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1. Introduction

Gene therapy is a promising approach to treat intractable and refractory diseases at the genetic
level. Basically, in gene therapy, target gene expression is induced by delivering foreign genes.
Downregulation of target gene expression or gene silencing can also be performed using
miRNA, siRNA or shRNA expression vectors [1]. Gene therapy is useful for both genetic and
acquired diseases. For genetic diseases, the first clinical trial was performed for adenosine
deaminase deficiency in 1990 [2]. Subsequently, numerous clinical trials were carried out for
other congenital genetic defects such as familial hypercholesterolemia and cystic fibrosis [3].
Gene therapy clinical trials were also performed for acquired diseases such as cancers,
cardiovascular diseases and infectious diseases [3].

There are two strategies to perform gene therapy, that is, ex vivo methods and in vivo methods.
In ex vivo gene transfer, once cells are taken from a patient, in vitro gene transfer is performed,
and then transfected cells are introduced into the patient. Since ex vivo gene transfer requires
a cell culture facility, the procedure is cumbersome. On the other hand, in vivo gene transfer
is performed by directly administering genetic medicine into the patient. When foreign genes
are administered into systemic circulation as a naked form, they are rapidly taken up by the
reticuloendothelial system and degraded by nuclease in the blood [4]; thus, foreign genes
themselves are generally inactive in gene transfer. As such, to achieve in vivo gene transfer,
both viral and non-viral vectors have been utilized. In both cases, the selectivity of transgene
expression in target organs/sites/cells would determine the therapeutic outcome. Uncontrolled
transgene expression in non-target organs/sites/cells is problematic due to high biological
activities of transgene products. Furthermore, undesirable biodistribution of vectors leads to
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their loss and vector-dependent side effects. Thus, gene delivery systems that are targeted to
specific organs/sites/cells are important for not only efficacy but also safety.

2. Overview of targeted gene delivery

There are several strategies to achieve targeted gene delivery. Among them, modification with
a ligand for specific receptors on target cells is a rational approach. Viral vectors natively utilize
specific receptors. For example, adenoviral vector serotype 5 utilizes coxsackievirus and
adenovirus receptor (CAR) and integrin, which are abundant on mouse hepatocytes [5, 6]. On
the other hand, the receptor for adenoviral vector serotype 35 is CD34, which is expressed on
human hematopoietic stem cells [7]. As another good example, sugar modification of vectors
is useful. Galactosylation of vectors is useful for targeting to hepatocytes via asialoglycoprotein
receptors [8], whereas mannosylation is useful for targeting to macrophages [9]. Furthermore,
antibodies against cell surface proteins are also a useful tool for targeting. Antibody against
transferrin receptors is utilized for targeting to the brain [10, 11].

Activation of vectors by target cell-specific enzymes is also a rational strategy. In most tu‐
mor cells, protein kinase Cα (PKCα) is hyper-activated. A cationic polymer having a peptide
substrate of PKCα is specifically phosphorylated in tumor cells; subsequently, the polymer
is detached from DNA and transgene expression is turned on [12]. As a similar strategy, a
polymer having HIV proteinase-cleavable cationic residues has been developed [13].

Figure 1. Scheme of administration routes for targeted gene delivery.

To regulate transgene expression in target cells, a tissue-selective promoter can be utilized. For
example, albumin promoter and human α1-antitrypsin promoter selectively work in liver
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hepatocytes [14]. Tumor-selective promoters such as AFP promoter [15] and CAE promoter
[16] are useful to improve tumor-selective transgene expression.

Selection of administration routes is a simple and useful way to control the in vivo fate of both
viral and non-viral vectors. Selection of administration routes can be combined with other
strategies. Depending on the administration routes, accessibilities of vectors to target organs/
sites/cells vary significantly. Thus, selection of administration routes is important.

3. Administration routes

Figure 1 shows a schematic representation of administration routes for targeted gene delivery.
When target cells are distributed throughout the body, various administration routes can be
chosen. Antigen-presenting cells such as macrophages and dendritic cells are good examples.
Factors affecting transgene expression, such as interaction with blood components and
retention time, are different in each administration route. In addition, transfected cell types
are dependent on administration routes. When target cells have polarity, secretion polarity of
transgene products is subject to the route of transfection, that is, apical or basal route. Thus,
we should cautiously select administration routes in accordance with the purpose. We explain
the characteristics of each administration route below.

3.1. Oral route

The oral route is one of the most attractive and challenging routes. Non-invasive administra‐
tion could be theoretically achieved by the oral route. The potential for daily intake of genetic
medicine is also one of the merits of oral administration. Cells in the gastrointestinal tract are
transfected via oral routes. Using foreign genes encoding secretion proteins, the transgene
products can be secreted into systemic circulation. However, the epithelial barrier, acidic pH
in the stomach and digestive fluids are major obstacles for gene transfer via the oral route.

The in vivo stability of a recombinant adeno-associated virus (rAAV) type 2 vector could be
improved by gastric acid neutralization with sodium bicarbonate and protease inhibition with
aprotinin [17]. Despite these changes, the transduction efficiency after oral administration of
this vector remained low. We also failed to detect transgene expression after intragastric
injection of plasmid DNA in mice [18]. To overcome these obstacles, microparticles and
nanoparticles are a promising approach. Chitosan-DNA microparticles could protect the
encapsulated plasmid DNA from nuclease degradation [19]. In in vivo animal studies, a blue
color was observed upon X-gal staining of histological stomach and small intestine sections
after oral administration of chitosan-DNA microparticles. Furthermore, chitosan nanoparticles
using quaternized chitosan (60% trimethylated chitosan) that were given via a gastric feeding
tube exhibited green fluorescent protein expression in the mucosa of the stomach, duodenum,
jejunum, ileum and large intestine [20]. Bhavsar and Amiji developed a hybrid system dubbed
the nanoparticles-in-microsphere oral system (NiMOS), which consists of gelatin nanoparticles
containing plasmid DNA and a poly(epsilon-caprolactone) outer shell [21]. NiMOS resided in
the stomach and small intestine for longer than gelatin nanoparticles alone.
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In the case of DNA vaccines, transfection into only a subset of antigen-presenting cells may be
sufficient for the vaccination to exhibit its required effect. The feasibility of DNA vaccination
via the oral route may be high since one or a few administrations is theoretically enough to
maintain immunity. In fact, oral DNA vaccines against Mycobacterium tuberculosis using
liposome [22] and attenuated Salmonella vector [23] were developed and elicited immune
responses.

3.2. Intravenous route

Various targeted gene delivery systems via the intravenous route have been developed
worldwide. By intravenous administration, various organs and cells can be targeted. However,
undesirable and broad biodistribution of vectors can easily lead to side effects.

Adenoviral vectors have liver tropism after intravenous injection [24]. If the target is not the
liver, it is necessary to reduce hepatic transgene expression. Fiber-shaft exchange from
adenovirus serotype 5 to serotype 35 in combination with both CAR- and αv integrin-binding
ablation by mutation reduced liver tropism [25]. Such mutation may be suitable for retargeting
from the liver to other organs/tissues. Capsid engineering of adenoviral fibers from serotype
19p based on phage display technology is useful for targeting to the kidney [26]. On the other
hand, when cationic liposome/plasmid DNA complex (lipoplex) was injected intravenously,
transgene expression mainly occurred in the lung [27]. Galactosylation of the lipoplex reduced
transgene expression in the lung after intravenous injection, while it maintained transgene
expression in the liver; however, it remained unselective to the liver [28]. In contrast, we
successfully delivered foreign genes to the liver Kupffer cells via the intravenous route by
mannosylation of the lipoplex [9].

Innate and adaptive immune responses caused by vector administration are problematic.
Recombinant adenoviral vectors induce the production of neutralizing antibodies by single
administration [29]. Moreover, neutralizing antibodies to human adenovirus serotype 5 have
a prevalence of 60% in Europe [30, 31], 35–70% in North America [32, 33] and 75–100% in Asia
[34]; thus, many patients already have neutralizing antibodies before administration of
recombinant adenoviral vectors. Neutralizing antibodies also induce complement activation
upon administration of recombinant adenoviruses [35]. In addition, an alternative pathway is
also activated by recombinant adenoviruses [36]. Neutrophils recognize opsonized adenoviral
vectors [37]. These immune responses can cause adverse side effects. In fact, administration of
recombinant adenoviral vectors causes liver damage and elevates c-reactive protein in
cynomolgus monkey [38]. Moreover, human mortality upon the administration of recombi‐
nant adenoviral vectors was reported [39]. On the other hand, non-viral vectors also induce
immune responses. Plasmid DNA generally contains an immunostimulatory CpG motif,
which is recognized by Toll-like receptor 9 [40, 41]. Lipoplex containing plasmid DNA causes
the production of inflammatory cytokines and subsequent liver damage [42, 43]. Immunosti‐
mulatory CpG motifs in plasmid DNA also inhibit transgene expression by lipoplex [44]. In
addition, dexamethasone treatment was found to improve transgene expression by lipoplex
[44]. Here, immunostimulatory CpG motifs can be depleted from plasmid DNA. As expected,
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depletion of immunostimulatory CpG motifs from plasmid DNA improves the safety and
transgene expression over a long period [45].

When using the intravenous route, it should be considered that interaction with blood
components can affect transfection using viral and non-viral vectors. A low level of neutral‐
izing antibodies against adenovirus inhibits CAR-dependent transfection, whereas neutral‐
ized adenoviral vector can transfect Fcγ receptor-positive cells [46]. However, this Fcγ
receptor-mediated delivery of adenoviral vectors can induce liver inflammation [37, 47].
Binding of coagulation factor X to adenoviral vector serotype 5 determines liver and spleen
tropism via heparan sulfate proteoglycan [48-50]. On the other hand, the lipoplex interacts
with various blood components due to its cationic nature. Interaction of the lipoplex with
serum inhibits in vitro transfection, but the inhibitory effect of serum can be overcome by
increasing the charge ratio, which is the molar ratio of cationic residues of lipids to anionic
residues of DNA [51]. The inhibitory effect of serum on transfection can also be overcome by
increasing the lipoplex particle size [52-54]. The lipoplex interacts with complement proteins
after intravenous administration in mice; however, the lipofection efficiency and biodistribu‐
tion of the lipoplex did not change when complement proteins were depleted from mice [55].
Interaction of the lipoplex with plasma lipoproteins decreased transfection efficiency [56, 57].
In contrast, interaction of the lipoplex with erythrocytes greatly inhibited in vivo transfection,
whereas interaction with serum did not [58, 59]. The lipoplex also induced hemagglutination
upon an increase in the charge ratio [60]. Thus, it is necessary to control interaction with blood
components for successful and safe in vivo transfection using lipoplex. To prevent hemagglu‐
tination, coating of cationic carriers with anionic polymers such as γ-polyglutamic acid [61,
62] and chondroitin sulfate [63, 64] is a useful strategy.

Physicochemical properties such as surface charge and particle size of vectors affect in vivo
transfection, as mentioned above. The size of lipoplex is dependent on the charge ratio and
can determine pulmonary transfection efficiency after intravenous injection [65]. In addition,
neutral lipids, so-called ‘helper lipids’, are also important for in vivo transfection using lipoplex.
While incorporation of DOPE to liposomes is effective in cell culture, incorporation of
cholesterol to liposomes enhances pulmonary transfection efficiency [66]. The combination of
mannosylated cationic cholesterol derivative with DOPE exhibited superior in vivo disposition
and transgene expression in the liver than that with DOPC [67]. Incorporation of N-lauroyl‐
sarcosine into cationic liposomes in addition to cholesterol inhibited hemagglutination
observed in the case of incorporation of DOPE, and increased the pulmonary transfection
efficiency [68].

3.3. Local administration

For transfection into a specific organ/tissue/site, local administration is a useful strategy. Local
administration can be categorized into the following two routes: vasculature route and non-
vasculature route.
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Administration routes Target organs/tissues Vectors References

ia Liver Naked plasmid DNA [69]

ia Pancreas Adenoviral vector [70]

ia Hind limb Naked plasmid DNA [71]

ia Cecum AAV [72]

ia Brain tumor Adenoviral vector and lipoplex [73]

ip Liver Lipoplex [28]

riv Kidney Naked plasmid DNA [74]

Abbreviations: ia, intra-arterial; ip, intraportal; riv, retrograde intravenous

Table 1. Administration routes for targeted gene delivery to specific organs/tissues

3.3.1. Vasculature route

Intra-arterial, intraportal and retrograde intravenous routes have been investigated for
transfection into a specific target organ. Table 1 summarizes the administration routes and
tested target organs.

We developed galactosylated cationic lipoplex targeted to the liver parenchymal cells [8, 28].
Liver-selective transgene expression was observed after intraportal injection of the galactosy‐
lated lipoplex, whereas transgene expression was ineffective and non-selective to the liver after
intravenous injection [9]. We also developed galactosylated polyethylenimine (PEI)/plasmid
DNA complex (polyplex) and analyzed the molecular weight dependence of PEI [75]. For
targeted delivery to the liver parenchymal cells, penetration through fenestrated endothelium
is one of the major obstacles. We analyzed the intrahepatic disposition characteristics of
galactosylated lipoplex [76] and galactosylated PEI polyplex [77]. While galactosylation of
carriers was useful to deliver plasmid DNA to the liver, it was proposed that reduction of the
particle size of lipoplex would further improve parenchymal cell selectivity by enhancing the
penetration through fenestrated endothelium. Here, larger lipoplex exhibited superior
transfection efficiency; however, liver parenchymal cell selectivity was low in large lipoplex
[78]. In terms of the particle size of lipoplex and polyplex, the composition of the solution is
important. Particle sizes of lipoplex and polyplex in non-ionic solution are smaller than those
in ionic solution [79, 80]. In the case of siRNA, the particle size of lipoplex is relatively small;
using such lipoplexes, several reported studies succeeded in delivering siRNA to hepatocytes
in vivo [81, 82].

In terms of interaction of the lipoplex with serum, we reported that transgene expression in
the liver after intraportal injection of galactosylated lipoplex was increased by pre-incubation
of the lipoplex with serum [83]. This enhancement of transgene expression in the liver was also
observed in conventional lipoplex [84]. Multiple components in serum including calcium ion,
aggregation-inhibiting components, fibronectin and complement component C3 were respon‐
sible for increased transgene expression in the liver [84].
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Target organs/tissues Vectors References

Skeletal muscle Naked plasmid DNA [85]

Heart Naked plasmid DNA [86]

Heart AAV [87]

Liver Naked plasmid DNA [88]

Kidney Lentiviral vector [89]

Spleen Naked plasmid DNA [90]

Stomach Naked plasmid DNA [91]

Thymus Adenoviral vector and others [92]

Tumor Naked plasmid DNA [93]

Tumor Naked plasmid DNA and lipoplex [94, 95]

Table 2. Direct injection for targeted gene delivery to specific organs/tissues

3.3.2. Non-vasculature route

Direct injection to the target organ such as the liver or spleen has been investigated (Table 2).
By direct injection to the target organ, the use of naked plasmid DNA without carrier systems
is sufficient to detect transgene expression. However, in general, transgene expression is
limited to the injection site. To overcome a limited transfection area, electroporation after
intramuscular injection of plasmid DNA increased the number of transfected myofibers [96].

Figure 2. Scheme of organ surface instillation. Panel (A) represents the proposed drug distribution after systemic ad‐
ministration and organ surface instillation of drugs. Panel (B) represents attachment of a glass-made cylindrical diffu‐
sion cell onto the organ surface.
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For other routes of gene transfer, retrograde intrabiliary injection of naked plasmid DNA,
polyethylenimine-plasmid DNA complex and chitosan-plasmid DNA complex resulted in
transgene expression in the liver [97]. Intranasal administrations of adenoviral vector [98],
lipoplex and polyplex [99] were also tested. In addition, inhalation of chitosan/plasmid
DNA nanoparticles resulted in pulmonary transgene expression [100]. Intracerebroventricu‐
lar administration of lentiviral vector was utilized to deliver foreign genes to the brain [101].
Gene gun bombardment of plasmid DNA with gold particles resulted in efficient gene trans‐
fer to the skin [102]. After intraperitoneal injection of adenoviral vector, not only mesotheli‐
um but also parenchymal cells of the liver were transduced [103]. This non-specific
biodistribution was overcome by ablation of native CAR and integrin receptor binding [103].

3.4. Organ surface route

We developed a novel route for targeted gene delivery to intra-abdominal and intra-thoracic
organs, namely, the organ surface route (Fig. 2A). When diseases are limited to a certain region,
the organ surface route enables us to target the diseased region, while drugs are distributed
to the whole organ via the normal route. Naked plasmid DNA was utilized to transfect target
organs/sites. As a first report of this approach, the liver was targeted and successfully trans‐
fected in mice [104]. Selectivity of transgene expression in the applied liver lobe was high.
Laparotomy was performed in the first reported study, but it is not essential since catheter-
based administration through the abdominal wall is available [105]. This catheter-based
administration is essential to the safety of liver surface instillation of plasmid DNA [106].

We developed an experimental system using a glass-made cylindrical diffusion cell attached
to the organ surface (Fig. 2B) [107]. Using this experimental system, we can precisely limit the
area of drug application. Specific transgene expression in the applied area of the liver was
achieved [108]. The effect of solution composition on naked plasmid DNA transfer was also
examined [109]. Use of hypotonic solution enhanced the transfection efficiency in the applied
site of the liver. As for the mechanism of transfection, we analyzed endocytic routes for naked
plasmid DNA transfer in vivo. While the lipoplex and polyplex are taken up via clathrin- and
caveolae-mediated endocytosis [110-113], macropinocytosis is essential for naked plasmid
DNA uptake in mesothelial cells in mice [114].

As for other organs, unilateral kidney [115], unilateral lung [116], spleen [117] and stomach
surface [118, 119] were transfected with naked plasmid DNA in mice. To improve organ
selectivity, microinstillation of naked plasmid DNA onto the stomach was performed [18].
Since specific transgene expression in the stomach was observed in rats [120], organ size would
be an important factor for target selectivity of gene transfer. Moreover, specific transgene
expression in the applied liver lobe was also achieved in mice by controlling instillation speed
using an infusion pump [121].

3.5. Comparison of administration routes

We summarize the advantages and disadvantages of each administration route for targeted
gene delivery in Table 3.

Novel Gene Therapy Approaches10



Administration routes Advantages Disadvantages

Oral
Ease of administration,

Frequent dosing (daily intake)

Barriers (epithelium, digestive fluids), Low

selectivity

Intravenous
Frequent dosing,

Vast distribution
Non-specificity

Intra-arterial,

Intraportal,

Retrograde intravenous

Selective delivery Necessity of cannulation

Direct injection
Effective gene transfer,

High selectivity

Physical force against the organ,

Limited region,

Limited frequency of dosing

Intraperitoneal Effective gene transfer Low selectivity

Organ surface
Effective gene transfer,

High selectivity
Necessity of laparoscopy

Table 3. Advantages and disadvantages of vector transfer routes.

Figure 3. Scheme of administration routes for targeted delivery of foreign genes to the stomach

Direct injection of rAAV vector to the liver exhibited faster and stronger transgene expres‐
sion than intravenous and intraportal injections of rAAV vector [122]. Similar results were
obtained for direct injection of the lipoplex into localized intrahepatic tumors [123]. More‐
over, direct intrahepatic injection of adenoviral vector reduced inflammation and increased
transgene expression in comparison with intravenous injection [124]. On the other hand, ret‐
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rograde infusion of lentiviral vector into the ureter, injection into the renal vein or artery,
and direct injection into the renal parenchyma were compared [89]. Parenchymal or ureteral
administration appeared to be more efficient than other routes of administration.

Figure 3 depicts the administration routes for targeted gene delivery to the stomach. Via the
oral route, there are many barriers such as digestive fluids and acidic pH that hamper effective
gene transfer. Although effective gene transfer can be achieved by direct injection, it is
necessary to consider tissue damage. In contrast, safe and effective gene transfer is possible by
serosal surface instillation of naked plasmid DNA. Although transgene expression is limited
to the surface layer in the case of serosal surface instillation, limited vertical distribution of
transgene products can be overcome by the use of the secretory form of proteins [121].

4. Improving methods for targeted gene delivery

Various strategies have been tested to improve targeted gene delivery. Methods for improved
targeted gene delivery can be categorized as physical approaches and chemical approaches.

Physical forces such as electroporation, sonoporation and mechanical massage have been
employed to improve targeted gene delivery. Naked plasmid DNA can be delivered to the
liver by intravenous injection with electroporation [125, 126]. Intravenous injection of naked
plasmid DNA with tissue electroporation resulted in significant transgene expression in the
liver, spleen and kidney, but not in the skin or muscle [127].

Utilization of microbubbles with ultrasound exposure can deliver naked plasmid DNA to the
muscle [128, 129], liver [130] and lung [131]. Use of PEGylated liposomal bubbles containing
perfluoropropane with ultrasound exposure was also effective to deliver naked plasmid DNA
via the femoral artery [132]. Mannosylated lipoplex and liposomal bubbles with ultrasound
exposure can transfect the liver and spleen [133]. In addition, mannosylated PEGylated bubble
lipoplexes selectively transfected antigen-presenting cells in vivo [134]. DNA vaccination by
this type of lipoplex with ultrasound exposure resulted in suppression of melanoma growth
and metastasis [135]. The timing of ultrasound exposure was important [136]. As a mechanism
of high transgene expression, a transcriptional process activated by ultrasound exposure was
involved [137].

Hydrodynamics-based transfection, with rapid large volume injection of naked plasmid DNA
via the intravascular route, is an efficient method to transfect the liver [138, 139]. It was also
reported that pig liver can be transfected by retrograde hydrodynamic injection of plasmid
DNA via an isolated segment of the inferior vena cava [140]. In terms of the mechanism of high
efficiency of gene transfer in hydrodynamics-based transfection, both the generation of
transient pores [141, 142] and a transcriptional process activated by hydrodynamic injection
[143, 144] are important.

Naked plasmid DNA was also intravenously delivered to the liver by mechanical massage of
the liver [145]. Pressure-mediated deliveries of naked plasmid DNA to the kidney [146], liver
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and spleen [147] were also achieved. As the mechanism of high transgene expression, a
transcriptional process activated by pressure to the tissue was involved [148].

Chemical modification of gene carriers has also been investigated. PEGylation of carriers
improves blood circulation of the carrier and tumor accumulation by the enhanced permea‐
bility and retention effects [149]. However, transfection efficiencies of PEGylated vectors are
generally low. Although PEGylation of lipoplex reduced retention in the lung and heart,
PEGylated lipoplex failed to deliver foreign gene into tumors [150]. PEGylation of adenoviral
vectors generally prevents CAR recognition. Hexon-specific PEGylation of adenoviral vector
improved in vitro transfection efficiency in the presence of neutralizing antibodies, in vivo blood
retention and tumor accumulation after intravenous administration; however, transfection
efficiency in tumor remained low [151]. To overcome this dilemma of PEGylation, that is, high
retention and low uptake, cleavable PEG-lipids have been developed. PEG-lipids, which were
designed to exhibit cleavage of the PEG moiety by tumor-specific matrix metalloproteinase,
were incorporated into a multifunctional envelope-type nano-device [152]. As a result,
transgene expression in the tumor was stimulated after intravenous injection of this carrier in
comparison with that with normal PEGylated gene carrier.

It was reported that incorporation of human serum albumin to lipoplex enhanced the trans‐
fection efficiency in vitro and in vivo [153]. Moreover, utilization of serum components such as
asialofetuin [154], transferrin [155] and fibronectin [156] was tested for the development of
vectors.

Figure 4. Schematic representation of surface charge-regulated lipoplex.
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Intravenous sequential injection of cationic liposome and plasmid DNA resulted in signifi‐
cant pulmonary transgene expression with reduced inflammatory cytokine production com‐
pared with those with the lipoplex [157]. Sequential injection resulted in lower DNA uptake
by the liver and higher DNA levels in the lung than with the lipoplex administration [158].
Interaction with several serum proteins including albumin reduced inflammatory cytokine
production by sequential complex (liposome mixed with serum proteins before mixing with
plasmid DNA), whereas interaction of the lipoplex with serum proteins did not reduce in‐
flammatory cytokine production by lipoplex [159].

We successfully developed surface charge-regulated (SCR) lipoplex, which improved targeted
gene delivery by stabilizing the lipoplex. Figure 4 shows a scheme of the salt-dependent
formation of lipoplex. For in vivo preparation of the lipoplex, the concentrations of plasmid
DNA and liposomes are high; consequently, a physiological concentration of salts induces
aggregation of the lipoplex. This problem can be overcome using a non-ionic solution such as
5% glucose solution. Here, we hypothesized that repulsion between cationic liposomes was
too strong to induce sufficient fusion of lipid membranes for stable lipoplex formation.
Moderate concentration of salts in the solution of the lipoplex would reduce repulsion among
cationic liposomes and enhance fusion of lipid membranes, while maintaining sufficient
repulsion among lipoplex particles. This hypothesis was proved by a series of physicochemical
experiments including fluorescent resonance energy transfer assessments and measurements
of particle size changes in the presence of physiological concentration of salts [160]. This stable
galactosylated SCR lipoplex exhibited superior hepatocyte-selective gene transfer than
conventional lipoplex after intraportal injection [160]. Furthermore, the stabilization effect of
SCR lipoplex was also evident in pulmonary gene transfer after intravenous injection [161].

As for the organ surface instillation method, we succeeded in enhancing the transfection
efficiency of naked plasmid DNA by several strategies. Pretreatment with epidermal growth
factor (EGF) enhanced transgene expression and increased transgene-positive cells on the
stomach after instillation of naked plasmid DNA onto it [162]. Rubbing the gastric serosal
surface with a medical spoon after instillation of naked plasmid DNA onto the stomach was
more effective than EGF pretreatment [163]. However, rubbing the organ surface with a
medical spoon may be impractical for future clinical application. Thus, we searched for various
materials to reproduce the effect of rubbing an organ’s surface. Among them, concomitant use
of calcium carbonate suspension with naked plasmid DNA was similarly effective as rubbing
the gastric serosal surface [164]. Unfortunately, sedimentation of calcium carbonate suspen‐
sion occurs rapidly and is problematic. To obtain slowly settling particles of calcium carbonate,
we tested various conditions for calcium carbonate synthesis. We succeeded in synthesizing
a novel form of calcium carbonate with a flower-like shape, named calcium carbonate
microflowers [164]. Sedimentation of calcium carbonate microflowers was sufficiently slow to
perform in vivo experiments. Fortunately, the suspension of calcium carbonate microflowers
containing naked plasmid DNA was a more effective transfection reagent than commercially
available calcium carbonate, especially at a low concentration of calcium carbonate. Intraper‐
itoneal injection of the suspension of calcium carbonate microflowers containing naked
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plasmid DNA resulted in effective and peritoneal cavity-selective gene transfer. However, the
mechanism of effective in vivo transfection remains to be elucidated.

5. Disease-dependent strategies in targeted gene delivery

Among the above-mentioned methods, intramuscular injection of naked plasmid is one of the
simplest methods since it can be applied without surgery and carriers. Not only muscular
diseases, such as dystrophy, but also systemic diseases may be cured using the secretory form
of proteins. Intramuscular injection of plasmid DNA encoding hepatocyte growth factor
rescued critical limb ischemia with high safety in a phase I/IIa clinical trial [165]. Muscular
delivery of naked plasmid DNA encoding erythropoietin resulted in an increase of hematocrits
[166]. In general, however, targeted gene delivery to specific organs/sites/cells is required since
high biological activities of proteins may lead to side effects. For example, in suicide gene
therapy to treat tumors, thymidine kinase gene expression should be restricted to tumor cells
[167]. Since hepatocyte growth factor is mitogenic, liver-directed gene transfer is a rational
approach to treat liver cirrhosis [168]. To treat inherited gene deficiency diseases such as
familial hypercholesterolemia (LDL receptor deficiency in hepatocytes) [169] and Crigler-
Najjar syndrome (uridine diphospho-glucuronosyl transferase 1A1 deficiency in hepatocytes)
[170], targeted gene delivery is also reasonable due to its efficacy.

As for DNA vaccination, Kasinrerk et al. compared intramuscular, intraperitoneal, intrave‐
nous and intrasplenic immunizations with a single dose of naked plasmid DNA and observed
that only the intrasplenic route induced specific antibody production [171]. In contrast, to
develop DNA vaccine to induce cellular immunity, intradermal injection of naked plasmid
DNA with electroporation was better than intrasplenic injection, even though there was high
transfection efficiency in the spleen [172]. Gene gun bombardments of naked plasmid DNA to
the skin were not effective to induce cellular immunity in comparison with intracutaneous
injections of antigen-transduced dendritic cells [102]. Gene gun bombardments of naked
plasmid DNA to the skin induced Th2 response and anaphylactic shock upon antigen recall
[173]. On the other hand, transgene expression of fusion proteins of the immunodominant
domain of human type XVII collagen and dendritic cell-specific antibody targeted to dendritic
cells in the skin induced tolerance to human type XVII collagen in a skin transplantation model
[174]. Intraperitoneal injection of mannosylated lipoplex resulted in efficient transgene
expression in antigen-presenting cells and induced cellular immunity [175, 176]. As for the
intravenous route, mannosylated lipoplex initiated a Th1 response [177]. As mentioned above,
mannosylated PEGylated bubble lipoplexes with ultrasound exposure more effectively and
selectively transfected antigen-presenting cells than an approach without ultrasound exposure
after intravenous injection, and induced strong cellular immunity [134, 135]. Thus, the success
or failure of DNA vaccination is dependent on transfection methods including transfection
routes.
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6. Conclusions

Selection of administration routes is important in targeted gene delivery for not only efficacy
but also safety of the vector. Administration routes can be categorized as systemic routes and
local routes. Via the systemic routes, administration is simple and does not require a compli‐
cated operation. However, very wide distribution of the vectors after their systemic adminis‐
tration may lead to systemic side effects. This problem can be overcome by changing the
administration route from a systemic route to a local route. In addition, target selectivity can
be improved by modification of the vectors with a ligand, combination with targeted appli‐
cation of physical forces and utilization of tissue-specific promoters. Importantly, selection of
administration routes can be combined with these strategies to improve targeted gene delivery.
The importance of selection of administration routes is dependent on the kind of target disease.
Taking safety including germline conservativeness into consideration, further improvement
of targeted gene delivery systems should be pursued.
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