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1. Introduction 

The pulsed electro-acoustic technique [1] is presented to the Electrical Engineering 

community where it can find many applications, from the development of improved 

materials for electrical insulation to the control of electrostatic surface discharge (ESD) 

phenomena [2]. This phenomenon could involve serious damage to the satellite structure. In 

order to get a better control on the discharge it is necessary to clarify the nature, the position 

and the quantity of stored charges with time and to understand the dynamics of the charge 

transport in solid dielectrics used in space environment. Since its first implementation, the 

PEA method has been improved and adapted to many configurations of measurement: in 

2D and 3D resolution [3] [4], with remote excitation [5] [6], on cables [7] [8] and under 

alternative stress [9] [10]. 

Recently, based on the PEA method, two original setups to measure space charge 

distribution in electron beam irradiated samples have been developed, and are called ‘open 

PEA’ and ‘Short-Circuit PEA’. One of the weaknesses of this current technique is spatial 

resolution, about 10 µm. Indeed, dielectrics materials used in satellite structure have a 

thickness around 50 µm. Our work aims at improving the spatial resolution of a cell 

measurement by analyzing: electrical component, signal treatment, electrode material and 

sensor. In this paper, we only focused on the study of acoustic wave generation and their 

propagation. An electro-acoustic model has been developed with commercial software 

COMSOL®. This model is one-dimensional, and system of equations with partial differential 

functions is solved using a finite element method in non-stationary situations. Results show 

the propagation of acoustic wave vs. time in each part of cell measurement: sample, 

electrodes, piezoelectric sensor, and absorber. Influence of sensor geometry on the quality of 

output signal is also analyzed.  
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2. PEA method 

The PEA measurement principle is given in Figure 1. Let us consider a sample having a 

thickness d presenting a layer of negative charge ρ at a depth x. This layer induces on the 

electrodes the charges ρd and ρ0 by total influence so that: 

 

Figure 1. Schematic diagram of a PEA system. 
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Application of a pulsed voltage Up(t) induces a transient displacement of the space charges 

around their positions along the x-axis under Coulomb effect. Thus elementary pressure 

waves pΔ(t), issued from each charged zone, with amplitude proportional to the local charge 

density propagates inside the sample with the speed of sound. Under the influence of these 

pressure variations, the piezoelectric sensor delivers a voltage Vs(t) which is characteristic of 

the pressures encountered. The charge distribution inside the sample becomes accessible by 

acoustic signal treatment.  

The expression of pressure waves reaches the piezoelectric detector is as follows: 
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With, ve and vs are the sound velocity of the electrode and the sample respectively.  

Various parameters relevant to the spatial resolution of PEA method are clearly identified: 

as the thickness of the piezoelectric sensor, the bandwidth of system acquisition, etc... To 

quantify the influence of each parameter, a simplified electro acoustic model is proposed 

based on PEA cell. 

3. Simulation set up 

Our approach consists to establish an electro acoustic model from five sub-domains which 

represent the essential PEA cell element [11]. Each sub-domain is defined by the material 

and the thickness Table 1. As the samples are very thin compared to the lateral dimensions, 

we will consider a one-dimensional modelling. Each element is defined by a segment of 

length equal to the actually thickness. 

 

Sub-domain Material Thickness (µm) 

Upper electrode Linear Low Density Poly Ethylene (LLDPE) 1000 

Sample Poly Tetra Fluoro Ethylene( PTFE) 300 

Lower electrode Aluminum 10 000 

Piezoelectric sensor PolyVinyliDene Fluoride(PVDF) 19 

Absorber Poly Methyl Meth Acrylate (PMMA) 2000 

Table 1. Characteristics of each sub-domain in PEA model 

Theoretically, the acoustic wave propagation is completely described by a partial differential 

equation (3). 
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Where p represents the acoustic pressure (N.m-2), c sound velocity (m.s-1), ρ0 density of 

material (kg.m-3), q (N.m-3) and Qint (N.kg-1.m-1) reflect respectively the effect of external and 

the internal forces in the domain. 

Acoustic pressure is obtained by resolving equation 3. In order to simplify our model, some 

assumptions are defined below:  

- Attenuation and dispersion are not taken into account. 

- Acoustic waves are generated by Coulomb forces created by the application of electric 

pulse on the electric charges present in sample. 

- There is no acoustic source within the model: Qint = 0. 
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After these assumptions (3) becomes: 
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Given the different assumptions, we have grouped the five sub-domains into three 

categories.   

- Sub-domain which contains an acoustic source:  sample, upper and lower electrode.  

- Sub-domain that excludes acoustic source: absorber (PMMA).  

- Piezoelectric sub-domain: piezoelectric sensor (PVDF). 

Acoustic wave behavior in PEA simplified model depends on the acoustic impedance of 

each sub-domain. This impedance is equal to the product of sound velocity and density of 

material Table 2. 

 

Sub-domain Upper 

electrode 

Lower 

electrode 

Sample Piezoelectric 

sensor 

Absorber 

ρ0 (kg.m-3) 940 2700 2200 1780 1190 

c (m.s-1) 2200 6400 1300 1270 2750 

Z (kg.m-2.s-1) 2068 x103 17280 x103 286 x103 2260.6 x103 3272.5 x103 

Table 2. Acoustic parameters of each sub-domain in the model. 

The application of an electric field on a sample (which contains electric charges) induces a 

mechanical force. This force consists of four terms [12] (5). 
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: force produced by the  presence of  electric dipoles in the sample.     

- Ei, Ej, Ek: electric field components. 

- εij: electric permittivity.  

- αijkl: electrostriction tensor. 

- ρ: electric charge in the sample.  

- kpi: electric dipoles coefficient. 
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In 1D and without electric dipole equation (5) is: 
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Considering that: 
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Recognizing that: 
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Due to the application of electric pulse, the electric field varies from E to E+ΔE(t), so (9) 

becomes:  
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In order to simplify our model we consider that α=0 and ΔE, ε are uniforms. After 

simplification of (10), the mechanical force in our model is the product of electric charges 

present in sample by the applied electric pulse. 

 . ( )q E t            (11) 

In our model we consider that: 

- Electric charge profile ρ is established by three Gaussian shapes of width = 3µm. A 

normalized negative one at sample center and two positives at sample interfaces Figure 

2-a. 

- A normalized square electric pulse which has a 5ns pulse width that has almost the 

same value of the experimental pulse Figure 2-b. 

Piezoelectric transducer is used to convert electrical energy into mechanical energy and vice 

versa. The active element is basically a piece of polarized material, PVDF in our case. When 

the acoustic wave propagates in the PVDF, an electric voltage will appear at its interface, 

which it related to the direct piezoelectric effect [13].  

The piezoelectric relations are given in equation (12). 
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Figure 2. Modeling of mechanical force which is the product of electric charge distribution represented 

in (a) and the electric pulse represented in (b). 
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With, Di is the electric charge density displacement, Ei the electric field, Sij the strain and Tkl 

the stress. sEijkl is the compliance, εTij the permittivity. dikl is the matrix for the direct 

piezoelectric effect and dijk  is the matrix for the converse piezoelectric effect.  

In one dimension and referring to PEA case (D=0 because we have an open circuit 

configuration and Tkl=-p), the electric field vs. pressure waves is written as follow: 

 33
33

33

PVDF T

d
E p g p


   (13) 

Output voltage signal can be obtained by integrating the electric field i.e. pressure wave 

along the PVDF thickness: 
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3.1. Sub-domain without acoustic source 

This case represents the PMMA absorber. In principle, this material (PMMA) is used to 

avoid reflections of waves at the interface with the piezoelectric sensor. Unfortunately due 

to the difference between their acoustic impedance, we always have acoustic wave reflection 

at its interfaces. We estimate acoustic pressure in this sub-domain by neglecting the acoustic 

source, q = 0 in (4). 

3.2. Boundary conditions 

In our model, two kinds of boundary conditions are considered: 

- Dirichlet boundary condition: pressure at external interfaces is considered as null in our 

model (upper electrode and PMMA): 

 
0p 

    (15) 

- Continuity condition: The internal interfaces of the geometry are specified by the 

continuity of velocity vibration and acoustic pressure:  
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1 1
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4. Simulation results  

Simulation of acoustic wave in the model is realized by the commercial software Comsol. 

This software is based on the finite element method [14]. The domain of calculation is 

divided into several uniform elements of width x. Time step, t, in the computation is 

chosen with respect to Friedrich-Levy [15] condition: 

 
x

t
c


     (17) 

In our model Δx = 1µm and Δt = 0.1 ns. 

Figure 3 shows the pressure for T=20 ns, for 300µm sample thick and 9µm sensor thick. This 

figure is divided into three regions. The sample is presented in region 2, however regions 1 

and 3 represent respectively, and the adjacent upper and lower electrode. An electrical pulse 

is applied to probe the space charge distribution. Under the effect of the electric field pulse, 

the charges are shifted and come back to their original position, creating an acoustic wave 

(Coulomb forces effect).  
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Figure 3. Acoustic wave generation in the sample. 

When acoustic wave is completely generated for T=20 ns, we observe two pressure waves 

move at opposite way Figure 3: the first (at the left of Figure 3) moves towards the upper 

electrode and the second (at the right of Figure 3) moves towards the lower electrode. We 

can also observe a spreading more important for the pressure wave inside the lower 

electrode than the wave inside sample. This feature goes with the different values of the 

sound velocity between PTFE (sample) and Aluminum (lower electrode) Table 2. The same 

conclusion can be done for the upper electrode; value of sound velocity for the upper 

electrode is about 2 times larger than the sample. 

Figure 4 shows acoustic wave for T=0 across the five sub-domains of PEA model i.e. upper 

electrode, sample, lower electrode, piezoelectric sensor and the absorber.  
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Figure 4. PEA model for T=0s.  

For t= 800 ns we observe that the useful signal moves through lower electrode, Figure 5-a, 

and reaches the piezoelectric transducer at t = 1.5 µs, Figure 5-b. These results show that 

reflexion phenomena induce a lot of unwanted signals able to disturb the quality of the 

useful signal. 

Figure 6 shows the output voltage signal for the five values of sensor thickness. 

Only the useful signal (that its shape corresponds to the charge shape) has been integrated 

along the PVDF thickness referred to equation (14). We can observe when the sensor 

thickness decreases and reaches 1 µm, the output voltage signal leads to the same shape of 

space charge distribution inside the sample, Figure 2-a. For a larger thickness than 1 µm, the 

shape leads to a very different shape of the space charge distribution. The reflexion of 

acoustic waves on PVDF and PMMA interfaces plays an essential role in this case and 

involves some interference between the incident wave and reflected wave. This interference 

leads to a degradation of the output signal as shown in Figure 8.  In order to improve the 

quality of this signal for thicknesses larger than 1 µm, it will be necessary to adapt acoustic 

impedances between sensor and absorber. 

PMMA absorber is a related component with the piezoelectric sensor. Due to the difference 

between the acoustic impedance of these both materials, the transmission of acoustic waves 

is not optimally performed. Only a part of the wave is transmitted to the absorber, the other 

part is reflected on the interface and interferes with the incident wave. To improve the 

transmission coefficient wave, an acoustic impedance matching must be done i.e. the related 

materials should have the same acoustic impedance which is the product of material density 
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and material sound velocity. Therefore, in our study, the PMMA absorber is replaced by a 

PVDF.  
 

 
This simulation has been realized with a piezoelectric transducer thickness equal to 9 µm. With different sensors 

thicknesses, the same pressure wave evolution has been observed between sample and sensor (sensor not included). 

Only the shape of the output voltage signal is affected by the transducer thickness. 

Figure 5. Acoustic wave propagation in the model . a) for T=800ns.b) for T=1.5µs 
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Figure 6. Potential signal for different PVDF thicknesses 

Figure 7 shows the output voltage of piezoelectric sensor with and without a matched 

interface. The thickness of the sensor is fixed at 9 µm. This figure shows clearly the influence 

of the acoustic impedance on the quality of the output signal. Indeed, the reflected wave at 

the interface of PVDF / PMMA induces a strong distortion of the voltage signal that appears 

at each part of the useful signal. This distortion may affect the data processing, so a matched 

interface must be realized during the design of the new optimized cell. 
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Figure 7. PVDF output signal with and without a matched interface between the sensor and the 

absorber  
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5. Analysis 

Figure 7 shows a block diagram of a simplified PEA cell. In our case, voltage amplifier is 

considered ideal with a gain equal to 1 (infinite bandwidth). In this block diagram, input 

data is the distribution of net density of charge in the sample (charges at the both electrodes 

and in the bulk), denoted ρ, and the output data is the piezoelectric sensor voltage, denoted

PEAV . 

 

Figure 8. PEA bloc diagram 

According to this figure, equations (18) and (19), written in frequency domain, will allow 

defining the transfer function matrix: 

 ( ) ( ) ( ) ( )PEA PVDF ampliH f E f F f G f    (18) 

 ( ) ( ) ( )PEA PEAV f H f f  (19) 

Where PVDFF  and ampliG  are the transfer function respectively of PVDF sensor and voltage 

amplifier. According to (19) output voltage, is defined as a convolution product between 

transfer function and net density of charge in the studied dielectric: 

 
,iPEA PEA ji j

v h        (20) 

Convolution being the sum of the product of one function with the time reversed copy of 

the other function, a symmetric Toeplitz matrix can be used to define PEAH [16]. This 

diagonal-constant matrix is a matrix in which each descending diagonal from left to right is 

constant. It is especially used for discrete convolution and it is completely determined by the 

first row. The following matrix A illustrates a symmetric Toeplitz matrix of order n and the 

following vector v represents exactly the same matrix A shown above where: 

1, 1ij i jA a    for i = 2, n and j = 2, n 
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In our case, vector v is the impulse response i.e. the values of the first peak of output voltage 

for a polarized material, (denoted and usually named “calibration signal”) and hence, 

equation (19) can be re-written as a linear function: 
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    (22) 

Using the simulated, it is relatively easy to define the transfer function matrix. Knowing 

PEAV  and PEAH the purpose of the next section is to analyze and to improve the condition 

number of PEAH matrix. 

In numerical analysis, the condition number of a matrix, denoted C in equation (23), 

measures the dependence of the solution compared to the data problem [17], in order to 

check the validity of a computed solution with respect to its data. Indeed, data from a 

numerical problem depends on experimental measurements and they are marred with error. 

We can say the condition number associated with a problem is a measure of the difficulty of 

numerical problem calculation. A problem with a condition number close to 1 is said to be 

well-conditioned problem, while a problem with a high condition number is said to be ill-

conditioned problem. The condition number of the PEA Toeplitz matrix is equal to 400,000 

and hence this very high value shows that our system is very ill-conditioned. 

 1

2 2
PEA PEAC H H  (23) 

Where; 

2
max(det( ))t

PEA PEA PEAH H H I  
 

λ : Eigenvalues of  HPEA. 

i. Identity matrix 

The identification method of the matrix is preserved; our goal is to improve the matrix 

condition number by studying the influence of intrinsic parameters for a PEA cell. Three 

parameters are studied: the thickness of piezoelectric sensor, the shape of pulse voltage, and 

the matching interfaces. 
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Table 3 shows condition number values for different PEA configuration. As we can see on 

this table, a “theorical” optimized cell measurement can be defined using a piezo-electric of 

1µm, an impedance matching for all materials interfaces, and applying a Gaussian shape for 

electrical pulse. The condition number for this optimized cell is about 200 times smaller than 

the one from classical measurement cell! However, it should be noted that the choice of a 

Gaussian pulse decreases the expected resolution of the measure, it will be necessary to 

establish eventually a compromise between high spatial resolution and a well-posed system. 

 

Thickness of PVDF Pulse Shape Matching interfaces Condition number 

9µm Square without matching 4.13 x 105 

1µm Square without matching 4.2 x 104 

9µm Gaussian without matching 9.2 x 104 

9µm Square (PVDF/PMMA) 5.4 x 104 

9µm Square (Electrode/sample) 1.3 x 105 

1um Gaussian All interfaces 2 x 103 

Table 3. Impact of PEA intrinsic parameters on transfer matrix condition number 

In the next section, different deconvolution techniques are going to be used in order to 

recover the repartition of the net density of charge imposed on the Comsol model. 

Wiener filtering is commonly used to restore degraded signals or images by minimizing 

mean square error. It is based on a statistical approach i.e. this filter is assumed to have 

knowledge of the spectral properties of the original signal and noise. Wiener filter must be 

physically realizable and causal and it is frequently used in the process of deconvolution. In 

frequency domain, its equation can be written as following: 

 

2

2

( )1
( )

1( )
( )

( )

PEA
Wiener

PEA
PEA

H f
H f

H f
H f

SNR f

 
 
 
  
 

  (24) 

and equation (19) becomes: 

 ( ) ( ) ( )Wiener PEAf H f V f    (25) 

Where ; HPEA is the transfer function matrix and SNR(f)  the signal-to-noise ratio. When there 

is zero noise (i.e. infinite signal-to-noise), the term inside the brackets equals 1, which means 

that the Wiener filter is simply the inverse of the system. However, as the noise at certain 

frequencies increases, the signal-to-noise ratio drops, so the term inside the square bracket 

also drops. This means that the Wiener filter attenuates frequencies dependent on their 

signal-to-noise ratio. As explain previously, the condition number for HPEA is relatively high 

and the coefficient 1 / ( )a SNR f will be estimated using L-Curve method. 

The L-Curve method consists of the analysis of the piecewise linear curve whose break-

point are: 
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Figure 9. L-curve shape for unoptimized PEA cell 

This curve, in most cases, exhibits a typical “L” shape, and the optimal value of the 

regularization parameter a is considered to be the one corresponding to the corner of the 

“L”, Figure 10 [18-19]. The corner represents a compromise between the minimization of the 

norm of the residual and the semi-norm of the solution. This is particular evident in Fig.8, 

the horizontal branch of the “L” is dominated by the regularization error, while the vertical 

branch shows the sharp increase in the semi-norm caused by propagation errors. 

Our approach consists to establish the deconvolved charge by using the transfer matrix HPEA 

which was established. Gaussian filter is not accounted.  The main objective of this section is 

to analyze the shape of the recovered charges using current PEA cell and the shape of the 

recovered charges using an optimized cell. 
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Figure 10. Net density of charges estimated using Wiener filter and a =8x10-21 Current PEA cell with C 

= 400,000 for HPEA 

 

Figure 11. Net density of charges estimated using Wiener filter and a =3x10-12 Optimized PEA cell with 

C = 2,000 for HPEA 

Results presented in Figure 10 and Figure 11 show the net density of charges estimated by 

Wiener method using the current PEA cell, Figure 10, and using an optimized cell,  

Figure 11. 
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Figure 10 shows that the recuperated charges by Wiener deconvolution are completely 

wrong, only noise is recovered and amplified! The inversion of this matrix is equivalent to 

applying a high pass filter, thus amplifying any high frequency noise. That is mainly for this 

reason that a Gaussian filter is usually applied for the signal treatment of PEA cell. 

Using an optimized cell, result shown in Figure 11 has the similar shape, but unfortunately 

its amplitude is lower by 10 times than the net density of electric charge, and presents 

oscillations on both sides of the useful signal. These observations are typical of the 

adjustment when the system is ill conditioned. It is a compromise between filtering, and 

precision. This compromise is achieved by the settlement of regularized parameters 

determined by L-Curve method. Based on the previous results, the further work aims to 

redefine the method used for the calibration signal in order to have a condition number 

much more less than one obtained previously. 

6. Conclusion 

A one-dimensional numerical model based on acoustic wave propagation and established 

using COMSOL® was developed for a PEA cell with the objective to understand how sensor 

thickness is involved in the output voltage signal. In this model, transmission and reflection 

are taken into account, only attenuation and diffusion are neglected. Partial differential 

equation has been resolved using finite element method. In this paper, simulation results 

have been presented for different thicknesses of PVDF sensor from 1 µm to 9 µm.  Results 

show the interest to use an ultra-thin piezoelectric sensor for improving the spatial 

resolution of the PEA cell. This model also permits to analyze acoustic wave behavior from 

its generation in sample to its conversion to an electric signal by piezoelectric transducer. 

Referred to this model, a PEA transfer function has been developed using a Toeplitz matrix, 

kind of matrix based on convolution principle. In order to improve the condition number of 

the transfer matrix, an optimized PEA cell has been defined based on a piezo-electric of 

1µm, an impedance matching for all materials interfaces, and applying a Gaussian shape for 

electrical pulse. Deconvolution results show that a high condition number involves a strong 

deformation of estimated charge compare to a condition number much lower. Moreover, 

this study has highlighted the limits of regularization when the matrices are ill-conditioned: 

presence of oscillations, loss of information, etc. 
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