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1. Introduction

Metastatic malignant melanoma (MMM) remains one of the most dreaded skin cancers
worldwide. Numerous factors contribute to its resistance to hosts of treatment regimes and
despite significant scientific advances over the last decade in the field of chemotherapeutics
and melanocytic targets, there still remains the need for improved therapeutic modalities.
Photodynamic therapy (PDT), a minimally invasive therapeutic modality has been shown to
be effective in a number of oncologic and non-oncologic conditions. Using second-genera‐
tion stable, lipophillic photosensitizers with optimised activation wavelengths, PDT may be
a promising tool for adjuvant therapy and even pre-treatment in combating melanoma. Po‐
tential targets for PDT in melanoma eradication include cell proliferation inhibition, activa‐
tion of cell death and reduction in pro-survival autophagy, a decrease in the cellular
melanocytic antioxidant system and a disruption in the endogenous multi-drug resistant
(MDR) cellular machinery. This chapter highlights the current knowledge with respect to
these characteristics and suggests that PDT be considered as a good candidate for adjuvant
treatment in post-resected malignant metastatic melanoma. Furthermore, it suggests that
primary consideration must be given to organelle-specific destruction in melanoma specifi‐
cally targeting the melanosomes – the one organelle that is specific to cells of the melanocyt‐
ic lineage that houses the toxic compound, melanin. We believe that using this combined
knowledge may eventually lead to an effective therapeutic tool to combat this highly intract‐
able disease.

1.1. Melanoma clinical statistics

Melanoma accounts for 4% of all dermatologic cancers but remains responsible for 80% of
deaths from skin cancer with the average patient diagnosed with disseminated metastases
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surviving for an average of 5 years (Cancer facts and figures, 2003, Atlanta, American Can‐
cer Society, 2003]. According to the World Health Organization (WHO) melanoma skin can‐
cer has been increasing over the past decades with a global estimation of 132 000 melanoma-
related skin cancers reported to occur each year. Over the past 50 years, melanoma
incidence has risen by 3–8% per year in most people of European background, with the
greatest increases in elderly men [1]. In Europe, the current estimates at 15-20 per 100 000
people predominating in the 20-35 year old age group in Caucasians [2]. South Africa, next
to Australia, has one of the highest incidences of malignant melanoma in the world. Reliable
statistics for South Africa are lacking, however currently an estimate figure for the South Af‐
rican Cape region is 69 new cases per year per population of 100 000 Caucasians (Australia
is 65 per 100 000). This means that 1 in 1429 people will develop malignant melanoma. The
age-standardised incidence of melanoma was 27.2 per 100 000 for males and 22.2 per 100 000
for females from 1990-1999 but this increased to 36.9 for males and 33.5 per 100 000 for fe‐
males (2000-2003) (CANSA association of South Africa www.melanoma.co.za/
D_doccnr_MFS.asp) (Table 1).

Age-standardised

incidence(105 /yr)

Lifetime risk

(incidence)

Incidence trend

over 10 years

Mortality trend

over 10 years

Most common

cancer (ranking)

Australia (2001)

Men

Women

41.4 (world)

31.1 (world)

1 in 25

1 in 35

22% increase

12% increase

2% increase

0% increase

4th

3rd

South Africa (2000)

Men

Women

36.9 (world)

33.5 (world)

1 in 29

1 in 40

33% increase

27% increase

1.5% increase

1% increase

4th

3rd

USA (2001)

Men

Women

21.4 (world)

13.8 (world)

1 in 53

1 in 78

31% increase

25% increase

0% increase

1% decrease

5th

7th

UK (2000)

Men

Women

9.7 (world)

11.2 (world)

1 in 147

1 in 117

59% increase

41% incraese

20% increase

3% increase

12th

7th

Table 1. Melanoma statistics in 2 southern and northern hemisphere countries
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Despite extensive research and clinical trials, the prognosis and survival of metastatic mela‐
noma remains dismal. Early detection of localized melanoma may be cured through surgery
however there is no therapy for metastatic melanoma or melanoma with metastatic poten‐
tial. In addition, recurrence rates of resected melanoma remain high. Because melanoma is
inherently resistant to traditional forms of chemotherapy and radiotherapy [3], various strat‐
egies have been developed for treatments which include immunotherapy eg. interleukin-2
(IL-2) [4], radiotherapy [5] biochemotherapy [6-9] and gene therapy [4,10]. A limited number
of these therapies have progressed to human clinical trials but their outcomes remain negli‐
gible. One promising therapy is high-dose interferon (IFN) alpha-2b therapy which has just
recently been approved as the only adjuvant therapy for melanoma approved by the US
Food and Drug Administration [11]. The other is the use of BRAF kinase inhibitors such as
vemurafenib [12]. Despite convincing evidence of improved disease-free survival associated
with this therapy, the overall survival remains negligible or very small [13-15]. In addition, a
number of melanoma-specific and melanoma-associated tumor antigens such as gp100,
MART-1 and MAGE3 have been cloned [16] and the hope is that these potential antigens
may be developed to stimulate tumor-specific T cells to eliminate melanoma cells [17]. De‐
spite these advances, there remains the need for the development of novel and effective ap‐
proaches to treat melanoma and this review explores the possibility of using photodynamic
therapy (PDT) as an adjuvant therapy alone or in combination with current therapeutics to
combat melanoma.

1.2. Melanoma origins

Melanoma represents the malignant phenotype of a skin melanocyte. Melanoma occurs
most frequently after intermittent exposure to UV radiation and in people with chronic sun‐
burns. Epidemiologic data suggest that chronic or low-grade exposures to UV induce pro‐
tection against DNA damage, whereas acute, intense UV exposure leads to DNA damage
and concomitant genetic alterations in the melanocyte genome [18]. It develops as a result of
accumulated abnormalities in genetic pathways within the melanocyte which give way to
increased cell proliferation and prevent normal pathways of apoptosis in response to DNA
damage. Furthermore, this damage results in the selection for genetic mutations that allow
all aspects of the malignant phenotype, including stimulation of blood vessel growth, eva‐
sion of the immune response, tumour invasion, and metastasis [19]. Although the mecha‐
nisms of differential cancer cell killing are poorly understood [20], selection of cells that are
resistant to apoptotic mechanisms might contribute to the resistance of melanoma cells to
the cytotoxic effects of chemotherapy, radiotherapy, and immunotherapy, especially
through the expression of apoptosis inhibitors such as B-cell lymphoma derived protein 2
(Bcl-2) and BclxL [21].

Melanocytes progress through a series of steps toward malignant transformation by the ac‐
quisition of various phenotypic features. The particular histological features characterising
each step of progression are the visible manifestations of underlying genetic changes [22].
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Originating from a benign nevus, melanocytes undergo aberrant growth within the lesion
subsequently displaying irregular borders, a change in colour and often an associated aller‐
gic response. At this stage the lesion is considered dysplastic. At a molecular level, these
changes are associated with abnormal activation of the mitogen-activated protein kinase
(MAPK) signalling pathway resulting in somatic mutations in the N-RAS and BRAF genes
which are associated with about 15 and 50% of melanomas, respectively [23,24]. There is
complementarity between the presence of NRAS and BRAF mutations in any individual
melanoma since each has the same effect of causing unrestrained cell proliferation.

In addition, mutations in both the cyclin-dependent kinase inhibitor 2A (CDKN2A) and the
phosphatase and tensin homologue (PTEN) gene increases the probability of dysplastic nae‐
vi becoming malignant [25]. This genetic locus is frequently targeted for disruption in mela‐
nomas [26]. When defective, p16 is unable to inactivate CDK4 and CDK6, which
phosphorylate Rb, releasing the transcription factor E2F and leading to cell cycle progres‐
sion [27].The molecule that is usually central to protection against DNA damage, p53, is
rarely mutated early in melanoma, which is possibly one of several adaptations to permit
survival of cells responsible for generating sun-protective pigment, melanin [28]. Interest‐
ingly, by-products of melanin biosynthesis can themselves cause oxidative stress and con‐
tribute to malignant change.

Further progression of melanoma is associated with decreased differentiation and clonal
proliferation leading to the radial growth phase (RGP). Clinically, RGP presents as patches
or plaques which can measure up to 2.5cm. Superficial spreading melanoma lesions are
slightly raised and show striking variations of red, blue, white, brown, and black coloration.
In RGP, melanoma mitoses are frequently seen in the epidermis but rarely in the dermis. Af‐
ter complete surgical excision of the tumor, RGP melanomas are usually associated with
longterm metastasis-free survival [29-33]. RGP cells can progress to vertical growth phase
(VGP) cells which breach the basement membrane and invade the dermis as nodules or
nests of cells. Vertical growth phase (VGP) melanomas usually present as gray-black, blue-
black, or even amelanotic nodules. In late or developed VGP, melanomas form expansile
nodules in the dermis with cytology different from melanoma cells in the overlying epider‐
mis. Mitotic figures are variably present, and tumor aggregates may extend into the reticular
dermis or even subcutaneous fat. Dermal tumoral nests are larger in VGP than in RGP.
Moreover, these cells are considered to have metastatic potential. Interestingly, not all mela‐
nomas pass through each of these individual phases – RGP and VGP can both develop di‐
rectly from melanocytes or naevi and both can progress directly to metastatic malignant
melanoma [34]. Moreover, the transition from RGP to VGP in cutaneous melanoma isassoci‐
ated with the loss of c-KIT expression and the gain of the melanoma cell adhesion molecule
(MCAM/MUC18) [35].

Increased proliferation and survival, chemoresistance, the ability to resist apoptosis, the in‐
duction of autophagy and the presence of the pigment melanin have all been listed as rea‐
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sons contributing to the high mortality rates associated with cutaneous melanoma. Each of
these topics will be dealt with in the context of targeting them with PDT.

1.3. Photodynamic Therapy (PDT) as a cancer treatment

PDT is a minimally invasive therapeutic modality which has been shown to be effective in
several types of cancer including non-melanoma skin cancer (NMSC) and other skin tumors
such as lymphoma as well as non-oncological conditions such as psoriasis vulgaris, acne
vulgaris and human papilloma virus-induced skin disease [36,37]. The basis of PDT is the
systemic or topical application and preferential uptake of a photosensitizer (PS). The PS is
then activated at a specific wavelength of light and in the presence of oxygen, produces re‐
active oxygen species (ROS). The accumulative presence of these cytotoxic photoproducts
start a cascade of molecular and biochemical events resulting in cell death via apoptotic or
necrotic mechanisms [38,39].

The main advantage of PDT over conventional cancer treatments are i) it has a very low sys‐
temic cumulative toxicity allowing repeated dosing, ii) its ability to destroy tumors selec‐
tively (this seems to be related to the lipophillic nature of photosensitizers). Due to this
selectivity, damage to normal surrounding cells is minimal. Finally, iii) PDT can be applied
alone or in combination as an adjuvant therapeutic modality with chemotherapy, surgery,
radiotherapy and immunotherapy [40,41]. These properties have led to PDT receiving in‐
creased support from preclinical research [42,43]. PDT requires three elements to be effica‐
cious - a good PS, a coherent light source and the presence of molecular oxygen. A large
amount of data with regard to these three elements over the last few years have resulted in
the development of more naturally-derived, efficacious, second-generation photosensitizers.

1.3.1. Photosensitizers and melanoma-PDT

Photosensitizers are critical to the successful eradication of malignant cells and numerous
first and second-generation photosensitizers have been tested both clinically (in vivo) and in
vitro over the past years (for a detailed summary of melanoma-PDT research see Table 2).
The structure of many PS is based on the tetrapyrrol ring eg. protoporphyrin IX, Photofrin
and chlorines related to it eg. phthalocyanines. Newer, more stable second-generation PS in‐
clude natural hydroxyquinone chromophores such as hypericins and porphycenes [44-47]. It
is now accepted that a good PS for PDT is – i) chemically pure with good stability, ii) prefer‐
entially accumulated and retained by target tissue, iii) minimal toxicity in the absence of
light with maximal efficacy upon activation, iv) high quantum yield of 1O2 with an associat‐
ed high molecular extinction coefficient [40]. Due to these properties, a number of synthetic
or natural compounds have thus far been studied for a variety of cancers however these
have been limited to porphycenes (structural isomers of porphyrins) such as aminolevulinic
acid (ALA, trade name, Levulan®) and methylaminolevulinic acid (MAL, trade name, Met‐
vix® ) for the treatment of squamous cell (SCC) and basal cell carcinomas (BCC) as well as
actinic keratoses [48-50] (Table 2).
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vitro B16-F10 melanoma cells

magnetoliposomes (MLs) loaded with zinc

phthalocyanine (ZnPc) complexed with cucurbituril

(CB) (CB:ZnPc-MLs)

[51]

in vivo
mice carrying B16-F10 melanoma

xenografts

butadiyne-linked conjugated porphyrin dimer

(Oxdime)
[52]

in vivo
subcutaneous amelanotic melanoma

transplanted in C57/BL6 mice

pheophorbide a (Pba) and monomethoxy-

polyethylene glycol-Pba
[53]

in vitro A375, UCT Mel-1 human melanoma cells hypericin and kojic acid (depigmenting agent) [54]

in vitro/ in

vivo

B16F10 mouse melanoma cells and lung

melanomas in C57BL/6 mice

aminolevulic acid, gaussia luciferase, and its'

substrate coelenterazine; murine neural stem cells

(NSCs) and rat umbilical cord matrix-derived stem

cells (RUCMSCs) with a plasmid expressing gaussia

luciferase

[55]

in vitro C32 human melanoma cells Ficus carica L. cultivar Dottato extracts [56]

in vitro
Melanoma, keratinocyte and fibroblast

cells
aluminum tetrasulfophthalocyanines [57]

in vivo
B16-F1 and Cloudman S9 melanoma-

bearing mice

chlorin e(6) and modular nanotransporters targeted

to α-melanocyte-stimulating hormone (αMSH) and

epidermal growth factor (EGF) receptor

[58]

in vivo malignant melanoma mouse model methylene blue [59]

in vitro A549 and S91 melanoma cells halogenated sulfonamide bacteriochlorins [60]

in vitro A375 melanoma cells
carotenoids (neoxanthin, fucoxanthin and

siphonaxanthin)
[61]

in vitro melanoma cells
2 cationic octanuclear metalla-cubes dual

photosensitizers and chemotherapeutics
[62]

in vitro A375 melanoma cells Cachrys pungens Jan extracts from Italy [63]

in vitro B16F10 murine melanoma indocyanine green (ICG) and hyperthermia [64]

in vitro B78-H1 murine melanoma cells pheophorbide a [65]

in vitro
S91 Cloudman melanoma cells and DBA

mice
synthetic chlorin derivative (TCPCSO₃H) [66]

in vitro/ in

vivo

Melanoma cells and xenograft melanoma

model

cis-Dichlorobis [3,4,7,8-tetramethyl-1,10-

phenanthroline) rhodium(III) chloride (OCTBP)
[67]

in vitro M21 human melanoma cells Hedyotis corymbosa extracts [68]

in vitro A375, UCT Mel-1 human melanoma cells
hypericin and phenylthiourea (depigmenting

agent)
[69]

in vitro
melanoma, keratinocyte and fibroblast

cells
zinc tetrasulfophthalocyanines (ZnTSPc) [70]
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vitro melanoma cells

PDT and Lycopene, β-carotene, vitamin C, N-

acetylcysteine, trolox, N-tert-butyl-α-phenylnitrone

and HO-1 activity inhibitor zinc protoporphyrine IX

(ZnPPIX)

[71]

in vivo mice bearing mouse melanomas verteporfin [72]

in vitro/ in

vivo
S91 mouse melanoma cells and DBA mice

5,10,15,20-tetrakis[2-chloro-5-

sulfophenyl)bacteriochlorin (TCPBSO3H)
[66]

in vitro WM451LU melanoma cells
photosensitizers and heme oxygenase I (HO-I) and

poly(ADP-ribose) polymerase (PARP) inhibitors
[73]

in vitro A375 melanoma cells
5-aminolevulinic acid [5-ALA) and novel

metallophthalocyanine (MPc)
[74]

in vivo transplanted B16 melanoma novel derivatives of chlorin e[6] [75]

in vitro/ in

vivo
melanoma bearing mice

C(60)-(Glc)1 (D-glucose residue pendant fullerene)

and C(60)-(6Glc)1 (a maltohexaose residue pendant

fullerene)

[76]

in vitro SK-MEL-188 (human melanoma) cells

chlorin and bacteriochlorin derivatives of

5,10,15,20-tetrakis[2-chloro-5-

sulfophenyl)porphyrin

[77]

in vitro B16 melanoma cells IPL and IPL plus 5-ALA [78]

in vitro melanoma cells bacteriochlorins and photofrin [79]

in vitro
C57 mice bearing a sub-cutaneously

transplanted melanoma
Zn(II)-phthalocyanine disulphide (C11Pc) [80]

in vitro WM 1552C human melanoma cells
liposomes (LP) and nanocapsules (NC) containing

Chloroaluminum phthalocyanine (CIAIPc)
[81]

in vitro A375 melanoma cells 5,15-Diarylporphyrins (1-5) and Photofrin [82]

in vivo B16 melanoma tumours on mice 2 doses of photosensitizer [83]

in vitro B16 mouse melanoma cells chlordiazepoxide (CDZ) [84]

in vitro/ in

vivo

B78H1 amelanotic mouse melanoma cells

and C57BL/6 mice bearing a

subcutaneously transplanted B78H1

amelanotic melanoma.

octabutoxy-naphthalocyanines [85]

in vitro G361 human melanoma cells

zinc-5,10,15,20-tetrakis(4-sulphonatophenyl)

porphyrine (ZnTPPS(4)), chloraluminium

phtalocyanine disulfonate (ClAlPcS(2)) and 5-

aminolevulinic acid (ALA)

[86]

in vitro
A375 human melanoma cells B16F10

mouse melanoma cells
Pc4 encapsulated in silica nanoparticles [87]
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vitro Sk-Mel-28 human skin melanoma cells indocyanine green [88]

in vitro
UCT Mel-1 and A375 human melanoma

cells
hypericin [89]

in vitro G361 human melanoma cells
chloroaluminum phthalocyanine (ClAlPc) and

ultrasound
[90]

in vitro A375 human melanoma cells 5-aminolevulinic acid (ALA) [91]

in vitro/ in

vivo

B16F1 mouse melanoma cells and

C57BL6 mice bearing a subcutaneously

injected B16F1 melanoma.

methylene blue [92]

in vitro/ in

vivo

B16F1 mouse melanoma cells and

C57BL6 mice bearing a subcutaneously

injected B16F1 melanoma.

carboranyl-containing chlorin

(TPFC)
[93]

in vitro/ in

vivo

human malignant melanoma cells

(MMCs)
porfimer sodium [94]

in vivo
B57BL/6 mice bearing a B16BL6

melanoma

porfimer sodium and antibodies neutralizing decay-

accelerating factor (DAF), complement-receptor-1-

related protein y (Crry), and protectin

[95]

in vitro G361 human melanoma cells porphyrines (TPPS4, ZnTPPS4 and PdTPPS4 [96]

in vitro/ in

vivo

B-16 mouse melanoma cells and

subcutaneous B-16 melanoma-bearing

C57BL/6 mice

5,10,15,20-tetraphenylporphin-loaded PEG-PE

micelles
[97]

in vitro
UCT Mel-1 and UCT Mel-3 human

melanoma cells
hypericin [98]

in vitro Me300 human melanoma cells

Five 5,10,15,20-tetra[4-pyridyl)porphyrin (TPP)

areneruthenium(II) derivatives and a p-

cymeneosmium and two

pentamethylcyclopentadienyliridium and -rhodium

analogues

[99]

in vitro
B16F10 melanotic melanomas

transplanted to nude mice

methyl 5-aminolevulinate (MAL) and

depigmentation with violet light
[100]

in vitro S-91 mouse melanoma cells
titanium dioxide modified with platinum(IV)

chloride complexes (TiO2/PtCl4)
[101]

in vitro G361 human melanoma cells
zinc-5,10,15,20-tetrakis(4-sulphonatophenyl)

porphyrine (ZnTPPS4) and atomic force microscopy
[102]

in vitro
WM451Lu metastatic human melanoma

cells
5-aminolevulinic acid (ALA) [103]

in vitro B16F1 mouse melanoma cells
meso-tetra[4-nido-carboranylphenyl)porphyrin

(H2TCP)
[104]
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vitro B16F10 mouse melanoma cells
solketal-substituted phthalocyanine (Si(sol)2Pc in

mPEG-b-p(HPMAm-Lac2) micelles
[105]

in vitro
B19 mouse and G361 human melanoma

cells
phthalocyanine ClAlPcS(2) [106]

in vitro
S91 mouse and SKMEL 188 human

melanoma cells

5,10,15,20-tetrakis[2-chloro-3-

sulfophenyl)porphyrin (TCPPSO(3)H),
[107]

in vivo
choroidal melanomas in 46 New Zealand

albino rabbit eyes
hematoporphyrin monomethyl ether [108]

in vitro G361 human melanoma cells
3 porphyrin sensitizers (TPPS(4), ZnTPPS[4] and

PdTPPS(4))
[109]

in vitro
YUSAC2/T34A-C4 human melanoma cell

line
porfimer sodium [110]

in vivo
subcutaneous B16BL6 melanoma-bearing

C57BL/6 mice
BPD, ce6, Photofrin, and mTHPC and gamma-inulin [111]

in vitro A375 human melanoma cells acridine orange [112]

in vitro Cloudman S91/I3 mouse melanoma cells
photofrin II (PfII- porfirmer sodium), verteporfin,

and merocyanine 540 (MC540)
[113]

in vivo

A-Mel-3 melanomas implanted in the

dorsal skin fold chamber of Syrian Golden

hamsters

5-aminolaevulinic acid (ALA) [114]

in vivo B-16 melanoma-bearing C57BL/6 mice
ATX-S10 No (II) and intratumoral injection of naïve

dendritic cells (IT-DC)
[115]

in vitro/ in

vivo

B16F1 mouse melanoma cells and

C57BL6 mice bearing a subcutaneously

injected B16F1 melanoma.

Zn(ii)-phthalocyanine derivative bearing four 10B-

enriched o-carboranyl units [10B-ZnB4Pc)
[116]

in vitro
human Beidegröm Melanoma (BM) cell

line
porfirmer sodium (photofrin II) [117]

in vitro G361 human melanoma cells
ZnTPPS(4) sensitizer bound to cyclodextrin

hpbetaCD
[118].

in vitro B78H1 mouse melanoma cells Ni(II)-octabutoxy-naphthalocyanine (NiNc) [119]

in vitro G361 human melanoma cells
ZnTPPS(4) sensitizer bound to cyclodextrin

hpbetaCD
[120]

in vitro M2R mouse melanoma cells
O-[Pd-bacteriochlorophyllide]-serine methyl ester

(Pd-Bchl-Ser)
[121]

in vitro B78H1 melanoma cells
liposome-delivered Ni(II)-octabutoxy-

naphthalocyanine
[119]

in vitro human choroidal melanoma (CM) cells tetrahydroporphyrin tetratosylat (THPTS) [122]
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vivo M2R mouse melanoma xenografts WST11 [123]

in vitro B16 mouse melanoma cells 5-aminolevulinic acid [5-ALA) ester derivatives [124]

in vivo B-16 melanoma-bearing C57BL/6 mice metal-free sulfonated phthalocyanine (H(2)PcS(2.4))[125]

in vitro A375 human melanoma cells
alpha-methylene-gamma-butyrolactone-psoralen

heterodimer 2
[126]

in vitro B16 mouse melanoma cells 5-aminolevulinic acid (ALA) [127]

in vivo
C57BL6 mice bearing a subcutaneously

injected B16F10 melanoma
silkworm excreta (SPbalpha) porfirmer sodium [128]

in vitro M3Dau human melanoma cells
silicon-phthalocyanines (SiPc) and chloro-

aluminium Pc (ClAlPc),
[129]

in vitro Me45 human melanoma cells

meso-tetra-4-N-methylpyridyl-porphyrin iodide and

5,10-di-[4-acetamidophenyl)-15,20-di-[4-N-

methylpyridyl) porphyrin

[130]

in vitro G361 human melanoma cells
meso-tetrakis[4-sulphonatophenyl)porphine

(TPPS4) and zinc metallocomplex (ZnTPPS4)
[131]

in vitro G361 human melanoma cells ATX-S10(Na) [132]

in vivo

syrian Golden hamsters fitted with dorsal

skinfold chambers containing A-Mel-3

melanoma cells

5-aminolaevulinic acid (ALA) [133]

in vitro B16 mouse melanoma cells 5-aminolaevulinic acid (ALA) [134]

in vivo
UB900518 human melanoma cells

transplanted on nude (nu/nu) CD-1 mice
Liposomal meso-tetrakis-phenylporphyrin (TPP) [135]

in vivo
pigmented choroidal melanoma 44 New

Zealand albino rabbit eyes

liposomal preparation of benzoporphyrin derivative

(BPD), verteporfin
[136]

in vitro
S91 mouse and SKMEL 188 human

melanoma cells
indocyanine green (ICG) [137]

in vitro B16A45 (B16) mouse melanoma cells
delta-aminolevulinic acid (ALA) and

meta(tetrahydroxyphenyl)chlorin or m-THPC
[138]

in vitro B16 mouse melanoma cells
m-THPC and four apoptosis inhibitors: BAPTA-AM,

Forskolin, DSF, and Z.VAD.fmk
[47]

in vitro Bro, SKMel-23, SKMel-28 5-aminolevulinic acid (ALA) [139]

In vitro SKMEL 188 human melanoma cells tritolylporphyrin dimer (T-D). [140]

in vivo

Syrian Golden hamsters fitted with dorsal

skinfold chambers containing A-Mel-3

melanoma cells

5-aminolaevulinic acid (ALA) [141]

in vivo
Nude CD1 mice bearing malignant M2R

melanoma xenografts
bacteriochlorophyll-serine (Bchl-Ser), [142]
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vitro
SK-23 mouse melanoma and SK-Mel 28

human melanoma
methylene blue [143]

in vitro B78H1 melanoma cells
liposome-incorporated Ni(II)-octabutoxy-

naphthalocyanine (NiNc),
[144]

in vitro B78H1 melanoma cells Cu(II)-hematoporphyrin (CuHp) [145]

in vivo

Syrian Golden hamsters fitted with dorsal

skinfold chambers containing A-Mel-3

melanoma cells

5-aminolaevulinic acid (ALA) [146]

in vitro M6 human melanoma cells
dichlorosilicon phthalocyanine (Cl2SiPc) and bis(tri-

n-hexylsiloxy) silicon phthalocyanine (HexSiPc)
[147]

in vivo
C57/BL6 mice bearing a subcutaneously

transplanted B1 melanoma

benzoporphyrin derivative monoacid ring A

(verteporfin, BPD-MA)
[148]

in vitro SkMel-23 melanoma cells 5-aminolaevulinic acid (ALA) [149]

in vivo
C57/BL6 mice bearing a subcutaneously

transplanted B16 melanoma
Si(i.v.)-naphthalocyanine (isoBO-SiNc) [150]

in vivo
C57/BL6 mice bearing a subcutaneously

transplanted B16 melanoma
aluminum phthalocyanine (AlpcS4 [151]

in vivo
C57/BL6 mice bearing a subcutaneously

transplanted B16F10 melanoma
lutetium texaphyrin (PCI-0123), [152]

in vivo

Syrian Golden hamsters fitted with dorsal

skinfold chambers containing A-Mel-3

melanoma cells

9-acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-

porphycene (ATMPn)
[153].

in vivo
C57/BL6 mice bearing a subcutaneously

transplanted B16 melanoma
Si(IV)-methoxyethylene-glycol-naphthalocyanine [154]

in vivo

Syrian Golden hamsters fitted with dorsal

skinfold chambers containing A-Mel-3

melanoma cells

5-aminolaevulinic acid (ALA) [155]

in vivo 10 choroidal melanomas in rabbits liposomal preparation of benzoporphyrin derivative [156]

in vivo
M2R mouse melanoma tumors implanted

in CD1 nude mice
bacteriochlorophyll-serine (Bchl-Ser), [157]

in vitro uveal melanoma cells hematoporphyrin esters (HPE) [158]

in vivo

Syrian Golden hamsters fitted with dorsal

skinfold chambers containing A-Mel-3

melanoma cells

5-aminolaevulinic acid (ALA) [159]

in vivo
C57/BL6 mice bearing a subcutaneously

transplanted B16 melanoma
Zn(II)-2,3 naphthalocyanine (ZnNc) [160]
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Type of

study
Tumour/Cell line Photosensitizer Ref

in vivo
32 choroidal tumours in New Zealand

albino rabbit eyes.
benzoporphyrin derivative [161]

in vitro
G361,M18 and M6 human melanoma

cells
hypericin [162]

in vitro melanoma cell lines hypericin [163]

Table 2. Comprehensive update of in vivo and in vitro photodynamic therapy studies from 1996-present.

For melanoma treatment, where PDT will be more effective as a post-operative adjunctive treat‐
ment, very few reports highlight its effectiveness even though laboratory studies using melano‐
ma cells show promise. Clinically, PDT has shown promise in the treatment of both ocular
amelanotic melanomas [164] and skin metastases [165] however, more extensive clinical studies
need to be conducted before PDT is accepted as the adjunctive therapy of choice [166] (Table 3).

Type of

study
Tumour

Pigmentary

phenotype
Photosensitizer Outcome of study Ref

clinical choroidal melanomaunpigmented verteporfin

Dramatic tumor regression over 2 months

to a completely flat scar [1.3 mm thickness),

and remained stable at 50 months of

follow-up.

[167]

clinical
3 choroidal

melanomas
pigmented

PDT and intravitreal

bevacizumab

The tumors treated with PDT and

bevacizumab showed a marked reduction

in tumor vascularity. The tumors receiving

PDT as a primary treatment were followed

by progressive tumor growth that led to

enucleation years after.

[168]

clinical

9 posteriorly located

choroidal

melanomas

unpigmented verteporfin

Eight tumors demonstrated apparent

complete regression over 1 month to 14

months with no recurrence during follow-

up of between 34 months and 81 months.

One case developed 2 separate local

recurrences at 21 months and 34 months.

[169]

clinical

11 late stage

melanomas

(cutaneous

metastases)

ND

indocyanine green and

imiquimod (immune

modifier)

Complete response was observed in 6

patients. All lesions in the treatment area of

the patients responded to photo-

immunotherapy, 8 of which achieved

complete local response (CLR). CLR was

observed in the non-treatment site

(regional) lesions in four patients. Five

patients were still alive at the time of last

follow-up.

[170]
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Type of

study
Tumour

Pigmentary

phenotype
Photosensitizer Outcome of study Ref

clinical

1 duodenal

metastatic

melanoma

ND porfirmer sodium Successful treatment. [171]

clinical

6 brain metastasis of

malignant

melanoma

ND porfirmer sodium

All 6 patients [100%) remained free of

brain disease till death, 50% died of

malignant melanoma elsewhere and 50%

died of unrelated causes.

[172]

clinical melanoma in situ unigmented
methyl aminolevulinate

(MAL)

Recurrence at the original tumour site 4

months after PDT.
[173]

clinical choroidal melanomaunpigmented
benzoporphyrin derivative

(BPD)

The tumor fully disappeared 1 month after

the treatment, the visual acuity improved

from 4/16 to 4/4. The disease did not recur

during 24-month follow-up.

[174]

clinical

2 late-stage

melanoma. Patient 1

had the primary

tumour and local

metastases on the

left arm and

metastatic tumours

in the lungs. Patient

2 had a head and

neck melanoma

with multiple local

metastases, which

had failed repeated

attempts at surgical

resection and high-

dose radiation

therapy.

pigmented

indocyanine

green (ICG) + imiquimod

(toll-like receptor

agonist)

Patient 1 free of all clinically detectable

tumours (including the lung metastases)

"/>20 months after the first treatment

cycle. Patient 2 has been free of any clinical

evidence of the tumour for over 6 months.

[175]

clinical

4 uveal melanoma,

PDT on actual

tumour site

mildly to heavily

pigmented

benzoporphyrin derivative

(BPD)

Vascular occlusion and thrombosis in mildly

pigmented melanoma but no response in

pigmented ones.

[176]

clinical

25 small and

medium choroidal

melanomas

ND

indocyanine green and

transpupillary

thermotherapy

After a mean of 2.4 treatments (range, 1 to

5 treatments), all of the tumors but one

showed a significant volume reduction

without clinical evidence of recurrences.

Complications included retinal vascular

occlusions, edema and superficial scarring

of the macula, and rhegmatogenous retinal

detachment.

[177]
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Type of

study
Tumour

Pigmentary

phenotype
Photosensitizer Outcome of study Ref

clinical

14 skin metastasis

from malignant

melanoma, despite

multiple courses of

chemotherapy

pigmented chlorin e6

Complete regression after the first PDT

treatment in eight cases and complete

regression after multiple treatments in six

cases. 11 of 14 patients died due to the

progression of the melanoma, the median

survival time after surgery was 883 days.

[165]

clinical
38 choroidal

melanomas
ND indocyanine green (ICG)

Changes in microcirculation 6 months after

PDT, as well as significant decrease of

tumors thickness in ultrasonography (mean

38%), were detected in all cases. Complete

regression of intrinsic vessels was

demonstrated by ICGA in 26 cases, and

partial regression of pathological

vascularization was found in 12 patients.

[178]

clinical
4 choroidal

melanomas
ND

benzoporphyrin derivative

(BPD)

One tumor decreased in size and remained

stable for 18 months. One tumor had no

growth for 11 months. Two melanomas

continued to grow, necessitating

enucleation.

[179]

clinical

3 uveal melanoma,

PDT on unaffected

areas before

enucleation

ND
benzoporphyrin derivative

(BPD)

Vascular thrombosis. No damage to the

photoreceptors.
[180]

clinical 36 uveal melanomasvarious
hematoporphyrin

derivative

76 % of tumours were not growing at the

end of the first year, 62 % after the second

year and 38% after the fifth year. No eyes

were lost as a result of PDT. The degree of

tumour pigmentation and patient age at

therapy significantly influence the tumour

response to PDT.

[181]

Table 3. Clinical reports and outcomes of photodynamic effectiveness of photodynamic therapy protocols including
the melanoma pigmentary phenotype.

1.3.2. Hypericin, a second generation photosensitizer for PDT

Hypericin, a second generation PS isolated from the plant Hypericum perforatum, is a phenan‐
throperylenequinone with two broad peaks of absorption – 300-400nm (ultraviolet) and
500-600nm (white light) (Figure 1). This may be considered as a disadvantage as a number
of current second-generation photosensitizers have absorption peaks beyond 630nm allow‐
ing for increased penetration into tissues [182]. However, white light, used to activate hyper‐
icin, does penetrate deep into the dermis of the skin. Moreover, activation with ultraviolet
light could be a distinct advantage for the use of hypericin in daylight-mediated PDT. This

Melanoma - From Early Detection to Treatment596



type of PDT is more convenient for patients and clinicians and causes less pain. It poses a
particularly interesting avenue to explore for hospitals in developing countries where space
is limited and budgets are inadequate. Daylight-mediated PDT is an effective treatment for
thin actinic keratosis, as shown in three randomized controlled clinical studies (reviewed in
Wiegell et al., 2011) [183]. The potential of hypericin in clinical practice has been highlighted
by reports on its use to treat squamous and basal cell carcinomas [184-187], pancreatic tu‐
mors [188], bladder carcinomas [189-193], nasophyrangeal tumors [194,195] and recently
melanomas [196].

Figure 1. Absorbance spectrum of hypericin. Box, the wavelength of light used in our studies [98,197] representing
one of the two activation peaks. Inset, chemical structure of hypericin.

1.3.3. Melanoma cell death and biological mechanisms induced by hypericin-PDT

Despite these promising studies, very few reports have highlighted hypericin’s role in tar‐
geting melanoma. For the most part, cytotoxicity testing of new photosensitizers are tested
on cell lines in vitro using assays such as the 3-[4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra‐
zolium bromide (MTT), which is a colorimetric assays for measuring the activity of enzymes
that reduce MTT to formazan dyes, giving a purple color [198,199]. Other tests for cytotoxic‐
ity include dead cell protease tests. Despite being used as the “gold standard” for cytotoxici‐
ty testing, it must be borne in mind that these assays are based on cellular metabolic activity
and could result in a false positive result were the treatment to produce a cytostatic effect in
cells. Moreover, as these are colorimetric-based tests, the photosensitizer used itself may in‐
terfere with the wavelength at which these tests are read.

One of the first few reports testing 1 to 20mg/ml hypericin efficacy on squamous carcinoma,
sarcoma and melanoma cell lines found that a combination of activating laser light sources
resulted in a reduction in cell viability of 90% [163]. Following this, Hadjur et al. (1996) ex‐
posed human pigmented and unpigmented melanoma cell lines to hypericin and showed
minimal cytotoxicity on uptake but upon activation with white light, increased cell death in
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all three cell lines. Their findings thus suggest that amelanotic melanomas may be more sus‐
ceptible to hypericin-PDT than pigmented melanomas. Their possible reasons for this relat‐
ed to the presence of melanin and antioxidant status of melanomas [162].

Work from our  laboratory has  shown a  pigmentation dependant  susceptibility  of  mela‐
noma  cells  to  hypericin-PDT,  with  pigmented  cells  being  less  susceptible  than  unpig‐
mented  cells  [54,98,200,201].  Upon depigmentation  with  tyrosinase  inhibitors,  kojic  acid
and  phenylthiourea,  pigmented  melanoma  cells  become  more  susceptible  to  hypericin-
PDT [54,69].  Moreover, 72 hours after hypericin-PDT the cell  viability of the depigment‐
ed melanoma cells remained significantly less than the control cells. Over the same time
period  the  cells  not  treated  with  kojic  acid  approached  a  cell  viability  similar  to  the
control.

Melanin is a potent antioxidant which could be a reason for the increased resistance of pig‐
mented melanoma cells to PDT due to the scavenging of ROS produced by this therapy. In‐
deed we have shown that after depigmenting melanoma cells with kojic acid more ROS is
produced upon treatment with hypericin-PDT compared to pigmented melanoma cells
which were not depigmented [54]. We did not find a difference between the caspase 3, 7 ac‐
tivity after hypericin-PDT for both the depigmented and pigmented melanoma cells, which
was lower than control. This suggests that pigmented melanoma cells might induce a cas‐
pase-independent mode of cell death such as the activation of apoptosis-inducing factor
(AIF). Moreover, these cells might also undergo necrosis, necroptosis or autophagy in re‐
sponse to hypericin-PDT. We have further shown induction of autophagy at 4hours after
hypericin-PDT in both pigmented and unpigmented melanoma cells [197]. Interestingly,
pigmented melanoma cells (UCT Mel-1) show higher levels of externalisation of Annexin V,
an early apoptotic event, compared to mildy and unpigmented melanoma cells [501mel and
A375, respectively) after hypericin-PDT (Figure 2). However, the cell death response of pig‐
mented and unpigmented melanoma cells is very complex and does seem to be cell type de‐
pendant. A possible explanation for this may be that the cell lines used in our studies are
from different genetic origins and they thus might differ in various biochemical characteris‐
tics, including their antioxidant systems. The subcellular localisation of the photosensitizer
is another factor determining the cell death mode initiated by PDT. Upon activation by light,
photosensitizers produce ROS which are short-lived species acting directly in their vicinity
of production. Localisation to different cellular compartments thus induces different modes
of cell death.

Note: Since the discovery of programmed cell death in the 1960’s the cell death field has
evolved immensely. Researchers have shifted from morphological classifications to using
more biochemical criteria. The increase in cell death studies necessitated a systemic classifica‐
tion of cell death modalities, which led to the formation of the Nomenclature Committee on
Cell Death (NCCD). The main mission of this committee is ‘to provide a forum in which names
describing distinct modalities of cell death are critically evaluated and recommendations on
their definition and use are formulated, hoping that a non-rigid, yet uniform nomenclature will
facilitate the communication among scientists and ultimately accelerate the pace of discovery’
[202-204].

Melanoma - From Early Detection to Treatment598



A

30' 1 4 7 24

0

20

40

60

80

100

Time after treatment (h)

%

B

30' 1 4 7 24

0

20

40

60

80

100

Time after treatment (h)

%

C

30' 1 4 7 24

0

20

40

60

80

100

Time after treatment (h)

%

Figure 2. Graphs representing fluorescent activated cell sorting (FACS) analyses of melanoma cells at 30min, 1, 4, 7 and
24h after hypericin-PDT treatment (3µM hypericin with 1 J/cm2  UVA). A: unpigmented A375, B: mildly pigmented
501mel and C: pigmented UCT Mel-1. Cells were stained for early apoptosis (FITC Annexin V, BD Biosciences) and ne‐
crosis (LIVE/DEAD Fixable Violet stain, Invitrogen). Different modes of cell death are represented as proportional percen‐
tages normalised to the control, black: late apoptotic/ necrotic, dark grey: necrotic, light grey: apoptotic, white: live; n=3.
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1.4. PDT targets to treat melanoma

1.4.1. Cell proliferation and survival

It is now well established that one of the chief characteristics of cancer cells is their ability to
overcome cellular control of proliferation [205]. In melanocytes, proliferation is caused by a
combination of several mitogenic growth factors such as stem cell factor (SCF), epidermal
growth factor (EGF), fibroblast growth factor (FGF) and hepatocyte growth factor (HGF)
which cause a sustained extracellular receptor kinase (ERK) activity [206]. In melanoma, the
RAS/Raf/MEK/ERK pathway is a key regulating pathway in proliferation with ERK being
hyperactivated in up to 90% of human melanomas [207]. BRAF and PTEN mutations (see
above) are co-incident in about 20% of cases [208]. The most common mutation in BRAF is a
glutamic acid for valine substitution at position 600 (V600EBRAF) [209]. This mutation leads to
constitutive ERK signalling resulting in hyperproliferation and cell survival [210]. This path‐
way, through the EGF receptor as an extracellular ligand, has been a worthwhile target for
PDT in that sustained activation of the ERK pathway protected cells from photofrin-based
PDT as well as a reduction in the Raf protein levels in treated cells [211].

Nuclear factor kappa beta (NF-κβ) signalling leads to transcriptional regulation of a number
of genes involved in responses ranging from proliferation, metastasis, and survival to in‐
flammation. It therefore is an important target in PDT to stop aberrant cell proliferation.
PDT-induced oxidative stress through increased ROS production has been shown to activate
(NF-κβ) [212] and inactivate its inhibitor (Iκβ). Moreover, Ryter and Gomer showed in‐
creased NF-κβ binding in response to PDT stress in mouse cancer cells leading to a reduc‐
tion in proliferation [213].

1.4.2. Inhibition of apoptosis

Apoptosis, a controlled mode of cell death, is characterised by cell shrinkage, chromatin
condensation, DNA fragmentation, membrane blebbing and activation of caspases [214]. It
is now well established that activation of the caspase cascade occurs through death receptor
activation (extrinsic pathway) or through mitochondrial outer membrane permeabilization
(intrinsic pathway). Both of these pathways have been shown to be activated through PDT.
Several biochemical studies have established that PDT with different photosensitizers, in‐
cluding hypericin, utilise the mitochondrial-mediated pathway of caspase activation
[215,216] although PDT has recently been shown to also engage caspase-independent path‐
ways [217]. It is further known that several anti-cancer agents induce apoptosis and may
share common pathways leading to cell killing with Fas/APO-1/CD95 [218,219]. Ali et al.
(2002) elegantly showed that hypericin-PDT induces human nasopharyngeal cancer cells to
undergo apoptosis through the Fas/FasL system. Moreover, they showed that the upregula‐
tion of Fas/FasL results in the release of cytochrome c into the cytoplasm with subsequent
caspase induction – results that suggest that although apoptosis is considered a product of
either an extrinsic or intrinsic mechanism; the overall response to PDT may be a combina‐
tion of mechanisms [220].
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Cancer cells are known to resist cell death by upregulation of anti-apoptotic proteins, muta‐
tions in pro-apoptotic proteins, inhibition of cell senescence or through protective mecha‐
nisms such as autophagy. PDT that is targeted for cancer therapy aims to invoke cell
cytoxicity through attacking these characteristics – topics of a number of recent reviews
[36,221-223].

Intriguingly,  the  emergence  of  a  defined  ‘immunogenic  apoptosis’  seems  to  be  a  new
‘subset’ of apoptosis and autophagic cell death which has been shown to have the ability
to release/expose damage-associated membrane proteins  (DAMPs)  [224-227].  Therapeuti‐
cally,  the immunogenicity of  apoptosis  is  preferable  for  application rather  than necrosis
(or for that matter autophagic cell death) since necrosis can lead to harmful immunologi‐
cal reactions [228] (on the other hand, the extent of immunological impact of autophagic
cell  death  is  as  yet  uncharacterized,  thereby making it  an  uncertain  modality  to  use  in
the context of ‘immunochemotherapy’) [229]. The cell killing effectiveness is however de‐
pendent  on  parameters  such  as  the  PS  used,  the  light  dose  and  most  importantly,  the
subcellular localization of the PS. It is crucial for photosensitizers to effectively enter the
cell  and  accumulate  in  specific  intracellular  organelles  in  order  to  be  efficient  in  their
killing ability. Clearly, the final destination of the PS and its immediate vicinity will lead
to  different  modes  of  cell  death  and  consequently  different  efficiencies.  Recent  reports
have highlighted that  hypericin not  only localises  to different  subcellular  organelles  but
that  this  localization is  exposure  and dose-dependent  in  addition to  being tumour  cell-
specific [230-234]. As a start however, the lipophillic nature of hypericin dictates its asso‐
ciation  with  cellular  membranes  [235].  The  fact  that  hypericin  has  been  shown  to
associate  with  serum  proteins  (LDL  and  HDL  lipoproteins  [236]  ensues  that  it  enters
cells quickly and is preferentially taken up by cancer cells in the 3-dimensional milieu as
recent  reports  showed that  these  cells  have  high  levels  of  LDL surface  receptors  [237].
This is further supported by a recent report showing that cholesterol serves as a key de‐
terminant for the uptake of hypericin into cellular membranes [238].

Noteworthy however is that even though high levels of hydrophobicity ensues, high lev‐
els of intracellular accumulation of the photosensitizer, changes in the physical structure
of the PS due to aggregation and other modifications, may lead to reduced PDT efficien‐
cy [239]. Overall,  the consensus emerging is that hypericin localises to three intracellular
organelles namely, the endoplasmic reticulum (ER)-Golgi network [230,231,240,241], mito‐
chondria (Mt) [242-245] and lysosomes [237,246] where through synergistic action, apop‐
tosis  is  induced.  More  recent  work  by  the  Agostinis  group  show  that  hypericin-based
PDT would produce photo-oxidative ER (p-ox ER stress) stress while 5-ALA (localizes in
the  mitochondria)-based  PDT  would  produce  photo-oxidative  mitochondrial  stress
[36,247]. They also observed that Hyp-PDT induces ‘pre-apoptotic’ active exo-ATP secre‐
tion and late stage passive release of DAMPs like HSP70, HSP90 and CRT [223]. Overall
they  suggest  that  the  potential  of  Hyp-PDT  in  causing  exposure/secretion  of  ‘critical’
DAMPs add to the apoptotic  cell  death modality in a rather ‘small  club’  of  anti-cancer‐
ous  therapeutic  agents/modalities  capable  of  exposing  immunogenic  signals  like  ecto-
CRT [227,248].

The Menace of Melanoma: A Photodynamic Approach to Adjunctive Cancer Therapy
http://dx.doi.org/10.5772/53676

601



1.4.3. Induction of autophagy

A recent finding is the induction of the cytoprotective programme of autophagy in mela‐
nomas  in  response  to  PDT-induced  oxidative  stress  [89].  In  addition,  recent  reports
showed that cancer cells  may respond to chemotherapeutics or other forms of oxidative
stress  such  as  PDT,  through  the  induction  of  autophagy  initially  but  continued  stress
leads  to  an  overwhelming  of  the  endogenous  antioxidant  enzymes  along  with  a  shift
from autophagy to a possible senescent phenotype in an attempt to prolong cellular sur‐
vival.  Consequently however, the cell  enters an apoptotic or necrotic mode of cell  death
[249-251].  Autophagy,  defined as a cellular response to nutrient deprivation with conse‐
quent organelle breakdown, could converge with PDT at a number of cellular locations.
Although  more  work  relating  to  this  aspect  in  melanomas  is  needed,  reports  on  other
cancer cells have shown that autophagy can be induced if the lysosomal system, needed
for the clearance of  ROS-damaged organelles,  is  affected by PDT [252].  Another cellular
location is the mitochondria, where the PDT-induced loss of anti-apoptotic protein Bcl-2,
may lead to an initation of autophagy [253].

1.4.4. Chemoresistance due to increased antioxidants

Cancer cells are considered to be under continuous oxidative stress which has been sug‐
gested to aid in tumor progression [254].  In support,  several studies have shown tumor
cell  lines  producing  higher  levels  of  ROS  compared  to  their  normal  counterparts
[255,256]. Due to this increased level of ROS and hence constitutive increased level of ox‐
idative stress, it is not surprising that cancer cells have an extensive and advanced intra‐
cellular  antioxidant  network  –  a  characteristic  which  further  increases  their
chemoresistant  property.  Interestingly,  the  antioxidant  status  of  melanomas differs  from
that of other skin cancers such as basal and squamous cell carcinomas in that their anti‐
oxidant  activity  levels  (i.e.  catalase,  glutathione  peroxidise,  superoxide  dismutase)  are
much  higher  [257].  In  contrast,  melanocytes,  their  normal  untransformed  phenotype,
have lower levels of antioxidant activities and associated lower levels of resistance to oxi‐
dative stress [258]. It is therefore reasonable to postulate whether breaking this tolerance
to oxidative stress may increase therapeutic efficacy in targeting melanoma. A number of
studies  have  therefore  suggested  that  treating  melanoma  by  inhibiting  cellular  antioxi‐
dants may be efficacious [259-261]. One example of this was the addition of the superox‐
ide dismutase (SOD) activity inhibitor, 2-methoxyestradiol (2-ME2), to a mouse transplant
model which induced growth arrest of melanoma cells after injection [262].  Paradoxical‐
ly, several studies have suggested that antioxidants can enhance the action of cancer che‐
motherapeutics  drugs in  their  in  vitro  models  through inhibition of  a  variety of  factors
which  contribute  to  the  malignant  phenotype  [263,264].  A  recent  study however,  using
six  different  combinations  of  antioxidants  and  chemotherapeutic  drugs  in  combination,
failed to  identify  a  single  combination in  which an antioxidant  reduced the  survival  of
malignant breast carcinoma cells [265]. To our knowledge the use of PDT as an inhibitor
of antioxidants has not been tested in cancer cells.

Melanoma - From Early Detection to Treatment602



1.4.5. Melanin and melanosomes as pro-survival agents

All the potential intracellular organelle targets for PDT mentioned above are consistent with
most cancer cells. However, the one aspect that sets melanoma apart from other cancers is
the presence of its cell-specific organelle called the melanosome and its associated product,
melanin pigment. It is thus not inconceivable to believe that the intractability of this skin
disease may in some way be related to this organelle and its function [266,267]. It follows
logically then, that treatment regimes need to consider the melanosome as another potential
target organelle in the fight against melanoma [268].

Melanosomes are membrane-bound organelles in melanocytic cells which house the path‐
way that results in the formation of the polymeric pigment, melanin [269,270]. The enzymes
which participate in this pathway are translated in the cytoplasm and chaperoned to the
melanosomes. Tyrosinase (TYR), the rate-limiting enzyme of the pathway, and its related
proteins tyrosinase-related proteins 1 and 2 (TYRP-1 and TYRP-2) act in concert to first con‐
vert tyrosine to 3,4-dihydroxy-phenylalanine (DOPA) via tyrosine hydroxylase activity and
then convert DOPA to DOPAquinone via dopa oxidase activity. Both of these activities oc‐
cur via separate tyrosinase catalytic sites. During melanin synthesis toxic intermediates such
as 5, 6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid are produced. Structural‐
ly, the melanosomes are designed to compartmentalise these cytotoxic melanin intermedi‐
ates from spilling into the cytoplasm [271]. Melanosomal biogenesis progresses through four
distinct stages of maturation where the first two stages contain no melanin and the later
stages constitute intermediates required to generate a matrix favourable for the formation of
melanin [269,272]. The Pmel17/gp100/Silv/ME20 protein, a product of the Silver locus in
melanocytic cells [273], is capable of polymerizing into fibrillar arrays that form the back‐
bone of melanosomes. As a major component of the fibrillar matrix of early stage melano‐
somes, Pmel-17 serves as the best marker to follow intracellular trafficking steps that
regulate melanosomal formation [274].

Moreover, as Pmel-17 facilitates melanin deposition and plays a pivotal role in melanosome
biogenesis, it remains a strategic target when trying to combat melanoma through the fact
that melanosomes are involved in scavenging endogenous cytotoxic metabolites and storing
their waste products - a function that has been suggested to be a key in creating multi-drug
resistance [267]. With the premise that melanosomes may be acting as cytotoxic drug
“sinks” through the sequestration of chemotherapeutic drugs [267], it would be considered
an effective therapy for a PS to enter the melanosomal membrane and damage the wall of
the melanosome thus allowing the leakage of toxic melanin intermediates resulting in cell
death. The drawback is that melanosomes, which are classified into stages along their bio‐
genesis [269,270] only produce the toxic intermediates during their final maturing stages III
and IV [268-270,275-277]. Most pigmented melanomas do however present with a majority
of these end-stage melanosomes in their cytoplasm making the melanosomal membrane an
attractive target for PDT. On the basis of this information, one may imagine that pigmented
melanomas are therefore more susceptible to PDT-induced cell death. In contrast, our work
has shown that pigmented melanomas are much less susceptible to hypericin-PDT than un‐
pigmented/amelanotic melanomas despite hypericin readily entering the melanosomes [89].
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We hypothesize that the reason for this is due to the presence of the pigment melanin. In
support of this, pigmented human xenograft melanotic melanoma in mice, was shown to be
far less responsive to PDT than amelanotic melanoma [278].

Melanin has been shown to act as both an oxidant and antioxidant [266,279] and in parallel
studies, its presence in melanomas have been linked to chemoresistance. In support, further
studies have shown that a lack of pigment in melanomas decreases their resistance to cell
death. Our ongoing investigation into susceptibility to PDT-induced cell death in depig‐
mented melanomas supports this hypothesis [54,69].

1.4.6. Cancer stem cells as future PDT targets

The cancer stem cell hypothesis purports the idea that a subset of cancer cells is capable of
maintaining and driving disease progression [280,281]. With the identification of cancer stem
cell populations in colon, breast and brain tumors [282-285], it is believed that these cells are in‐
tegrally related to tumor formation, resistance to chemotherapy and escape from remission
[286]. While the qualifications for melanoma stem cells have generally been defined as tumori‐
genicity in xenograft spheroid formation and self-renewal in non-adherent cultures, the mark‐
ers used to identify these cells from the general tumor population remain debatable. A brief
summary of these markers and their potential as targets for novel PDT-based therapy, follow.

ATP-binding cassette (ABC) transporters are a vast family of transmembrane proteins that
have been studied for their ability to actively transport cytotoxic substances out of cells [287].
Intriguingly, some of these transporters have been demonstrated to be highly expressed in
highly tumorigenic subpopulations of melanoma suggesting that they may be markers of mel‐
anoma stem cells [286]. One of these includes the ABCB5 transporter. Known for increased ex‐
pression during melanoma progression in human tumor samples, ABCB5+ cells were able to
resist treatment with doxorubicin [288]. While ABCB5+ cells were not able to renew in culture
(a “stemness trait”), a subpopulation of cells that were indeed able to renew expressed the ABC
transporter, Multi-drug Resistant-1 (MDR1) [289]. In vitro, MDR1+ cells exhibited less pigmen‐
tation than MDR1- cells, possessed the ability to continuously self-renew in soft agar and ex‐
pressed the pluripotency and self-renewal regulators, human telomerase reverse transcriptase
(hTERT) – all characteristics pointing towards “stemness”. Interestingly, while MDR+ cells did
exhibit cancer stem-cell like properties in vitro, they also co-expressed ABCB5 and ABCC2
mRNAs suggesting that a number of ABC transporters may be expressed in sub-populations
[289]. To further add to the complication of delineating melanoma stem cell markers as poten‐
tial targets for PDT is the fact that a number of recent markers are co-expressed with ABC trans‐
porters. These include CD133/prominin-1/AC133, which is co-expressed with ABCB5 and
ABCG2 [288,290] and Nestin ([286].

Accumulating evidence suggests that another transporter, ABCG2, has physiological rele‐
vance in terms of photosensitivity and hence, PDT [291,292]. It has been shown that clinical
photosensitizers and chemotherapeutic drugs have been transported out of cells by ABCG2
whereas this effect was abrogated by co-administration of its inhibitor, imatinib mesylate
[293]. It is fascinating to speculate that a PDT protocol using a new, more stable photosensi‐
tizer such as hypericin may, through optimized concentrations, inhibit the action of the
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ABCG2 transporter and thus create an intracellular pool of ROS resulting in efficacious cell
death. This is definitely an avenue for exploration.

Overall, the ability to halt melanoma cancer progression through targeting melanoma stem
cells could be extremely advantageous. However, with such a large number of potential
markers and their interaction with PDT unknown, it may be a better option to focus on ABC
transporters and investigate their susceptibility to second generation PS-based PDT as a
means to an end for melanoma progression.

2. Conclusion and future directions

There is no doubt that our understanding of the molecular and cellular basis of melanoma
has grown substantially over the past decade. However, due to its multifunctional nature,
the nee d for better, improved therapies to combat or target melanoma remain essential. In
addition, better understanding of the heterogenous nature of this diverse disease will likely
lead to re-evaluation of the basic concepts underlying melanoma therapeutics development
and clinical trial design. Till then however, novel adjuvant treatment modalities such as
PDT using photostable, second-generation photosensitizers such as hypericin remain an op‐
tion and need to be investigated further. Moreover, optimization of this type of therapy with
regard to subcellular localization and its effect on cell death mechanisms within melanoma
cells is needed. Targeting the integrity of melanocytes-specific organelles such as the mela‐
nosomes and producing an over-riding increase in ROS with consequent cytotoxicity re‐
mains a good therapeutic option but needs a systematic, scientific approach. Intriguingly, as
more avenues of therapeutic targets such as melanoma stem cells and ABC transporters be‐
come illuminated, the ability to invoke cell death modalities in combination with PDT be‐
come more evident. Finally, it is clear that all these factors need to be considered in synergy
if progress is to be made toward combating the menace that is metastatic melanoma.
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