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1. Introduction

Major depressive disorder (MDD) is very prevalent and severe psychiatric disorder with
prevalence estimates ranging 5% to 20% [1, 2] and has been a growing public health concern
due to its recurrent, deliberate, and lethal nature. According to projections, MDD will be‐
come the second leading cause of disability worldwide by the year 2020. [3]

MDD is considered to be a clinically heterogeneous disorder which result from multiple
genes interacting with environmental factors such as early stressful life events [4] and the
diagnosis is based on a patient’s symptoms, not on laboratory test.

Although recent decades have witnessed a tremendous revolution in the development of an‐
tidepressant drugs, the neurochemical effects that underlie the therapeutic action of these
agents remain largely unknown. Antidepressant drugs acutely increase levels of monoa‐
mines, but it takes 2–3 weeks to show a clinical response after the administration of an anti‐
depressant drug, [5] and the initial response rate in patients with major depressive disorders
is about 70%. [6]

For the further understanding of the pathogenesis or the prediction of treatment response of
MDD, biological approach for depression is needed.

The term ‘biological marker’ means biological change associated with depression that could
be used to indicate the presence and severity of the condition and predict drug or other
treatments’ response as well as the clinical prognosis. So, the research for biological markers
of depressive disorders is helpful for finding diagnostic method and useful to distinguish
the effectiveness and early improvement after antidepressant administration.

Although work in this area has been inconclusive, many animal, post-mortem, clinical, and
genetic studies have produced results implicating at least 3 neurobiological systems in the

© 2013 Lee and Kim; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



pathogenesis in major depression: dysfunction in the serotonergic system, hyperactivity of
the hypothalamic-pituitary-adrenal axis, and decreased neuroplasticity. Additionally, other
neurotransmitters, biochemical factors including inflammatory markers, neurophysiologic
markers and neuroimaging markers may be associated with MDD.

In this chapter, we discuss biological markers involved in the pathogenesis of major depres‐
sive disorder.

2. Biological marker and genetic factor

2.1. Neurotransmitters

2.1.1. Serotonergic system

It has been hypothesized that a deficit in serotonin may be a crucial determinant in the path‐
ophysiology of major depression. The serotonin system has been widely investigated in
studies of major depression. The innervations of the serotonin system project from the dor‐
sal raphe nucleus to all of the regions of the brain, including the cerebral cortex and hippo‐
campus. Decreased function and activity of the serotonergic system in patients with major
depression have been also confirmed in postmortem, serotonin transporter and serotonin re‐
ceptor studies.

In suicide victims with major depression, enhanced radioligand binding of an agonist to in‐
hibitory serotonin-1A autoreceptors in the human dorsal raphe nucleus provides pharmaco‐
logical evidence to support the hypothesis of diminished activity of serotonin neurons. [7]

A trend of decreased 5-HT1A receptor expression appears to be a robust finding in ma‐
jor  depression.  A  functional  genetic  variant  of  the  5-HT1A  receptor,  the  C-1019G  pro‐
moter  polymorphism  (rs6295),  has  been  investigated  in  major  depression.  The  G  allele
was  more  frequent  in  major  depression.  [8]  By  contrast,  polymorphisms  of  HTR1A
showed  no  association  in  Caucasians,  while  a  significant  association  was  observed  in
several studies of Asians. [9]

Imipramine binds to the serotonin transporter (5-HTT) on platelets, and it has been suggest‐
ed that decreased platelet imipramine binding may be a putative biological marker of de‐
pressive disorder. A meta-analysis has shown that imipramine binding to platelets is indeed
a robust biological marker of depression. [10]

Tryptophan hydroxylase (TPH), which has two isoforms (TPH1 and TPH2), is one of the
rate limiting factors in serotonin synthesis, Postmortem studies have reported significantly
higher numbers and higher densities of TPH immunoreactive neurons in the dorsal raphe
nuclei of alcohol dependent, depressed suicide victims [11] when compared to controls. We
have found that the TPH2 -703G/T SNP may have an important effect on susceptibility to
suicidal behavior in those with major depressive disorder. Additionally, an increased fre‐
quency of the G allele of the TPH2 SNP is associated with elevated risk of suicidal behavior
itself rather than with the diagnosis of major depression. [12]
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Collectively, serotonin receptor, TPH and 5-HTT studies suggest that deficient or impaired
serotonin activity is involved in major depression.

2.1.2. Noradrenergic and dopaminergic systems

The mechanism of action of tricyclic and monoamine oxidase inhibitor antidepressants in‐
volves the monoaminergic neurobiology. Recently, dual-acting antidepressants such as sero‐
tonin norepinephrine reuptake inhibitors (SNRIs) are introduced and have presented
clinicians with a wider range of antidepressants. The action of the antidepressants is based
on alterations in the functions of neurotransmitter systems and changes in the monoamine
systems. [13, 14] Catecholamine metabolites, particularly 3-methoxy-4-hydroxy phenylgly‐
col (MHPG), did not sufficiently distinguish depressed from other groups. Work in this area
then underwent a subtle but significant shift toward the use of catecholamine metabolites to
predict the response to tricyclic antidepressants. [15, 16] Nonetheless, research into the lev‐
els of monoamine transmitters and their metabolites have not found convincing evidence of
a primary dysfunction into a particular transmitter system in depression, or a critical role in
helping predict antidepressant response. [17]

The norepinephrine (NE) system has been studied in depression, particularly the action of
NE reuptake inhibitors and SNRIs, which act at the NE transporter. Although polymor‐
phisms the NET gene have not shown consistent association regarding susceptibility to de‐
pression, [18-20] but it cannot be denied that it may be an important candidate.

The Antidepressant effect of mirtazapine appears to be related to the dual enhancement of
central noradrenergic and serotonergic neurotransmission via the blockade of adrenergic α2
receptors. [21-23] Previous studies have outlined the functional aspects of α2 receptors in
depression, reporting reduced α2 inhibition of platelet adenylate cyclase activity [24] and in‐
creased adrenergic α2 agonist-induced platelet aggregation in depressed patients. [25] Three
genes that encode human adrenergic α2 receptors have been cloned: α2a, α2B, and α2C. [26]
The adrenergic α2a receptor (ADRA2A) subtype is expressed in the central nervous system
and peripheral tissues. [27] According to this classification, the classic α2 receptor studied in
mood disorders is the α2a receptor.

Previous study didn’t  show any association between this  polymorphism and mood dis‐
orders, including depressive and bipolar disorders. [28] Regarding the prediction of anti‐
depressant treatment, the ADRA2A −1291C/G genotypes did not show consistent results.
[29, 30]

The dopamine (DA) system is also highly asssocitated with the symptomatology of depres‐
sion, with the proposed pathophysiology of melancholic depression involving decreased
DA transmission. [31] A VNTR in exon 15 of the DA transporter gene (SLC6A3), which af‐
fects the expression levels of the transporter, [32] is associated with a faster onset of antide‐
pressant-treatment response. [33] The DA receptors have also been involved in
pharmacogenetic studies of antidepressants in depression. The exon 3 VNTR of the DRD4
gene was also investigated in antidepressant drug response, with some studies finding no
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association, [34, 35] and one study finding a significant modulation of this polymorphism on
various antidepressant drugs. [36]

2.2. Hypothalamic-pituitary- adrenal axis (HPA axis)

Hyperactivity of the hypothalamic-pituitaryadrenal (HPA) axis is one of the most consistent
neuroendocrine abnormalities in major depressive disorder. [37] Specifically, patients with
MDD show increased concentrations of cortisol in the plasma, urine and cerebrospinal fluid
(CSF) and an exaggerated cortisol response to adrenocorticotrophic hormone (ACTH).
[38-40] The corticosteroid receptor hypothesis has been proposed for the pathogenesis of
MDD, which focuses on impaired corticosteroid receptor signalling, leading to a reduced
negative feedback of cortisol, an increased production of corticotropin-releasing hormone
(CRH) and hypercortisolism. [38]

Interestingly,  cortisol  and  CRH  affect  the  serotonin  (5-HT)  system.  [39,  41]  During  the
stress  response,  glucocorticoids  (GCs)  stimulate  all  these  features  of  5-HT transmission.
[42]  Conversely,  5-HT  transmission  is  impaired  and  noradrenergic  transmission  in  the
hippocampus  is  suppressed  during  chronic  psychosocial  stress  and  hypercortisolism,
which  is  similar  to  the  series  of  events  evident  during  depression.  [43]  It  is  reported
HPA axis dysregulation could be a trait  genetically determined which contributes to an
increased risk for depression. From the fact that this trait  is found both in affected sub‐
jects and in healthy relatives with a high familial risk, HPA axis is an interesting candi‐
date endophenotype for affective disorders. [44, 45]

Studies investigating the hypothetical causes of an impaired regulation of HPA axis in de‐
pression have mainly focused on two elements: i) glucocorticoid receptor (GR) feedback
mechanisms and ii) CRH signaling system.

Reduced GR function has been pointed out as the responsible of diminished sensitivity to
cortisol which would lead to an inefficient feedback mechanism. [46] On the other hand,
CRH peptide mediates the regulation of HPA axis as well as autonomic and behavioral re‐
sponses in front of stress. [47] Moreover, dysregulation of HPA axis has also been suggested
to play a central role in the mechanisms of action of antidepressants. [38, 48] Normalization
of disturbances at HPA axis has been considered a prerequisite of a proper clinical response
to antidepressant treatment. [39, 49]

It was reported that Bcl1 polymorphism was associated with the susceptibility to MDD, not
the prediction of treatment response. [50] Genetic association studies have yielded prelimi‐
nary evidence for a role of GR genetic variations in the genetic vulnerability for MDD. Tak‐
en together, the evidence for a role of GR and the GR gene in the neurobiology of MDD is
building rapidly. [51]

2.3. Neuroplasticity

A  time-lag  in  clinical  response  after  the  administration  of  an  antidepressant  drug  sug‐
gests  that  alterations  in  monoamine  metabolism alone  cannot  explain  the  entire  antide‐
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pressant  effect.  In this  respect,  it  was suggested that  the mechanism of  action might  be
associated with intracellular  signal  transduction pathways that  are linked to the expres‐
sion of specific genes. [52]

The neural plasticity hypothesis proposes that depression results from an inability to make ap‐
propriate adaptive responses to stress. [53] By stimulating intracellular pathways, antidepres‐
sants lead to upregulation of cAMP response element-binding (CREB) protein and an increase
in the expression of neurotrophic factors, particularly BDNF. Brain-derived neurotrophic fac‐
tor (BDNF), an important member of the neurotrophin family, affects the survival and function
of neurons in the central nervous system and is abundant in the brain and peripheral nervous
system. BDNF is the neurotrophic factor in the focus of intense research for the last years. BDNF
acts on neurons at both presynaptic and postsynaptic sites by binding to its tyrosine kinase re‐
ceptor TrkB, and internalization of the BDNF TrkB complex-signalling endosome. [54]

It has many effects on the nervous system, such as neuronal growth, differentiation, and re‐
pair. [55] It has been shown that stress decreases the synthesis of hippocampal BDNF in
adult animals [33, 56] and induces atrophy of the apical dendrites of CA3 neurons. [57-59]
Growing evidence suggests that BDNF may play a crucial role in depression. [60-63] So far,
considerable work on the involvement of neurotrophic factors in the pathophysiology of de‐
pression has been carried out. Direct infusion of BDNF into the rat midbrain has antidepres‐
sant effects in the learned helplessness and forced swim behavioral models of depression in
rodents. [62] In addition, long-term antidepressant drug treatment and electroconvulsive
therapy can increase BDNF expression. [64]

BDNF and serotonin (5-hydroxytryptamine, 5-HT) are known to regulate synaptic plasticity,
neurogenesis and neuronal survival in the adult brain. These two signals co-regulate one an‐
other such that 5-HT stimulates the expression of BDNF, and BDNF enhances the growth
and survival of 5-HT neurons. [65]

Several lines of research show that the BDNF molecule is probably the ‘‘final common path‐
way’’ for different antidepressant approaches. These include antidepressants [64], electro‐
convulsive therapy, [64, 66] exercise [67, 68] and repetitive transcranial magnetic
stimulation. [69] A large body of evidence, in humans, shows the similar result with direct
measurements of BDNF in the bloodstream. [70-72] Treatment of depressed patients with
antidepressants increases the serum BDNF levels close to the levels of normal controls.
[73-75] In addition, they support the possibility that the enhancement of BDNF expression
may be an important element in the clinical response to antidepressant treatment. [76]

Measurements  of  BDNF  levels  in  sera  or  plasma  in  previous  studies  have  been  chal‐
lenged. Our research group has also examined plasma BDNF levels among patients with
major depression who both have and have not attempted suicide. One study found that
plasma BDNF levels were significantly lower among depressed patients than among nor‐
mal controls. [77]

The BDNF gene has several polymorphic markers, including an intronic microsatellite (GT)n
dinucleotide repeat [78] and a functional coding region single-nucleotide polymorphism
(SNP) at position 196/758, which results in a valine (Val) to methionine (Met) amino acid
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change at codon 66 (rs6265). Because this codon lies in region of the BDNF precursor protein
that is cleaved away, it is not apparent in the mature BDNF protein. On pharmacogenetic
study of BDNF, it was suggested that the Val66Met polymorphism of BDNF is associated
with citalopram efficacy, with Met allele carriers responding better to citalopram treatment.
[79] However, other studies suggested that BDNF polymorphism does not affect the clinical
outcome of antidepressant administration. [80, 81]

2.4. Neuroimaging marker

Positron emission tomography (PET) imaging studies have revealed multiple abnormalities
of regional cerebral blood flow (CBF) and glucose metabolism in brain regions. In PET imag‐
ing of unmedicated subjects with major depression, regional CBF and metabolism are con‐
sistently increased in the amygdala, orbital cortex, and medial thalamus, and decreased in
the dorsomedial/dorsal anterolateral PFC and anterior cingulate cortex ventral to the genu
of the corpus callosum (subgenual PFC) relative to healthy controls. [82, 83] These circuits
have also been implicated more generally in emotional behavior.

Recent neuroimaging studies have focused on the neurobiological abnormalities that are as‐
sociated with MDD, such as dysfunctional or structural differences in cerebral regions, in‐
cluding the prefrontal cortex, amygdala, anterior cingulate cortex (ACC), and hippocampus,
in patients with MDD compared with healthy controls. [84-87]

Reductions in hippocampal volume may not antedate illness onset, but volume may de‐
crease at the greatest rate in the early years after illness onset. [87] In the absence of a signifi‐
cant correlation between hippocampal volume and age in either post-depressive or control
subjects, a significant correlation with total lifetime duration of depression was found. This
suggest that repeated stress during recurrent depressive episodes may result in cumulative
hippocampal injury as reflected in volume loss. [88]

Previous structural magnetic resonance imaging (MRI) studies using region-of-interest
(ROI) analyses have shown a variety of findings. [89, 90] These inconsistencies can be ex‐
plained by the variability in the ROI criteria among studies and an inconsistency in ROI vali‐
dation. [89, 91, 92] Consequently, voxel-based morphometry (VBM) [93] is being
increasingly used as a viable alternative methodology for detecting structural abnormalities
in patients with neuropsychiatric disorders, including MDD. [94-97] Previous MDD VBM
studies have also shown reduced gray matter density in the hippocampus. [95, 96, 98] Re‐
cently, it is reported that gray matter density of several regions associated with emotion reg‐
ulation, particularly dorsal raphe nucleus, was lower in MDD patients. [99]

Findings to directly compare unipolar depressed and bipolar depressed individuals, [100]
more widespread abnormalities in white matter connectivity and white matter hyperintensi‐
ties in bipolar depression than unipolar depression, habenula volume reductions in bipolar
but not unipolar depression, and differential patterns of functional abnormalities in emotion
regulation and attentional control neural circuitry in the two depression types.

Neuroimaging technology has provided unprecedented opportunities for elucidating the
anatomical correlates of major depression. [82] Nowadays, researches that combine brain
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imaging and genetics have been emerging. The first imaging genetics research reported that
carriers of the short allele of the serotonin transporter promoter polymorphism exhibit
greater amygdala neuronal activity, as assessed by functional magnetic resonance imaging,
in response to fearful stimuli compared with individuals homozygous for the long allele.
[101] Since then, however, it has been reported that homozygosity for the l or s allele is asso‐
ciated with decreased hippocampal volumes in patients with major depression. [102, 103]
Even though these results inconsistent, future direction for imaging genetics is promising.

3. Conclusions

Major depressive disorder is considered to be a clinically heterogeneous disorder and the diag‐
nosis is based on a patient’s symptoms, not on laboratory test. So, the pathogenesis of major de‐
pressive  disorder  is  not  clear.  MDD  results  from  multiple  genes  interacting  with
environmental factors such as early stressful life events. Although recent decades have wit‐
nessed a tremendous revolution in the development of antidepressant drugs, the neurochemi‐
cal  effects  that  underlie  the therapeutic  action of  these agents  remain largely unknown.
Antidepressants alter the levels of neurotransmitters such as serotonin in the synaptic cleft sev‐
eral minutes after their administration, and this alters the activity of the neurotransmission
system. Nevertheless, an improvement in the symptoms of depression takes 2–6 weeks of
treatment, during which time the neuronal response and morphology of cells change.

The research results for the monoamine system, hyperactivity of the hypothalamic-pituitary-
adrenal axis, decreased neuroplasticity, and neuroimaging will be helpful to understand the
pathogenesis of major depressvie disorder. To find biological markers for diagnosing MDD
and predicting the individual responses to antidepressants, genetic case-control association
studies are used widely because they are relatively easy to conduct and can discover genetic
variants with small influences on phenotype.

Researchers have searched for biological markers of diagnosis and treatment response, and
will try to understand the pathogenesis of depression and the mechanisms underlying the
delayed response to antidepressant treatment.
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