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Nutritional Requirements of Soybean Cyst Nematodes
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1. Introduction

Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean
yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst
Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean farmers
confront. This obligate pathogen requires nutrients from the plant to complete its life cycle. To
date, SCN nutritional requirements are not clearly defined. Growth media supporting SCN
still contain soy products. Understanding the SCN nutritional requirements and how host
plants meet those requirements should lead to the control of SCN infestations. The nutritional
requirements of SCN are reviewed in this chapter and those requirements are compared to
those of other nematodes. Carbohydrates, vitamins, amino acids, lipids, and other nutritional
requirements are discussed.

The survival of parasitic nematodes requires adequate nutrition. These essential nutrients are
at least partially supplied by the host. But, availability of nutrients may not alone be sufficient
for survival and reproduction. The parasite must also be able to establish a feeding site. Both
the establishment of the feeding site and the presence of adequate nutrients for the soybean
cyst nematode [SCN] are discussed below.

1.1. Feeding site establishment

Nematodes have differing mouth part structures which are adapted to their food source [1].
In the case of plant-parasitic nematodes, a stylet [analogous to a hypodermic needle], is used
to puncture plant cells and a pump mechanism located in the nematode esophagus allows for
exchange of fluids between the nematode and plant [1]. Most studies of the economically
important root-knot and cyst-forming plant-parasitic nematodes have focused on what fluids
are secreted by the nematode and how this facilitates establishment of a feeding site [2-4].
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Specific information on the essential nutrients provided by the plant is lacking. In this chapter
we focus on what is known about nutrient requirements for soybean cyst nematode, SCN.

The SCN is an obligate parasite requiring a host plant to complete its life cycle (see Figure 1).
The cysts are found in the soil and contain eggs and first stage juveniles. The second stage
juvenile hatches from the egg and penetrates plant roots. If the roots are a plant that is a host
for SCN, the third and fourth stage juveniles molt into an enlarged shape called a sausage once
a feeding site is successfully established where the primary goal is removing nutrients from
the plant for use by the nematode. After enough nutrients have been obtained by the nemat‐
odes, those destined to become males molt into a worm-shape again and migrate out of the
roots in search of a female. As the females mature, their size increases breaking root epidermal
cells and the nematode is exposed to the soil where she emits pheromones to attract the males
already in the soil. Once fertilization of the eggs has occurred, the female dies and her hardened
body becomes the cyst which protects the eggs from environmental extremes and organisms
which can kill the eggs. Some eggs are extruded into the soil in a gelatinous matrix and these
eggs are thought to hatch once conditions favor hatch. The eggs within the cyst go through
diapause and can survive within the cyst for more than a dozen years under the right condi‐
tions. Juveniles which enter nonhost plant roots may molt into a third stage juvenile but a
successful feeding site will not be established and the plant will recognize the nematode as an
invader and form necrotic cells surrounding the nematode effectively killing the nematode.
Alternatively, some plants are slower to recognize the nematode as an invader and a molt to
the third stage may occur but no further development of the nematode will occur. Once the
nematode reaches the sausage stage, it lacks the muscles to leave the root and it dies.

As an important crop in the United States [5], there are over 120 soybean lines which have
some level of resistance to SCN [6]. Commercial soybean varieties primarily contain one or
more different sources of resistance but 95% of all resistance is found from one source, PI 88788.
Peking [PI 548402] and Hartwig [PI 437654] are also found in a few commercial varieties.
Genetics of resistance is complex with multiple genes involved and interaction of minor genes
or nongenetic sources complicates understanding of the process. In a resistant reaction,
cytological changes occur and these have been documented [7-19]. Initial reaction to the
nematode during the formation of the syncytium in both susceptible and certain resistant lines
is identical for the first 4 days after infection [7. 9. 11]. Resistant reactions can be seen about
day 4-5 [7, 9-11].

Cyst nematode juveniles hatch from eggs within the cyst or in the soil and enter plant roots
typically in the zone of root elongation. They migrate to the pericycle and establish a feeding
site [20]. Cellulases break polysaccharide chains and associated proteins in the plant cell walls.
Other enzymes have been shown to be secreted by the nematodes as they move through plant
tissue [21]. Rapid response by the plant to the nematode inhibits formation of a successful
feeding site. A successful feeding site initiation results when the plant fails to respond or
responds slowly to the presence of the nematode. One of the ways plant-parasitic nematodes
protect themselves from plant responses to the nematodes is through secretion of peroxire‐
doxin, glutathione periosidase, and secreted lipid binding proteins within the surface coat of
the nematode [22]. Although considerable knowledge is now available on the morphological
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changes in the plant cells due to the presence of the nematode feeding site and molecular
studies have advanced our understanding of the interactions on a molecular level, the details
of host specificity are unknown [23].

Information is available on the changes that occur within soybean plants when a compatible
interaction between SCN and the plant occur. Information is also present on incompatible
reactions when plant resistance inhibits SCN reproduction through either a hypersensitive
response or formation of small syncytia which limit SCN reproduction. Infection of plant-
parasitic nematodes is thought to alter plant products from the shikimic pathway. Infection
by SCN increases the concentration of glucose, K, Ca and Mg in the roots but information is
not available on whether these increases are products SCN then extracts from plant cells or
whether these are responses by the plant to the presence of the nematode.

1.2. Nutritional requirements

Heterodera glycines is considered to have a wide host range. Riggs and Hamblen tested 1152
entries from the Leguminosae family and found that 399 of these entries from 23 genera were
susceptible. Poor hosts included 270 entries in 12 other genera [24]. Additional host studies

Figure 1. The life cycle of the soybean cyst nematode (SCN) is shown. Soil contains cysts with eggs as well as first stage
juveniles. Second stage juveniles hatch from eggs and can then penetrate plant roots. The third and fourth stage juve‐
niles feed off the plant. Males migrate out of the roots in search of a female. Maturing females rupture the root, re‐
leasing pheromones to attract males from soil. Females die after egg fertilization and her body becomes the cyst. This
figure was obtained with permission from www.extension.umn.edu.
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have been conducted by Riggs and Hamblen [25-26], Miller and Gray [27-28], Venkatesh et al,
[29], and Venkatesh et al [30]. Variability in host status within a plant species potentially makes
identification of necessary nutrients required for establishment of the obligate feeding site
easier but to date the specifics have eluded scientists.

A summary of the plants invaded by SCN are shown in Table 1. Most hosts of SCN are
legumes and are limited to three subfamilies of the Leguminosae; however, approximately
50 genera in 22 families including nonlegumes are also hosts [31-32]. Some plants allow SCN
to penetrate plant roots but limit reproduction of SCN [33]. The reason for this could be
nutritional, or it could be due to other barriers within the plant. To determine which of those
two  possibilities  are  controlling  virulence  of  SCN,  nutritional  requirements  should  be
investigated more fully.

Host Common Name Host Scientific Name Use

azuki bean Vigna angularis edible

. bean tree Laburnum sp ornamental

beans, green, dry Phaseolus vulgaris edible

beard tongue Penstemon digitalis ornamental

begger tick Desmodium ovalifolium weed

bells of Ireland Mollucella laevis ornamental

bitter cress Barbarea vulgaris spice

bladder senne Colutea arborescens shrub -ornamental

bush clover Lespeza capitata prairie plant

California burclover Medicago hispida weed

common chickweed Stellaria media weed

common lespedeza Lespedeza striata weed

coral bells Heuchera sangiunea ornamental

cranesbill Geranium maculatum weed

largeflowered beardtongue Penstemon gradiflorus wildflower

field pea tuberous vetch Lathyrus tuberosus edible/weed

fennugreek Trigonella goenum-gracum spice

foxglove Digitalis sp. weed

. geranium Pelargonium sp ornamental

gold apple Lycopersicon esulentum weed

golden chain Laburnum anagyroides ornamental
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Host Common Name Host Scientific Name Use

grass pea vine Lathyrus sativa edible/ornamental

green pea Pisum sativum edible

hairy vetch Vicia villosavillosa forage /cover crop

hemp sesbania Sesbania exaltata weed

henbit Lamium amplexicaule weed

hog peanut Amphicarpa bracteata weed

Indian joint vetch Aeschynomene virginica weed

indigo Indigofera parodiana shrub/herbaceous/small tree

clover Kenyan clover Trifolium ornamental

Korean lespedeza Lespedeza stiulacea forage

lance leaf rattlebox Crotalaria lanceolata weed

large flowered beard tongue Penstemon grandiflorus wild flower

large leaf lupine Lupinus polyphyllus wild flower

licorice milk vetch Astragalus glaucophyllus forage

little bur clover Medicago minima weed

milk vetch Astragalus canadensis forage

milky purslane Euphorbia supine weed

mouse ear chickweed Cerastium vulgatum weed

Common mullein Verbascum thapsus weed

nasturtium Tropaelum pergrinum ornamental

old field toadflax Linaria canadensis weed

pigeon pea Cajanus cajan edible

Americana pokeweed Phytolacca weed

purple deadnettle Lamium purpureum weed

purslane Portulaca oleracea weed

rainbow pink Dianthus chinensis ornamental

river bank lupine Lupinus rivularis edible

Rusian sickle milk vetch Astragalus falcate weed

service lespedeza Lespedeza cuneata weed

shrub lespedeza Lespedeza bicolor ornamental
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Host Common Name Host Scientific Name Use

Siberian pea tree Caragana arborescens ornamental

sicklepod Cassia tora weed

small flowered buttercress Cardamine parviflora weed

soybean Glycine max edible

Spanish broom Spartium junceum ornamental

speedwell Veronica peregrine weed

spider flower Cleome spinosa ornamental

spotted burclover Medicago arabica forage

stinking clover Cleome serrulata weed

sweet clover Melilotus taurica weed

sweet pearl lupine Lupinus mutabilis edible

tiny vetch Vicia hirsute ornamental vine

white horsehound Marrubium vulgare medicinal plant

white lupine Lupinus albus livestock feed

white pea Lathyrus ochrus wild flower

Wilcox penstemon Penstemon wilcoxi wilflower

winged pigweed Cycloloma atriplicifolia weed

yellow lupine Lupinus lateus wild flower

Table 1. Common names for plants that have been identified as good hosts for soybean cyst nematode [24-31].

In many ways, it is inappropriate to compare humans to nematodes. But, from a nutritional
perspective, much more is known about human nutrition than what is known about nutritional
requirements of nematodes. For humans, numerous biochemical and mineral components are
essential nutrients. But, for nematodes, only a few are known. Yet, nematodes have a compa‐
ratively simple digestive system. So, it would be reasonable to predict that nutritional
requirements for these organisms are more extensive than what is currently known.

It is also inappropriate to generalize nutritional needs from studies on one nematode to all the
nematodes within the various trophic categories. Certainly there should be similarities, but it
is clear from the literature that animal parasitic nematodes have different needs from the plant
parasites. And, it may also be that those plant parasites infecting specific organisms, such as
SCN might have nutritional needs that synergize with the contents of the host soybean plant.

Survival is best understood when chemically defined culture media can be shown to not only
sustain life, but also to promote reproduction. Chemically defined media have been identified
for the survival of some nematodes and this work has recently been reviewed [34]. The
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successful media originally included all the amino acids in Escherichia coli, and in the amino
acid ratios found in E. coli. Nematode growth media has been since modified to include a
greater number of constituents including glucose, minerals, growth factors, nucleic acid
precursors, vitamins, a sterol and heme source. However, SCN has not yet been shown to
survive or reproduce on these media. Currently, the only growth media known to sustain SCN
includes soy products [35].

Articles published on the nutritional requirements of a wide range of nematodes, generally do
not specify SCN [1. 36-37]. While a few nutritional requirements for individual nematode
species have been studied, these requirements are limited and their applicability to SCN is
unknown. It is assumed that plant- and animal-parasitic nematodes may have different
nutritional requirements from entomopathogenic, and microbivorous nematodes.

2. Lipids

Lipids consist of many non-water soluble components including free fatty acids, phospholi‐
pids, triglycerides, sterols, and other species. Many of these classes have been studied at least
in one host-nematode relationship and are the most studied with the exception of nucleic acids
due to their great structural variety and importance as food reserves. For example, Krusberg
[38] reported the total lipids and fatty acids from 5 species of plant parasitic nematodes, and
their common hosts. They found that the nematodes had the same fatty acids as the hosts, with
the exception of the polyunsaturated fatty acids. These appeared to be synthesized by the
nematodes. There was also some speculation that nematode fatty acid synthesis resembled
that of bacterial pathways rather than that of higher animals. It was not clear from the study
whether intestinal flora of the nematode could have been at least partially responsible for this
difference, or whether the nematode itself synthesized the fatty acids. Some nematodes are
clearly capable of synthesizing longer chain fatty acids from shorter chain precursors. They
are also capable of desaturating the fatty acids [39].

Entomopathogenic nematodes infecting locusts consume host fat and protein [40]. A decrease
in lipid reserves has been seen in starved nematodes which can be related to decreased
infectivity [41]. Lipid content is also known to decrease when nematodes come out of anhy‐
drobiosis [42]. Lipids associated with the nematode surface [cuticle] are triacylglycerols,
sterols, specific phospholipids, and other glycolipids [43-45].

The most widely known class of essential nutrients for nematodes is sterol [36,46]. This
nutritional requirement was first discovered by Dutky et al. [47] and thought to be potentially
a means for control of plant parasitic nematodes. A recent review further confirms this
nutritional sterol requirement for the nematode C. elegans [48]. Nematode parasites of animals
also require sterol for larval development [49]. The biochemical mechanism which converts
sitosterol to cholesterol appears to be lacking in nematodes [50]. Nematodes are capable of
modifying sterols obtained from their diet [46] but degradation of sterols to CO2 by nematodes
is not clear [51]. More than 63 sterols have been identified from free-living and plant-parasitic
nematodes. Characteristics of sterols which can be used by nematodes include those which

Nutritional Requirements of Soybean Cyst Nematodes
http://dx.doi.org/10.5772/54247

7



have a hydroxyl group at C-3, a trans-A/B ring system and an intact nonhydroxylated side
chain but lack methyl groups at C-4 [52]. Plant sterols are different than animal sterols with
plants being unique in methyl, ethyl or related alkyl groups at the C-24 position of the sterol
side chain [52]. There are also differences between plant sterols and plant-parasitic nematode
sterols. These findings suggest that nematodes ingest plant sterols and remove the C-24 side
chain. In addition, the nematode saturates the double bonds in the four-membered ring system
to produce stannols [52]. Steroid hormones are important in development processes and in
transition to different life stages [53]. Most likely genetic and biochemical methods will be
needed to determine the function of hormones found in nematodes [54]. Novel genes involved
in the production of 17β-hydroxysteroid dehydrogenase in the soybean cyst nematode have
been reported [55].

Sterols were first reported in soy oil by Kraybill et al. [56]. Formononetin is an o-methyl-
isoflavone mainly produced in legumes, including soybean plants [57]. It helps stimulate the
production of steroids in mammals, and possibly also in nematodes. Research in this area by
the USDA was reviewed by Chitwood [58].

3. Amino acids and proteins

There are no clearly defined requirements for proteins, amino acids, or peptides for SCN.
However, it is unlikely that nematodes synthesize all the amino acids. For humans, there are
9 essential amino acids [phenylalanine, valine, threonine, tryptophan, isoleucine, methionine,
leucine, lysine, and histidine]. Some others are required under special circumstances [arginine,
cysteine, glutamine, proline, serine, tyrosine, and asparagiene]. Cysteine, tyrosine, and
arginine are required during rapid growth, such as in infancy. And, arginine, cysteine, glycine,
glutamine, histidine, proline, serine and tyrosine are required by some individuals because
these amino acids are not adequately synthesized by these individuals. These are essential
components for the synthesis of many essential enzymes and structural proteins ; it is antici‐
pated there are similar needs in the nematode diet.

Protein consumed by parasitic nematodes can severely damage the host. Juveniles have high
protein requirements and consuming the host protein can severely weaken the plant [46].

There have been efforts to identify the essential amino acids of nematodes [59-61], but so far
common requirements have not been identified. However, protein synthesis in cotton roots is
modified when the root-knot nematode [RKN] infects susceptible plants. These plant-parasitic
nematodes influence the distribution of amino acids in cotton root galls [61]. Also, there is one
genetic modification of the cotton plant which makes them less susceptible to infection by the
RKN. This modification is responsible for the synthesis of a 14 kDa protein [60].

For the snail parasitic nematode, Rhabditis maupasi, five essential amino acids have been
identified. These include lysine, methionine, phenylalanine, tryptophane, and valine [62]. In
the entomophilic locust parasite, M. migrescens, essential nutrients include protein nitrogen
[63]. Essential amino acids have also been identified for the nematode C. briggsae [64].

Soybean - Pest Resistance8



4. Vitamins

There are 13 essential vitamins required by humans. These include Vitamin A [Retinol]
Vitamin B1 [Thiamine] Vitamin C [Ascorbic acid] Vitamin D [Calciferol] Vitamin B2 [Ribofla‐
vin] Vitamin E [Tocopherol] Vitamin B12 [Cobalamins] Vitamin K1 [Phylloquinone] Vitamin
B5 [Pantothenic acid] Vitamin B7 [Biotin] Vitamin B6 [Pyridoxine] Vitamin B3 [Niacin] Vitamin
B9 [Folic acid]. Of these, vitamin E is known to be a nutritional requirement for the gastroin‐
testinal parasite, Heligmosomoides bakeri [65], and several of the B vitamins are known to be
essential nutrients of C. elegans [66-68].

For SCN, DNA sequences responsible for the biosynthesis of enzymes that can produce some
of the B vitamins de novo have been discovered [69]. Therefore, SCN may not need the same B
vitamins as H. bakeri, for example. And, it is likely that there are other differences in vitamin
and supplement requirements across all nematodes.

5. Minerals

Considerable research on mineral requirements for nematodes has been reported in mamma‐
lian parasites. For example, the gastrointestinal nematode, H. bakeri, requires boron [70], zinc
[71], and selenium [65] for survival. And, other nematodes have similar mineral requirements
[72-74]. For example, magnesium, sodium, potassium, manganese, calcium and copper are
required nutrients of C. elegans [5]. However, SCN mineral requirements remain unclear.

Whether minerals, influence nematode survival may not help in their control if necessary
minerals are readily available in soil, and essential to the host organisms. But, elements not
essential to survival of the host could be controlled in soils to help control SCN survival.

6. Carbohydrates

Nematodes require carbohydrates for energy, usually in the form of glycogen. One study
showed that several different carbohydrates were sufficient to provide a carbon, or energy
source for C. elegans, and that glucose was more effective than fructose or sucrose [76]. For C.
elegans, glucose along with cytochrome c and β-sitosterol were sufficient to sustain a healthy
population.

One of the most striking features of soybean chemistry is the abundance of pinitol [77-79].
Pinitol is a carbohydrate with unusual nutritional properties [77]. Figure 2 shows a total ion
chromatogram of a derivatized extract of soybean roots. It is unusual for a plant to have so
much pinitol. The levels shown in this study indicate pinitol is present at a concentration of
26 mg/g (dry weight) compared to peanuts with only 4.7 mg/g or clover with 14 mg/g [79].
However, there is no evidence that pinitol, or any of the related inositols are needed for SCN
survival [79].
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Figure 2. A total ion chromatogram of derivatized soybean root extract is shown. A = D-(-)-Fructose, B = D-Pinitol, C =
D-(+)-Glucose, D = D-chiro-inositol, E = β-D-(+)-Glucose, F = Myo-inositol. Reproduced with permission from [79].

7. Other nutrients or feeding requirements

The nematode Rhabditis maupasi requires hemin or another iron porphyrin for survival [62].
Similarly, C elegans also requires a heme source for survival [34]. It is likely that many other
nematodes require heme, or a closely related hemin. There is also good evidence that SCN
requires a heme source [80].

8. Discussion

In comparison to our knowledge of human nutrition, our understanding of nutritional
requirements of SCN is in its infancy. Limited information is available for members of the
Nematoda Phyllum, but such a small amount of information is available that extrapolation
across trophic groups and even within genera may be misleading. Finding a successful artificial
diet would be a reasonable first step in defining the nutritional needs of SCN. But, this data
needs to be coupled with a good understanding of feeding site establishment and plant
responses to SCN infections.
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Studying biochemical pathways would be a valuable approach, and could also help identify
pathways that could be blocked to help minimize SCN survival. Our laboratory began by
examining the chemistry of the plant to identify unique nutrients necessary for SCN survival,
but that approach was not immediately successful. Another approach is to continue to use
DNA mapping to better understand potential plant and parasite pathways. While this
approach is less direct, it is currently a very active area of investigation, and can reveal more
information than simply nutritional requirements.

Details of the SCN host-parasite responses during infection and feeding site establishment
have been more extensively investigated than nutritional requirements. Relationships between
the available nutrients from host plants compared to non-hosts could provide valuable clues
on these requirements. And, once an adequate media for SCN survival has been well defined,
methods to control this pest should follow.
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