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1. Introduction 

Dyschromatosis symmetrica hereditaria (DSH) is a highly penetrant autosomal-dominant 

skin disease. It is characterized by a mixture of hyper- and hypo-pigmented macules on the 

dorsal aspects of the hands and feet (Figure 1). The disorder typically has its onset during 

infancy or early childhood, stops spreading before adolescence and lasts for life. It was 

clarified in 2003 that a heterozygous mutation in the adenosine deaminase acting on RNA1 

gene (ADAR1) causes DSH [1).  

The ADAR1 protein catalyzes the deamination of adenosine to inosine in double-stranded 

RNA [2, 3]. This modification is called RNA editing, more specifically A-I editing  

(Figure 2). 

RNA editing is a post-transcriptional modification, and A-I editing is widely conserved in 

species ranging from roundworm to mammals. A-I editing had been considered a rare 

phenomenon in the coding region and this editing is known to create alterations of the 

codon or alternative splice sites that lead to different proteins in the target substrate. 

Representative substrate genes are the ionotropic AMPA glutamate receptor subunit 2 [4] 

and the 5-HT2c serotonin receptor [5], which are both expressed in the brain and are 

associated with the some neurologic diseases [6]. 

However, the substrate gene for ADAR1 in the skin and the pathogenic mechanisms 

whereby mutation in ADAR1 causes DSH remain unknown. 

This chapter addresses DSH. First, we introduce the clinical and pathological features of 

DSH. Next, we introduce how ADAR1 was identified as the causative gene of DSH. I 

mention ADAR1 and A-I editing, ADAR1 isoforms and DSH, the absence of a correlation 

between the DSH phenotype and mutation in ADAR1, and murine models of DSH. 
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Figure 1. Clinical features of dyschromatosis symmetrica hereditaria. The patient is an 8-year-old boy. 

His hands and feet show hyper- and hypopigmented macules (a, b). On the face, he has small freckle-

like, light-brown macules (c). 
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2. DSH, ADAR1 and RNA editing 

2.1. Epidemiology and clinical features of DSH 

Dyschromatosis symmetrica hereditaria (DSH; OMIM#127400; also called reticulate 

acropigmentation of Dohi) is an autosomal-dominant pigmentary genodermatosis with 

almost full penetrance. DSH was first described by Toyama [7, 8].  

Clinically, the disorder is characterized by areas several millimeters in diameter of mixed 

hypopigmented and hyperpigmented macules distributed predominantly on the dorsal 

aspects of the hands and feet but sometimes extending to the dorsal aspects of the limbs 

(Figure 1). The lesions on the face are described as freckle-like macules with no 

hypopigmentation [9, 10]; some cases have been reported in which mixed areas of 

hypopigmented and hyperpigmented macules on the cheek were similar to those on the 

hands and feet [11]. Patients who have strong skin manifestations on the limbs also tend to 

have lesions on face. The skin lesions do not show telangiectasia, atrophy or scaling. Skin 

manifestations are not observed on the palm, sole or mucosa. 

DSH has been reported mainly from Japan and China; however, patients in South Korea 

[12], Taiwan [13], Thailand [11], India [14], Turkey [15] and Europe [16, 17] and patients of 

Hispanic ethnicity [18] have been reported. 

The disorder typically develops during infancy or early childhood [19]. Lesions first appear 

before the age of 6 years in 73% of cases, and the first appearance is usually on the limbs 

(83%) [20], particularly the hands and feet. This point can be useful in differentiating the 

disorder from dyschromatosis universalis symmetrica (DUH). The macules enlarge 

progressively [16], stop spreading before adolescence and last for life [19, 21]. The onset of 

lesions during adolescence has been reported in some patients [22]. 

The skin findings are more pronounced after sun exposure, although patients do not show 

photosensitivity [10, 20]. This differentiates the disorder from xeroderma pigmentosum 

(XP). 

Interfamilial and intrafamilial variation has been reported. The clinical features are not 

always similar among patients in a pedigree [23]. We have encountered a family in which 

the patient has only faint hypopigmented macules on the backs of the fingers and the 

patient’s children have mixtures of hyper- and hypopigmented macules in all the limbs. 

The characteristic clinical features of typical DSH can be clearly differentially diagnosed 

from similar hereditary pigmentary disorders as follows [9]. Acropigmentatio reticularis 

(Kitamura) (ARK) is characterized by atrophic pigmented macules on the dorsum of the 

hands and feet, and palmoplantar pits and pigmentation. It is autosomal dominant, as is 

DSH.  

DUH shows hypo- and hyper-pigmented macules that are similar to those of DSH on the 

trunk as well as the extremities. It has been reported to be autosomal dominant and 

autosomal recessive. 
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It had been though that those two diseases were related to DSH. However, when mutation 

of the ADAR1 gene was identified as causing DSH, it was clarified that the two diseases are 

genetically distinct from DSH, because patients with ARK and DUH do not have that 

mutation [9].  

Mild cases or the early stages of child DSH are sometimes difficult to differentiate from 

xeroderma pigmentosum (XP) [24]. In such cases, the diagnosis of XP can usually be 

obtained by following up on skin lesions such as xerosis, atrophy, telangiectasia and skin 

tumors of sun-exposed areas as they grow up, photosensitivity test, and ultimately gene 

analysis [24, 25]. 

2.2. Histopathology of DSH 

Histological studies have showed increased melanin pigmentation in the basal layer of 

hyperpigmented lesions, along with pigmentary incontinence and largely absent melanin in 

the hypopigmented macule [13, 23]. 

According to precise histochemical studies, Masson-Fontana stain reveals a remarkable 

decrease or total absence of melanin in the hypochromic-achromic epidermis [13, 23]. Split-

dopa preparations were reported to show an obvious decrease in melanocyte number in the 

hypomelanotic area (45-167 cells/mm2) and the surrounding pigmented skin (119-204 

cells/mm2), as compared with the 16 normal control persons (1,217+/-282 cells/mm2 on the 

dorsal hands and 821-1,154 cells/mm2 on the dorsal feet) [13]. There was an increase in 

melanocyte size but not number in the hyperchromic area, and the dendrites were very 

elongated and numerous, suggesting that melanosome transfer from melanocytes to 

keratinocytes was active [13]. Another study also indicated a lower density of dopa-positive 

melanocytes in the hypo-pigmented macules of DSH patients than in normal skin at same 

site from normal pigmented controls [26]. Electron microscopy showed melanocytic 

abnormalities in the hypomelanotic skin, i.e., a numerical decrease, fatty degeneration, 

swollen mitochondria, vacuolization of the cytoplasm, large cytoplasmic vacuole formation 

and condensed irregularly shaped nuclei [13, 23]. The keratinocytes located in the vicinity of 

the melanocytes contained few melanosomes. In some keratinocytes, the melanosome 

complex containing more than 15 melanosomes were recognized [13]. The hyperpigmented 

area showed a lot of slight larger melanosomes in the melanocytes, and the adjacent 

keratinocytes showed many singly dispersed melanosomes [13]. The aggregated melanosome 

were also found in the keratinocyte in hyperpigmented macules [23]. In the hyperpigmented 

macules, the number of melanosomes in the melanocytes was somewhat smaller than in 

adjacent keratinocytes, which suggests that the melanosome transfer from melanocytes to 

keratinocytes is more active than melanosome production in the melanocyte [23]. 

2.3. Identifying the causative gene of DSH 

In 2003, Miyamura et al. determined that a heterozygous mutation of the adenosine 

deaminase acting on RNA1 gene (ADAR1) caused DSH [1]. As there was no clue to predict 
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the pathogenesis of DSH at that time, they used a technique called positional cloning to 

identify the causative gene. Positional cloning locates the position of a disease-associated 

gene along the chromosome by a collection of methods including linkage analysis, 

haplotype analysis, genomic mapping and sequencing. This approach works even when 

little or no information is available about the biochemical basis of the disease.  

In identifying the causative gene of DSH [1], whole-genome-wide scan (linkage analysis) 

using 343 microsatellite markers in three pedigrees of DSH (88 people, including 41 

patients) was done at first. The results of linkage analysis indicated that the DSH locus was 

on the long arm of chromosome 1. Next, to narrow the interval of the region containing the 

DSH locus, haplotype analysis was carried out, and the results suggested that the DSH gene 

lay between two microsatellite markers, D1S2715 and D1S2777. Haplotype analysis using 

novel single-nucleotide polymorphisms showed a final DSH genetic interval of 

approximately 500 kbp. There were 9 genes in this interval, including the ADAR1 gene. 

Finally, it was clarified that all of the patients with DSH had mutations in the ADAR1 gene. 

Thus it was concluded that the ADAR1 gene was the causative gene of DSH [1]. 

The ADAR1 protein catalyzes the deamination of adenosine to inosine in double-stranded 

RNA [2, 3]. ADAR1 is in the ADAR protein family, which includes ADAR1 [6], ADAR2 [27] 

and ADAR3 [28]. As RNA editing enzymes, all ADAR family members contain several 

double-stranded RNA-binding domains (dsRBDs) and a conserved catalytic deaminase 

domain in the C-terminal region [29]. Differences in the number and spacing of the dsRBDs, 

nuclear localization signals and the presence of additional domains create the variants 

(Figure 2A).  

The ADAR1 gene spans 30 kbp and contains 15 exons. The encoded 1226 amino acid protein 

includes three dsRBDs and one dsRNA adenosine deaminase catalytic domain [30]. 

ADAR1 has two isoforms of different sizes: interferon-inducible ADAR1-p150 (150kDa) and 

constitutively expressed ADAR1-p110 (110kDa) (Figure 2B) [30]. Both contain three dsRBDs, 

but they differ in that the p150 variant contains two Z-DNA binding domains and a nuclear 

export signal, whereas the p110 variant contains only a single Z-DNA binding domain and 

no export signal. Consequently, ADAR1-p110 localizes mainly to the nucleus, whereas 

ADAR1-p150 is found in both the cytoplasm and the nucleus. Resulting from alternative 

promoters, the two variants may play different cellular roles. Although the ADAR1-p110 

promoter is constitutively active, the ADAR1-p150 promoter is interferon-inducible, 

suggesting a role in response to cellular stresses such as viral infection [31]. 

ADAR1 catalyzes the deamination of adenosine to inosine in double-stranded RNA 

substrates in the step of post-transcription processing [2] (Figure 3). Inosine acts as guanine 

during translation, which results in codon alterations or alternative splicing sites [32] and 

thus leads to functional changes in proteins. It is expressed ubiquitously, including in the 

skin [29], but only a few known target genes for ADAR1 are expressed in specific tissues, 

including ionotropic glutamate receptor [33] [34] and the serotonin receptor 2C subtype in 

the brain [5], and hepatitis δ virus antigen in the liver [35]. Fifteen sites of amino acid 

substitution by A-I editing have been identified to date [36]. The substrate gene edited by 
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ADAR1 in the skin is still unknown, and it remains to clarify how ADAR1 causes DSH. The 

structure and function of ADAR1 are detailed later.  

 

Figure 2. The human ADAR gene family. (a) The structure of the human ADAR gene family: ADAR1, 

ADAR2 and ADAR3. The dsRNA binding domains (dsRBDs) and the deaminase domain exist in all 

three ADARs. Two Z-DNA binding domains (Zα and Zβ) exist in ADAR1. ADAR3 includes an 

arginine-rich domain (the R-domain) and an ssRNA binding domain, but the function of those two 

domains is still unknown. (b) Two isoforms of ADAR1. Exon 1A, exon 1B and exon1C are spliced to 

exon 2 at precisely the same junction. Exon1A contains the Met initiation codon for the p150 isoform 

(1226 aa) and follows the interferon-inducible promoter. Exon 1B and exon1C do not contain an AUG 

initiation codon. Those exons follow a constitutive promoter. The second AUG at 296aa from the first 

AUG located in exon 2 initiates translation of the other isoform, p110, which is constitutively expressed. 

 

Figure 3. Adenosine deamination by ADARs. ADARs convert adenosines to inosines of double-stranded 

RNA by catalyzing a hydrolytic deamination at C6 of the adenine base. This modification is called RNA 

editing, more specifically, A-I editing. Inosine is recognized as guanosine at translation, and this editing 

produces codon change. Also, it creates alternative splice sites. These both lead to different proteins in the 

target substrate. Recently a lot of non-coding RNA has also been found to be substrates of ADARs. 
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2.4. Gene analysis of the ADAR1 in DSH patients  

Since identification of the ADAR1 gene, more than 115 mutations in the gene have been 

reported in patients with DSH [37]. The distribution of mutations shows no hotspots, with 

the mutations distributed equally in coding regions. Every type of mutation—nonsense, 

missense, insertion, deletion and splice-site—has been identified in the gene. No founder 

effect has been recognized [9]. Major part of mutations have been identified in Japanese and 

Chinese, and some reports show mutations in ADAR1 for DSH patients of other races. 

Characteristically, all the missense mutations are in the adenosine deaminase catalytic 

domain. Thus it is thought that this domain is a very critical one. Functional analysis of the 

adenosine deaminase catalytic domain has indicated different mutant ADAR1 enzymes in 

which the missense mutation on the deaminase domain has caused complete abolishment of 

the deaminase activity, though there were some exceptions [38]. Notably, mutations that 

leave some enzyme activity intact are not found in DSH patients. The result of this 

experiment does not mean that DSH patient looses ADAR1 activity completely because 

DSH is autosomal dominant and half of ADAR1 protein are intact. 

The two mutations p.Q102fs and p.H216fs [9, 39] that were found in the ADAR1 gene of 

DSH patients were previously reported, and they are on the 5' side upstream of codon 296 in 

exon 2, which is the translation initiation codon for hADAR1-p110 (Fig. 2B). Therefore, it is 

possible that they cause a frameshift change in the synthesis of hADAR1-p150 but have no 

influence on that of ADAR1-p110. This suggests that only the p150 protein and the 

interferon-inducible (IFN) mechanism are responsible for the etiology of DSH. 

2.5. Homodimerization of ADAR1 

Homodimerization was demonstrated to be essential for the enzyme activity of ADAR1 [40]. 

Having one monomer defective for the deaminase domain (E396A) halves the dimer 

function. Taken together, these data indicate that a deaminase mutant chimeric dimer 

(E396A/WT) is able to bind dsRNA but that only one functional active site is formed and the 

result is, therefore, only partial activity [40]. This result may indicate that ADAR1 mutation 

in the deaminase domain generates haploinsufficiency. However, site-selective RNA editing 

activity of 5HT2cR RNA by heterodimer was found to be decreased to 30% [40]. These results 

may indicate a complex effect at each site by this enzyme.  

In contrast, the A-I editing activity of the dsRNA binding mutant chimeric dimer (Mut/WT) 

is completely lost [41]. This is because of the defective dsRBDs of one monomer, and it 

suggests that cooperative interactions of functional dsRBDs in both ADAR dimer subunits 

are required for dsRNA binding. When one monomer in the dimer complex is unable to 

bind the dsRNA, then the dimer complex is excluded from binding the substrate. It shows 

activity. As previously indicated, in DSH patients, a disproportionately high number of 

mutations are identified in the deaminase domain relative to the dsRBDs of ADAR1. It may 

be that mutations identified in the deaminase domain are less severe, because the chimeric 

dimers that are expected to form still retain some editing activity [41].  
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The likely ratio of monomer subunits in a dimer is 1:2:1 for (WT/WT), (Mut/WT) and 

(Mut/Mut), suggesting that a heterozygous deaminase mutation would not have as strong 

an effect due to the dimer’s ability to maintain partial activity. In contrast, mutations are 

rarely found in the dsRBDs, because these alterations would have a more dominant effect 

when paired with a wild-type partner, thus greatly reducing ADAR function. Under this 

assumption, the reduced activity for ADAR could be as low as one-quarter with only 

(WT/WT) dimers having editing activity, and this may be below a threshold for survival and 

may possibly be selected out naturally during development. ADAR dimerization can be a 

potential source of modulation for RNA editing activity, and these ADAR (EAA) mutants 

may prove interesting for future studies in vivo [41]. So, DSH can be regarded as being 

induced by haploinsufficiency of ADAR1. Three DSH cases with neurological complications 

have been reported [16, 21, 42]. Two of these cases were confirmed by gene analysis [21, 42], 

and the ADAR1 gene mutation that they have is common and is thought to show a 

dominant negative effect.  The next section describes those cases. 

2.6. Neurological complications 

In 1994, Patrizi et al. reported a 9-year-old Caucasian girl who developed DSH at the age of 2 

years and torsion dystonia at the age of 7 years [16]. Her clinical symptoms were very 

similar to the latter 2 cases, but mental deterioration and brain calcification were not 

described in their report [16]. The causative gene of DSH had not been clarified, and no 

information on ADAR1 gene analysis of the patient was reported. 

Tojo et al. reported a 27-year-old Japanese woman who had dystonia, mental deterioration, 

brain calcification and DSH with a p.G1007R mutation of the ADAR gene [42]. Kondo et al. 

reported an 11-year-old Japanese boy who also had mental deterioration, brain calcification 

and dystonia and DSH with a p.G1007R mutation of the ADAR gene [21]. It is noteworthy 

that the two patients had the same ADAR1 mutation, p.G1007R, and it suggests that this 

mutation probably influences the development of neurological symptoms [21].  

On the basis of the known crystal structure [43], it was predicted that ADAR1 G1007R 

would introduce an additional positively charged arginine residue on the RNA-binding face 

of the deaminase domain very close to the active site [44]. In fact, the ADAR1 G1007R 

mutant has efficient RNA-binding ability, similar in level to that of wild-type ADAR1, but it 

does not edit dsRNA; however, other mutant ADAR1 partially edit. So, the dominant 

negative effect gives these additional neurological symptoms of DSH [44, 45]. 

The ionotropic glutamate receptor [33, 34] is a known target gene for ADAR1. Glutamate 

receptors are expressed at high levels in the brain, including in the basal ganglia [46], and 

glutamatergic overactivity has been suggested to contribute to the occurrence of dystonia 

[47, 48]. ADAR1 catalyzes RNA editing at the Q/R sites of the glutamate receptor subunits 

GluR5 and GluR6, and reduces the Ca2+ permeability of glutamate receptors [49]. Therefore, 

mutation in ADAR1 could reduce the efficiency of RNA editing at the Q/R sites of GluR5 

and GluR6, inducing glutamatergic overactivity. 
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Furthermore, increased Ca2+ influx through glutamate receptors is known to be toxic to 

neurons, and that toxicity may induce various neurological abnormalities [50]. Increases in 

intracellular Ca2+ levels have also been reported to be the underlying mechanism of tissue 

calcification [51]. Therefore, mutations in ADAR1 could conceivably cause neurological 

dysfunction, such as dystonia and mental deterioration, by means of brain calcification [51], 

but only the p.G1007R mutation has so far been suggested to be related to such symptoms, 

and the pathomechanism remains unknown. 

The patient’s mother had the same mutation in p.G1007R as her son, but she showed no 

neurological problems, which suggests that some unknown mechanism is involved in the 

development of dystonia, mental deterioration and brain calcification [52]. It will be 

necessary to observe whether she develops neurological symptoms later. This mechanism, 

as well as the unknown molecular pathogenesis of the skin lesion, should be clarified. 

2.7. More ADAR functions than A-I editing of the coding region of mRNA 

Only a few sites of A-I editing by ADAR1 had been found in the coding region. Recently it 

was reported that 85% of all the transcripts are edited by A-I editing [53], and A-I editing 

regulated gene expression much more than had been thought. 

New A-I editing sites have been found by next-generation sequencing [54]. Also, ADAR1 is 

now known to frequently target 5’ and 3’ untranslated regions (UTRs) and intronic 

retrotransposon elements, such as Alu and long interspersed elements (LINE/SINEs). 

Further, several primary microRNA (miRNA) intermediates undergo A-I editing [55-58]. 

99% of the identified A-I editing sites are in non-coding RNA [53]. It was reported that 

ADARs regulate the expression of microRNA and redirect silencing targets by A-I editing of 

miRNA [55, 57, 58]. There is extensive interaction between the RNA editing and RNA 

interference (RNAi) pathways [59]. However, the overview of physiologic significance of 

non-coding RNA editing still remains to be clarified, including whether those non-coding 

RNA editing is involved in the pathogenesis of DSH.  

Additionally, in these miRNA/siRNA pathways, an editing-independent effect of inhibition 

of RNAi by ADARs was reported [44].  

2.8. DSH murine models  

Wang et al. generated an Adar1 knockout (KO) murine model [60] that lacks exons 12–15, 

corresponding to the catalytic RNA-editing domain. Hartner et al. [61] created a KO mouse 

that has the homozygous deletion of exons 7-9 or exons 2-13. 

In the Adar-/- mouse with homozygous deletion exons 7-9 or exons 2-13, the liver sizes in 

fatal mice were the same as in wild-type mice until E11.0 - 11.25, and they did not increase 

further, whereas wild-type and Adar+/- embryo livers enlarged by up to 50% between E11.5 

and 12.5 [61]. Reduced cell density and blood accumulation were observed by microscopy in 

Adar-/- fatal livers, perhaps resulting from massive cell death. Embryonic hematopoietic 
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tissues were significantly reduced in the yolk sac, fetal liver and peripheral blood compared 

with wild-type and Adar+/- embryos. There were no morphological abnormalities in other 

tissues [61].  

In KO mice with the homozygous deletions of exons 12-15, widespread apoptosis was 

detected in many tissues of the Adar-/- mouse embryos collected live from E10.5 to E11.5, 

particularly in the heart, liver and vertebra, despite their normal gross appearance [60]. 

Fibroblasts derived from Adar-/- embryos were also prone to apoptosis induced by serum 

deprivation. Those results demonstrated that ADAR1 is essential to embryogenesis and 

suggested that it functions to promote the survival of numerous tissues by editing one or 

more double-stranded RNAs required for protection against stress-induced apoptosis [60]]. 

KO mice with different mutant alleles showed the same result of fatal lethality at E11.5–12.5 

[60, 61]. 

Interestingly nonsense mutations that encode proteins similar to those in the knockout mice 

have been reported in DSH patients, such as R328X [10] or Y989X [62]. Notably, DSH 

patients are heterozygous for the ADAR1 gene mutation that is inherited as a dominant trait. 

Unlike DSH patients, the Adar+/- mouse, which is heterozygous for Adar1 deletion, does not 

manifest any clinical abnormalities of the skin, including the face or dorsal sites of the 

extremities, which are the most noticeable sites of DSH in humans [60, 61]. The effect of 

ADAR1 gene mutation on skin might be milder in heterozygous mice than in heterozygous 

humans. 

The previously described KO mice had disruptions of both the p110 and p150 isoforms [60, 

61]. To circumvent the embryonic lethality associated with simultaneous disruption of p110 

and p150, a selective p150-isoform-disrupted mouse was generated in which the promoter 

and exon 1A region of the p150 isoform of Adar1 were specifically targeted, while the 

expression of p110 was left intact [63]. Selective disruption of p150 alone resulted in 

embryonic lethality from E11-E12 [63], similar to the time point of embryonic lethality seen 

previously with disruption of p110 and p150 [60, 61]. These results indicate that the p150 

isoform of ADAR1 plays a critically important role in embryogenesis. Furthermore, they 

raise the possibility that the embryonic lethality seen in the previously described Adar1 gene 

disruptions may have resulted primarily from ablation of p150 expression. This p150-

isoform-specific heterozygous KO mouse shows no skin manifestations clinically [63]. 

To investigate in more depth the role of ADAR1 in skin, an epidermis-specific Adar1 

knockout murine model was established [64]. In this model, Adar1 gene deletion was 

induced by tamoxifen exposure. First we administrated tamoxifen orally to ten K14-Adar1 

mice (FVB background) at the age of 6 weeks old for 5 consecutive days. Eight of these 

treated mice died within three weeks after treatment, developing a phenotype that included 

dramatically decreased aggressiveness, thin body shape, fur loss, poor skin resiliency, skin 

rash and bleeding [64]. In the FVB mice, H–E stained sections revealed massive necrosis in 

the epidermis and few remaining hair follicles in the dermis. Thickening of the 

interfollicular epidermis (IFE) and the stratum corneum were observed, while skin ulcers 
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were observed in some other areas [64]. In the B6 mice, epidermal necrosis was not observed 

but increased keratinocytes and thickened stratum corneum were evident. p150-specific 

Adar1-deleted newborn B6 mouse showed death in a subset of the hair follicles. These 

results support an essential role for ADAR1 in the epidermis during the first hair follicle 

developmental cycle [64]. 

3. Conclusion 

The RNA editing mechanism has been gaining much attention. A-I editing has been shown 

to affect a wide variety of RNA transcripts, both protein coding and noncoding sequences. 

Its relationship with some neurological diseases, e.g., amyotrophic lateral sclerosis [50, 65-

67], epilepsy [68], depression [69] and schizophrenia [70], has been clarified. In the skin, 

although the expression of ADAR1 is recognized, its function remains unknown. Various 

functions of ADAR have been successively clarified. In DSH patients, if a new function of 

ADAR1 or a new target gene of ADAR1 were to be identified, it would not only help to 

elucidate the pathogenesis of DSH, but also be one step toward clarifying RNA editing in 

the skin. For dermatologists, it is also very interesting how this characteristic skin 

manifestation, a mixture of pigmented and depigmented macules with a unique distribution 

of eruptions in the extremities, develops. 
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