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1. Introduction 

A food can be considered as functional if, beyond its nutritional outcomes, it provides 
benefits upon one or more physiological functions, thus improving health while reducing 
the risk of illness [1]. This definition – originally proposed by the European Commission 
Concerted Action on Functional Food Science in Europe (FuFoSE), should be refined in that: 
(i) the functional effect is different from the nutritional one; and (ii) the benefit provided 
requires scientific consubstantiation in terms of improvement of physiological functions, or 
reduction of occurrence of pathological conditions. The concept of functional food emerged 
in Japan during the 80's, chiefly because of the need to improve the quality of life of a 
growing elderly population – who typically incurs in much higher health costs [2]. 
Nowadays, a growing consumer awareness of the relationship between nutrition and health 
has made the market of functional foods to boom. 

Bioactive peptides can be commercially sold as nutraceuticals; a nutraceutical is an edible 
substance possessing health benefits that may accordingly be used to prevent or treat a 
disease. However, a distinction should be made between nutraceuticals taken to prevent 
diseases – and which are present as natural ingredients of functional foods consumed as 
part of the daily diet, and nutraceuticals used as adjuvants for treatment of diseases – which 
require pharmacologically active compounds. 

Milk and dairy products have been concluded to be functional foods; a number of studies 
have indeed shown that many peptides from milk proteins play a role in several metabolic 
processes, so a considerable interest has arisen from the part of the dairy industry towards 
large-scale production of dairy proteins in general, and bioactive peptides in particular. 
Manufacture of bioactive peptides is usually carried out through hydrolysis using digestive, 
microbial, plant or animal enzymes, or by fermentation with lactic starter cultures. In some 
cases, a combination of these processes has proven crucial to obtain functional peptides of 
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small size [3,4]. Proteins recovered from whey released by cheese manufacture already 
found a role as current ingredients on industrial scale. Use of these proteins (concentrated or 
isolated), and mainly of biologically active peptides derived therefrom as dietary 
supplements, pharmaceutical preparations or functional ingredients is of the utmost interest 
for the pharmaceutical and food industries – while helping circumventing the pollution 
problems associated with plain whey disposal. 

2. Cheese whey 

Despite having been labeled over the years as polluting waste owing to its high lactose and 
protein contents [5], whey is a popular protein supplement in various functional foods and 
the like [6]. In fact, whey compounds exhibit a number of functional, physiological and 
nutritional features that make them potentially useful for a wide range of applications 
(Table 1). 
 

Advantageous features Disadvantageous features 

High nutritional value of protein 
fraction in terms of amino acid residues 
(e.g. Lys, Thr, Leu, Ser)  

Possibility of lactose production in 
parallel  

Reduction in pollution owing to 
biochemical oxygen demand of proteins 

High dilution requiring costly dehydration  

High salt content (ca. 10 % of dry matter) 

High sugar content requiring delactosation 

Highly perishable raw material  

Widely dispersed cheese production facilities  

Technical innovation needed in separation 
(e.g. ultrafiltration and diafiltration) 

Table 1. Major features associated with use of whey (adapted from Alais [62]) 

Whey can be converted into lactose-free whey powder, condensed whey, whey protein 
concentrates and whey protein isolates [7] – all of which are commercially available at 
present. In the case of bovine milk, ca. 9 L of whey is produced from 10 L of milk during 
cheesemaking; estimates of worldwide production of cheese in 2011 point at ca. 15 million 
tonnes (United States Department of Agriculture – Foreign Agricultural Service). For 
environmental reasons, whey cannot be dumped as such into rivers due to its high chemical 
and biological oxygen demands. On the other hand, whey can be hardly used as animal feed 
or fertilizer due to economic unfeasibility.  

2.1. Physicochemical composition 

There are two types of whey, depending on how it is obtained; when removal of casein is 
via acid precipitation at its isoelectric point (pH 4.6 at room temperature) [8], it is called acid 
whey; however, the most common procedure is coagulation via enzymatic action, so the 
product obtained is called sweet whey [9-10].  
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Despite containing ca. 93 % water, whey is a reservoir of milk components of a high value: it 
indeed contains ca. half of the nutrients found in whole milk. Said composition depends 
obviously on how the cheese is produced and the milk source; the compound found to 
higher level is lactose (4.5-5 %, w/v), followed by soluble proteins (0.6-0.8 %, w/v), lipids 
(0.4-0.5 %, w/v) and minerals (8-10 %, w/wdry extract) – particularly calcium, and vitamins such 
as thiamine, riboflavin and pyridoxin [11-13]. In fact, whey is now considered as a co-
product rather than a by-product of cheese production, in view of its wide range of potential 
applications [13-15].  

2.2. Protein composition 

Milk has been recognized as one of the main sources of protein [16] in feed for young 
animals and food for humans of all ages [17]. Bovine milk contains ca. 3 % protein [9] – of 
which 80 % is caseins and 20 % is whey proteins [18]. Whey comprises a heterogeneous 
group of proteins that remain in the supernatant after precipitation of caseins; they are 
characterized by genetic polymorphisms that usually translate into replacement of one or 
more amino acid residues in their original peptide sequence. 

Two major types of proteinaceous material can be found in whey: -lactoglobulin (-Lg) 
and -lactalbumin (-La); and proteose-peptone (derived from hydrolysis of -casein, -
CN), small amounts of blood-borne proteins (including bovine serum albumin, BSA, and 
immunoglobulins, Igs), and low molecular weight (MW) peptides derived from casein 
hydrolysis (soluble at pH 4.6 and 20 °C) [16, 19]. Whey proteins have a compact globular 
structure that accounts for their solubility (unlike caseins that exist as a micellar suspension, 
with a relatively uniform distribution of non-polar, polar and charged groups). These 
proteins have amino acid profiles quite different from caseins: they have a smaller fraction 
of Glu and Pro, but a greater fraction of sulfur-containing amino acid residues (i.e. Cys and 
Met). These proteins are dephosphorylated, easily denatured by heat, insensitive to Ca2+, 
and susceptible to intramolecular bond formation via disulfide bridges between Cys 
sulfhydryl groups. Selected physicochemical parameters typical of whey proteins are 
tabulated in Table 2. 

 

Proteins Concentration (gL-1) MW (kDa) Isoelectric point (pI) 

-Lg 3 – 4  18.4 5.2 
-La 1.5 14.2 4.7 – 5.1 
BSA 0.3 – 0.6 69 4.7 – 4.9  
IgG, IgA, IgM 0.6 – 0.9 150 – 1000 5.5 – 8.3 
Lactoperoxidase 0.006 89 9.6 
Lactoferrin 0.05 78 8.0 
Protease-peptone 0.5 4 – 20  
Caseinomacropeptide  7  

Table 2. Characteristics of major whey proteins (adapted from Zydney [186]) 
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2.2.1. -Lactoglobulin (-Lg) 

The major protein in ruminant whey is -Lg, which represents ca. 50 % of the total whey 
protein inventory in cow's milk and 12 % of the total milk proteins [9, 20-21]. Although it 
can be found in the milk of many other mammals, it is essentially absent in human milk [22]. 
This is a globular protein, with 162 amino acid residues in its primary structure and a MW 
of 18.4 kDa. There are at least twelve genetic variants of -Lg (A, B, C, D, DR, DYAK/E, F, G, H, 
I, W and X) – of which A is the most common. 

The monomer of -Lg has a free thiol group and two disulfide bridges – which makes -Lg 
exhibit a rigid spacial structure [8]; however, its conformation is pH-dependent [23] – and at 
temperatures above 65 °C (at pH 6.5), -Lg denatures, thus giving rise to aggregate 
formation [24]. Between pH values 5.2 and 7.2, that protein appears as a dimmer – with a 
MW of 36.0 kDa [8]. At low pH, association of monomers leads to octamer formation; and, at 
high temperatures, the dimer dissociates into its monomers. The solubility of -Lg depends 
on pH and ion strength – but it does not precipitate during milk acidification [25]. 

A number of useful nutritional and functional features have made -Lg become an 
ingredient of choice for food and beverage formulation: in fact, it holds excellent heat-
gelling [26] and foaming features – which can be used as structuring and stabilizer agents in 
such dairy products as yogurts and cheese spreads. This protein is resistant to gastric 
digestion, as is stable in the presence of acids and proteolytic enzymes [22, 27-30]; hence, it 
tends to remain intact during passage through the stomach. It is also a rich source of Cys, an 
amino acid bearing a key role in stimulating synthesis of glutathione (GSH) – composed by 
three amino acids, Glu, Cys and Gly [31].  

Many techniques have been developed for purification of β-Lg – which normally rely on its 
precipitation [32-35]; when large scale purification is intended, precipitation is usually 
complemented by ion exchange [35-36]. 

2.2.2. -Lactalbumin (-La) 

-La appears quantitatively second in whey; it comprises ca. 20 % of all proteins in bovine 
whey, and 3.5 % of the total protein content of whole milk [9]. It is a calcium metalloprotein 
composed of 123 amino acids, with a MW of 14.4 kDa [37]; and appears as three genetic 
variants (A, B and C), with B being the most common [38]. Chromatographic and 
electrophoretic analysis within stability studies carried out at various times and 
temperatures (pH 6.7) indicated that -La is more heat resistant than -Lg – in part due to its 
denaturation being reversible below 75 °C [39]. Owing to such a relatively high thermal 
stability, it holds a poor capacity to gel; however, it can be easily incorporated in fluid or 
viscous products to increase their nutritional value. This protein is commercially used in 
supplements for infant formulae, because of its similarity in structure and composition to 
human milk proteins  – coupled with its higher content of Cys, Trp, Ile, Leu and Val 
residues, which make it also the ingredient of choice in sport supplements [13, 40-41]. 
Regarding tertiary structure, -La is a compact globular protein consisting of 26 % -helix, 
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14 % -sheet and 60 % other motifs; it is also very similar to lysozyme [9]. This protein is one 
of the most studied proteins with regard to understanding the mechanism of protein 
stability and folding/unfolding [42]; at low pH [43], high temperature [44] or moderate 
concentrations of denaturants – e.g. guanidine hydrochloride [45], -La adopts a 
conformational structure called molten globule. A partially unfolded state, the apo-state, is 
formed at neutral pH upon removal of Ca2+ by ethylenediamine tetracetic acid (EDTA) [46-
47]; this state preserves its secondary, but not its tertiary structure [48]. 

The molten globule state of -La retains a high fraction of its native secondary structure, as 
well as a flexible tertiary structure [45, 48-49]; it accordingly appears as an intermediate in 
the balance between native and unfolded states [50-51]. This structure of -La is highly 
heterogeneous, with proeminence of -helix driven mainly by weak hydrophobic 
interactions – while the -sheet domain is significantly unfolded. 

2.2.3. Caseinomacropeptide (CMP) 

CMP is a heterogeneous polypeptide fraction derived from cleavage of Phe105-Met106 in -
casein (-CN). When milk is hydrolyzed with chymosin during cheesemaking, -CN is 
hydrolyzed into two portions: one remains in the cheese (para--CN) and the other (CMP) is 
lost in whey; the latter is relatively small, with 63 residues and a MW of ca. 8 kDa [52]. 
Further to its polymorphisms, CMP may exist in various forms depending on the extent of 
post-transcriptional changes: it glycosylates through an O-glycoside bridge, and 
phosphorylates via a Ser residue. Note that post-transcriptional modifications of -CN 
occur exclusively in the CMP portion of the molecule. 

The amino acid sequence of CMP is well-known; it lacks aromatic amino acid residues 
(Phe, Trp and Tyr) and Arg, but several acidic and hydroxyl amino acids are present [53]. 
CMP from cow is soluble at pH in the range 1-10, with a minimum solubility (88 %) 
between pH 1 and 5 [54-55]. CMP appears to remain essentially soluble following heat 
treatment at 80-95 °C for 15 min at pH 4 and 7 [55]. Its emulsifying activity exhibits a 
minimum near the isoelectric point [54]. Dziuba and Minkiewicz [56] showed that a 
decrease in pH leads to a decrease in CMP volume, owing to reduction of internal 
electrostatic forces and steric repulsion; this apparently has a significant influence upon 
its emulsifying capacity. 

2.2.4. Bovine serum albumin (BSA) 

BSA is derived directly from the blood, and represents 0.7-1.3 % of all whey proteins [8]. Its 
molecule has 582 amino acid residues and a MW of 69 kDa – and contains 17 disulfide 
bonds and one free sulphydryl group [9]. Because of its size and higher levels of structure, 
BSA can bind free fatty acids and other lipids, as well as flavor compounds [57] – but this 
feature is severely hampered upon denaturation. Its heat-induced gelation at pH 6.5 is 
initiated by intermolecular thiol-disulphide interchange – similar to what happens with -
Lg [58].  
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2.2.5. Immunoglobulins (IGs) 

IGs represent 1.9-3.3 % of the total milk proteins, and are derived from blood serum [8]; they 
constitute a complex group, the elements of which are produced by β-lymphocytes. Igs 
encompass three distinct classes: IgM, IgA and IgG (IgG1 and IgG2) – with IgG1 being the 
major Ig present in bovine milk and colostrum [8], whereas IgA is predominant in human 
milk. The physiological function of Igs is to provide various types of immunity to the body; 
they consist of two heavy (53 kDa) and two light (23 kDa) polypeptide chains, linked by 
disulfide bridges [9]. The complete Ig, or antibody molecule has a MW of about 180 kDa 
[59]. Igs are partially resistant to proteolytic enzymes, and are in particular not inactivated 
by gastric acids [59]. 

2.2.6. Lactoferrin (LSs) 

LFs are single-chain polypeptides of ca. 80 kDa, containing 1-4 glycans depending on the 
species. Bovine and human LFs consist of 989 and 691 amino acids, respectively [60]: the 
former is present to a concentration of ca. 0.1 mg mL-1 [25, 61], and is an iron-binding 
glycoprotein - so it is thought to play a role in iron transport and absorption in the gut of 
young people.  

2.2.7. Proteose-peptones (PPs) 

The total PP fraction (TPP) of bovine milk represents ca. 10 % of the whole whey protein 
content; it is accounted for by the whey protein fraction soluble after heating at 95 °C for 30 
min, followed by acidification to pH 4.6 [62]. The TPP fraction is often divided in two main 
groups: the first one includes PPs originated from casein hydrolysis; its principal 
components have been labeled as 5 (PP5), 8 fast (PP8 fast) and 8 slow (PP8 slow), according 
to their electrophoretic mobility [62, 63]. PP3 constitutes the second group, and it is not 
derived from casein (it is actually found only in whey); it is known for its extreme 
hydrophobicity. 

2.3. Functional ingredients from whey proteins  

Whey proteins have unique characteristics [64] beyond their great importance in nutrition; 
they exhibit chemical, physical, physiological, functional and technological features also 
useful for food processing [14]. Based on these properties, more and more individual 
proteins and protein concentrates of whey have been incorporated in food at industrial 
scale. Therefore, whey proteins address two major issues in practice: nutritionally, they 
supply energy and essential amino acids, besides being important for growth and cellular 
repair; in terms of functionality, they play important roles upon texture, structure and 
overall appearance of food – e.g. gel formation, foam stability and water retention. 

A few physiological properties useful in therapies have been found [65]: a number of 
reviews have accordingly examined to some length the bioactive properties of whey 
proteins in general [66-67], or of -Lg and -La in particular [26]; other authors have covered 
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mainly such biological activities as anticarcinogenic [68] and immunomodulatory [69]. It 
was observed that whey proteins trigger immune responses that are significantly higher 
than those by diets containing casein or soy protein. Antimicrobial and antiviral actions, 
immune system stimulation and anticarcinogenic activity (among other metabolic features) 
have indeed been associated with ingestion of -Lg and -La, as well as LF, LP, BSA and 
CMP; the main biological activities of whey proteins are listed in Table 3. 

With regard to bioactive peptides, research has undergone a notable intensification during 
the past decade [4, 70]. Advances in nutritional biochemistry and biomedical research have 
in fact helped unravel the complex relationships between nutrition and disease, thus 
suggesting that food proteins and peptides originated during digestion (or from in vitro 
proteolysis) may play important roles in preventing or treating diseases associated with 
malnutrition, pathogens and injuries [71-72].  

 

Protein/Peptide Treatment Biological function Reference 

Whole whey protein  Prevention of cancer [74] 
         Breast and intestinal cancer; [14, 75] 
         Chemically-induced cancer [76-77] 
 Increment of gluthatione levels [64] 
         Increase of tumour cell vulnerability [78-79] 
 Antimicrobial activities [80] 
 Increment of satiety response  
 Increment in plasma amino acids, 

cholecystokinin and  glucagon-like 
peptide 

[81] 

Enzyme hydrolysis ACEa-inhibitor [82] 
 Antiulcerative  
         Prostaglandin production [83-85]  
Enzyme hydrolysis Antiulcerative  [83, 86] 

-Lactoglobulin  Transporter  
         Retinol  [9, 41, 87, 88] 
         Palmitate  [89] 
         Fatty acids  [90] 
 Cellular defence against oxidative stress 

and detoxification 
 [31, 65, 91-93] 

 Enhancement of pregastic esterase 
activity 

 [94] 

 Transfer of passive immunity  [95] 
 Regulation of mammary gland 

phosphorus metabolism 
 [96] 

Enzyme hydrolysis; 
Fermentation 

ACEa-inhibitor  [97-107] 

Enzyme hydrolysis Antimicrobial against several gram-
positive bacteria 

 [108-111] 

Enzyme hydrolysis Antimicrobial (bactericidal)  [112-113] 
Enzyme hydrolysis Hypocholesterolemic  [113-114] 
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Protein/Peptide Treatment Biological function Reference 

Enzyme hydrolysis Opioid agonist  [73, 97, 115] 
Enzyme hydrolysis Antihypertensive  [99, 116-117] 
Enzyme hydrolysis Ileum contracting  [97, 99] 
Enzyme hydrolysis Antinociceptive  [118] 
 Prevention of cancer  
Enzyme hydrolysis         Intestinal cancer  [14] 

-Lactalbumin  Prevention of cancer  [119] 
         Apoptosis of tumoral cells  [120-122] 
 Lactose synthesis  [25, 123] 
 Treatment of chronic stress-induced 

disease 
 [124] 

 Antimicrobial (bactericidal)  
         Streptococcus pneumonia  [125] 
 Stress reduction  [123, 126] 
 Immunomodulation  [127] 
Enzyme hydrolysis Antimicrobial against several gram-

positive bacteria 
 [108-110] 

Enzyme hydrolysis Opioid agonist  [97, 115, 128] 
Enzyme hydrolysis ACEa-inhibitor  [26, 97-98, 101, 

107] 
Enzyme hydrolysis Antihypertensive  [117, 129] 
Enzyme hydrolysis Ileum contracting  [97] 
 Antiulcerative  
         Prostaglandin production  [130-132] 

Bovine serum albumin

 

 Fatty acid binding  [13] 
 Antioxidant  [133-134] 
 Prevention of cancer  [135] 
Enzyme hydrolysis ACEa-inhibitor  [136-137] 
Enzyme hydrolysis Ileum contracting  [138] 
Enzyme hydrolysis Opioid agonist  [97, 128, 139] 

Immunoglobulins  Immunomodulation  [140] 
 Disease protection through passive 

immunity 
 [141-142] 

 Antibacterial  [143-145] 
 Antifungal  [146] 
 Opioid agonist  [147] 

Caseinomacropeptide  Antithrombotic  [148-153] 
 ACEa-inhibitor  [154-156] 
 Antimicrobial  [56, 111, 157-

160] 
Enzyme hydrolysis Prebiotic  [161] 
 Increment in plasma amino acids and 

cholecystokinin peptide 
 [162-165] 

ACEa- angiotensin-converting enzyme 

 

Table 3. Biological functions of whey proteins/peptides (adapted from Madureira et al. [87]) 
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Although inactive within the primary structure of their source proteins, hydrolysis (e.g. 
mediated by a protease) may release peptides with specific amino acid sequences possessing 
biological activity. A number of chemical and biological methods of screening have 
accordingly been developed to aid in search for specific health effects; however, only some 
of those found in vitro have eventually been confirmed in studies encompassing human 
volunteers [73]. 

Scientific evidence has shown that whey proteins contain a wide range of peptides that can 
play crucial physiological functions and modulate some regulatory processes (see Table 3). 
Due to its high biological value, coupled with excellent functional properties and clean 
flavor, whey has earned the status of a recommended source of functional ingredients [71] – 
designed to reduce or control chronic diseases and promote health, thus eventually reducing 
the costs of health care [3, 166].  

Favorable health effects have indeed been claimed for some peptides derived from food 
proteins – being able to affect the cardiovascular, nervous, digestive or immune systems; these 
encompass antimicrobial properties, blood pressure-lowering (or angiotensin-converting 
enzyme (ACE)-inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant 
activities, enhancement of mineral absorption and/or bioavailability thereof, cyto- or 
immunomodulatory effects, and opioid features. With regard to the mechanisms underlying 
the physiological roles of bioactive peptides, a few involve action only upon certain receptors, 
whereas others are enzyme inhibitors; they may also regulate intestinal absorption, and exhibit 
antimicrobial or antioxidant activities. Recall that oxidative metabolism is essential for survival 
of cells, but it generates free radicals (and other reactive oxygen species) as side effect – which 
may cause oxidative damage. Antioxidant activity has been found specifically in whey 
proteins, probably via scavenging of such radicals via Tyr and Cys amino acid residues – 
which is predominantly based on proton-coupled single electron or hydrogen atom transfer 
mechanisms; or else chelation of transition metals [167-168]. 

On the other hand, bioactive peptides derived from food proteins differ in general from 
endogenous bioactive peptides in that they can entail multifunctional features [98]. 
Furthermore, bioactive peptides that cannot be absorbed though the gastrointestinal tract 
may exert a direct role upon the intestinal lumen, or through interaction with receptors in 
the intestinal wall itself; some of these receptors have been implicated in such diseases as 
cancer, diabetes, osteoporosis, stress, obesity and cardiovascular complications.  

3. Production of bioactive peptides in whey 

Bioactive peptides derived from whey proteins constitute a new concept, and have open up 
a wide range of possibilities within the market for functional foods [4, 169]; of special 
interest are those released via enzymatic action – as happens during clotting in 
cheesemaking. 

The enzymes used to bring about milk coagulation are selected protein preparations that 
provide in general a high clotting activity – i.e. a considerable, but selective proteolytic 
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activity. Animal rennet obtained from the calf stomach, composed by 88-94 % and 6-12 % 
chymosin and pepsin, respectively, has been the coagulant of choice for cheesemaking. 
However, due to increased world production of cheese, the supply of animal rennet has lied 
below its demand; the increased prices have driven a search for alternative coagulants 
(including plant and microbial sources). With regard to animal rennet substitutes, pig 
pepsin has enjoyed a remarkable commercial success; with regard to rennet from microbial 
origin, the proteases from Mucor miehei, Mucor pusillus and Endothia parasitica are the most 
successful [170]. Recombinant bovine chymosin is, nowadays, one of the proteinases with 
greater commercial expression – even though its use is still prohibited in certain countries 
[171]. 

Chymosin and the other rennet substitutes are aspartic proteases, with optimal activity at 
acidic pH, and possessing high degree of homology in primary and 3-dimensional 
structures, 3-dimensional structure and catalytic mechanism. The specificity towards the 
substrate is, however, rather variable; although they have a greater tendency to break 
peptide bonds between hydrophobic amino acids having bulky side residues, they 
hydrolyze a large number of bond types [172]. Of particular interest is vegetable rennet, 
which – with few exceptions, enjoys a still limited use worldwide. Many plant enzyme 
preparations proved indeed to be excessively proteolytic for manufacture of cheese, causing 
defects in terms of flavor and texture of the final product. These difficulties arise from the 
presence of non-specific enzymes that belong to complex enzyme systems (which, as such, 
are difficult to control). An exception to the poor suitability of vegetable coagulants is the 
proteinases in aqueous extracts of plants of the Cynara genus – which have been employed 
for traditional cheesemaking in Portugal and Spain since the Roman period.  

Bioactive peptides derived from whey proteins can be released at industrial scale via 
enzyme-mediated hydrolysis with digestive enzymes – and pepsin, trypsin and 
chymotrypsin have been the most frequent vectors therefor [4, 169, 173]. However, whey 
proteins are not easily broken down by proteases in general – a realization that also explains 
their tendency to cause allergies upon ingestion [174]. Hence, less conventional sources of 
proteolytic enzymes have been sought that can cleave the whey protein backbone at specific 
and usual sites. This is the case of aspartic proteinases present in the flowers of Cynara 

cardunculus – a plant related to the (common) globe artichoke. They can cleave the whey 
protein backbone next to hydrophobic amino acid residues, especially Phe, Leu, Thr and Tyr 
[82, 175], and act mainly on α-La, either in whole whey or following concentration to whey 
protein concentrate (WPC) [176-178]; conversely β-Lg appears not to be hydrolyzed thereby 
to a significant extent [82, 175].  

4. Recovery of proteins/peptides from whey 

The relatively low concentration of proteins in whey requires concentration processes to 
assure high hydrolysis productivity. Development of membrane separation techniques has 
been essential toward this endeavor – and food industry has taken advantage of its 
relatively easy scale-up, as well as its being inexpensive when compared with preparative 



 
Whey Proteins as Source of Bioactive Peptides Against Hypertension 85 

chromatographic techniques [41]. Furthermore, the absence of heat treatment allows the 
bioactive components to remain intact (or become only slightly affected) during processing. 
Recall that membrane separation allows differential concentration of a liquid, provided that 
the solute of interest is larger in molecular diameter than the membrane pores – so the liquid 
that percolates the membrane (filtrate) contains only components smaller than that size 
threshold [179].  

The dairy industry has pioneered development of equipment and techniques for membrane 
filtration, which recovers whey proteins in a non-denatured state. Typical procedures 
include: (i) basic membrane separation, e.g. reverse osmosis, ultrafiltration and diafiltration 
[180-186], that permits fractionation of proteins, as well as concentration and purification 
thereof; (ii) nanofiltration (or ultraosmosis) that allows removal of salts or low MW 
contaminants; and (iii) microfiltration to remove suspended solid particles or 
microorganisms [179, 187]. Note that isolation of individual whey proteins on laboratory 
scale has resorted chiefly to salting out, ion exchange chromatography and/or crystallization 
[188]; such a fractionation allows fundamental studies of their immunological properties to 
be carried out, which are necessary to establish and support industrial interest [189-190]. 

5. Activity of peptides from whey upon hypertension 

Hypertension is a major public health issue worldwide that affects nearly one fourth of the 
population; and it is usually associated with such other disorders as obesity, pre-diabetes, 
renal disease, atherosclerosis and heart stroke [191-194]. Its specific treatment will likely 
reduce the risk of incidence of cardiovascular diseases, which currently account for 30 % of 
all causes of death [195].  

Blood pressure can be regulated through diet changes and physical exercise, as well as 
administration of calcium T channel antagonists, angiotensin II receptor antagonists, 
diuretics and ACE inhibitors [104]. A few mechanisms have been described that rationalize 
how peptides lower blood pressure. Traditionally, control of hypertension has focused on 
the renin-angiotensin system, via inhibition of ACE [173]. Captopril, enalapril and lisinopril 
have accordingly been used as antihypertensive drugs that act essentially as ACE inhibitors; 
they found a widespread application in treatment of patients with hypertension, heart 
failure or diabetic nephropathies [193, 196-197]. However, they bring about undesirable side 
effects, so safer (and, hopefully, less expensive) alternatives are urged [198-199].  

In fact, increasing evidence has been provided that mechanisms other than ACE inhibition 
may be involved in blood pressure decrease arising from consumption of many food-
derived peptides [200]; although there are few studies to date with antihypertensive 
peptides obtained from whey. One of them corresponds to interaction with opioid receptors 
that are present in the central nervous system and in peripheral tissues, while another is 
based on release of nitric oxide (NO) that causes vasodilatation and thus affects blood 
pressure. Those peptides hold the advantage of no side effects, unlike happens with such 
other opiates as morphine [102]. One example is α-lactorfin, a tetrapeptide derived from α-
La [129, 201], for which studies showed that antihypertensive effects are mediated through 
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the vasodilatory action of binding to opioid receptors. Furthermore, endothelium-
dependent relaxation of mesenteric arteries in spontaneously hypertensive rats (SHR, which 
is the animal model normally accepted to study human hypertension) that was inhibited by 
an endothelial nitric oxide synthase (eNOS) inhibitor was also observed [202]. That peptide 
may even chelate minerals, and thus facilitates calcium absorption [200].  

Alternative mechanisms are other routes of vasoregulator substance synthesis – e.g. 
kallikrein-kinin, neutral endopeptidase and endothelin-converting enzyme systems. The 
release of vasodilator substances like prostaglandin I2 or carbon monoxide could be implied 
in dependent and independent mechanisms of ACE inhibition responsible for 
antihypertensive effects [203-205]; an example is the peptide ALPMHIR, which inhibits 
release of an endothelial factor (ET-1) that causes contractions in smooth muscle cells [206].  

In the last decade, production of antioxidant peptides from whey has been reported [207]. 
Experimental evidence – including SHR and human studies, claimed that oxidative stress is 
one of the causes of hypertension and several vascular diseases, via increase production of 
reactive oxygen species and reduction of NO synthesis and bioavailability of antioxidants 
[208].  

Nevertheless, the most intensively studied peptides – i.e. VPP and IPP derived from 
caseins, showed possible mechanisms of action that could be found also in other peptides. 
In studies performed with rats, VPP and IPP increased plasma renin levels and activity 
[202]; and decreased ACE activity in the serum; they also showed endothelial function 
protection in mesenteric arteries [208]. The influence of VPP and IPP on gene expression 
of SHR abdominal aorta unfolded a significant increase of genes related with blood 
pressure regulation – the eNOS and connexin 40 genes [208]. Other studies have 
highlighted the peptide effects on the vasculature itself, showing that the antihypertensive 
activity of the peptide rapakinin is induced mainly by CCK1 and IP-receptor-dependent 
vasorelaxation; this peptide relaxes the mesenteric artery of SHR via prostaglandin I2-IP 
receptor, followed by CCK-CCK1 receptor pathway; other peptides improve aorta and 
mesenteric acetylcholine relaxation, and decrease left ventricular hypertrophy, 
accompanied by significant decrease in interstitial fibrosis [209]. In order to prevent 
hypertension, two alternative enzyme inhibitors were suggested: renin (a protease 
recognized as the initial compound of the renin–angiotensin system) and platelet-
activating factor acetylhydrolase (PAF-AH) (a circulating enzyme secreted by 
inflammatory cells and involved in atherosclerosis) [208]. 

5.1. Inhibition of angiotensin-converting enzyme (ACE) 

Since diet has a direct relationship to hypertension, the food industry (in association with 
research and public health institutions) has promoted development of novel functional 
ingredients that can contribute to keep a normal blood pressure – thus avoiding the need to 
take antihypertensive drugs [73, 173, 209-212]. Various investigators have accordingly 
hypothesized that certain peptides formed through hydrolysis of food proteins have the 
ability to inhibit ACE; López-Fandiño [173], FitzGerald [104, 137], Gobetti [213], Meisel 
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[214], Korhonen and Pihlanto [4], Silva and Malcata [215], Vermeirssen [216], and Martínez-
Maqueda [208] have comprehensively reviewed this subject. In general, it has been claimed 
that a diet rich in foods containing antihypertensive peptides is effective toward prevention 
and treatment of hypertension [173, 201]. 

ACE-inhibitory peptides may be obtained from precursor food proteins via enzymatic 
hydrolysis, using viable or lysed microorganisms or specific proteases [3, 73, 137, 169]. 
Although in vitro studies are useful at screening stages, the efficacy and safety of such 
peptides requires in vivo testing – first in animals, and then in human volunteers [217]. This 
issue is particularly relevant because in vitro ACE inhibition does not necessarily correlate 
with in vivo antihypertensive features, as peptides often undergo breakdown during 
gastrointestinal digestion that hampers manifestation of their potential physiological 
function. Conversely, antihypertensive activity may be promoted after long-chain peptide 
precursors release bioactive fragments by gastrointestinal enzymes [73]. 

In the latest two decades, various active peptides have been identified from animal proteins, 
including some with antihypertensive effects in animals (e.g. SHR) and even in humans [3, 
73, 137, 169, 173, 201, 208, 212, 217, 299]: bovine plasma proteins [218], egg proteins [203, 
219] and tuna proteins [220]; but also plant proteins, e.g. from soy [221], wine [222] and 
maize [223]. Nevertheless, milk proteins still appear to be the best source of ACE-inhibitory 
peptides. 

Recall that caseins are the most abundant proteins in milk, and have an open and flexible 
structure that makes them susceptible to attack by proteases; hence, many ACE-inhibitors 
have been obtained via enzyme-mediated approaches [224-225] – e.g. casokinins. Studies on 
peptides with ACE-inhibitory activity obtained from whey proteins (called lactokinins) are 
more limited – which may be due to the rigid structure of -Lg (the major whey protein) 
that makes it particularly resistant to digestive enzymes. However, bioactive protein 
fragments with ACE-inhibitory activity have been found in whey protein hydrolyzates [107, 
217, 226-228]; and Manso and López-Fandiño [155] also identified this activity in CMP 
hydrolyzates. Characterization of hydrolyzates of the main whey proteins – including the 
amino acid sequences of peptides therein that exhibit in vitro ACE-inhibiting activity, is 
provided in Table 4.  

The ACE-inhibitory activity depends on the protein substrate and the proteolytic enzymes 
used to break it down. ACE (i.e. a dipeptidyl carboxypeptidase) is an enzyme ubiquitous in 
tissues and biological fluids – where it plays an important physiological role upon 
regulation of the cardiovascular function, including a basic role in regulation of peripheral 
blood pressure via the renin-angiotensin system [229-230]. ACE inhibitors and angiotensin II 
receptor blockers [231-232] have been therapeutically important, since they act as efficient 
drugs and bring about very few collateral effects. 

ACE-inhibitor peptide can reduce blood pressure in a process regulated (in part) by the 
renin-angiotensin system: renin — a protease secreted in response to various physiological 
stimuli, cleaves the protein angiotensinogen to produce the inactive decapeptide 



 

Bioactive Food Peptides in Health and Disease 88 

Source 

protein 

Enzyme Peptide 

fragment 

Amino acid 

sequence 

IC50

(µM)a 

Reduction in SBPb 

(mm Hg) 

(Dose (mg kg-1bw)) 

Refe-

rences 

Whole whey 

protein 
Fermentation + trypsin 
+ chymotrypsin 

-Lg f9-14  GLDIQK 580  [104, 233] 

Yogurt starter + 
trypsin + pepsin 

-Lg f15-20  VAGTWY 1682  [100] 

Fermentation with 
lactic acid bacteria + 
prozyme 6 

-Lg f17-19 GTW 464.4  [105] 

Cardosins -Lg f33-42 DAQSAPLR
VYc 

12.2 10 (5) [107, 117] 

Proteinase K -Lg f78-80  IPAc 141 31 (8) [136]  

Cardosins -La f16-26 KGYGGVSL
PEWc 

0.7 20 (5) [107, 117] 

Cardosins -La f97-103 DKVGINYc 99.9  [107] 
Cardosins -La f97-104 DKVGINY

Wc 
25.4 15 (5) [107, 117] 

Fermentation + trypsin 
+ chymotrypsin 

-La f105-110 LAHKAL 621  [100] 

Fermentation by 
cheese microflora 

-La f104-108  WLAHK 77  [233] 

Neutrase -La f105-110 INYWL 11  [234] 
-

Lactoglobulin 
Trypsin f7-9 MKG 71.8  [103] 
Trypsin f10-14 LDIQK 27.6  [103] 
Pepsin + trypsin + 
chymotrypsin 

f15-19 VAGTW 1054  [233] 

Trypsin f22-25 LAMA 556  [233] 
Trypsin f32-40 LDAQSAPL

R 
635  [233] 

Protease N Amano f36-42 SAPLRVY 8  [235] 
Thermolysin f58-61 LQKWc 34.7 18.1 (10) [103, 236]  
Trypsin f81-83 VKF 1029  [233] 
Pepsin + trypsin + 
chymotrypsin 

f94-100 VLDTDYK 946  [106, 233] 

Pepsin + trypsin + 
chymotrypsin 

f102-103 YLc 122  [214] 

Pepsin + trypsin + 
chymotrypsin 

f102-105 YLLFc 172  [113] 

Thermolysin f103-105 LLFc 79.8 29 (10) [113, 236]  
Pepsin + trypsin + 
chymotrypsin 

f106-111 CMENSA 788  [233] 

Pepsin + trypsin + 
chymotrypsin 

f142-145 ALPMc 928 21.4 (8) [116] 

Pepsin + trypsin + 
chymotrypsin 

f142-146 ALPMHc 521  [233] 

Trypsin f142-148 ALPMHIRc 43  [226] 
-Lactalbumin Thermolysin f15-26 LKGYGGVS

LPEW 
83  [237] 

Thermolysin f18-26 YGGVSLPE
W 

16  [237] 

Thermolysin f20-26 GVSLPEW 30  [237] 
Thermolysin f21-26 VSLPEW 57  [237] 
Synthetic f50-51 or f18- YGc 1522  [98] 



 
Whey Proteins as Source of Bioactive Peptides Against Hypertension 89 

Source 

protein 

Enzyme Peptide 

fragment 

Amino acid 

sequence 

IC50

(µM)a 

Reduction in SBPb 

(mm Hg) 

(Dose (mg kg-1bw)) 

Refe-

rences 

19 
Pepsin + trypsin + 
chymotrypsin 

f50-52 YGL 409  [233] 

Pepsin  f50-53 YGLFc 733 23.4 (0.1) [129, 233]  
Synthetic f52-53 LFc 349  [26] 
Trypsin f99-108 VGINYWLA

HK 
327  [233] 

Trypsin f104-108 WLAHK 77  [233] 
Bovine serum 

albumin 
Proteinase K f208-216 ALKAWSV

ARc 

3  [238]  

Proteinase K f221-222 FP 315 27 (8) [136]  
Caseinomacrop

eptide 

Trypsin f106-112 MAIPPKK  28 (10) [239] 

Lactoferrin Pepsin f20-25 RRWQWR  16.7 (10) [240] 
Pepsin f22-23 WQ  11.4 (10) [240] 

a Concentration of peptide needed to inhibit 50 % of original ACE activity. 
b Systolic blood pressure. 
c Synhetic peptides used. 

Table 4. Primary structural characteristics of whey peptides with ACE-inhibitory activity and 
antihypertensive activity in spontaneously hypertensive rats, and vectors of generation thereof. 

angiotensin I. Cleavage of angiotensin I – via removal of two amino acid residues from the 
C-terminal end by ACE, produces the active octapeptide angiotensin II that is a potent 
vasoconstrictor; however, there are alternative routes to generate angiotensin II [198, 241-
242]. Angiotensin II activates angiotensin II type 1 (AT1) receptor — a member of the G-
protein-coupled-receptor superfamily, which plays various roles, e.g. vasoconstriction, as 
well as stimulation of aldosterone synthesis and release (which leads to sodium retention, 
and thus increases blood pressure) [198, 217, 242]. In addition, ACE acts on the kallikrein-
kinin system, catalyzing degradation of the nonapeptide bradykinin – which is a vasodilator 
[241]. ACE-inhibitor peptides exert a hypotensive effect by preventing angiotensin II 
formation and degradation of bradykinin, thus reducing blood pressure in hypertensive 
patients [217].  

Several tests on SHRs – probably the best experimental model for antihypertensive studies 
because they exhibit vascular reactivity and renal function similar to those in human beings 
[243], have been described that prove control of arterial blood pressure following a single 
oral administration of known ACE-inhibitory hydrolyzates or/and peptides derived from 
whey proteins. The antihypertensive effect associated with some of those peptides is 
comparable to that exhibited by VPP – an antihypertensive peptide included in functional 
foods that is already available in the market [117, 129, 137, 154, 201, 210-212, 242, 244-247]. 
To measure ACE-inhibitory activity, distinct biological, radiochromatographic, colorimetric 
and radioimmunologic methods have been employed – using angiotensin I as substrate. 
Chemical methods are sensitive, and resort to a tripeptide with a substituted amino-
terminus, Z-Phe-His-Leu, as ACE-substrate – from which the dipeptide His-Leu is released 
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and quantified by specific fluorometric procedures. A similar tripeptide used as substrate of 
ACE is Bz-Gly-His-Leu, or Hippuryl-His-Leu (HHL); upon incubation with the enzyme, 
hippuric acid is formed and the dipeptide His-Leu is released, which is subsequently 
measured by one of several colorimetric [248] or fluorometric methods [249], or even by 
capillary electrophoresis [250].  

One of the most performing methods to measure ACE-inhibitory activity was developed by 
Cushman and Cheung [251], and is based on spectrophotometric measurement at 228 nm of 
hippuric acid formed by incubating the substrate HHL with ACE – in the presence of 
selected inhibitory substances. More recently, a modified tripeptide, furanacriloil Gly-Phe-
Gly, has been chosen as substrate for a spectrophotometric method [252]. The ACE-
inhibitory activity is usually measured in terms of IC50 (i.e. the concentration of inhibitory 
substance required to inhibit 50 % of ACE activity); a low IC50 value means that a small 
concentration of inhibitory substance is required to produce enzyme inhibition, so that 
substance displays a potent inhibitory activity. 

As shown in Table 4, ACE-inhibitor peptides are produced mainly by enzymatic hydrolysis, 
but active sequences have also been obtained via chemical synthesis [253]. Starter and non-
starter bacteria are commonly used in cheese manufacture – taking advantage namely of 
their proteolytic system, which contains at least 16 different peptidases that have already 
been characterized. Some of these bacteria were found to have ACE-inhibitory activity, or 
release peptides with this activity. For instance, Lactobacillus helveticus is able to release ACE-
inhibitory peptides; the best-known ACE-inhibitory peptides – viz. VPP and IPP, have 
indeed been identified in milk fermented with L. helveticus strains [154, 244, 254]. More 
recently, an ACE-inhibitory peptide derived from -CN – FFVAPFPEVFGK, was 
successfully expressed by genetic engineering in Escherichia coli [255]. 

5.1.1. Structure/activity relationships 

ACE-inhibitor peptides contain usually between 2 and 12 amino acid residues – even 
though larger peptides may also exhibit such an activity [173]. Ondetti [229] rationalized the 
interaction of competitive inhibitors for the ACE active site based on enzyme homology 
with carboxypeptidase A; the first ACE-inhibitor (i.e. captopril), which is one of the oral 
drugs widely used to treat hypertension, was designed based on this model. Recently, this 
model was reviewed and used to design even more potent ACE inhibitors [229, 256-257]. 
The base model proposes that residues of the carboxy-terminal (C-terminal) tripeptide 
interact with the S1, S'1 and S'2 subunits of the enzyme active site. One of the subunits has a 
positively charged group that forms an ionic bond with the C-terminal peptide group. The 
following subunit contains a group capable of interacting with the peptidic bond of the C-
terminal amino acid – probably through hydrogen bonding. The third subunit has a Zn2+ 
atom able to carry the carbonyl group of the peptidic bond between the one before the last 
and the last amino acid residue of the substrate – thus making it more susceptible to 
hydrolysis [256]. 
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Although the relationships between structure and activity have not been fully elucidated, 
ACE-inhibitory peptides possess a number of analogies with each other. The tripeptide at 
the C-terminus is crucial – because this is where the peptide binds to the active site of the 
enzyme [256]. ACE prefers substrates (or competitive inhibitors) with hydrophobic residues 
(e.g. Trp, Tyr, Phe and Pro) at the C-terminus, and shows poorer affinity to substrates 
containing dicarboxylic amino acids in the final position, or those that have a Pro residue in 
the one before the last position. However, presence of Pro as the last residue [258], or in the 
third position from the terminus [259] favors binding of peptide to enzyme, in much the 
same way as when Leu appears in the last position [260,261]. 

Bioinformatics has been used more recently to find the structural requirements of ACE-
inhibitor peptides; these are termed quantitative structure/activity relationship (QSAR) 
models. Through a QSAR model, Pripp [262] concluded – for milk-derived peptides up to 
six amino acids in length, that there is a relationship between ACE-inhibitory activity and 
presence of a hydrophobic (or positively charged) amino acid residue in the last position of 
the sequence; however, no special relation was found with the structure of the N-terminus. 
Based on the QSAR model for peptides containing between 4 and 10 amino acid residues, 
Wu [263] claimed that the residue of the C-terminal tetrapeptide may determine the potency 
of ACE inhibition – with preference for Tyr and Cys in the first C-terminal position; His, Trp 
and Met in the second; Ile, Leu, Val and Met in the third; and Trp in the fourth position. 
Results from other QSAR-based studies aimed at finding ACE-inhibitory activity of di- and 
tripeptides derived from food proteins have shown that dipeptides with hydrophobic 
chains, as well as tripeptides with an aromatic amino acid residue at the C-terminus, a 
positively charged residue at the intermediate position and a hydrophobic amino acid 
residue at the N-terminus are likely to exhibit ACE-inhibitory power [263].  

On the other hand, a biopeptide may adopt a different configuration depending on the 
prevailing environmental conditions; but the final structural conformation may be crucial 
for its ACE-inhibitory activity. The fact that the catalytic center of ACE has different 
structural requirements may unfold the need to develop complex mixtures of peptides, with 
different structural conformations, so as to produce more complete inhibition than a single 
peptide [264]. Meisel [265] postulated that the mechanism of ACE inhibition may involve 
interaction of inhibitor with the subunits that are not normally occupied by substrate, or 
with the anionic bond site that is different from the enzyme catalytic center. Moreover, 
somatic ACE has two homologous domains – each of which has an active site with distinct 
biochemical characteristics. In vitro ACE-inhibition studies showed that it is necessary to 
block the two active centers for complete inhibition of its action upon angiotensin I and 
bradykinin. Nevertheless, in vivo studies in rats showed that the selective inhibition of the 
N- or C-terminal domains of ACE prevents conversion of angiotensin I to II, but not of 
bradykinin [266]. 

Despite the importance arising from the three amino acids in their C-terminus, it was shown 
that peptides with identical sequences at the C-terminus may exhibit quite different ACE-
inhibitory activities from each other. One example is VRYL and VPSERYL, both identified in 
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Manchego cheese; despite having the same C-terminal tripeptide sequence, they exhibit IC50 
values of 24.1 M and 249.5 M, respectively – i.e. the latter is 10-fold less active than the 
former. If Val were replaced by a dicarboxylic amino acid at the fourth position of the C-
terminus, e.g. via synthesis of ERVL, the IC50 measured would be 200.3 M, which 
corresponds to an ACE-inhibitory activity 8-fold lower than VRYL – hence demonstrating 
the crucial role of Val in that position for the intended bioactivity [261]. 

5.1.2. Bioavailability 

Among the several bioactive peptides studied to date, ACE-inhibitory peptides have 
received particular attention because of their beneficial effects upon hypertension [226, 233, 
267]. Note that such effects depend on their ability to reach the target organs without having 
undergone decay or transformation. Tests encompassing hypertensive animals and human 
clinical trials have shown that certain sequences can lower blood pressure; however, it is 
difficult to establish a direct link between the ability to inhibit ACE in vitro and the actual 
antihypertensive activity in vivo. Knowledge of the mechanism of action of such bioactive 
peptides is obviously crucial before manufacture of functional foods with physiological 
properties is in order [268]. 

Some peptides with ACE-inhibitory and antihypertensive activities can be transported 
through the intestinal mucosa via the PepT1 transporter [269]; likewise, there is evidence 
that other peptides may exert a direct role upon the intestinal lumen [151, 270-271]. 
Digestive enzymes, absorption through the intestinal tract and blood proteases can bring 
about hydrolysis of ACE-inhibitor peptides, thus producing fragments with lower or greater 
activity than their precursor sequences [216]. Hence, for ACE-inhibitor peptides exert an in 

vivo effect, they should not act as substrates of the enzyme. Peptides may accordingly be 
classified into three groups based on their behavior regarding ACE: (1) true inhibitors, for 
which IC50 is not modified when incubated with the enzyme; (2) ACE-substrates, which are 
hydrolyzed during incubation, thus giving rise to fragments with a lower ACE-inhibition 
activity; and (3) peptides that are converted to real inhibitors by ACE and gastrointestinal 
protease action. Note that only sequences belonging to groups 1 and 3 may show an 
antihypertensive effect [245]. 

Effective inclusion of ACE-inhibitory peptides in the diet consequently requires them to 
somehow resist the strong stomach hydrolysis that may cause loss of bioactivity [104], and 
afterwards be able to pass into the blood stream – where they should be resistant to 
peptidases therein, so as to eventually reach the target sites where they are supposed to 
exert their physiological effects in vivo. The structure and bioactivity of short-chain peptides 
are more easily preserved through gastrointestinal passage than those of their long-chain 
counterparts [272] – whereas sequences containing Pro residue(s) are generally more 
resistant to degradation by digestive enzymes [273]. Furthermore, peptides absorbed 
following digestion may accumulate in specific organs, and then exert their action in a 
systematic and gradual manner [274, 275]. However, antihypertensive peptides that cannot 
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be absorbed from the digestive tract may still exert their function directly in the intestinal 
lumen – e.g. via interaction with receptors on the intestinal wall [97, 265, 276].  

Besides carrying out protein degradation to varying extents, gastrointestinal digestion plays 
a key role in formation of ACE-inhibitory peptides [216, 277]; hence, it is relevant to assess 
the gastrointestinal bioavailability of any potentially interesting peptides. Several studies 
have accordingly provided evidence for this realization – as happened with Manchego 
cheese, as well as with other fermented solutions and infant formulae [100, 261, 278-281]; for 
instance, a potent antihypertensive peptide was released via gastrointestinal digestion from 
a precursor with poor ACE-inhibitory activity in vitro [282] – and some peptides possess a 
remarkable intrinsic stability, whereas others are susceptible to unwanted degradation [136, 
261, 281]; however, whether of any of those options will apply cannot be known in advance. 

Animal and human trials are therefore nuclear when assessing bioactivity of peptides; 
peptides that do not show in vitro activity may exhibit in vivo antihypertensive activity, and 
vice versa. For instance, YKVPQL identified in a casein hydrolyzate and released by a 
proteinase from L. helveticus CP790, had a high in vivo ACE-inhibitory activity (IC50 22 M) 
but did not show any antihypertensive one [282] – probably as a consequence of 
degradation during the digestion process [137]. When the hydrolyzate was purified, another 
peptide sequence (KVLPVPQ) was found. Unlike the previous case – with a low in vitro 
ACE-inhibitory activity (IC50 > 1000 M), the latter showed a potent in vivo antihypertensive 
activity. It was claimed that this was due to pancreatic digestion that releases Gln, thus 
forming KVLPVP; furthermore, this fragment showed ACE-inhibitory activity in vitro, 
characterized by an IC50 of only 5 M. Finally, there are reports on peptides with a low ACE-
inhibitory activity in vitro that possess antihypertensive activity in vivo – owing to a 
hypotensive mechanism of action distinct from that of ACE inhibition. One example is YP, 
the IC50 of which is 720 M; however, it significantly decreases blood pressure between 2 
and 8 h after oral administration to SHR [283]. It should be emphasized that in vivo tests of 
(putatively) promising bioactive peptides should not come into play before careful in vitro 
models have been checked – as they can provide useful preliminary information on the 
stability of such peptides upon exposure to the various peptidases and proteinases that they 
will likely find in the gastrointestinal tract, prior to eventual transport across the intestinal 
barrier [278-279].  

Simulated (physiological) digestion is a useful tool to assess the stability of peptides with 
ACE-inhibitory activity against digestive enzymes. However, the degree of hydrolysis of a 
given peptide depends not only on its size and nature, but also on the presence of other 
peptides in its vicinity [272] – which would make it difficult to test the required number of 
possibilities in a rather limited experimental program. Several in vitro studies were carried 
out that show the importance of digestion upon formation and degradation of ACE-
inhibitor peptides [107, 272, 278-280, 284]. In these studies, peptides were subjected to two 
stages of hydrolysis that mimic digestion in the body. First, hydrolysis with pepsin, at acidic 
pH, intended to simulate the digestion process prevailing in the stomach; and second, 
digestion with a pancreatic extract, at basic pH as prevailing during intestinal digestion. 
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Results encompassing prior or subsequent hydrolysis of peptides showed that in vitro 
digestion controls bioavailability of ACE-inhibitor peptides [162, 278]  

Some authors used whey proteins, fermented (or not at all) with L. helveticus and 
Saccharomyces cerevisiae, and then subjected them to gastrointestinal digestion; they reached 
a maximum ACE-inhibitory activity, and unfermented samples were the most active. 
However, some peptides with in vivo antihypertensive activity – as is the sequence 
KVLPVPQ, and which did not show in vitro ACE-inhibitory activity, could be transformed 
to active forms via gastrointestinal digestion [282]. Simulation of digestion is also useful in 
studies of the mechanism of action of antihypertensive peptides with demonstrated in vivo 
activity. For example, Miguel [277] found that YAEERYPIL derived from ovalbumin – 
which is a powerful ACE-inhibitor (IC50 = 4.7 M) and exhibits antihypertensive activity, 
was susceptible to degradation by digestive enzymes; that peptide was indeed fully 
hydrolyzed during simulated gastrointestinal digestion, thus giving rise to fragments 
YAEER and YPI. Tests on mice showed that YAEER could not significantly lower blood 
pressure, but the peptide YPI exhibited a significant antihypertensive effect. This fragment 
may possibly be the active form hidden in the sequence YAEERYPIL, and may exert its 
action via a different mechanism of ACE-inhibition [285]. 

In vitro models provide useful information to assess the stability of bioactive peptides to 
different peptidases and proteinases of the body, yet transport across the intestinal barrier 
raises an extra resistance – so they have limitations. In vitro simulated digestion is in fact not 
entirely reliable; the degree of hydrolysis depends on the size, nature and neighborhood of 
the peptide [272], so in vivo studies (with laboratory animals and human volunteers) are 
eventually necessary to ascertain in full the behavior of the peptide. Another example is the 
release of potent ACE-inhibitory peptides from WPC brought about by aqueous extracts 
from the plant C. cardunculus. A peptide mixture – in which 3 peptides were pinpointed:  α-
La f(16-26), with the sequence KGYGGVSLPEW; α-La f(97-104), with the sequence 
DKVGINYW; and β-Lg f(33-42), with the sequence DAQSAPLRVY, produced ACE-
inhibition (see Table 4). Such peptides were then exposed to simulated gastrointestinal 
digestion: no peptide was able to keep its integrity, but even total hydrolysis to smaller 
peptides did not significantly compromise the overall ACE-inhibitory activity observed. In 
view of their ACE-inhibitory activities, both in the absence or following gastrointestinal 
digestion, peptides KGYGGVSLPEW and DAQSAPLRVY are expected to eventually exhibit 
notable antihypertensive activities in vivo [107]. 

6. Concluding remarks 

Processing of whey proteins yields several bioactive peptides able to trigger physiological 
effects in the human body. Such peptides, in concentrated form, can be commercially 
appealing because their claimed health-promoting features are nowadays an important 
driver for consumers’ food choices. Hence, they may constitute an excellent alternative for 
whey upgrade. Use of selective membranes to isolate, and eventually purify whey 
proteins and peptides has substantially increased the number and depth of studies 
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encompassing those molecules and their hydrolysates. The technology developed is not 
excessively expensive, and can easily be implemented in dairy plants – of either small or 
large dimension. Most whey peptides bearing biological activity are released by 
enzymatic hydrolysis, so new alternatives to enzymes of animal origin have been under 
scrutiny.  

This chapter focused on studies of whey peptides with antihypertensive activity – including 
their mechanisms of action (especially ACE inhibition), as well as the bioavailability of these 
peptides, and highlighting the main in vitro and in vivo results, as well as clinical trials in 
humans.  

Although a good deal of data have been generated encompassing food bioactive peptides, 
much is still left to do with whey peptides. Hence, several opportunities for further research 
exist, on incorporation of said ingredients in food products for human consumption. 
However, several scientific, technological and regulatory issues should be addressed before 
such peptide concentrates (and pure peptides) will have a chance to be marketed at large, 
aiming at both human nutrition and health. 

More detailed studies are indeed welcome for a better understanding of antihypertensive 
mechanisms. In particular, the antihypertensive activity should be checked with extra 
detail – including deep studies on the blood pressure-reducing mechanisms, such as the 
effects of peptides on neutral endopeptidases and their putative beneficial activity upon 
cardiovascular diseases. The pharmacological effect of said peptides should be 
determined both on post- and prejunctional receptors. More extensive clinical 
trials should also be performed – after thorough bioavailability studies in vitro, such as 
stability to gastrointestinal digestion and passage through the blood barrier, have taken 
place.  
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