as are several single nucleotide polymorphisms within the NUBC2 
gene (Zegers et al., 2011). Expression of nesfatin-1 in subcutaneous adipose tissue of mice is 
suppressed with fasting and increased when mice were fed a high fat diet (Ramanjaneya et 
al., 2010) indicating that nesfatin-1 concentrations in serum could be regulated by nutritional 
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status. In point of fact, circulating concentrations of nesfatin-1 were less in patients with 
anorexia nervosa (Ogiso et al., 2011) and type 2 diabetes (Li et al., 2010). Together with the 
fact that nesfatin-1 crosses the blood-brain barrier via a nonsaturatable mechanism (Pan et 
al., 2007; Price et al., 2007), these data collectively indicate that nesfatin-1 is secreted from 
adipose tissue into the circulation and can enter the brain to regulate appetite. 

3.2. Nesfatin-1 as a central regulator of food intake 

The anorexogenic effects of nesfatin-1 are observed when nesfatin-1 is given either centrally 
(Shimizu et al., 2009) or peripherally (Stengel et al., 2009b). It is not clear, however, if 
suppression of appetite is entirely due to peripherally derived nesfatin-1 or the paracrine 
action of the protein produced within the hypothalamus. Expression of NUCB2/nesfatin-1 
mRNA and protein has been demonstrated in several areas of the CNS. Within the 
hypothalamus, NUCB2/nesfatin-1 is expressed in nuclei that have important roles for control 
of appetite including the arcuate (ARC), paraventricular (PVN), lateral hypothalamic area and 
supraoptic nucleus (Brailoiu et al., 2007; Foo et al., 2008; Kohno et al., 2008; Oh-I et al., 2006). 
Areas of the brain stem that play pivotal roles in regulating energy homeostasis including the 
area postrema and the nucleus tractus solitaries (NTS) as well as the nucleus dorsalis of the 
vagus nerve all express NUCB2/nesfatin-1. Functional evidence that hypothalamic 
NUCB2/nesfatin-1 is involved in control of energy balance is derived from the observations 
that NUCB2/nesfatin-1 expression in the PVN is suppressed after fasting in adult and juvenile 
rats (Garcia-Galiano et al., 2010; Oh-I et al., 2006), and that refeeding activates nesfatin-1 
neurons (as assessed by c-Fos) in the PVN (Kohno et al., 2008). Anorexigenic effects of nesfatin-
1 require melanocortin receptors (Oh-I et al., 2006) and NPY neurons in hypothalamic slices of 
the ARC from mice were inhibited by nesfatin-1 in vitro (Price et al., 2008); although expression 
of NPY mRNA in the ARC of the rat in vivo was unchanged with nesfatin-1 treatment (Oh-I et 
al., 2006). Furthermore, alpha melanocyte-stimulating hormone treatment increased NUCB2 
expression in the PVN (Oh-I et al., 2006) and nesfatin-1 has potent anorectic action in animals 
that are resistant to the effects of leptin (Oh-I et al., 2006; Su et al., 2010). This led to the initial 
thought that nesfatin-1 might be a down-stream effecter of the action of leptin; however, i.c.v. 
injection of nesfatin-1 antibodies did not block the anorectic effect of leptin in the rat (Oh-I et 
al., 2006). Instead, the anorexigenic actions of nesfatin-1 appear to be relayed through a 
mechanism independent from leptin. For instance, nesfatin-1 stimulates oxytocin cells in the 
PVN which in turn activate POMC neurons in the NTS of the brain stem (Maejima et al., 2009). 
Moreover, cholecystokinin (CCK) activates NUCB2/nesfatin-1 cell bodies in the PVN and NTS. 
The inhibition of food intake by CCK is mediated, at least partially, through NUCB2/nesfatin-1 
neurons via a corticotrophin-releasing hormone (CRH) 2-receptor. Blocking the action of the 
CRH2 receptor with an antagonist ameliorated the suppressive effects of nesfatin-1 on food 
intake (Stengel et al., 2009b). 

3.3. Nesfatin-1 as a neuroendocrine regulator of gonadotropin secretion 

The neuroanatomical distribution of nesfatin-1 cell bodies in areas of the hypothalamus 
involved in integration of energy balance and reproduction (i.e., the ARC) and the fact that 
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peripheral concentrations of nesfatin-1 reflect BMI suggest a role for nesfatin-1 in metabolic 
regulation of gonadotropin secretion. Hypothalamic expression of NUCB2/nesfatin-1 
increases during the pubertal transition in the activity of the gonadotropic axis of rats 
(Garcia-Galiano et al., 2010). When young pubertal female rats were given i.c.v. injection of 
nesfatin-1, LH secretion increased two- to threefold; however, the effects of centrally 
administered nesfatin-1 on LH were much greater (9-fold increase) when rats were fasted 
for 48 h (Garcia-Galiano et al., 2010). The later observation is likely related to the fact that 
fasting or less severe but long-term nutrient restriction reduced NUCB2/nesfatin-1 
expression in the brain and may explain a possible mechanism whereby fluctuations in 
energy balance impact gonadotropin secretion in a leptin independent manner. The 
stimulatory effects of i.c.v. nesfatin-1 on LH were not evident in adult female rats (Garcia-
Galiano et al., 2010) suggesting nesfatin-1 plays an important role in regulating 
gonadotropin secretion during the pubertal transition; a period when increasing adiposity 
and sensitivity to adipokines is generally thought to be important for activation of the 
reproductive axis. Consistent with this is the fact that central infusion of nesfatin-1 
antisense-morpholino oligonucleotides suppressed LH secretion and delayed puberty (as 
determined by absence of vaginal opening) in approximately 60% of peripubertal female 
rats but failed to alter ovulatory surges of LH in adult females (Garcia-Galiano et al., 2010). 
The effects of nesfatin-1 on LH and follicle-stimulating hormone (FSH) secretion may be 
sexually dimorphic as i.c.v. treatment with nesfatin-1 stimulated LH and FSH secretion in 
male rats that were fasted (Tadross et al., 2010). Moreover, nesfatin-1 stimulated release of 
GnRH from hypothalamic explants taken from male rats (Tadross et al., 2010). 

Collectively these data indicated that nesfatin-1 is a protein hormone that participates in 
metabolic regulation of appetite and energy homeostasis. Reproductive function is sensitive 
to nutritional status and nesfatin-1 appears to have a role in conferring metabolic state to the 
gonadotropic axis, particularly during pubertal development. The mechanisms whereby this 
occurs have not been revealed yet, but likely involve action at the GnRH neuron. Whether 
this is a direct paracrine action of hypothalamic nesfatin-1 or an alteration in plasma 
concentrations of nesfatin-1 entering the brain is not known at present. Expression of 
nesfatin-1 in the testis and its role in regulating testosterone release (Garcia-Galiano et al., 
2012) adds further complexity, and raises the possibility that nesfatin-1 can have indirect 
action on gonadotropin secretion through changes in gonadal steroid feed-back to the 
hypothalamus or anterior pituitary gland. 

4. Leptin 

4.1. Effects of leptin on the hypothalamic-pituitary axis 

In the pig, presence of biologically-active leptin receptor (OB-rb) in the hypothalamus and 
pituitary (Lin et al., 2000) and the fact that leptin increased LH secretion from pig pituitary 
cells (Barb et al., 2004) and GnRH release from hypothalamic tissue (Figure 2; Barb et al., 
2004) in vitro suggests that leptin acts through the hypothalamic-pituitary axis to modulate  
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Figure 2. Hypothalamic explants (hypothalamic-preoptic area) were collected from ovariectomized 
prepubertal gilts and were placed in perfusion culture.  Tissue was treated as shown with recombinant 
human leptin (Lep) at 10-12 M (n = 4), 10-10 M (n = 4), 10-8 M (n = 4), 10-6 M (n = 5) or control (n = 5).  All 
fragments were exposed to K+ (60 mM) to verify tissue viability.  Effluent was continuously collected as 
5-min fractions (500 µl).  *Increased above baseline (P < 0.05).  Data from Barb et al. (2004). 

LH secretion. There is strong evidence from co-localization of leptin receptor mRNA with 
NPY gene expression that hypothalamic NPY is a potential target for leptin in the pig (Czaja 
et al., 2002). Moreover, central administration of NPY suppressed LH secretion and 
stimulated feed intake by reversing the inhibitory action of leptin (Barb et al., 2006). These 
results support the idea that leptin may serve as a metabolic signal in the activation of the 
reproductive axis. 
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Leptin treatment stimulated basal LH secretion directly from pig anterior pituitary cells in 
culture and GnRH release from hypothalamic-preoptic tissue explants from intact and 
ovariectomized prepubertal gilts on maintenance rations (Barb et al., 2004). Interestingly, 
i.c.v. administration of leptin failed to stimulate LH secretion in the well-fed intact 
prepubertal gilt (Barb et al., 2004). Obviously, hypothalamic explants are deprived of neuro-
anatomical connections with other extra-hypothalamic tissues that may convey the 
heightened negative feedback action of estradiol on the GnRH pulse generator that occurs 
during pubertal development (Barb et al., 2010a), which may in part explain the failure of a 
LH response to i.c.v. administration of leptin in the pig. 

Intracerebroventricular injection of leptin stimulated LH secretion in steroid-implanted 
castrated male sheep (D.W. Miller et al., 2002), and chronic i.c.v. administration of leptin 
stimulated LH secretion in the feed-restricted ovariectomized cow (Amstalden et al., 2002) 
and ewe (Henry et al., 2001). In contrast, chronic i.c.v. administration of leptin failed to 
stimulated LH secretion in well nourished ovariectomized ewes with no steroid replacement 
(Henry et al., 1999), and in intact ewe lambs (Morrison et al., 2001). In vitro studies 
demonstrated that leptin treatment stimulated basal and GnRH-mediated LH secretion from 
pituitary explants from fasted, but not control-fed cows, while having no effect on GnRH 
release from hypothalamic explants from either group of cows (Amstalden et al., 2003). 
Thus, metabolic state appears to be a primary determinant of the hypothalamic-pituitary 
response to leptin in ruminants. 

4.2. The role of leptin in onset of puberty 

Onset of puberty may be linked to attainment of a critical body weight or a minimum 
percentage of body fat (Frisch, 1984). Alternatively, metabolic mass and food intake or its 
correlated metabolic rate may be the triggering mechanism (Frisch, 1984). Initiation of 
puberty also may be influenced by metabolic factors of peripheral origin. In this regard, it 
has been postulated that metabolic signals are important in the initiation of puberty (Barb et 
al., 1997; Cameron et al., 1985). The discovery of leptin has improved our understanding of 
the relationship between adipose tissue and energy homeostasis (Campfield et al., 1995). 
Leptin treatment advanced sexual maturation in restricted and ad lib fed animals (Ahima et 
al., 1997; Barash et al., 1996). In addition, chronic leptin treatment not only reduced food 
intake and body weight in ob/ob (leptin deficient) mice, but also restored fertility (Barash et 
al., 1996). Serum leptin concentrations increased during puberty in the mouse (Chehab et al., 
1997), heifer (Garcia et al., 2002) and pig (Qian et al., 1999) and, in the human female, age at 
first menarche was inversely related to serum leptin concentrations (Matkovic et al., 1997).  

There exists, however, controversy as to the precise role of leptin in the onset of puberty. 
Several reports demonstrated that blood leptin concentrations remain relatively unchanged 
during pubertal development in the female mouse and rat (Ahima et al., 1998; Bronson, 
2001; Cheung et al., 2001), while leptin administration failed to advance puberty onset in 
well nourished female mice (Cheung et al., 2001). Although, serum leptin concentrations 
increased during puberty in the gilt, other factors in addition to leptin may regulate onset of 
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puberty. As indicated above, it is hypothesized that estradiol modulates the hypothalamic-
pituitary axis response to leptin (Barb et al., 2004). Moreover, estradiol may regulate the 
pubertal related changes in Ob-rb gene expression (Figure 3). In the ovariectomized 
prepubertal gilt, estrogen-induced increase in leptin mRNA expression in adipose tissue 
occurred at the time of expected puberty but not in younger animals (Qian et al., 1999). This 
was associated with an increase in LH pulse frequency (Barb et al., 2010b) and an age 
dependent increase in hypothalamic OB-rb expression (Lin et al., 2001). 

 
Figure 3. The frequency of luteinizing hormone (LH) pulses (A) and expression of leptin mRNA in 
subcutaneous (s.q.) adipose tissue (B) of ovariectomized (OVX) gilts. Gilts were OVX at 90, 150, or 210 d 
of age. Osmotic pumps were implanted s.q. and delivered control (vehicle; polypropylene glycol) or 
0.19 mg of estradiol benzoate per kg of body weight daily for 7 d. Messenger RNA for leptin was 
quantified with RNA protection assays. Means without a common superscript are different; for (A) a,bP< 
0.04 and for (B) a,bP < 0.01. Data from Qian et al. (1999) and Barb et al. (2010b). Redrawn from Barb et al. 
(1999). 

Several human studies, both cross-sectional and longitudinal, have demonstrated a sharp 
rise in serum leptin concentrations in young girls starting as early as age 7 and continuing to 
rise as they progressed through puberty at least age 15 (Ahmed et al., 1999; Blum et al., 1997; 
Garcia-Mayor et al., 1997). In contrast, in boys, leptin concentrations seem to increase 
transiently and then decline after Tanner stage 2 to prepubertal concentrations that are 
approximately one third of those observed in the late-pubertal girl. These changes in 
concentrations of leptin were paralleled by increasing body fat during female puberty and 
decreasing body fat during male puberty. Garcia-Mayor et al. (1997) reported in one cross-
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sectional study, that the rise in serum concentrations of leptin were well established 2 years 
prior to marked increases in serum LH and estradiol concentrations were detected. The 
authors (Garcia-Mayor et al., 1997) suggest this is consistent with the hypothesis that leptin 
concentrations reach a putative threshold which allows puberty to progress; as opposed to a 
critical factor that triggers puberty. 

Matkovic et al. (1997) examined the idea that if the relationship between body fat and early 
menarche in humans is mediated by leptin, then leptin concentrations would be related to 
age at menarche. This study consisted of 343 healthy girls (Tunner stage 2 of puberty) 
between 8.3 and 13.1 years of age. Menstrual history, height and weight, body composition 
by dual-energy X-ray absorptiometry, and leptin were measured every 6 to 12 months 
during a 4-year period. Leptin concentration was highly correlated with body fat mass (r = 
0.81). Greater leptin concentrations up to 12 ng/mL were associated with a decline in the age 
of menarche by approximately 1 month per 1 ng/mL increase in leptin. Furthermore, a 
group of girls who remained premenarcheal for the entire 4 years of the study had 
significantly lower leptin concentrations compared to the groups of girls who reached 
menarche during the study. Matkovic and coworkers (1997) concluded that a threshold 
blood concentration of leptin may be needed for establishment of normal menses. 
Furthermore, in a recent review, Kaplowitz (2008) reports that current data supports the 
idea that leptin plays a permissive role as opposed to a metabolic signal that initiates 
puberty. 

In the prepubertal ruminant, short term feed restriction reduced adipose leptin gene 
expression and leptin secretion, but increased hypothalamic OB-rb expression (Amstalden et 
al., 2000; Dyer et al., 1997). This was associated with decreased serum insulin concentration, 
IGF-I concentration and LH pulse frequency (Amstalden et al., 2000; Morrison et al., 2001). 
In addition, serum leptin concentrations increased as did leptin gene expression in heifers 
during pubertal development, which coincided with increases in serum IGF-I concentrations 
and body weight (Garcia et al., 2002). In contrast to the prepubertal heifer (Amstalden et al., 
2000), short-term fasting failed to reduce pulsatile LH secretion in the mature cow 
(Amstalden et al., 2002). This suggests that there is a heightened sensitivity of the 
hypothalamic-pituitary axis to variations in energy availability in the heifer. Previous 
reports demonstrated that inhibition of LH secretion by nutrient restriction in the 
ovariectomized ewe (Henry et al., 2001) or the ewe lamb (Morrison et al., 2001) was reversed 
by leptin treatment demonstrating a positive association between LH secretion and leptin. 
Although leptin treatment reversed the fasting mediated reduction in LH pulse frequency in 
prepubertal heifers as cited above, chronic administration of ovine leptin by subcutaneous 
injections twice daily to 12- to 13-month old heifers for 40 days (Maciel et al., 2004) or 3 i.v. 
leptin injections per hour for 5 hours at 5-week intervals during pubertal development 
(Zieba et al., 2004) were unable to accelerate LH pulse frequency or onset of puberty. In 
contrast to data obtained from the cow, it is proposed that the effect of leptin on LH 
secretion in the pig during pubertal development is associated with stage of sexual 
maturation and subsequent change in the negative feedback action of estradiol on LH 
secretion (see Figure 3 and Barb et al., 2004, 2010a). 
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5. Kisspeptin 

5.1. Kisspeptin regulates gonadotropin secretion and pubertal development 

Kisspeptin is a hypothalamic neuropeptide and a potent stimulator of gonadotropin 
secretion (Caraty et al., 2007; Lents et al., 2008; Navarro et al., 2004a, 2005) due to its action 
directly on GnRH neurons (Constantin et al., 2009; Herbison et al., 2010; Irwig et al., 2004) to 
stimulate release of GnRH into the hypophysial portal vessels (Messager et al., 2005; Smith 
et al., 2011). A substantial body of evidence has accumulated that demonstrates kisspeptin 
plays a pivotal role in the timing of the onset of puberty. Hypothalamic expression of 
kisspeptin-1 (KiSS-1) and the kisspeptin receptor (GPR54) are developmentally regulated 
with expression increasing near the expected time of puberty (Castellano et al., 2005; 
Navarro et al., 2004a; Shahab et al., 2005). Furthermore, expression of KiSS-1 in the ARC and 
the rostral preoptic area are differentially regulated by gonadal steroids (Estrada et al., 2006; 
Smith et al., 2005, 2007; Tomikawa et al., 2010). It has recently been shown that increased LH 
pulsatility during sexual maturation in the ewe is associated with a reduction in the 
suppressive effects of estradiol on KiSS-1 expression (Redmond et al., 2011). The 
fundamental importance of kisspeptin in the onset of puberty raises the question as to 
whether kisspeptin has a central role in the timing of pubertal events associated with 
metabolic state or body energy reserves. 

5.2. Kisspeptin is sensitive to energy balance 

Restricted feeding and fasting reduces hypothalamic expression of KiSS-1 in rodents 
(Castellano et al., 2005; Luque et al., 2007), sheep (Backholer et al., 2010a), and nonhuman 
primates (Wahab et al., 2011). Expression of KiSS-1 also is suppressed during negative 
energy balance associated with lactation (True et al., 2011; Yamada et al., 2007). These data 
demonstrate that kisspeptin neurons in the hypothalamus are an important component to 
how the reproductive axis senses nutritional state. Castellano et al. (2005) used long-term 
caloric restriction to inhibit the occurrence of puberty (as defined by absence of vaginal 
opening and suppressed gonadotropin and estradiol concentrations) in female rats. Treating 
these rats with kisspeptin rescued gonadotropin secretion and induced puberty (vaginal 
opening) in approximately 60% of the animals, indicating that kisspeptin may have a role in 
integrating the effects of energy balance with the pubertal transition in gonadotropin 
secretion. 

Recent data from growth restricted castrate male lambs indicates that the nutritional control 
of gonadotropin release may also involve alterations in sensitivity to kisspeptin. At 4 weeks 
after weaning, castrate male lambs were randomly assigned to different diets so that they 
either continued to grow or maintained body weight. After 12 weeks of treatment, animals 
in each group were then assigned to receive either i.v. infusion of 0.77 µmoles of kisspeptin 
or saline control. Area under the LH curve (AUC) for the saline treated animals was similar 
for growth and restricted lambs; however, the kisspeptin-induced release of LH was greater 
and lasted longer, as indicated by AUC, in the growth restricted lambs than in the full 
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growth lambs (Figure 4). Our findings in the growth restricted male lamb corroborate those 
of Castellano et al. (2005) in rats. These authors used prepubertal male and female rats that 
were fed either ad libitum or were fasted for 72 h. In fed animals, both prepubertal female 
and male rats demonstrated a 9 to 10 fold increase in LH concentrations in serum 15 minutes 
after i.c.v. injection of kisspeptin. In contrast, fasted rats demonstrated a much greater 50 to 
60 fold increase in LH release. Moreover, the kisspeptin-stimulated release of GnRH from  

 
Figure 4. Four weeks after weaning, castrate male lambs (n = 16) were divided and assigned to either 
continue normal growth (growth) or to maintain body weight (restricted). After 12 weeks, animals in 
both groups received 0.77 µmoles of kisspeptin or saline as a single intravenous injection (time 0). A) 
Serum concentrations of luteinizing hormone (LH) during the 120 minutes before (period 1) and after 
(period 2) injection. B) Area under the curve (AUC) for each period (*P < 0.05). C) AUC in period 2 
expressed as the change from period 1. a,b,cMeans without a common superscript are different (P < 0.05). 
Data from C. A. Lents (unpublished). 
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hypothalamic explants collected from rats that were fasted for 72 h was greater than that 
from hypothalamic explants collected from ad libitum fed rats (Castellano et al., 2005). The 
increased responsiveness of the hypothalamus to kisspeptin and the subsequently greater 
release of LH in underfed animals are likely related to changes in expression of kisspeptin  
receptors. Expression of GPR54 mRNA in the hypothalamus was greater in fasted rats than 
in ad libitum fed controls (Castellano et al., 2005). Thus it appears that the pubertal transition 
in gonadotropin secretion involves not only increased expression and release of kisspeptin 
itself (Bentsen et al., 2010), but also a heightened sensitivity of the hypothalamus to the 
action of kisspeptin (Shahab et al., 2005). Both of these aspects can be modulated by 
metabolic state and are important for the overall tone of the kisspeptin system (Castellano et 
al., 2011; Roa et al., 2010). 

5.3. Kisspeptin mediates the action of leptin on sexual development and 

gonadotropin secretion 

The effect of energy balance on the kisspeptin system appears to be a consequence of the 
action of leptin. Expression of KiSS-1 in the ARC of the hypothalamus of ob/ob mice, which 
lack functional leptin, is significantly less when compared to expression in wild-type mice 
(Quennell et al., 2011; Smith et al., 2006); however, KiSS-1 expression in the anteroventral 
periventricular nucleus (AVPV) of ob/ob mice was similar to wild-type animals. This 
indicates that leptin acts on a specific population of kisspeptin cells within the ARC to 
modulate gonadotropin release. Leptin stimulated firing of kisspeptin neurons in 
hypothalamic slices of the ARC from guinea pigs (Qiu et al., 2011) and treating either ob/ob 
mice or KiSS1-Cre mice with leptin stimulated increased hypothalamic expression of 
kisspeptin mRNA in the ARC (Quennell et al., 2011; Smith et al., 2006) but not the AVPV 
(Cravo et al., 2011; Quennell et al., 2011; Smith et al., 2006). Leptin probably affects 
kisspeptin neurons in the ARC directly because kisspeptin cells localized within this 
hypothalamic area of guinea pigs (Qiu et al., 2011) and mice (Quennell et al., 2011; Smith et 
al., 2006) express leptin receptor mRNA. Moreover, second messengers that are important in 
signaling of leptin receptor (i.e., STAT-3) were expressed in kisspeptin cells in the ARC, but 
not within kisspeptin cells of the AVPV (Quennell et al., 2011). This indicates that increasing 
concentrations of leptin associated with greater body energy reserves may impact activity of 
the GnRH pulse generator through increasing the tone of the kisspeptin system via its action 
on kisspeptin neurons within the ARC. 

The consequences of negative energy balance on KiSS-1 expression aren’t fully offset by the 
positive effect of leptin. For example, leptin treatment did not fully reverse the lactation-
induced reduction in KiSS-1 expression in rats (Xu et al., 2009). In a similar fashion, 
continuous i.c.v. infusion of leptin during a 72 h fast of ovariectomized ewes that were thin 
(made so with chronic nutritional restriction) rescued LH pulses (Backholer et al., 2010b) 
but KiSS-1 expression was only partially restored when compared with ewes that had 
greater body fat (Backholer et al., 2010a). Consequently, the suppressive effect of negative 
energy balance or nutrient deprivation on the gonadotropic axis via the KiSS-1 system 
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likely involves more than simply altered leptin signaling alone. Other metabolic factors, 
such as insulin for example, are reflective of metabolic state or availability of food and 
likely have an important role in regulating the kisspeptin system to augment gonadotropin 
release. 

The possibility that adipocyte derived factors may also inhibit gonadotropin release in 
undernourished subjects should not be dismissed. Adiponectin is secreted by adipose tissue 
in response to nutrient restriction and body weight loss. It activates adenosine 
monophosphate-activated protein kinase (AMPK) to stimulate glucose uptake and β-
oxidation of free fatty acids (Gil-Campos et al., 2004). Receptors for adiponectin are 
expressed not only in the hypothalamus (Kos et al., 2007) but also the anterior pituitary 
gland (Rodriguez-Pacheco et al., 2007). Furthermore, mice that overexpress adiponectin 
have an infertile phenotype (Combs et al., 2004). This is indicative of a role for adiponectin 
in modulating gonadotropin secretion during periods when nutrient intake is insufficient to 
meet energy demands. Treating anterior pituitary cells in vitro (Rodriguez-Pacheco et al., 
2007) or LβT2 cells (immortalized embryonic gonadotrope cell line) with adiponectin 
suppressed both basal and GnRH-stimulated LH release (Lu et al., 2008). When adiponectin 
was administered i.c.v. to male rats, mean concentrations of LH were decreased owing to a 
suppression of LH pulse amplitude (Cheng et al., 2011). The later observation would 
indicate that adiponectin could be functioning to suppress activity of the GnRH neuronal 
network in subjects experiencing reductions in energy balance. In line with this is the fact 
that adiponectin inhibits the release of GnRH from GT1-7 cells (immortalized hypothalamic 
cell line) via an AMPK pathway (Cheng et al., 2011; Wen et al., 2008). It may well be that 
increased secretion and activity of adiponectin in animals during food deprivation or 
nutrient restriction off-set, to some degree, the stimulatory action of exogenous leptin on 
KiSS-1 expression in the hypothalamus. It is yet to be determined, however, if the 
suppressive effects of adiponectin on GnRH/LH release involve changes in the 
hypothalamic kisspeptin system. 

Expression of KiSS-1 in immortalized hypothalamic N6 cells was increased after treatment 
with NPY (Luque et al., 2007). This would suggest that neuronal pathways downstream of 
leptin can impact the kisspeptin system. In the ewe, 13 to 30% of kisspeptin neurons in the 
ARC are in close apposition to NPY fibers (Backholer et al., 2010a). Moreover, 30 to 40% of 
kisspeptin cells in the ARC were contacted by POMC fibers (Backholer et al., 2010a). Since 
both NPY and POMC expressing cells are direct targets for leptin’s action, the effects of 
leptin on gonadotropin secretion may be mediated through kisspeptin neurons indirectly 
via NPY and POMC pathways. It is also noted that kisspeptin neuronal fibers are located in 
close apposition to approximately 7% of NPY cell bodies and 20% of POMC cell bodies in 
the ovine hypothalamus (Backholer et al., 2010a). This anatomical evidence implies that the 
reproductive axis can influence neuronal pathways to modulate appetite. In fact, i.c.v. 
injection of kisspeptin increased NPY mRNA and reduced POMC mRNA in the ARC of the 
hypothalamus of sheep (Backholer et al., 2010a). Thus, other factors that may drive NPY or 
POMC expression during conditions of underfeeding may further limit the ability of leptin 
to stimulate increased KiSS-1 expression in the hypothalamus. 
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5.4. Kisspeptin is involved in the reproductive pathobiology of diabetes and 

obesity 

Metabolic disorders such as diabetes and obesity are accompanied by alterations in adipose 
tissue biology and impaired fertility. Given the impacts of leptin on the kisspeptin system in 
the hypothalamus, one could easily speculate that metabolic diseases that impinge upon 
circulating concentrations of leptin could have negative consequences for reproductive 
function via alterations in the hypothalamic expression of kisspeptin. Using the 
streptozotocin-induced diabetic male rat model, Castellano et al. (2006) observed that LH 
release was rescued when rats were treated with exogenous kisspeptin. Moreover, 
expression of KiSS-1 was reduced in the hypothalamus of these diabetic male rats. When the 
authors treated the diabetic rats with leptin, they found that KiSS-1 expression was restored 
along with increased concentrations of LH and testosterone in serum. 

Obesity is an ever growing epidemic and patients that are obese present a number of 
pathologies. One of these is a reduction in the sensitivity to the action of leptin. Iwasa et al. 
(2010) observed that female rats which underwent intrauterine growth retardation during 
their growth as fetuses developed leptin resistance after birth. These leptin resistant female 
rats demonstrated delayed onset of puberty associated with reduced expression of KiSS-1 in 
the hypothalamus. Thus, infertility associated with obesity and central leptin resistance may 
be related to tone of the kisspeptin system within the hypothalamus. Navarro et al. (2004b) 
found kisspeptin treatment restored LH secretion in fa/fa Zucker rats; a genetic model for 
leptin resistance. Furthermore, diet induced leptin resistance in mice, resulting from 
prolonged feeding of a high fat diet, was associated with reduced KiSS-1 expression and LH 
concentrations in serum (Quennell et al., 2011). Therefore, infertility resulting from 
hypogonadotropism that arises in diabetic or obese patients is likely due to alterations in the 
expression and secretion of kisspeptin in the hypothalamus. 

6. Conclusion 

Adipose tissue expresses and secretes a wide array of regulatory factors that have diverse 
biological roles. These factors contribute to the regulation of energy homeostasis by acting 
on neural circuits within the hypothalamus. Gonadotropin-releasing hormone is secreted 
from hypothalamic neurons and acts on gonadotrope cells within the anterior pituitary 
gland to stimulate the synthesis and release of LH. Activity of this gonadotropic-axis is 
sensitive to metabolic state. Free fatty acids are released from adipose tissue to have a 
glucose sparing effect and can be directly sensed by neurons in the hypothalamus. Cyclic 
changes in availability of FFA associated with meal frequency act to sustain continued 
release of LH pulses over short periods of time, but chronically elevated FFA likely impairs 
reproductive function by decreasing the sensitivity of the pituitary gland to GnRH. 
Conversely, leptin can enhance pituitary GnRH sensitivity and increase LH secretion. 
Within the hypothalamus, leptin stimulates release of GnRH by acting through 
interneuronal pathways involving NPY, POMC, and kisspeptin. Other adipose derived 
factors such as adiponectin and nesfatin-1 can have negative or positive effects on LH 
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release, respectively (figure 5). Metabolic control of puberty onset likely involves 
developmental changes in these relationships. 

 
Figure 5. A proposed model for how metabolic signals, including adipokines such as leptin, affect 
gonadotropin secretion. Insulin fluctuates with consumption of meals at regular intervals to promote 
adipose accretion. Increased mass of adipose tissue is reflected in concentrations of adipokines such as 
leptin and nesfatin-1 that circulate in the blood to act as specific neural circuits within the 
hypothalamus. Leptin suppresses feed intake by modifying activity of POMC and NPY neurons in the 
arcuate (ARC) and paraventricular (PVN) nuclei, and stimulates release of gonadotropin hormones (LH 
and FSH). Many neurons in these areas of the hypothalamus express leptin receptor and directly 
innervate adipose tissue, thus constituting a hypothalamic-adipose neuroendocrine axis involving the 
sympathetic nervous system (SNS). Leptin directly activates kisspeptin (KiSS) cell bodies to stimulate 
GnRH release and to cause an upregulation of LH pulses. Nesfatin-1, which also stimulates LH release, 
suppresses food intake by acting through second order neurons to modulate activity of POMC systems 
in the nucleus tractus solitaries (NTS) of the hind brain as well as the nucleus dorsalis of the vagus 
nerve; thus altering liver function, which results in shifting availability of oxidizable fuels. Elevated free 
fatty acids (FFA) have a glucose sparing affect and can be directly sensed by neurons in the 
hypothalamus to sustain continued release of LH pulses over a short period. 
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ADIPOR2 adiponectin receptor 2
AGTR1 angeotensin II receptor 
AMPK adenosine monophosphate-
 activated protein kinase 
ANG angiotensin 
ANGPTL angiopoietin-like protein 
APO apolipoprotein 
ARC arcuate 
ARS Agricultural Research Service 
AUC Area under curve 
AVPV anteroventral periventricular 
 nucleus 
BDNF brain-derived neurotrophic 
 factor 
bFGF basic fibroblast growth factor 
BMI body mass index 
BMP bone morphogenic protein 
BMPR2 bone morphogenic protein 
 receptor 2 
CCK cholecystokinin 
CIQTN4 complement-c1q tumor 
 necrosis factor-related protein 4
CNS central nervous system 
CNTF ciliary neurotrophic factor 
 

KiSS-1 kispeptin-1
LC-CoAs long-chain fatty acyl CoAs 
LDLR low density lipoprotein receptor 
LH luteinizing hormone 
LHA lateral hypothalamic area 
LHCGR luteinizing hormone-
 choriogonadotropin receptor 
LPL lipoprotein lipase 
LβT2 immortalized embryonic 
 gonadotrope cell line 
MCP-1 monocyte chemoattractant 
 protein-1 
N6 neuronal 6 cells 
NEFA DNA binding/EF hand/acidic 
 amino acid rich protein 
NGFR nerve growth factor receptor 
NPY neuropeptide Y 
NTS nucleus tractus solitaries 
NUCB2 nucleobindin 2 
OB-rb biologically-active long form 
 leptin receptor 
PAI-1 plasminogen activator inhibitor-1 
PDGFD platelet derived growth factor D 
PGRMC1 progesterone receptor membrane 
 component 1 
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CRH corticotrophin-releasing 
 hormone 
CTGF connective tissue growth factor
CTRP4 complement-c1q tumor 
 necrosis factor-related protein 4
EDNRB endothelin receptor type B 
EGFR epidermal growth factor 
 receptor 
ESR1 estrogen receptor 1 
FFA free fatty acids 
FSH follicle-stimulating hormone 
GnRH gonadotropin-releasing 
 hormone 
GNRHR2 gonadotropin-releasing 
 hormone receptor 2 
GPR54 g protein coupled receptor 54 
GT1-7 GT1-7 cells (immortalized 
 hypothalamic cell line) 
i.c.v. intracerebroventricular 
i.v. intravenous 
IFNG interferon gamma 
IGF insulin-like growth factor 
IGF-IR IGF-I receptor 
IGFBP insulin-like growth factor 
 binding protein 
IL interleukin 
INSR insulin receptor 

POMC proopiomelanocortin 
PPARγ proxisome proliferator activated 
 receptor γ 
PVN paraventricular 
RANTES chemokine (c-c motif) ligand 5 
RBP retinol binding protein 
RLN relaxin 
RRC Richard B. Russell Research 
 Center 
RTN reticulon 
SQ-5 lung squamous carcinoma cell 
 line 5 
STAT-3 signal transducer and activator 
 of transcription 3 
TGF transforming growth factor 
THR thyroid hormone receptor 
TLR toll-like receptor 
TNF tumor necrosis factor 
TNFα tumor necrosis factor α 
TSHR thyroid-stimulating hormone 
 receptor 
USDA United States Department of 
 Agriculture 
USMARC U.S. Meat Animal Research 
 Center 
VEGFC vascular endothelial growth 
 factor C 
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