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1. Introduction

Photonic crystals (PC) are periodic structures with variation of the refractive index in one, two
or three spatial dimensions. The dynamic development of experimental and theoretical works
on photonic crystals has been launched by Yablonovitch [1],[2] and John [3] publications,
although the idea of periodic structures had been known since Rayleigh [4].

The main properties of photonic crystals stem from the existence of frequency ranges for which
the propagation of electromagnetic waves in the medium is not permitted. These frequency
ranges are commonly known as photonic band gaps and give the ability to modify the structure
parameters, e.g., group velocity, coherence length, gain, and spontaneous emission. Photonic
crystals’ properties are beneficial for both passive and active devices. This Chapter is devoted
especially to the latter.

1.1. Two-dimensional photonic crystal lasers

Photonic structures are becoming more and more important component of light generating
devices. They are used in lasers as mirrors [5],[6], active waveguides [7], coupled cavities [8],
defect microcavities [9],[10], and the laser active region [11].

Lasers with defects within two-dimensional photonic crystals are known for their high finesse
[12] and very low threshold [13].

Photonic crystal band-edge lasers allow to obtain edge [11] and surface emission [14],[15] of
coherent light from large cavity area. These devices are able to emit single mode, high-power
electromagnetic radiation by utilizing the presence of band-edge in the photonic band
structure [16],[17]. They also allow to control the output beam pattern by manipulation of the
structure geometry [18],[19], provide low threshold [20], and beams which have small
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divergence angle and can be focused to a size less than the wavelength [21]. Recently, the
operation of PC lasers as an on-chip dynamical control of the emitted beam direction have
been demonstrated [19],[22].

The photonic crystal structures lasing wavelengths span from terahertz [23]-[25], through
infrared [26],[27] to visible [21],[28],[29].

1.2. Modeling of photonic crystal lasers

Laser action in photonic crystal structures has been theoretically studied and centered on the
estimation of the output parameters e.g., [30],[31], and models describing light generation
processes e.g.,[32]-[34]. The most general semi-classical model of light generation in photonic
structures is presented in [34], where the description of one-, two-, and three-dimensional
structures is given.

Theoretical analysis of photonic crystal lasers based on two-dimensional plane wave expan‐
sion method (PWEM) [15],[35]-[37] and finite difference time domain method (FDTD) [35],[38]-
[40] confirm experimental results. Nevertheless these methods suffer from important
disadvantages, i.e., plane wave method gives a good approximation for infinite structures,
whereas finite difference time domain method is suited for structures with only a few periods
and consumes huge computer resources for the analysis of real photonic structures. Therefore
these methods are not very convenient for design and optimization of actual photonic crystal
lasers. Hence, different, less complicated methods of analysis of two-dimensional photonic
crystal lasers are being developed. These methods are meant to effectively support the design
process of such lasers. They are based on a coupled-wave theory (CWT) [15],[41] and focused
on square and triangular lattice photonic crystals e.g., [32],[33],[42]-[48]. Most of the works
e.g., [32],[42]-[46] contain a mathematical description and numerical results of the threshold
analysis of two-dimensional (2-D) square and triangular lattice photonic crystal laser with TM
and TE polarization. They introduce general coupled mode relations for a threshold gain, a
Bragg frequency deviation and field distributions, and give calculation results for some specific
values of coupling coefficients. Further, in [42] the effect of boundary reflections has been
investigated, and it has been shown that the mode properties can be adjusted by changing
refractive index or boundary conditions. In, [46], the achievements of these works were
summarized and supplemented with the analysis for the wide range of coupling coefficient.
These studies concerned structures which were infinite in the direction normal to the 2D PC
plane. This approach was improved and presented in [47], where a three-dimensional (3D)
couple wave model was shown. This theory addressed some key issues in a modeling of
threshold operation of surface-emitting-type PC lasers, i.e. the surface emission and the in-
plane higher-order coupling effects. It has also been further developed to incorporate finite-
size effects, and presented in [48]. Some other works such as for example [33],[44],[45],[49]
present an above threshold analysis of 2D PC lasers. They illustrate gain saturation effect and
describe the impact of structure parameters on the system efficiency.

In all of the cited works non have given much attention to simultaneous index and gain
coupling. Thus in addition to the works already mentioned, this Chapter aims to remind crucial
points of CMT and to show 2D coupled-wave analysis for structures with gain and index
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coupling. The study includes square and triangular lattice structures with TE and TM polari‐
zation of light.

The subsequent parts of this chapter include structure definition (Section 2), threshold analysis
(Section 3), where 2D coupled-wave theory is reminded (Section 3.1), coupled-wave equations
are shown (Section 3.2), and numerical analysis is performed (Section 3.3). The perspectives
are sketched in Section 4, and finally conclusions are given in Section 5.

2. Structure definition

The Chapter describes two-dimensional photonic crystals which are characterized by the
relative permittivity ε and gain α. Both parameters depend on the two-dimensional spatial
structure of the medium. The cross-sections of discussed structures are schematically shown
in Figure 1.

 

(b) (a) 

Figure 1. a) Square and b) triangular lattice photonic structures cross sections. (pairs εa, αa and εb, αb are relative per‐
mittivity and gain of rods and background material, respectively, a - lattice constant, L - cavity length).

From this point on, since photonic structures resemble the microscopic nature of crystals, a
crystallography terminology will be used, see e.g., [49]. Throughout this Chapter only 2-D
photonic crystals with a square, and hexagonal (also referred to as triangular) symmetry will
be discussed, as it is depicted in Figure 1. The periodic pattern is created by cylinders called
rods or holes. The structures in Figure 1 a) and b) are constrained in the xy plane by the square
region of length L, and are assumed to be uniform and much larger than the wavelength in
the z direction. The permittivity and gain of the rods and background material are represented
by εa, αa and εb, αb, respectively. The number of periods in the xy plane is finite, but large enough
to be expanded in Fourier series with small error. Schemes in Fig. 1 a) and 1 b) illustrate two
spatial distributions of rods for two-dimensional photonic crystal, respectively, with square
and triangular lattice.
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Schemes in Figure 2 a) and Figure 3 a) show a view of photonic crystal cross sections in xy
plane with cylinders arranged in square or triangular lattice with period a, and with depicted
primitive vectors a1 and a2.

 

(a) (b) 

Figure 2. A schematic view of a) a square lattice photonic crystal with primitive vectors; and b) its representation in
reciprocal space with reciprocal primitive vectors.

 

(a) (b) 

Figure 3. A schematic view of a) a triangular lattice photonic crystal with primitive vectors; and b) its representation in
reciprocal space with reciprocal primitive vectors.

Figure 2 b) andFigure 3 b) show the reciprocal lattices corresponding, respectively, to the real
square and triangular lattices. In the described case, the nodes of a two-dimensional structure
can be expressed by (e.g., see [50])
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x∥(l)= l1a1 + l2a2,  (1)

where a1 and a2 are primitive vectors, l1 and l2 are arbitrary integers, x∥ specifies the placement
on the plane, x∥= x̂x + ŷ y, where x̂ and ŷ are unit vectors along x and y axis, respectively.
Primitive vectors for square lattice are described by the expressions:a1 =(a, 0), a2 =(0, a) and for

the triangular lattice: a1 = ( 3a / 2, a / 2), a2 =(0, a).

In general, the reciprocal vectors can be written in the following form:

G(h )=h 1b1 + h 2b2 (2)

where h1 and h2 are arbitrary integers, b1 and b2 are the primitive vectors of the two-dimensional
reciprocal space, which are expressed by the following equations:

b1 = 2π
ac

(ay
2, - ax

2),  b2 = 2π
ac

(-ay
1, ax

1) (3)

where a j
(i) is the j-th Cartesian component (x or y) of the ai vector (i = 1 or 2) (e.g., see [32]).

The areas of primitive cells are ac =|a1 ×a2|=a 2 and ac =|a1 ×a2|= 3a 2 / 2 in case of square and
triangular lattices, respectively.

Using Equations (3) and the expressions for square and triangular lattice primitive vectors and
primitive cell areas the reciprocal primitive vectors are described by the following formulas:

b1 =(2π / a, 0),  b2 =(0,2π / a) –  square lattice,  (4)

and

b1 = (4π / 3a, 0),  b2 = (-2π / 3a, 2π / a) - triangular lattice. (5)

The spatial arrangement of periodic rods for the infinite two-dimensional square or triangular
lattice can be expressed by the function:

ε(x∥)=εb + (εa - εb)∑l S(x∥ - x∥(l)),    (6)

in terms of relative permittivity, and by

α(x∥)=αb + (αa - αb)∑l S (x∥ - x∥(l)),  (7)

in terms of gain. In Equations (6) and (7), function S
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S (x∥)= {1   for x∥∈O
0   for x∥∉O

specifies the location of rods in the structure, O is the area of the xy plane defined by the cross
section of the rod, which symmetry axis intersects the plane at the point x∥=0.

In the next section an analysis based on the coupled mode theory is shown. It is conducted in
the frequency domain, thus the relative permittivity as well as gain have to be Fourier
transformed to fit reciprocal space [37],[51]. Functions (6) and (7) are now, respectively, written
in the following form

ε(G)= {εa f + εb(1 - f ),         G∥=0 

(εa - εb) f
2J 1(G∥R)

G∥R ,    G∥≠0
(8)

and

α(G)= {αa f + αb(1 - f ),         G∥=0 

(αa - αb) f
2J 1(G∥R)

G∥R ,    G∥≠0
(9)

where

f =πr 2 / a 2- square lattice filling factor, f = (2π / 3)r 2 / a 2 - triangular lattice filling factor, r -
rod radius, J1 - Bessel function of the first kind.

In next parts of this Chapter four different cases are analyzed. Two of them are dedicated to
the square lattice cavities with TE and TM polarization, and two remaining to the triangular
lattice structures also with TE and TM polarization. For the purpose of this work, it is assumed
that there is no gain in the background material, i.e., αb =0, but there is a gain in the rods
αa≠  0. The structure where αa =αb will be referred to as Index Coupled, and where αa≠αb as
Index and Gain Coupled.

The threshold analysis of the photonic crystal laser operation for the defined structures is
shown in the next section.

3. A threshold analysis

3.1. 2D Coupled-wave model for 2D PC cavity

The electromagnetic wave behavior in the two-dimensional periodic system can be described
by the set of scalar wave equations. Depending on the polarization of light it is easier to choose
one specific field component, since then the set of equations may be reduced to a single one.
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Thus, the scalar wave equations for the electric and magnetic fields Ez and Hz, respectively, are
written in the following forms [37],[51]:

∂2 Ez

∂ x 2 +
∂2 Ez

∂ y 2 + k 2Ez =0,  (10)

for TM polarization, and

∂
∂ x { 1

k 2
∂
∂ x H z} + ∂

∂ y { 1
k 2

∂
∂ y H z} + H z =0,  (11)

for TE polarization.

In Equations (10) and (11) the constant k is given, correspondingly by [42]

k 2 =β 2 + 2iαβ + 2β∑G≠0 κ(G)exp (i(G⋅ r)),    (12)

and [32]

1
k 2 = 1

β 4 (β 2 - i2αβ + 2β∑G≠0 κ(G)exp (i(G⋅ r))). (13)

In the expressions for k 2 and k -2, β equals to 2πε0
1/2 / λ, where ε0 =ε(G=0) is the averaged

dielectric permittivity (ε0
1/2 corresponds to averaged refractive index n), α is an averaged gain

in the medium, κ(G) is the coupling constant, λ is the Bragg wavelength. Here, the reciprocal
lattice vector (Equation (2)) is expressed by G= (mb1, nb2), where m and n are arbitrary integers,

b1 and b2 depend on the structure symmetry and are written in the following forms b1 = (β0
s, 0)

and b2 = (0, β0
s) for square lattice, and b1 = (β0

t , 0) and b2 = (-β0
t / 2,  3β0

t / 2) for triangular lattice

structure, β0
2 =2π / a and β0

t =4π / 3a. In the derivation of Equations (12) and (13) the following

assumptions were set: α≪β ≡2πε0
1/2 / λ, εG≠0≪ε0, and εG≪β, e.g., see [42].

The periodic variation in the refractive index and gain is included as a small perturbation and
appears in as the coupling constant κ(G) of the form:

κ(G)= - π
λε0

1/2 ε(G) ± i α(G)
2 .  (14)

In the above equation, plus sign refers to TM polarization (Equation (12)), while minus sign
refers to TE polarization (Equation (13)). For the simplicity, it is set that η(G)= - πε(G) / λε0

1/2

and α(G)=α(G) / 2, and Equation (14) is rewritten in the following form:

κ(G)=η(G) ± iα(G). (15)
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In the two-dimensional system which is not confined in the third direction, in the vicinity of
the Bragg wavelength only some of the diffraction orders contribute in a significant way. In
general, a periodic perturbation produces an infinite set of diffraction orders. Keeping this in
mind, the Bragg frequency orders have to be cautiously chosen. The Bragg frequency corre‐
sponding to the Γ (e.g., see [42]) is chosen for the purpose of this work, and the most signifi‐
cantly contributing coupling constants are expressed as follows:

κ1 =η(G) ± α(G)│|G|=β0
s ,t

κ2 =η(G) ± α(G)│|G|= 3β0
s ,t

κ3 =η(G) ± α(G)│|G|=2β0
s ,t

(16)

In Equations (10) and (11) electric and magnetic fields for the infinite periodic structure are
given by the Bloch modes, [15],[37]:

Ez(r)=∑G e(G)exp (i(k + G)⋅ r),  (17)

and

H z(r)=∑G h (G)exp (i(k + G)⋅ r),  (18)

where the functions e(G) and h (G) correspond to plane wave amplitudes, and the wave
vector is denoted by k. In the first Brillouin zone at the Γ point the wave vector vanish‐
es k=0, see e.g., [41].

In a finite two-dimensional structure, the amplitude of each plane wave is not constant, so e(G)
and h (G) become functions of space. At the Γ point, only the amplitudes (e(G), h (G)) which
are meant to be significant are considered, i.e., in most cases with |G|=β0

s ,t , except for square

lattice with TE polarization where additional h (G) amplitudes with |G|= 2β0
s have to be

included [41]. The contributions of other waves of higher order in the Bloch mode are consid‐
ered to be negligible. In general, where for example there is a three-dimensional confinement,
this assumption have to be reconsidered.

3.2. Coupled-wave equations

3.2.1. Square lattice – TM polarization

For square lattice photonic crystal cavity in the case of TM polarization, it is assumed that at
the center point of the Brillouin zone the most significant contribution to coupling is given by
the electric waves which fulfill the condition |G|=β0

s. Therefore in the following derivation

all higher order electric wave expansion coefficients (|G|≥ 2β0
s) are neglected. Four basic

waves most significantly contributing to coupling are depicted in Figure 4.
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Figure 4. Schematic cross section of square lattice photonic crystal laser active region with the four basic waves in‐
volved in coupling for TM polarization.

Equation (17) in general describes infinite structures. It is possible to take into account the fact
that the structure is finite by using the space dependent amplitudes, e.g., [42]. Thus, the electric
field given by Equation (17) in the finite periodic structure can be expressed in the following
way:

Ez = E1
s(x, y)e -iβ0

s x + E3
s(x, y)e iβ0

s x + E2
s(x, y)e -iβ0

s y + E4
s(x, y)e iβ0

s y. (19)

In Equation (19) Ei
s, i=1..4 are the four basic electric field amplitudes propagating in four

directions +x, -x, +y, -y. These amplitudes correspond to e(G) (Equation (17)) satisfying the

condition: |G|=β0
s. In further analysis, the space dependence is omitted for the simplicity of

notation.

Using derived earlier reciprocal lattice vectors and Fourier expansions of spatial dependences
of the square lattice PC with circular rods, the coupling coefficients κ(G) (Equation (16)) can
be written as:

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 πf )

2 πf
=η1 + iα1,  (20)
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κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 2πf )

2 2πf
=η2 + iα2,  (21)

κ3 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(4 πf )

4 πf
=η3 + iα3. (22)

Combining Equations (12) and (19) with Equation (10), and assuming the slow varying
electromagnetic field, one can get the set of coupled mode equations [42]:

- ∂
∂ x E1

s + (α - iδ)E1
s = (iη3 - α3)E3

s + (iη2 - α2)(E2
s + E4

2),  (23)

∂
∂ x E3

s + (α - iδ)E3
s = (iη3 - α3)E1

s + (iη2 - α2)(E2
s + E4

s),  (24)

- ∂
∂ y E2

s + (α - iδ)E2
s = (iη3 - α3)E4

s + (iη2 - α2)(E1
s + E3

s),  (25)

∂
∂ y E4

s + (α - iδ)E4
s = (iη3 - α3)E2

s + (iη2 - α2)(E1
s + E3

s),  (26)

where

δ = (β 2 - β0
s2) / 2β ≈β - β0

s,   (27)

is the Bragg frequency deviation. Coupling coefficients κ2 and κ3 are expressed by Equations

(21) and (22). The κ2 coefficient is responsible for orthogonal coupling (e.g., the coupling of E1
s

to E2
s and E4

s), and κ2 corresponds to backward coupling (e.g., the coupling of E1
s to E3

s).
Solution of Equations (23)-(26) for the following boundary conditions:

E1
s(- L

2 , y)= E3
s( L

2 , y)=0,   E2
s(x, - L

2 )= E4
s(x, L

2 )=0,  (28)

defines  eigenmodes  of  the  photonic  structure.  The  analysis  of  this  solution  is  given  in
Section 3.3.

3.2.2. Square lattice – TE polarization

In the 2D square lattice PC-like resonator with TE polarization the coupling process in the most
significant way involves magnetic waves satisfying following conditions: |G|=β0 and

|G|= 2β0, [32]. In the presented analysis the higher order Bloch modes are neglected. Eight
basic waves fulfilling the specified conditions are depicted in Figure 5.
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Figure 5. Schematic cross section of square lattice photonic crystal laser active region with the eight basic waves in‐
volved in coupling for TE polarization.

Similarly as it was stated in the case of TM polarization, the equation for magnetic field (18)
describes modes for infinite structure, and the finite dimensions of the structure are introduced
by spatial dependence of magnetic field amplitudes [32]. Thus, the magnetic field (18) is written
in the following form:

( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 0 0

0 0 0 0 0 0

0 0

1 5 3 7

2 4 6
( )

8

 , , , ,

, , ,

( , ) .

s s s s

s s s s s s

s s

i x i x i y i ys s s s
z

i x i y i x i y i x i ys s s

i x i ys

H H x y e H x y e H x y e H x y e

H x y e H x y e H x y e

H x y e

b b b b

b b b b b b

b b

- -

- - - +

- +

= + + +

+ + +

+

(29)

In Equation (29) H i
s, i=1..8 are the basic magnetic field amplitudes of waves propagating in

directions schematically shown in Figure 5. These amplitudes correspond to h (G) in Equation
(18), where |G|=β0 and |G|= 2β0. Joining Equations (13), (29), and (11), and assuming slowly
varying amplitudes, the coupled wave equations for TE modes in square lattice PC are
obtained [32]:

- ∂
∂ x H1

s + (α - iδ)H1
s = (iη3 + α3)H5

s + i
2(η1 - iα1)2

β0
s (2H1

s + H3
s + H7

s),  (30)
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∂
∂ x H5

s + (α - iδ)H5
s = (iη3 + α3)H1

s + i
2(η1 - iα1)2

β0
s (2H5

s + H3
s + H7

s),  (31)

- ∂
∂ x H3

s + (α - iδ)H3
s = (iη3 + α3)H7

s + i
2(η1 - iα1)2

β0
s (2H3

s + H1
s + H5

s),  (32)

∂
∂ x H7

s + (α - iδ)H7
s = (iη3 + α3)H3

s + i
2(η1 - iα1)2

β0
s (2H7

s + H1
s + H5

s). (33)

In Equations (30)-(33), the spatial dependence of four magnetic field components H i
s, i=2,4,6,8

was neglected, and it was assumed that α≪δ. These steps let to formulate not eight but four
partial differential equations (for details see [32] or [46]). The Bragg frequency deviation δ is
given by (27). The coupling coefficients κ1, κ2, and κ3 defined by Equations (16) are expressed
by [32],[43]:

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(2 πf )

2 πf
=η1 - iα1,  (34)

κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(2 2πf )

2 2πf
=η2 - iα2,  (35)

κ3 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(4 πf )

4 πf
=η3 - iα3.  (36)

In contrast to TM polarization, in Equations (30)-(33), the coupling coefficient responsible for
coupling in perpendicular direction κ2 vanishes. The coupling coefficient κ3 has the same
meaning as described in the previous (TM) case, whereas the coupling coefficient κ1 describes

the coupling of e.g., waves H1
s, H2

s, and H8
s. Solution of Equations (30)-(33) for the following

boundary conditions:

H1
s(- L

2 , y)= H5
s( L

2 , y)=0,   H3
s(x, - L

2 )= H7
s(x, L

2 )=0, (37)

defines structure eigenmodes at lasing threshold i.e. in the linear case.

3.2.3. Triangular lattice - TM polarization

In the simple approximation scenario the coupling process in the triangular lattice photonic
crystal cavity with TM polarization involves waves satisfying following condition: |G|=β0,
and  neglects  higher  order  Bloch  modes  [43],[44].  There  are  six  waves  satisfying  this
condition and simultaneously most significantly contributing to coupling, they are depicted
in Figure 6.
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Figure 6. A schematic cross section of a triangular lattice photonic crystal laser active region with the six basic waves
involved in the coupling for TM polarization.

The space dependent amplitudes for electric field e(G) in triangular lattice PC cavity are written
in the following form [44]:

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0
0

0 0 0 0
0

3 3
2 2 2 2

1 2 3
3 3

2 2 2 2
4 5 6

, , ,

, , ,

t t t t
t

t t t t
t

i x i y i x i yi xt t t
z

i x i y i x i yi xt t t

E E x y e E x y e E x y e

E x y e E x y e E x y e

b b b b
b

b b b b
b

- - --

+ - +

= + +

+ + +

(38)

In Equation (38), Ei
t , i=1..6, are the six electric field amplitudes propagating in the symmetry

directions, Figure 6. Combining Equations (12), (38) with Equation (10), and assuming slowly
varying amplitudes, the coupled wave equations for TM modes in triangular lattice PC are
obtained:

- ∂
∂ x E1

t + (α - iδ)E1
t = (iη1 - α1)(E2

t + E6
t) + (iη2 - α2)(E3

t + E5
t) + (iη3 - α3)E4

t ,  (39)

- 1
2
∂
∂ x E2

t - 3
2

∂
∂ y E2

t + (α - iδ)E2
t = (iη1 - α1)(E1

t + E3
t) + (iη2 - α2)(E4

t + E6
t) + (iη3 - α3)E5

t ,  (40)
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1
2
∂
∂ x E3

t - 3
2

∂
∂ y E3

t + (α - iδ)E3
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t + E4
t) + (iη2 - α2)(E1

t + E5
t) + (iη3 - α3)E6 

t ,     (41)

∂
∂ x E4

t + (α - iδ)E4
t = (iη1 - α1)(E3

t + E5
t) + (iη2 - α2)(E2

t + E6
t) + (iη3 - α3)E1

t ,   (42)

1
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∂
∂ x E5
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∂
∂ y E5

t + (α - iδ)E5
t = (iη1 - α1)(E4

t + E6
t) + (iη2 - α2)(E1

t + E3
t) + (iη3 - α3)E2

t ,  (43)

- 1
2
∂
∂ x E6

t + 3
2

∂
∂ y E6

t + (α - iδ)E6
t = (iη1 - α1)(E1

t + E5
t) + (iη2 - α2)(E2

t + E4
t) + (iη3 - α3)E3

t ,  (44)

In Equations (39)-(44), like in the case of square lattice, δ is the Bragg frequency deviation (17),
while κ1, κ2, and κ3 are the coupling coefficients, which are defined by the following relations
[44]:

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
( 8πf / 3)
8πf / 3

=η1 + iα1,   (45)

κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
( 8 3πf )
8 3πf

=η2 + iα2,  (46)

κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) + i

αa

2 ) 2 f J 1
(2 8πf / 3)

2 8πf / 3
=η3 + iα3. (47)

These coefficients describe strength and direction of the coupling of the waves, e.g., the
coupling of E1

t  and E4
t  is described by κ3, the coupling of E1

t , E2
t , and E6

t  by κ1, and the coupling

of E1
t , E3

t , and E5
t  by κ2. Solution of Equations (39)-(44) for the boundary conditions:

1 2 2 3 3
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, 0,   , , 0,   , , 0,   
2 2 2 2 2
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2 2 2 2 2

t t t t t

t t t t t

L L L L LE y E y E x E y E x
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æ ö æ ö æ ö æ ö æ ö
- = - = - = = - =ç ÷ ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø è ø
æ ö æ ö æ ö æ ö æ ö

= = = - = =ç ÷ ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø è ø

(48)

defines structure eigenmodes at lasing threshold.

3.2.4. Triangular lattice – TE polarization

The simple approximation of coupling process in 2D triangular lattice PC with TE polarization
includes waves satisfying the same condition as it was shown for TM polarization, i.e.,
|G|=β0, [43]. Six waves satisfying this condition are depicted in Figure 7.
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Figure 7. A schematic cross section of a triangular lattice photonic crystal laser active region with the six basic waves
involved in the coupling for TE polarization are shown.

The magnetic field amplitudes h (G) in the triangular lattice PC cavity are written as follows [43]:

( ) ( ) ( )

( ) ( ) ( )

0 0 0 0
0

0 0 0 0
0

3 3
2 2 2 2

1 2 3
3 3

2 2 2 2
4 5 6

, , ,

, , ,

t t t t
t

t t t t
t

i x i y i x i yi xt t t
z

i x i y i x i yi xt t t

H H x y e H x y e H x y e

H x y e H x y e H x y e

b b b b
b

b b b b
b

- - --

+ - +

= + +

+ + +

(49)

In Equation (49), H i
t , i=1..6, are the six magnetic field amplitudes propagating in the symmetry

directions, Figure 7. Combining Equations (13), (49) and (11), and assuming slowly varying
magnetic field amplitudes, the coupled wave equations for TE modes in triangular lattice PC
are obtained:

- ∂
∂ x H1

t + (α - iδ)H1
t = -

iη1 + α1

2 (H2
t + H6

t) +
iη2 + α2

2 (H3
t + H5

t) +
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t (50)
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t - 3
2

∂
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2 (H1
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t) +
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2 (H4
t + H6

t) +
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2 H5
t (51)
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2

∂
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2 (H2
t + H4

t) +
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2 (H1
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where the coupling coefficients κ1, κ2, and κ3 are described by

κ1 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
( 8πf / 3)
8πf / 3

=η1 - iα1 (56)

κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
( 8 3πf )
8 3πf

=η2 - iα2 (57)

κ2 = (- π(εa - εb)
a(εa f + εb(1 - f )) - i

αa

2 ) 2 f J 1
(2 8πf / 3)

2 8πf / 3
=η3 - iα3 (58)

and have the same physical meaning like it was described in the TM polarization case. The
boundary conditions for the square region of PC with triangular symmetry are written as:
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(59)

3.3. Numerical analysis of the PC laser threshold operation

3.3.1. Square lattice – TM and TE polarization

Figure 8 shows enlarged areas of square lattice photonic crystal dispersion characteristics for
the first four modes (A,B,C,D) in the vicinity of Γpoint (where the cavity finesse increases, and
the active medium is used more efficiently). The dispersion curves are plotted for a) TM
polarization and b) TE polarization. They have been obtained by using Plane Wave Method
(PWM) [52], and they describe the infinite two-dimensional PC structures with circular holes
εb =9.8 arranged in square lattice with background material permittivity: εa =12.0. The rods
radius to lattice constant ratio amounts to 0.24.
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In each plot, i.e., Figure 8 a) and Figure 8 b), the pairs of degenerate modes: B,C for TM
polarization and C,D for TE polarization are marked. These modes have the same frequency
at the Γpoint. Modes marked as A have the lowest frequency.

 

(a) (b) 

Figure 8. An enlarged area of a square lattice photonic crystal dispersion curves for the first four modes in the vicinity
of Γ point. Square lattice, a) TM polarization, and b) TE polarization.

In Figure 8 each of the marked points (A,B,C,D) represents a mode, which is characterized by:
Bragg frequency deviationδ, threshold gainα, and threshold field distribution. These charac‐
teristic quantities were calculated by the numerical solution of Equations (23)-(26) for TM
polarization and Equations (30)-(33) for TE polarization. The similar description of modes,
shown in Figure 8, where no gain coupling is considered has already been presented in [46]
or [49].

In order to assign appropriate points A,B,C,D to the obtained numerical values, it was
necessary to use the analytic expressions for the Bragg frequency deviation. These expressions
are not affected by the gain modulation, and have the following form:

δA = - 2κ2 - κ3,   δB,C =κ3,   δD =2κ2 - κ3 (60)

in case of TM polarization, and

δA = - 8κ1
2 / β0 - κ3,   δB = - κ3,   δC ,D = - 4κ1

2 / β0 + κ3 (61)

in case of TE polarization.

The  numerical  solution  of  Equations  (23)-(26)  and  (30)-(33)  for  the  wide  range  of  cou‐
pling coefficient is  divided into two stages.  In the first  phase the gain expansion coeffi‐
cients α1,  α2,  and α3  are neglected, and the equations and their solutions are reduced to
known forms, e.g., see [46]. The second step uses the solutions obtained in first stage and
iteratively  solves  Equations  (23)-(26)  and  (30)-(33)  for  α1≠0,  α2≠0,  and  α3≠0,  using  the
relations (20)-(22) and (34)-(36).
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The obtained solutions were grouped: ((δ, α, Em
s) j)κ3i

 or ((δ, α, Hm
s) j)κ3i

, where κ3i corresponds
to subsequent values of coupling coefficient for different modes j=A,B,C,D; m=1..4; s - denotes
square lattice symmetry (here: square); δ and α are values of simultaneously index and gain
coupled structure. Assigning numerical values of δ j to analytical solutions (60) and (61), the
mode structure of 2-D square lattice index and gain coupled PC laser with TM and TE
polarization was obtained.

 

(a) (b) 

) 

(c) (d) 

Figure 9. Electromagnetic field distributions corresponding to a)A, b)D, c)B, and d) C points from Figure 8 a), respec‐
tively. Square lattice, TM polarization.

Figure 9 and Figure 10 show the field distributions ∑m |Em
s|2 and ∑m |Hm

s|2, respectively. They
correspond to the modes: A - Figure 9 a), D - Figure 9 b), B,C - Figure 9 c), d) for TM polarization,
and A - Figure 10 a), B - Figure 10 b), C, D - Figure 10 c), d) for TE polarization. The plots were
made for the normalized coupling coefficients |κ1L| = 5.5, |κ2L| = 4.1, |κ3L| = 2, and filling
factor f = 0.16.

In each case (TM and TE polarization), the doubly degenerate modes are orthogonal and show
saddle-shaped patterns. The slight discrepancies arise from numerical inaccuracy. All non-
degenerate modes are similar and exhibit Gaussian-like pattern, and this suggests that these
modes should more efficiently use the photonic cavity. These modes (A) also have lower
threshold, Figure 11.
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(a) (b) 

Figure 11. The dependence of threshold gain versus Bragg frequency deviation. Square lattice, a) TM polarization and
b) TE polarization.

In Figure 11 a) and Figure 11 b), the normalized threshold gain αL was plotted as a function
of Bragg frequency deviation δL, for various values of the normalized coupling coefficient
|κ3L| (which takes values from 0.5 to 40). The characteristics in the figures show that by

 

(a) (b) 

) 

(c) (d) 

Figure 10. Electromagnetic field distributions corresponding to a) A, b) B, c) C, and d) D points from Figure 8 b), re‐
spectively. Square lattice, TE polarization.
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increasing the value of coupling coefficient the Bragg frequency deviation increases and the
threshold gain decreases. Simultaneously, the value of threshold gain saturates for all modes
and eventually tends to similar values. This tendency is a consequence of growing field
confinement in the cavity (for high index contrast all modes become Gaussian-like). For this
reason the mode designation for higher values of coupling coefficients is difficult and only
possible by the careful comparison of frequency deviation δ, and threshold gain α values. It is
also worth noting that the threshold gain values for mode A are the lowest in wide range of
coupling coefficient.

 

(a) (b) 

Figure 12. The dependence of normalized threshold gain versus normalized coupling coefficient for mode A for Index
and Gain Coupled (solid line) and Index Coupled (dashed line) structures. Square lattice, a) TM polarization and b) TE
polarization.

The impact of simultaneous gain and index coupling is depicted in Figure 12, where threshold
gain for mode A is plotted as a function of coupling coefficient |κ3L|∈ (0.01;50). The charac‐
teristics compare the structure with gain (solid line) and without gain coupling (dashed line).
It can be easily observed that the nonuniformity of the gain in the low index contrast structures
has a strong impact on the threshold gain and cannot be disregarded. Therefore, by inducing
gain coupling in the index coupled structure it is possible to lower threshold gain particularly
for low index contrast photonic crystals.

3.3.2. Triangular lattice — TM and TE polarization

By repeating all the calculations shown for square lattice structures, threshold characteristics
for triangular lattice structures are obtained. In Figure 13 enlarged areas of triangular lattice
photonic crystals dispersion curves for the first six modes (A,B,C,D,E,F) in the vicinity of Γ
point are shown. Figure 13 a) corresponds to TM polarization, and Figure 13 b) refers to TE
polarization. For the calculations the circular holes εb = 9.8 arranged in triangular lattice with
background material εa = 12.0 were assumed. The rods radius to lattice constant ratio was set
to 0.24. In each plot, i.e., Figure 13 a) and Figure 13 b), there are two pairs of doubly degenerate
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modes (i.e., they have the same frequency at the Γ point): B,C and D,E for TM polarization,
and B,C and E,F for TE polarization. Modes A have the lowest frequency.

 

(a) (b) 

Figure 13. An enlarged area of dispersion curves of photonic crystal for the first four modes in the vicinity of Γ point.
Triangular lattice, a) TM polarization, and b) TE polarization.

Bragg frequency deviation (for points marked as A,B,C,D,E,F in Figure 13) depending on
coupling coefficient is analytically expressed in the following form for the TM polarization:

δA = - 2κ1 - 2κ2 - κ3,   δB,C = - κ1 + κ2 + κ3,   δD,E =κ1 + κ2 - κ3,   δF =2κ1 - 2κ2 + κ3,  (62)

and for TE polarization:

δA = - κ1 - κ2 + κ3,   δB,C = -
κ1

2 +
κ2

2 - κ3,   δD,E =κ1 - κ2 - κ3,   δF =
κ1

2 +
κ2

2 + κ3. . (63)

Figure 14 shows the field distributions ∑m |Em
t |2, m=1..6 corresponding to the modes: A - Figure

14 a), F - Figure 14 b), B,C - Figure 14 c), d), D,E - Figure 14 e), f).

Figure 15 shows the field distributions ∑m |Hm
t |2, m=1..6 corresponding to the modes: A -

Figure 15 a), D - Figure 15 b), B,C - Figure 15 c), d), E,F - Figure 15 e), f).

The values of the normalized coupling coefficients for TM and TE polarization are set as
follows: |κ1L| = 7.0, |κ2L| = 3.3, |κ3L| = 2, and the value of the filling factor f=0.16.

In both discussed cases, all degenerate modes are orthogonal and show similar patterns. For
TM polarization, Figure 14, modes B,C are very similar to the non-degenerate mode A. This
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means that the coupling coefficients, for which they are plotted, have high enough values to
achieve strong field confinement. Similar situation is shown for TE polarization, Figure 15,
where two pairs of doubly-degenerate modes are comparable to non-degenerate mode.
Likewise, it is due to relatively high values of coupling coefficients and mode confinement.

In Figure 16 a), and Figure 16 b) the normalized threshold gain αL was plotted as a function
of Bragg frequency deviation δL, for various values of the normalized coupling coefficient
|κ3L|∈ (1;40).

Figure 16 shows similar tendency as in earlier examples of square lattice, i.e., by increasing the
values of coupling coefficient the Bragg frequency deviation increases and the threshold gain

 

(a) (b) 

) 

(c) (d) 

(e) (f) 

Figure 14. Electromagnetic field distributions corresponding to a)A, b)F, c)B, d)C, e)D, and f)E points from Figure 13 a),
respectively. Triangular lattice, TM polarization.
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decreases. Simultaneously, for larger values of coupling coefficient the threshold gain tends
to alike values. This fact is due to the growing field confinement in the cavity (all modes become
Gaussian-like, e.g., Figure 14 and Figure 15. The difference in the threshold gain values of
degenerate modes stems from numerical inaccuracy, and the degenerate modes’ threshold
gain values should be averaged.

Figure 17 depicts the impact of simultaneous gain and index coupling. Here, the threshold
gain for mode A is plotted as a function of coupling coefficient |κ3L|∈ (0.01;50). The charac‐
teristics compare the structure with gain and without gain coupling. Similarly as it is shown
for square lattice structures, it is clearly seen that the incorporation of gain modulation in the

 

(a) (b) 

) 

(c) (d) 

(e) (f) 

Figure 15. Electromagnetic field distributions corresponding to a)A, b)D, c)B, d)C, e)E, and f)F points from Figure 13 b),
respectively. Triangular lattice, TE polarization.
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structure has a significant effect on the threshold gain characteristics. They are substantially
changed in the lower range of coupling coefficient values and slightly lower the threshold gain
in the entire range. This shows that the index and gain coupled structures can lower the
threshold gain, especially in low index contrast photonic crystals.

Now, as an example of the model utilization let us consider the square lattice PC structure,
which schematic cross-section is shown in Figure 1 a). For this structure following parameters
are assumed: cavity length L = 50 nm, lattice constant a = 290 nm, and filling factor f = 0.16. The
background material has higher permittivity than the rods εa <εb, and the active material is
situated in the rods αa≠0, αb =0. As schematically shown in Figure 12 a) for lower values of the
coupling coefficient, i.e., a low refractive index difference, (e.g., κ3L∈ (0.01,  0.1)) this structure
has lower lasing threshold than it would have if the gain was uniformly distributed in the

 

(a) (b) 

Figure 16. The dependence of threshold gain versus Bragg frequency deviation. Triangular lattice, a) TM polarization,
and b) TE polarization.

 

(a) (b) 

Figure 17. The dependence of normalized threshold gain versus normalized coupling coefficient for mode A for Index
and Gain Coupled (solid line) and Index Coupled (dashed line) structures. Triangle lattice, a) TM polarization and b) TE
polarization.
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medium, i.e., αa =αb. Thus for example: εb =12.00 and εa =11.94, then κ3L=0.09 and the threshold
gain drops by a factor of ~1.5. The supported lasing wavelength in such a cavity amounts to
λ =aε0

1/2, where ε0
1/2 = εa f + εb(1 - f ), that is λ∼1μm.

4. Perspectives

This Chapter discusses only some problems in threshold operation of 2D PC lasers. Thus,
future work should be devoted to further investigation of gain coupling in photonic crystal
cavities, e.g., such as comparison of solely index and solely gain coupled structures. Moreover,
an above threshold analysis for gain coupled PC laser may apply as well as it did to index
coupled structures, e.g., see [44],[45]. Finally, since more and more works on three-dimensional
structures are published, it seems interesting to develop coupled wave models for threshold
analysis of different symmetries incorporating gain and index modulation.

5. Conclusions

This work presents the systematic studies on the threshold operation of two-dimensional
photonic crystal laser. It gives the comprehensive coupled mode description of gain and index
coupled photonic crystal laser threshold operation. The calculations are conducted in the wide
range of coupling coefficient for all four cases (square and triangular lattice with TM and TE
polarization). It has been shown that the nonuniformity of the gain in the low index contrast
structures has a strong impact on the threshold gain, by lowering it. Consequently, by inducing
gain coupling in the index coupled structure it is possible to lower threshold gain particularly
for low index contrast photonic crystals. This outcome helps understand the principles of PC
band-edge laser operation and it may be useful in supporting the design process of PC laser
structures.
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