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Chapter 9

Monte-Carlo Simulation of Particle Diffusion in Various
Geometries and Application to Chemistry and Biology
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1. Introduction

The simulation of systems comprising different types of molecules is of great interest in several
fields, notably in chemistry and biological sciences. The conventional approach to simulate
biological networks is to write down macroscopic rate equations and solve the corresponding
differential equations numerically to obtain the time evolution of molecules concentrations
[1-3]. In this method, the system evolution is deterministic, and it is implicitly assumed that
the concentrations are large. However, in most biological systems, the concentrations of
molecules usually range from nanomolar to micromolar; therefore, the interactions of these
molecules are highly stochastic. Recently, various techniques have been developed to take into
account the spatial distribution of individual molecules and the stochastic character of
reactions between them. Several of these techniques are based on the Green's functions of the
Diffusion Equation (DE), and they offer the advantage of being able to follow all the particles
in time and space. In this book chapter, this method is applied to simple systems in one, two,
and three dimensions. Two applications are discussed. The first is the simulation of ligands
molecules near a plane membrane comprising receptors with the possibility of dissociation
and initiation of signal transduction. The second application of this theory is the simulation of
partially diffusion-controlled chemical reactions.

2. Sampling of the Green's functions of the diffusion equation

The Green's functions of the DE in simple systems under different boundary conditions are
known from the theory of heat propagation in solids [4], since the DE and the equation for the
propagation of heat are the same. With few assumptions, these Green's functions can be used
to model particle systems in specific environments.

© 2013 Plante and Cucinotta; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2.1. Diffusion equation and boundary conditions

The DE can be written

2,t ,t ,p( | ) = D p( | )
t
¶

Ñ
¶ 0 0r r r r (1)

where r0 is the initial position vector1 of a particle and r is its position vector at time t. The
diffusion coefficient of a particle (D) is used instead of the thermal diffusivity coefficient in the
equation of the propagation of heat. In the model presented here, a particle is located at the
position r0 at t=0. This is expressed mathematically as:

,t 0 ,p( = | ) = ( )d -0 0r r r r (2)

where δ(r-r0)=δ(x-x0)δ(y-y0)δ(z-z0) is the product of three Dirac's delta functions. To complete
the description of the model the boundary conditions at the surfaces are specified. One
important case is the radiation boundary condition at the surface X=0:

0 0 0
0 0 0 0

x,y,z,t
0,y,z,t ,y .x= a

p( |x ,y ,z )
D | = k p( |x ,z )

x
¶

¶
(3)

The limit ka→∞ is known as the absorbing boundary condition. In this case, the boundary
condition is written p(0,y,z,t|x0, y0, z0, t0)=0. The limit ka→0 is the reflecting boundary condition.
The condition ka>0 implies that particles may bind at the surface; therefore, the Green's function
of these systems are generally not normalized to 1. In all systems described in Sections 3 and
4 the boundary conditions on surfaces, if any, are reflecting (ka=0). In Section 5 two applications
of the theory for which the boundary conditions are different will be discussed.

2.2. Sampling of the Green's functions

To simulate the state of a particle system after one time step, the positions of each particle are
calculated by sampling the Green's function for the position r. The Green's function is written
p(r, t|r0) to emphasize that it represents the probability of a particle initially located at the
position r0 to be found at the position r at time t. In the systems presented in Sections 3 and 4,
there is no binding of particles to boundaries. Therefore, p(r,t|r0) is normalized as follows:

1,t 1,
Ω

p( | )d =ò 1 0 1r r r (4)

1 Through the book chapter, variables written in bold are vectors.
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where Ω is the domain where the particle can be found. Another important thing to consider
is that the simulation of a particle trajectory can be done by using one or several time steps.
This can be expressed mathematically as:

( ) ( ) ( )1 2 2 1, | , | , | .p t t p t p t d
W

D + D = D Dò2 0 2 1 1 0 1r r r r r r r (5)

That is, the probability of a particle to be found at r2 after the time steps Δt1 and Δt2 is the same
as going to the intermediate position r1 after Δt1 and then the final position r2 at Δt1+Δt2. The
integral over the domain Ω covers all intermediate positions. This is the Chapman-Kolmo‐
gorov equation, which hold in Markovian systems.

As seen in a previous paper [5], Equations (4) and (5) have to modified in systems where there
is a possibility of binding of particles at the boundaries.

3. One-dimensional systems

One dimensional (1D) systems are simpler to study than those which are multi-dimensional.
They are also of interest since several multi-dimensional systems can be approached as
independent 1D systems [6]. In 1D, the DE is:

2
0

02
x,t

x,t .
p( |x )

= D p( |x )
t x

¶ ¶
¶ ¶

(6)

The initial condition is p(x,0|x0)=δ(x-x0). Three systems are described in this section: free
diffusion, diffusion in the half-space X>0 and diffusion in the space between X=0 and X=L.

3.1. Free diffusion

The Green's function of the DE in 1D for a free particle, noted pfree(x,t|x0), is well known:

( )
2

0
free 0

x-x1x,t exp .
4Dt4 Dt

( )
p |x =

p

é ù
-ê ú
ê úë û

(7)

This is a Gaussian distribution, with variance σ2=2Dt. This distribution can be sampled by
using, for example, the Box-Muller method [7].
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Algorithm 1: Sampling algorithm for pfree(x,Δt|x0) (free 1D diffusion)

GENERATE N as a standard Normal

X ← x0 + DΔt

RETURN X.

The sampling algorithm is used to generate the positions of 1,000,000 particles after one time
step. The results are stored in histograms and normalized. The Green's functions and the results
of sampling are illustrated2 in Figure 1.

Figure 1. Green's functions pfree(x,t|x0) at t=1, 2, 4, 8, 16 and 32 time units, for a particle initially at x0=2. The lines are
analytical predictions; the points are the result of sampling from 1,000,000 particle histories.

Because the sampling algorithms use random numbers, the simulation results vary from one
simulation to another. Usually, the larger the number of histories, the smaller the statistical
fluctuation of the results. The algorithms presented in this book chapter are exact, i.e. the
simulation results are expected to converge to the analytical Green's function at the limit of an
infinite number of histories. In practice, 1,000,000 particle histories are usually sufficient to
converge to the analytical Green's function and to confirm the validity of the algorithm. The
time discretization property of the Green's function can also be used to validate the algorithm:
since a simulation can be done in several time steps, the positions of the particles obtained after
the first time step are used as the initial positions for the next step.

3.2. Diffusion in the half-space x>0

As it will be seen in the applications, this system may be used to represent the motion of
particles near a membrane. The reflective boundary condition at x=0 is given by

2 Through this book chapter, the diffusion coefficient is set to D=1 in Figures.
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¶
(8)

The solution of the DE in 1D for this system, noted pref(x,t|x0), is given in ref. [8]:

( )
2 2
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ref 0
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4 44
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p x t x
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(9)

This Green's function is the sum of two Gaussian distributions. It can be sampled by the method
described in Algorithm 2 (given in ref. [8]):

Algorithm 2: Sampling algorithm for pref(x,Δt|x0) (free 1D diffusion with reflection at x=0)

SET N0 ← (1 / 2)Erfc − x0 / 4DΔt

GENERATE uniform [0,1] random variatesU,V

IF (U<N0) X ← x0 + 4DΔtErfc-1 VErfc(− x0 / 4DΔt)

ELSE X ← − x0 + 4DΔtErfc-1 VErfc(x0 / 4DΔt)

RETURN X

where Erfc(x) is the complementary error function [9]. The Green's functions and the result of
sampling are illustrated in Figure 2.

Figure 2. Green's functions pref(x,t|x0) at t=1, 2, 4, 8, 16 and 32 time units, for a particle in the half-space x>0 initially at
x0=2.5. The lines are analytical predictions; the points are the result of sampling from 1,000,000 particles histories.
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3.3. Diffusion of a particle between x=0 and x=L

This system is used to simulate the motion of particles in a confined space. In this case, the
reflective boundary conditions at x=0 and x=L are given by

0
0

0

x,t
0,

x,t
0.

x=

x=L

p( |x )
D | =

x
p( |x )

D | =
x

¶
¶

¶
¶

(10)

The Green's function of the DE in 1D for a particle between the boundaries, noted pconf(x,t|x0),
is [4]:

pconf(x,t| x0)=
1
L ∑

n=−∞

∞
exp(− π 2n 2Dt

L 2 )cos
nπx
L cos

nπx0
L . (11)

This function is complicated by an infinite sum. However, it is possible to use the following
algorithm to generate trajectories of particles in this environment [10]. The algorithm is based
on a series method, as described in [11]. For this section the functions f(x) and fn(x) are defined:

f (x)=
1
L + 2∑

n=1

∞
f n(x),

f n(x) =
def 1

L exp(− π 2n 2Dt
L 2 )cos

nπx
L cos

nπx0
L .

(12)

The algorithm is:

Algorithm 3A: Generation of random variateX distributed as pconf(x,Δt|x0) (particle between
x=0 and x=L in 1D)

DEFINE H ← 1 / L + 1 / πDΔt

REPEAT

{

GENERATE U,V uniform on [0,1] and X uniform on [0,L]

SET Y ← VH

}

UNTIL Y≤f(X)

RETURN X

The verification of Y≤f(X) is dose by using the second part of the algorithm:
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Algorithm 3B: Verification of Y<f(X)

SET S ← 1/L+2f1(X), k ← 1 (S holds the approximation sum)

REPEAT FOREVER

{

T = (L/π2kDΔt)exp(-π2k2DΔt/L2)

IF (Y ≥ S+T) THEN RETURN "Y ≥ f(X)" and EXIT

IF (Y ≤ S-T) THEN RETURN "Y ≤ f(X)" and EXIT

k ← k+1

S ← S+2fk(X)

}

The Green's function and the result of sampling for 1,000,000 histories of particles initially
located at x0=5 are shown in Figure 3.

Figure 3. Green's functions pconf(x,t|x0) at t=1, 2, 4, 8, 16 and 32 time units, for a particle initially at x0=5, allowed to
occupy the space between x=0 and x=10. The lines are analytical predictions; the points are the result of sampling of
1,000,000 particle histories.

When time evolves, as illustrated in Figure 3, the particles become uniformly distributed
between x=0 and x=10.

4. Two-dimensional systems

Two dimensional (2D) systems are interesting, because the particles trajectories can be
visualized in a plane. The DE in 2D can be written:
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x,y,t
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= D + p( |x ,y )
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The initial condition is p(x,y,t=0|x0, y0)=δ(x-x0)δ(y-y0). In several cases, the Green's function can
be written as the product of the functions px(x,t|x0) and py(y,t|y0) (see ref. [6]):

0 0 0 0x,y,t ,y x,t y,t .x yp( |x ) = p ( |x )p ( |y ) (14)

This property of the Green’s function allows the simulation of the motion of particles in the
direction x and y independently.

4.1. Free diffusion

The solution of the DE is the product of two Gaussian functions:

pfree(x,y,t| x0,y0)=
1

4πDt exp −
(x-x0)2 + (y-y0)2

4Dt ≡ pfree(x,t| x0)pfree(y,t| y0). (15)

Therefore, sampling of this Green's function can be done by sampling two Gaussian functions:

Algorithm 4: Sampling algorithm for pfree(x,y,Δt|x0,y0) (free 2D diffusion)

GENERATE N1,N2 as a standard Normals

X ← x0 + DΔt N1

Y ← y0 + DΔt N2

RETURN (X,Y).

Plotting the Green's functions in X and Y would give figures identical to Figure 1. However,
in 2D, it is useful to use polar coordinates. That is, the following transformation is used:

x = rcos(θ),
y = rsin(θ).

(16)

The same transformation is done with x0 and y0 to obtain r0 and θ0. The Green's function may
be rewritten:

pfree(r,θ,t| r0, θ0)=
1

4πDt exp −
r 2 + r0

2-2rr0cos(θ −θ0)
4Dt . (17)
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This form yields an alternate method to sample the Green's function in polar coordinates:

Algorithm 5: Sampling algorithm for r*pfree(r,θ,Δt|r0,θ0) (free 2D diffusion)

CALCULATEρ ← r0 / 2DΔt

REPEAT

GENERATE V,W uniform on [0,1], E1 as standard exponential.

SETΘ ← 2πV.

IF W (1 + ρ 2π) < 1THEN SETR ← ρ + 2E2, where E2 is standard exponential

ELSE SET R ←ρ+N, where N is standard normal

UNTIL R>0 and log(Max(R,ρ)/R)+Rρ(1-cos(Θ-θ0))<E1.

RETURN (R,Θ).

Algorithm 5 generates variates r and θ distributed as r*pfree(r,θ,t|r0,θ0). The factor r originates
from the differential area in polar coordinates: dxdy is replaced by rdrdθ.

It is possible to obtain related distributions such as p(r,t|r0) and p(θ,t|θ0). They are found by
integrating the Green's function:

p(r,t| r0)=
1

4πDt exp(− r 2 + r0
2

4Dt
) ∫

0

2π

exp
2rr0cos(θ −θ0)

4Dt dθ =
1

2Dt I0( rr0
2Dt ), (18)

where I0(x) is the Modified Bessel Function of the First Kind of order 0 (see ref. [9]). The angular
distribution p(θ,t|θ0) is obtained by integrating over r:

p(θ,t|θ0)=
1

4πDt ∫
0

∞

exp −
r 2 + r0

2-2rr0cos(θ −θ0)
4Dt rdr. (19)

The factor r is also included in the integral. The result is:

p(θ,t|θ0)=
1

2π exp(− r0
2

4Dt
) + exp −

r0
2sin2(θ −θ0)

4Dt
r0cos(θ −θ0)

4π Dt
(1 + Erf

r0cos(θ −θ0)
4Dt

). (20)

where Erf(x) is the error function [9]. The distributions p(r,t|r0) and p(θ,t|θ0) for x0=2.5 and
y0=2.5 are illustrated in Figure 4.

Similar results are found using either algorithm 4 or 5. In 2D, it is possible to represent the time
evolution of the particle system (Figure 5).

Monte-Carlo Simulation of Particle Diffusion in Various Geometries and Application to Chemistry and Biology
http://dx.doi.org/10.5772/53203

201



4.2. The rectangular corner x>0, y>0

As in section 4.1, the solution of the DE is the product of two independent 1D reflective Green's
functions:

0 0
2 2 2 2

0 0 0 0

x,y,t ,y

.- -1 exp exp exp exp
4 Dt 4Dt 4Dt 4Dt 4Dt

p( |x ) =

(x x ) (x + x ) (y y ) (y + y )
+ +

p

ì üì üé ù é ù é ù é ùï ïï ï= - - - -ê ú ê ú ê ú ê úí ýí ý
ê ú ê ú ê ú ê úï ïï ïë û ë û ë û ë ûî þî þ

(21)

The positions of the particles can be sampled by using two applications of Algorithm 2 (for X
and Y). An example of the time evolution of 1,000,000 particles is illustrated in Figure 6.

4.3. The rectangle 0<x<a, 0<y<b

The solution of the DE is also the product of two independent 1D Green's functions:

 

Figure 4. Distributions p(r,t|r0) and p(θ,t|θ0) for 1,000,000 particles initially located at x0=2.5 and y0=2.5 at t=1,2,4,8,16
and 32 units.

Figure 5. Positions of 1,000,000 particles initially located at x0=2.5, y0=0 at t=1, 2, 4, 8, 16 and 32 time units. The posi‐
tions are obtained by sampling the Green's function as described in Algorithm 4 or 5.
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Therefore the positions of the particles can be sampled by using Algorithm 3 for the coordinates

x and y.

Figure 7. Positions of 1,000,000 particles initially located at x0=2.5, y0=0 in the rectangle of 10 units height and 15
units width at t=1, 2, 4, 8, 16 and 32 time units. The positions are obtained by sampling the Green's function as descri‐
bed in Algorithm 3.

The particle system depicted in Figure 7 illustrates how particles initially located in a given

position will diffuse and eventually become uniformly distributed in the rectangular area.

Figure 6. Positions of 1,000,000 particles initially located at x0=10, y0=10 at t=1, 2, 4, 8, 16 and 32 time units, assuming
reflective boundaries at X=0 and Y=0. The positions are obtained by sampling the Green's function as described in
Algorithm 2.
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4.4. The particles outside a disk of radius R

This problem is of interest to simulate how particles move and/or bind to curved cell mem‐
branes comprising receptors. In this section, only the case of the reflective boundary condition
is discussed. In polar coordinates, the DE can be written

D
1
r
∂
∂r (r ∂∂r ) +

1
r 2

∂2

∂θ 2 p(r,θ,t| r0, θ0)=
∂
∂ t p(r,θ,t| r0, θ0). (23)

The reflective boundary condition at r=R is:

D
∂ p(r,θ,t| r0, θ0)

∂r |
r=R

=0. (24)

The Green's function for a particle initially located at (r0,θ0) is:

p(r,θ,t| r0, θ0)=
1

2π ∑n=−∞

∞
cos n(θ −θ0) ∫

0

∞

e -u2DtuCn(u,r)Cn(u,r0)du, (25)

where

2 2
.

' '
n n n n

n ' '
n n

J (ur)Y (uR) J (uR)Y (ur)
C (u,r) =

J (uR) + Y (uR)

-
(26)

Jn(x) and Yn(x) are the Bessel Functions of the First and Second Kind, respectively (see ref. [9]).
The parameters of this distribution are R>0, 0≤θ0≤2π, r0>R and Dt>0. The variates of this
distributions are r>R and 0≤θ≤2π.

The normalization of this function is:

∫
0

2π

∫
R

∞

p(r,θ,t| r0, θ0)rdrdθ =1. (27)

We have not been able so far to develop a sampling algorithm for the distribution function
p(r,θ,t|r0, θ0). An approximate algorithm to sample the positions can be done by using free
diffusion and reflecting particles which are inside the disk (r<R). The results given by this
simulation are illustrated in Figure 8.

In this example, since an approximate method is used to simulate the motion of particles, the
distributions of r and θ do not verify the time discretization equations, as an exact sampling
algorithm of p(r,θ,t|r0, θ0) would (results not shown). Therefore, this example illustrate that
the time discretization property of the Green’s function is a very powerful way to verify the
validity of the sampling algorithms.
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It is interesting to note that for R→0, Cn(u,r)→Jn(ur); in this case, the integral can be evaluated
by using Weber's formula (Watson P. 395 [12], Gradsteyn 6.633, Equation 2 [13]):

pref(r,θ,t| r0, θ0)=
1

2π ∑n=−∞

∞
cos n(θ −θ0)

1
2Dt exp(− r 2 + r0

2

4Dt
)In( rr0

2Dt ). (28)

The series which is obtained can be evaluated (http://functions.wolfram.com/
03.02.23.0007.01):

pref(r,θ,t| r0, θ0)=
1

2π
1

2Dt exp(− r 2 + r0
2

4Dt
)exp

rr0
2Dt cos(θ −θ0) ≡ pfree(r,θ,t| r0, θ0). (29)

Thus, for R→0, pref(r,θ,t|r0,θ0) → pfree(r,θ,t|r0,θ0), as expected.

5. Three-dimensional systems

Three dimensional systems are more complex and harder to visualize. In 3D, the DE can be
written in cartesian coordinates as:

2 2 2

0 0 0 0 0 02 2 2x,y,z,t ,y ,z x,y,z,t ,y ,z .p( |x ) = D + + p( |x )
t x y z

é ù¶ ¶ ¶ ¶
ê ú

¶ ¶ ¶ ¶ê úë û
(30)

The initial condition is p(x,y,z,t=0|x0, y0, z0)=δ(x-x0)δ(y-y0)δ(z-z0). As in 2D, in several cases, the
Green's function can be written as the product of the functions px(x,t|x0), py(y,t|y0) and pz(z,t|z0):

Figure 8. Positions of 1,000,000 particles initially located at x0=2.5, y0=2.5 near a reflective boundary at R=1 at t=1, 2, 4,
8, 16 and 32 time units.
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0 0 0 0 0 0x,y,z,t ,y ,z x,t y,t z,t .x y zp( |x ) = p ( |x )p ( |y )p ( |z ) (31)

5.1. Free diffusion

The solution of the DE for free particles is the product of three Gaussian functions:

pfree(x,y,z,t| x0, y0,z0)=

=
1

(4πDt)3/2 exp −
(x-x0)2 + (y-y0)2 + (z-z0)2

4Dt ≡ pfree(x,t| x0)pfree(y,t| y0)pfree(z,t| z0)
. (32)

Since the Gaussian functions are independent, the positions x, y and z can be obtained by
sampling the Gaussian distribution for each variateX, Y and Z:

Algorithm 6: Sampling algorithm for pfree(x,y,z,Δt|x0,y0,z0) (free 3D diffusion)

GENERATE N1, N2, N3 as a standard Normals

X ← x0 + DΔt N1

Y ← y0 + DΔt N2

Z ← z0 + DΔt N3

RETURN (X,Y,Z).

In 3D, it is useful to use spherical coordinates (r,θ,ϕ)3. That is, the following transformation is
used:

x = rsin(θ)cos(ϕ),
y = rsin(θ)sin(ϕ),
z = rcos(θ).

(33)

The differential volume element is given by

dV = r 2sin(θ)drdθdϕ. (34)

The DE can be written in spherical coordinates as:

∂ p(r,θ, ϕ,t| r0, θ0, ϕ0)
∂ t = D

∂2

∂r 2 +
2
r
∂
∂r +

1
r 2sin2θ

∂2

∂ϕ 2 +
1

r 2sinθ
∂
∂θ (sinθ

∂
∂θ ) p(r,θ, ϕ,t| r0, θ0, ϕ0). (35)

3 The following notation is used: (radial, azimutal, polar). r: [0,∞),θ: [0,π],ϕ: [0,2π).
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Using the transformation to spherical coordinates, the Green's function of the DE for free
particles can be rewritten as:

pfree(r,θ, ϕ,t| r0, θ0, ϕ0)=

=
1

(4πDt)3/2 exp{− r 2 + r0
2−2rr0 cosθcosθ0 + sinθsinθ0cos(ϕ −ϕ0)

4Dt
}. (36)

The angle between the vectors (r,θ,ϕ) and (r0,θ0,ϕ0) is given by cos(γ):

cos(γ)=cosθcosθ0 + sinθsinθ0cos(ϕ −ϕ0). (37)

Therefore, Eq. (36) can be written in the compact form:

pfree(r,θ, ϕ,t| r0, θ0, ϕ0)=
1

(4πDt)3/2 exp −
r 2 + r0

2−2rr0cosγ
4Dt . (38)

In spherical coordinates, as in 2D, it is possible to obtain related distributions such as p(r,t|r0).
It is obtained by integrating the Green's function over the angles:

p(r,t| r0)= ∫
0

2π

∫
0

π

r 2pfree(r,θ, ϕ,t| r0, θ0, ϕ0)sin(ϕ)dθdϕ =
r

4πr0
2Dt

exp(− r 2 + r0
2

4Dt
)sinh( rr0

2Dt ). (39)

5.2. The corner x>0, y>0, z>0

The Green's function is the product of three independent 1D Green's functions:

p(x,y,z,t| x0,y0,z0)=
1

(4πDt)3/2 e −(x-x0)2/4Dt + e −(x+x0)2/4Dt

e −(y-y0)2/4Dt + e −(y+y0)2/4Dt e −(z-z0)2/4Dt + e −(z+z0)2/4Dt
. (40)

As it is the case in 2D, the coordinates x,y and z can be treated independently. Therefore, the
positions of the particles can be generated by using Algorithm 2 for each of the coordinates.

5.3. The parallelipiped 0<x<a, 0<y<b, 0<z<c

The Green's function is also the product of three independent 1D Green's functions:

p(x,y,z,t| x0,y0,z0)=

1
abc ∑

m,n,l=−∞

∞
exp −π 2Dt( m 2

a 2 +
n 2

b 2 +
l 2

c 2 ) cos
mπx

a cos
mπx0

a cos
nπy

b cos
nπ y0

b cos
lπz
c cos

lπz0
c

. (41)
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Therefore, the positions of particles can be generated by using Algorithm 3 for each of the
coordinates. This sampling algorithm can be used to simulate the trajectories of particles
confined into a box of sides a, b and c. At equilibrium, as it is the case in 2D (Figure 7), the
particles are uniformly distributed within the volume.

6. Applications

Two applications of the approach described in the previous sections are presented. The first
is the simulation of particles near a membrane comprising receptors. The second one is the
simulation of chemical reactions. These applications will eventually be used to study the
evolution of the chemical species created by ionizing radiations in biological media [14].

6.1. Particle near a 1D membrane comprising receptors

To apply the theory described in the chapter to cell culture simulations, it is necessary to make
some assumptions. The details of the model presented here and more results are given in ref.
[5]. Similar models have been used to study autocrine and paracrine signals in cell culture
assays [15], ligand accumulation in autocrine cell cultures [16] and the spatial range of
autocrine signaling [17].

6.1.1. Model and assumptions

A particle is assumed to be located in the proximity of a plane membrane comprising receptors,
corresponding to the plane X=0. The particle can move freely in the Y and Z directions, and
can bind reversibly to receptors located on the membrane and initiate signal transduction. This
is illustrated in Figure 9:

Figure 9. Ligands near a surface comprising receptors. The rate constants for association, dissociation and initiation of
signal transduction are ka, kd and ke, respectively.
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The binding rate constant (ka) is obtained from the ligand-receptor association rate constant and
the density of receptors on the surface, which are assumed to be uniformly distributed on the
membrane [16]. The ligand-receptor complex has the rate constants kd for dissociation and ke for
initiation of signal transduction. As a first approximation, this is equivalent to the problem

.
k ka e
kd

A + B (AB) AB¾¾® ¾¾®¬¾¾ (42)

Since the particles are moving freely in the Y and Z direction, the Green's function can be
written as the product of the independent functions px(x,t|x0), py(y,t|y0) and pz(z,t|z0). But
py(y,t|y0) and pz(z,t|z0) are Gaussians functions, which can be sampled as described in section
4.1; therefore, only the sampling of px(x,t|x0) will be discussed here. For convenience, the
index "x" will be omitted in this section.

A particle can be free at position x>0, in a reversible bound state (*) at x=0 or activating signal
transduction (**). The boundary condition at x=0 can be written:

0
0 0 0

x,t
0, *, ,x= a d

p( |x )
D | = k p( t|x ) k p( t|x )

x
¶

-
¶

(43)

where p(*,t|x0) is the probability of a particle initially located at x0 to be in the reversible bound
state at time t. The time evolution of p(*,t|x0) is:

0
0 0

*,t
0, *, .a d e

dp( |x )
= k p( t|x ) (k + k )p( t|x )

dt
- (44)

Similarly, the time evolution of p(**,t|x0) is:

0
0

**,t
*, .e

dp( |x )
= k p( t|x )

dt
(45)

6.1.2. Green's functions

This problem can be solved analytically by using Laplace Transforms [18]. The solutions are
expressed using three coefficients α, β and γ. They are the roots of a cubic polynomial4, for
which the coefficients are given by the rate constants ka, kd and ke as follows:

( )
2

/ ,
/ ,

/ .

a

e d

e a

α + β + γ = k D
αβ + βγ + γα = k + k D

αβγ = k k D
(46)

4 At least one of the roots of a third-order polynomial is real, the two other roots being either real or complex conjugates.
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The mathematical expressions of the Green's function for a particle in this system are quite
long. To simplify the following expressions, the variables ρx =x/ 4Dt, ρ0 = x0 / 4Dt, α ' =α Dt,

β ' =β Dt and γ ' =γ Dt are defined.

p(x,t| x0)= pref(x,t| x0) +
α(γ + α)(α + β)

(γ −α)(α −β) W (ρx + ρ0, α ')+

+
β(α + β)(β + γ)
(α −β)(β −γ) W (ρx + ρ0, β ') +

γ(β + γ)(γ + α)
(β −γ)(γ −α) W (ρx + ρ0, γ ')

. (47)

where pref(x,t|x0) is the Green's function for a reflective membrane, given in Section 3.2. The
functions W(x,y) and Ω(x) are defined as:

Ω(x)=exp(x 2)Erfc(x),
W (x,y)≡exp(2xy + y 2)Erfc(x + y)=exp(− x 2)Ω(x + y)

(48)

It is possible for two of the roots to be complex conjugates. Nevertheless, it is still possible to
use the Green's function given in Equation (47) by implementing the numerical evaluation of
W(x,y) for complex numbers [19].

The probability of survival for a free particle is obtained by integrating p(x,t|x0) on [0,∞):

Q(t | x0)=1−
(γ + α)(α + β)
(γ −α)(α −β) W (ρ0, α ')−

−
(α + β)(β + γ)
(α −β)(β −γ) W (ρ0, β ')− (β + γ)(γ + α)

(β −γ)(γ −α) W (ρ0, γ ')−Erfc(ρ0)
. (49)

The probability of a particle initially at x0>0 to be reversibly bound at time t is:

p(*,t| x0)=
α(α + β + γ)
(γ −α)(α −β) W (ρ0, α ') +

β(α + β + γ)
(α −β)(β −γ) W (ρ0, β ') +

γ(α + β + γ)
(β −γ)(γ −α) W (ρ0, γ '). (50)

A particle initially at x0>0 can also be found in an irreversibly bound state at time t. The
probability to be found in this state is given by p(**,t|x0)=1-p(*,t|x0)-Q(t|x0), which can be
written as:

p(**,t| x0)=
βγ

(γ −α)(α −β) W (ρ0, α ')+

+
αγ

(α −β)(β −γ) W (ρ0, β ') +
αβ

(β −γ)(γ −α) W (ρ0, γ ') + Erfc(ρ0)
. (51)

To obtain the Green's function of a particle in a reversibly bound state, the material balance
condition kap(x,t|*)=kdp(*,t|x) (given in ref. [18,20]) is used. This yields the Green's function for
the dissociation of a bound particle:
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D
kd

p(x,t| * )=
α

(γ −α)(α −β) W (ρx, α ') +
β

(α −β)(β −γ) W (ρx, β ') +
γ

(β −γ)(γ −α) W (ρx, γ '). (52)

The probability of dissociation of a particle that was initially in a reversibly bound state Q(t|*)
is found by integrating p(*,t|x) over [0,∞):

D
kd

Q(t | * )= −
1

(γ −α)(α −β) Ω(α ')−
1

(α −β)(β −γ) Ω(β ')−
1

(β −γ)(γ −α) Ω(γ '). (53)

The probability of a particle initially in a reversibly bound state to stay in this state is given by
(ref. [18]):

p(*,t | * )=
α(β + γ)

(γ −α)(α −β) Ω(α ') +
β(γ + α)

(α −β)(β −γ) Ω(β ') +
γ(α + β)

(β −γ)(γ −α) Ω(γ '). (54)

Finally, the probability of a particle initially in a reversibly bound state to activate signal
transduction is:

p(**,t | * )=1 +
1

α + β + γ
βγ(β + γ)

(γ −α)(α −β) Ω(α ') +
αγ(α + γ)

(α −β)(β −γ) Ω(β ') +
αβ(α + β)

(β −γ)(γ −α) Ω(γ ') . (55)

For some particular values of α, β and γ, the Green's functions of this section have singularities
(0/0). In these cases, the Green's functions take slightly different forms, but it is still possible
to use the approach described here (see ref. [5]).

6.1.3. Time discretization equations

A simulation is usually done by dividing the final simulation time in a finite number of time
steps. If the simulation can be done in two time steps such as t=Δt1+Δt2, a particle initially
located at position x0 can:

i. go to position x1 during Δt1 and then go to its final x position during Δt2,

ii. go to position x1 during Δt1 and reversibly bind to the membrane during Δt2,

iii. go to position x1 during Δt1 and activate signal transduction during Δt2,

iv. reversibly bind to the membrane during Δt1 and stay in this state during Δt2,

v. reversibly bind to the membrane during Δt1 and dissociate during Δt2,

vi. reversibly bind to the membrane during Δt1 and activate signal transduction during
Δt2,

or

vii. activate signal transduction during Δt1.
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From this the following time discretization equations are obtained:

p(x,t| x0)= ∫
Ω

p(x,Δt2 | x1)p(x1, Δt1 | x0)d x1 + p(x, Δt2 | * )p(*,Δt1 | x0),

p(*,t| x0)= p(*,Δt2 | * )p(*,Δt1 | x0) + ∫
Ω

p(*,Δt2 | x1)p(x1, Δt1 | x0)d x1,

p(**,t| x0)= p(**,Δt1 | x0) + p(**,Δt2 | * )p(*,Δt1 | x0) + ∫
Ω

p(**,Δt2 | x1)p(x1, Δt1 | x0)d x1.

(56)

The first of these equations is similar to the Chapman-Kolmogorov equation, to which a term
has been added to account for the possibility of dissociation. Each term of these equations can
be associated with the possibilities i-vii. Similarly, a particle initially in a reversibly bound state
can:

i. dissociate to position x1 during Δt1 and go to its final position x during Δt2,

ii. dissociate to position x1during Δt1 and re-bind reversibly during Δt2,

iii. dissociate to position x1during Δt1 and initiate signal transduction during Δt2,

iv. stay reversibly bound during Δt1 and dissociate to position x during Δt2,

v. stay reversibly bound during Δt1 and Δt2,

vi. stay reversibly bound during Δt1 and initiate signal transduction during Δt2, or

vii. initiate signal transduction during Δt1.

This yields the time discretization equations for the bound particle:

p(x,t| * )= ∫
Ω

p(x,Δt2 | x1)p(x1, Δt1 | * )d x1 + p(x, Δt2 | * )p( * , Δt1 | * ),

p( * ,t| * )= p( * , Δt2 | * )p( * , Δt1 | * ) + ∫
Ω

p( * , Δt2 | x1)p(x1, Δt1 | * )d x1,

p( * ,t | * )= p( * , Δt1 | * ) + p( * , Δt2 | * )p( * , Δt1 | * ) + ∫
Ω

p( * , Δt2 | x1)p(x1, Δt1 | * )d x1.

(57)

These equations are proven in the supplemental material of ref. [5].

6.1.4. Brownian dynamics algorithm

Using the Green's functions, it is possible to construct a Brownian Dynamics algorithm to
simulate the motion and binding of the ligand and the possible initiation of signal transduction.
First, it should be noted that p(x,t|x0) is a sub-density5. Since p(x,t|x0)≤pref(x,t|x0), the rejection
method can be used [21]. This yields the following algorithm:
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Algorithm 7a: sampling of p(x,Δt|x0) (free particles)

REPEAT

{

GENERATE U uniform on [0,1], X distributed as pref(x,Δt|x0)

}

UNTIL p(X,Δt|x0)≤U*pref(X,Δt|x0)

RETURN X

There are also particles which are bound to the membrane. These particles may dissociate with
probability Q(Δt|*). If this is the case, the position x of the particle is distributed as p(x,Δt|*),
which can be written with a Gaussian factor in evidence:

p(x,Δt | * )=
kd
D exp(− x 2

4DΔt ) α
(γ −α)(α −β) Ω( x

4DΔt
+ α DΔt)

+
β

(α −β)(β −γ) Ω( x
4DΔt

+ β DΔt) +
γ

(β −γ)(γ −α) Ω( x
4DΔt

+ γ DΔt) . (58)

This form is convenient because it is the product of a Gaussian function by a function g(x) with
three terms in Ω(x). Since 0≤Ω(x)≤1, p(x,Δt|*) can be sampled by a rejection method:

Algorithm 7b: sampling of p(x,Δt|*) (reversibly bound particles)

CALCULATE H = |α/(γ-α)(α-β)|+|β/(α-β)(β-γ)|+|γ/(β-γ)(γ-α)|

REPEAT

{

GENERATE U uniform on [0,1], X = | N | 2DΔt , where N is a standard Normal

}

UNTIL UH≤g(X)

RETURN X

6.1.5. Simulation results

A simulation has been done by using ka=6, kd=10 and ke=1. The results are shown in Figure 10.
It should also be noted that the time discretization equations (56) and (57) were used to validate
the simulation results. In this case, it is possible to verify that the simulation results for free
particles corresponds to p(x,t|x0), but also that the number of bound particles can be accurately
predicted after several time steps.

5 A sub-density means that P = ∫
0

L

f (x)dx ≤1, and f(x)≥0. In this case, a random variate with the density f/p is generated

with probability P.
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Figure 10. Left) Probability distribution of a particle near a partially absorbing and reflecting boundary with back reac‐
tion for x0=2.5, ka=6, kd=10, ke=1 and D=1 (α=1, β=2 and γ=3) at t=1, 2, 4, 8 and 16 time units. The lines are the analyti‐
cal predictions p(x,t|x0). The dots are given by the simulation of 1,000,000 particle histories either with one or multiple
time steps. (Right) Probability of a particle in these conditions to be free, reversibly bound or irreversibly bound as a
function of time.

6.2. Bimolecular reactions

Bimolecular reactions are an important application of the theory described in the book chapter.
Let the particles A and B initially at the positions rA0 and rB0. They can react with the reaction
rate ka:

.akA + B C¾¾® (59)

6.2.1. Green's functions for the particles

The probability distribution is solution of the following equation [2]:

2 2,t ,t .A A B Bp( , | , ) = D + D p( , | , )
t
¶ é ùÑ Ñë û¶ A B A B A B A B0 0 0 0

r r r r r r r r (60)

It is convenient at this point to use a transformation of coordinates, similar to a center of mass
transformation:

/ / ,
.

B A A B= D D + D D
= -

A B

B A

R r r
r r r

(61)

The same transformation is done to rA0 and rB0 to obtain r0 and R0. The operators ∇R=∂/∂R and
∇r=∂/∂r are also defined. Using the transformation, Equation (60) can be rewritten as:
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2 2,t ,t .p( , | , ) = D + p( , | , )
t
¶ é ùÑ Ñë û¶ 0 0 R r 0 0R r R r R r R r (62)

where D=DA+DB, the sum of the diffusion coefficients of the particles. Therefore, p(R,r,t|R0,r0)
can be factorized as follows:

,t ,t ,t .p( , | , ) = p ( | )p ( |, )R r
0 0 0 0R r R r R R r r (63)

Using this factorization, two DE are obtained in r and R:

2

2

,t ,t ,

,t ,t .

p ( | ) = D p ( | )
t

p ( | ) = D p ( | )
t

¶
Ñ

¶
¶

Ñ
¶

R R
0 R 0

r r
0 r 0

R R R R

r r r r
(64)

This equation describes two independent random processes - diffusion in the coordinates r
and R. The initial condition for Equation (64a) is pR(R,t|R0)=δ(R-R0), and the boundary
condition is pR(|R|→∞,t|R0)=0. As seen in Section 5.1, Equation (64a) represents free diffusion
in 3D:

( )
2

3/2
1,t exp .

4Dt4 Dt
( )

p | =
( )p

é ù-
ê ú
ê úë û

R 0
0

R R
R R (65)

This function can be sampled for R as in Algorithm 3, by using three Gaussian random num‐
bers. Equation (64b) is the diffusive motion of the separation vector between particles. The initial
condition is pr(r,t|r0,t0)=δ(r-r0), and the outer boundary condition is pr(|r|→∞,t|r0,t0)=0. The
possibility of a chemical reaction is introduced as the inner boundary condition

,t
4 ,t ,2

a
p ( | )

πσ D | = k p (| |= σ | )s=
¶

¶

r
r0

r 0
r r

r r
r

(66)

where σ is the reaction radius. As it is the case for free particles, Equation (66) is the radiation
boundary condition. The limit ka→0 is the reflecting boundary condition (no reactions between
particles), whereas the limit ka→∞ is the absorbing boundary condition. In the latter case, the
boundary condition is written pr(|r|=σ,t|r0)=0.

The exact solution for this problem is given in ref. [4]:

p(r,θ, ϕ,t| r0, θ0, ϕ0)=
1

4π rr0
∑
n=0

∞
(2n + 1)Pn(cosγ)∫

0

∞

e -u2DtuFn+1/2(u,r)Fn+1/2(u,r0)du. (67)
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where Pn(x) are the Legendre polynomials,

Fυ(u,r)=
(2σka + 1) Jυ(ur)Yυ(uσ)−Yυ(ur)Jυ(uσ) −2uσ Jυ(ur)Yν

'(uσ)−Yυ(ur)Jν
'(uσ)

(2σka + 1)Jυ(uσ)−2uσJν
' (uσ) 2 + (2σka + 1)Yυ(uσ)−2uσYν

' (uσ) 2
. (68)

and γ is the angle formed by (r,θ,ϕ), the origin and (r0,θ0,ϕ0). In this expression, it is possible
to evaluate Pn(cosγ), knowing that

Pn(cosγ)= Pn(cosθ)Pn(cosθ0) + 2∑
m=1

n (n-m)!
(n + m) ! Pn

m(cosθ)Pn
m(cosθ0)cosm(ϕ −ϕ0). (69)

where Pn
m(x) are the associated Legendre polynomials (ref. [9]). For θ0=0 and ϕ0=0,

Pn(cosγ)=Pn(cosθ). It is also interesting to note that for ka=0 and σ→0, Fn+1/2(u,r) →Jn+1/2(ur). In this
case, p(r,θ,ϕ,t|r0,,θ0,ϕ0) can be written:

p(r,θ, ϕ,t| r0, θ0, ϕ0)=
1

4π rr0
∑
n=0

∞
(2n + 1)Pn(cosγ)∫

0

∞

e -u2DtuJn+1/2(ur)Jn+1/2(ur0)du. (70)

The integral can be evaluated using Weber's formula (ref. [13], section 6.633, eq 2):

p(r,θ, ϕ,t| r0, θ0, ϕ0)=
1

4π rr0
∑
n=0

∞
(2n + 1)Pn(cosγ)

1
2Dt exp(− r 2 + r0

2

4Dt
)In+1/2( rr0

2Dt ). (71)

This equation can be further simplified by using Iυ(z)= e −iυπ/2Jυ(e iπ/2z) (ref. [12], p. 77; ref. [13]

section 8.406), Jυ(e imπz)= e imπυ Jυ(z) (ref. [12], p. 75; ref. [13], section 8.476) and the identity

( ) 1/2
0

exp izcos 2n 1 cos .
2z

n
n+ n

n=

πγ = ( + )i J (z)P ( γ)
¥

å (72)

(ref. [12], p. 368; ref. [13], section 8.511). This yields the following equation:

p(r,θ, ϕ,t| r0, θ0, ϕ0)=

=
1

8πDt rr0
exp(− r 2 + r0

2

4Dt
) rr0

πDt exp( rr0cosγ
2Dt )≡ 1

(4πDt)3/2 exp −
r 2 + r0

2−2rr0cosγ
4Dt

. (73)

Therefore, p(r,θ,ϕ,t|r0,θ0,ϕ0) is equivalent to free 3D diffusion (Equation 38) for ka=0 and σ=0.
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We were not able to develop a sampling algorithm for p(r,θ,ϕ,t|r0,θ0,ϕ0). However, it is possible
to use the radial component of the DE in 3D:

20
02

r,t
r,t ,

p( |r ) D= r p( |r )
t r rr

¶ é ù¶ ¶
ê ú¶ ¶ ¶ë û

(74)

with the boundary condition given by Equation 66. The solution is much simpler in this case:

4πrr0p(r,t| r0)=
1

4πDt
{exp −

(r - r0)2

4Dt + exp −
(r + r0−2σ)2

4Dt } + αW ( r + r0−2σ

4Dt
, −α Dt), (75)

where α=-(ka+4πσD)/(4πσ2D). Therefore, this approximation is widely used in chemistry and
biophysics [22]. The survival probability of a pair of particles, Q(t|r0), is well known and can
be calculated by integrating p(r,t|r0) over space:

Q(t | r0)= ∫
σ

∞

4πr2p(r,t| r0)dr=1 +
σα + 1

r0α
W ( r0−σ

4Dt
, α Dt)−Erfc( r0−σ

4Dt
) . (76)

For this system, the time discretization equations takes the form:

p(r2, Δt1 + Δt2 | r0)= ∫
σ

∞

4πr1
2p(r2, Δt2 | r1)p(r1, Δt1 | r0)dr,

p(*,Δt1 + Δt2 | r0)= p(*,Δt1 | r0) + ∫
σ

∞

4πr1
2p(*,Δt2 | r1)p(r1, Δt1 | r0)dr,

(77)

where p(*,t|r0)=1-Q(t|r0).

6.2.2. Sampling algorithm

The objective is to generate random variates from f(r)≡4πr2p(r,t|r0) (ref. [23]). It can be noted
that f(r) is composed by the sum of two Gaussians and a negative term, since ka≥0. Thus, f(r)
≤h(r), where

h (r)=
r

r0 4πDt
{exp −

(r - r0)2

4Dt + exp −
(r + r0−2σ)2

4Dt }. (78)

Since f(r) is bound by the sum of two Gaussian functions, it can be sampled by a rejection
method. To do so, h(r) is written as the sum of four terms, which, after rearrangement and
truncation to the positive ranges, are:
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h 1(r)=
r-r0

r0 4πDt
exp −

(r-r0)2

4Dt ×1
r≥r0

,

h 2(r)=
r + r0−2σ

r0 4πDt
exp −

(r + r0−2σ)2

4Dt ×1
r≥σ

,

h 3(r)=
r0

r0 4πDt
exp −

(r-r0)2

4Dt ×1
r≥σ

,

h 4(r)=
2σ-r0

r0 4πDt
exp −

(r + r0−2σ)2

4Dt ×1
r≥σ

×1
r0≤2σ

(79)

where 1[condition] takes the value 1 when the condition is true, and 0 when it is false. A related
function is also defined:

h 4
'(r)=

r0

r0 4πDt
exp −

(r-r0)2

4Dt ×1
r≤σ

. (80)

Thus, f (r)≤h (r) =
def
∑ h i(r). It is possible to generate a random variate with density proportional

to h(r), since h(r) is a mixture of known probability distribution functions. To do so, the weight
of the contributions of h1, h2 and h3+h4 are needed:

p1 = ∫h 1(y)dy=
Dt

πr0
2 ,

p2 = ∫h 2(y)dy=
Dt

πr0
2 exp −

(σ-r0)2

4Dt ,

p ' = ∫(h 3(y) + h 4(y))dy=Φ( r0−σ

2Dt
) + 1

r0≤2σ

2σ− r0
r0

Φ( σ-r0

2Dt
) .

(81)

where Φ(x) is the normal distribution function:

2 1 Erfc / 2.Φ(x ) = (x)- (82)

From this algorithm 8a is obtained:

Algorithm 8a

CALCULATE p1, p2 and p'. SET s=p1+p2+p‘

GENERATE a uniform [0,1] random variateU

IF sU∈ [0,p1], SETX ← r0 + 4DtE, where E is standard exponential.

Theory and Applications of Monte Carlo Simulations218



IF sU∈ (p1,p2], SETX ← 2σ− r0 + (r0−σ)2 + 4DtE, where E is standard exponential.

IF sU∈ [p1+p2,s], use algorithm 8b to generate X

RETURN X

The second part is given by Algorithm 8b:

Algorithm 8b

REPEAT

GENERATE N as standard normal, U uniform on [0,1]

Set X ← r0 + 2DtN

UNTIL X>σ, or jointly X<σ, Dt<2σ2and U≤(2σ-r0)/r0

In the former case, RETURN X

In the latter case, RETURN 2σ-X

Algorithm 8 generates numbers with density probability proportional to h(r). However,
random numbers distributed as f(r) are needed. Since f(r) is bound by h(r), a rejection method
is used as the final step, i.e. the overall algorithm generate pairs of random numbers (X,U) with
X having density distribution proportional to h and U uniform on [0,1] until Uh(X)≤f(X) and
returns X. Results obtained by using this algorithm are shown in Figure 11.

 

(a) (b) 

Figure 11. a) Green's function 4πr2p(r,t|r0) for D=1, R=1, r0=1.5 and α=-2 at t=1, 2, 4, 8, 16 and 32. Analytical functions:
(―); Result of sampling: (■). b) Survival probability Q(t|r0) as function of time for D=1, R=1, r0=1.5 and ka=0.1 x 4πRD
(―), 4πRD (---) and 10 x 4πRD ( ).

The time discretization property of the Green’s functions (Equations 77) are also used to
validate the simulation results and the sampling algorithm.

This algorithm is used to sample the length of the separation vector r. To fully caracterize the
vector its direction should be specified by the angles θ and ϕ in a spherical coordinate system.
An exact answer including the angles could be obtained by sampling the multi-variate Green's
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function given by Equation 67. An approximate method to obtain the deflection angles, which
can be used here, is given by [24].

After sampling of the vectors r and R, the new positions of the particles rA and rB are obtained
by inverting the transformation given by Equation (61):

/
,

/
.

A B A

A B

A B B

A B

D D D
=

D + D

D D + D
=

D + D

-
A

B

R r
r

R r
r

(83)

6.2.3. Application to radiation chemistry

Ionizing radiation interacts with water molecules and creates radiolytic species, which react
with cellular components and eventually lead to biological effects [14]. The precise location of
the created radiolytic species are highly dependent of the type and energy of ionizing radiation.
Therefore, considerable effort has been devoted to the Monte-Carlo simulation of ionizing
radiation tracks, which provides such information [25]. After their formation, the radiolytic
species react with each other and with other cellular molecules. Hence, radiation chemistry is
a very important link between the radiation track structure and cellular damage and biological
effects [26].

The simulation of radiation chemistry is difficult for several reasons. One important problem
is the calculation time. Since the number of interactions between N particles is N(N-1)/2, the
calculation time increases as ~N2. Therefore, simulation of systems comprising over 10000
particles is difficult, even in modern computers. For example, Uehara and Nikjoo [27] reported
that the simulation of time-dependent yields of chemical species produced by five 1-MeV
electron tracks comprising about 1,500 particles from 10-12 to 10-6 s requires about 250 h of
calculation time. One promising approach is the new hardware called general purpose graphic
processing units (GPGPU), which are special cards comprising a large number of processors
designed to perform a large number of calculations simulaneously. Regarding this, the
sampling algorithms proposed in this book chapter do not require much memory and could
be implemented on a GPGPU, which could allow the simulation of large particle systems.

We conclude this section by showing a simulation result of water radiolysis by a 12C6+ ion of
25 MeV/amu [28] in Figure 12. Briefly, the track structure and the position of all the radiolytic
species (.OH, H., e-

aq, H2, H2O2,..) at ~10-13 s are calculated by the code RITRACKS, described in
[25] and references therein. The time evolution of the radiolytic species are calculated by using
a step-by-step Monte-Carlo simulation code of radiation chemistry [28-30]. Each dot in Figure
12 represents a radiolytic species. The changes in the colors of the dots indicates that chemical
reaction occurs. The number of chemical reactions (the radiolytic yields) which are calculated
by the program have been validated with experimental data [30].
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Figure 12. Time evolution of the radiolytic species created by a 12C6+ ion track, 25 MeV/amu (LET~75 keV/μm) at 10-13,
10-9, 10-7 and 10-6 s.

7. Conclusion

The simulations based on the Green's function of the DE are able to accurately describe the
evolution of particles in time and space in various geometries, even if the number of particles
is small. In fact, this approach is now used in several fields. Of particular interest in radiobi‐
ology is the study of radiation chemistry, biochemical networks and bimolecular reactions.

The Green's functions and their respective sampling algorithms have been presented for simple
systems in one, two and three dimensions. Obviously, it is difficult to develop sampling
algorithm even for simple systems because of the complex mathematical form of the Green’s
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functions. However, it is very useful to develop sampling algorithms for systems for which
analytical solutions are known, because they can be used to validate future models which will
be based on numerical solutions of the DE. The DE can be solved easily by numerical methods
such as finite-difference schemes, but these techniques may have restrictions for computational
stability and the boundary conditions are often difficult to implement [31]. The systems with
complex boundary conditions are particularly relevant to study biological networks. However,
as seen in the applications, since the Green's functions of systems with complex boundary
conditions are often subdensities of the Green's functions for the corresponding system with
reflective boundary conditions, the rejection method can be used.

The algorithms developed in this chapter are already used to simulate the radiation chemis‐
tyoccuring in liquid water [28-30]. In the future, they will allow the validation and verification
of future calculations, which will use the numerical solution of the diffusion equation.
Eventually, the approach depicted in this book chapter will be used to simulate the time
evolution of radiolytic species created by ionizing radiation and their reactions with molecules
in biological media [23].
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