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1. Introduction

Depression is a serious mental disorder manifested by depressed mood, pessimistic
thoughts, feelings of worthlessness, feelings of guilt, tearfulness, reduced or increased sleep,
appetite loss or appetite disturbance, weight loss or weight gain, social restlessness, loss of
interest, difficulty concentrating. Mania is characterized by abnormally elevated or irritable
mood, arousal, and/or energy levels. Bipolar disorder features intermittent episodes of ma‐
nia or hypomania and depressive episodes; rapid cycling, mixed states, and psychotic symp‐
toms occuring in some cases. Depression and mania are thought to be heterogeneous
illnesses that can result from dysfunction of several neurotransmitters or metabolic systems.

The predisposition to the disease is determined by genetic, psychosocial and biological fac‐
tors; individual sensitivity to depressogenic effects during stressful life events is also a con‐
tributing factor. Pathophysiology of mood disorders is not sufficiently elucidated and about
1/3 of patients do not response to pharmacotherapy sufficiently. The exact molecular site
and the primary cause of signal transduction disturbance associated with the symptoms of
depression or mania are still unknown.

Recently, attention in the research of biological basis of mood disorders has been devoted to an
overlapping set of molecular and cellular mechanisms of mood disorders, antidepressant re‐
sponse, neuroplasticity, and chronic stress [1], e.g. to changes in neuroprogression, inflamma‐
tory and cell-mediated immune response,  antioxidant capacity,  oxidative and nitrosative
stress, and mitochondrial functions [2]. Therefore, changes in the activities of compounds of
these intracellular signalling pathways are studied with the aim of discovering new biological
markers of mood disorders or predictors of response to antidepressant treatment [3-4]. Mito‐
chondrial dysfunctions are assuming an increasingly important role in hypotheses of mood
disorders, bipolar disorder mainly. Recently discussed biological hypotheses of mood disor‐
ders include the neurotrophic and neuroplasticity hypothesis of depression [1,5-8] and the mi‐
tochondrial hypothesis [9-11].
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It is well-known that mitochondria strongly affect many intracellular processes coupled to
signal transduction, neuron survival and plasticity. Impaired mitochondrial functions mani‐
fest themselves in various ways, they may be related to many psychiatric and neurodege‐
nerative diseases, including bipolar disorder, major depressive disorder, schizophrenia,
psychosis and anxiety [12-16]. Impaired functions of mitochondria can be assessed both in
isolated mitochondria and in intact or permeabilized cells. Better insight into molecular
mechanisms of cellular respiration, control of oxidative phosphorylation (OXPHOS) and ef‐
fects of antidepressants and mood stabilizers on these processes is likely to lead to a better
understanding of pathophysiology of neuropsychiatric disorders.

2. Mitochondria

Mitochondria are small cellular structures consisting of an outer and inner membrane, an in‐
termembrane space and an intracellular matrix. The outer membrane covers the organelle,
the inner membrane folds and forms cristae. This settlement extends the surface and enables
plenty of chemical reactions. In the mitochondrial matrix, the enzymes of the tricarboxylic
acid cycle (TCA, also called citric acid cycle or Krebs cycle) are localized. It is the central
pathway of metabolism; its main function is oxidation of acetyl-CoA derived from carbohy‐
drates, amino acids and fatty acids (FAs). The TCA is organized into a supramolecular com‐
plex that enables interaction with mitochondrial membranes and the electron transport
chain (ETC) in OXPHOS [17]. Most of the TCA enzymes provide other additional “moon‐
lighting” functions, e.g. they stabilize the mitochondrial DNA (mtDNA) or are associated
with mitochondrial RNA (mtRNA) translation, oxidative stress, iron metabolism and tu‐
mour suppression [18].

In addition to their crucial role in generation of adenosine-5’- triphosphate (ATP), mitochon‐
dria are involved in other important processes, such as regulation of free radicals, neuro‐
transmitters, calcium, and apoptosis. They are also involved in neuronal development -
synaptogenesis, synaptic development and plasticity. Impaired function of mitochondria
leads to impaired bioenergetics, decrease of ATP production, impaired calcium homeostasis,
increased production of free radicals and oxidative stress [19-20]. Furthermore, monoamine
oxidase (MAO), the enzyme responsible for the metabolism of monoamine neurotransmit‐
ters, is localized in the outer mitochondrial membrane.

Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. All 13 poly‐
peptides encoded by mtDNA form subunits of respiratory chain complexes I, III, IV and V
[21-22]. Furthermore, the mitochondrial genome encodes transfer RNA (tRNA) and riboso‐
mal RNA (rRNA) used for RNA translation [23]. Complex II is encoded only by nuclear
DNA (nDNA). OXPHOS is under the control of the nuclear genome as well as the mitochon‐
drial genome, which is only maternally inherited. Nevertheless, the dominant role in the
regulation of mitochondrial activity has a nucleus; nuclear-encoded transcript factors con‐
trol the activity of the mitochondrial genome and coordinate the expression of nuclear and
mitochondrial genes to mitochondrial proteins [23-24].
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Genetic defects or stress can cause mitochondrial dysfunctions, which leads to increased oxi‐
dative stress and/or altered calcium homeostasis [25]. An excess of glutamate in the synapse
[26] leads to an excess of cytosolic calcium, which produces overactivity of calcium-depend‐
ent enzymes and an overload of mitochondria by calcium; it leads to cytoskeletal degrada‐
tion, protein malformation, decrease of ATP production, and increase of oxygen radical
generation. These processes can lead to atrophy or death of neurons [27-28]. Different stimu‐
li, such as hypoxia-ischemia, seizure and hypoglycemia, all activate this pathway. Thus, en‐
hancing mitochondrial function may represent a critical component for the optimal
treatment of stress-related diseases [11].

Eukaryotes synthetize ATP mainly by glycolysis in the cytosol and by OXPHOS in the mito‐
chondria; i.e. the majority of cellular ATP is generated by glycolytic degradation of glucose
to pyruvate in cytosol followed by aerobic cellular respiration. When pyruvate is converted
to acetyl coenzyme A (acetyl-CoA), acetyl-CoA enters the TCA cycle and the result of this
process is ATP production by OXPHOS in mitochondria [29]. OXPHOS yields about 17
times more ATP than glycolysis. Therefore, it is considered as the main energy source and a
key element of bioenergetics [30-31]. Integration of main metabolic pathways coupled to
OXPHOS is illustrated in Figure 1.

The highest number of mitochondria is  present in organs demanding the most energy -
brain, liver and muscles. Neurons usually utilize glucose as a source of energy. Since the
brain stores only a very small amount of glycogen, it  needs a steady supply of glucose.
Neurons  are  known to  have  a  lower  glycolytic  rate  than  astrocytes  and  when  stressed
they  are  unable  to  upregulate  glycolysis.  Following  inhibition  of  mitochondrial  respira‐
tion, neurons die rapidly, whereas astrocytes utilize glycolytically generated ATP. Glucose
metabolism in neurons is directed mainly to the pentose phosphate pathway, leading to
regeneration of reduced glutathione, which probably supports antioxidant controlled neu‐
ron survival [32]. The regulative processes of OXPHOS are tightly related to reactive oxy‐
gen  species  (ROS)  production,  integrity  of  mitochondrial  membranes,  apoptosis,  and
intramitochondrial Ca2+  levels. Although this is known, the control mechanisms have not
yet been sufficiently investigated.

2.1. Physiology of oxidative phosphorylation

The respiratory chain is localized in cristae, structures formed by the inner mitochondrial
membrane and extending to the surface [34]. ETC consists of complexes with supramolecu‐
lar organization, where mitochondrial proton pumps (complexes I, III and IV) transport pro‐
tons and generate a proton gradient [31,35]. Continuously, electrons are transported to
complex III and finally complex IV enables the conversion of O2 to H2O. Most of the ATP
synthesis comes from the electrochemical gradient across the inner membranes of mitochon‐
dria by ATP synthase (complex V). The CoQ cofactor is responsible for transferring elec‐
trons from complexes I and II to complex III; the second important cofactor is cytochrome c
(cyt c), which transfers electrons from complex III to complex IV [36]. Both cofactors modu‐
late energy and free radical production [37-38]. Processes in the inner mitochondrial mem‐
brane are depicted in Figure 2.
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Energy saved in ATP is used in synaptic ion homeostasis and phosphorylation reactions.
ATP is essential for the excitability and survival of neurons, OXPHOS is involved in synap‐
tic signalling and is related to changes of neuronal structure and function. Therefore, mito‐
chondria are included in neurotransmitter exocytosis, in recovery, and in ion homeostasis,
and in presynaptic nerve terminals.

Oxidative phosphorylation enzymes and MAO are key mitochondrial enzymes studied in
molecular psychiatry.

Figure 1. Integration of metabolic pathways. Glucose is transported over a plasma membrane by a glucose transport‐
er (GLUT) and is metabolized to pyruvate by glycolysis. Pyruvate is converted to acetyl-coenzyme A (acetyl-CoA) in the
mitochondria, where it is oxidized to CO2 through the citric acid cycle; redox energy is conserved as reduced nicotina‐
mide adenine dinucleotide (NADH). The mitochondrial respiratory chain couples NADH oxidation to the formation of
the electrochemical proton gradient across the inner mitochondrial membrane, which is used to form ATP. ATP pro‐
duced from OXPHOS is transported from the mitochondrial matrix to the cytoplasm by the adenine nucleotide trans‐
locator (ANT). Glucose may be stored as glycogen. Fatty acids and amino acids can also be bioenergetics precursors;
however, glucose is considered to be the only metabolic substrate in the brain. Glucose can also be metabolized via
the pentose phosphate pathway (PPP), a process that generates pentoses and that is the most important cytosolic
source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), a cofactor for biosynthetic reactions and
the oxidation-reduction involved in protecting against the oxidative stress, e.g. for fatty acids biosynthesis or regener‐
ation of reduced glutathione. During activation the brain may transiently turn to anaerobic glycolysis occurring in as‐
trocytes, followed by the oxidation of lactate by neurons [32-33]. Monocarboxylate transporters (MCTs) carry lactate
or pyruvate across biological membranes; lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and
lactate with concomitant interconversion of NADH and NAD+.
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Figure 2. Representation of processes in the inner mitochondrial membrane. ETC consists of I - IV complexes that
transfer electrons, pump protons outwardly, and create proton motive force (Δp). Complex I catalyses oxidation of nic‐
otinamide adenine dinucleotide (NADH), complex II oxidizes succinate to fumarate. CoQ as a cofactor accepts elec‐
trons from complexes I and II, and carries them to complex III; the second mobile carrier cyt c move electrons from
complex III to complex IV, where O2 is finally reduced to water. The proton gradient is primarily consumed by F0F1 ATP
synthase for ATP synthesis from ADP and inorganic phosphate Pi. Secondary consumers causing decreased Δp are un‐
coupling proteins (UCPs), they response to heat production, proton leak is mediated e.g. by FAs. Transport of ADP and
ATP across the membrane is enabled by adenine nucleotide translocator (ANT); mitochondrial phosphate carrier pro‐
tein (PC) catalyses movement of Pi into the mitochondrial matrix. Simultaneously, electron transport is accompanied
by generation of reactive oxygen species (ROS), the highest amount of superoxide (O2

•-) is formed by complexes I and
III. O2

•- can be further transformed by manganese superoxide dismutase (MnSOD) to H2O2, or can react with nitric ox‐
ide (NO) to form peroxynitrite (ONOO-). O2

•- production leads to increased mitochondrial conductance through UCPs.

2.1.1. Oxidative phosphorylation enzymes

Complex I (EC 1.6.5.3, NADH: ubiquinone oxidoreductase, NADH dehydrogenase, NADH-
ubiquinone oxidoreductase) is a crucial point of respiration. It catalyzes oxidation of re‐
duced nicotinamide adenine dinucleotide (NADH), thus, regenerates NAD+ for the TCA
cycle and fatty acids (FAs) oxidation, and reduces coenzyme Q10 (ubiquinone, CoQ) to ubiq‐
uinol [39]. Four protons are pumped from the matrix into the intermembrane space during
electron passing through the complex I. Complex I is also a rate-limiting enzyme for oxygen
consumption in the synapses [40].

Complex II (EC 1.3.5.1, succinate:ubiquinone oxidoreductase, succinate dehydrogenase (ubiq‐
uinone)) is the side entry into Electron transport chain, directly involved in the TCA cycle. It
is a 4 subunit membrane-bound lipoprotein, which couples the oxidation of succinate to the
reduction of CoQ [41]. Complex II does not contribute to the proton gradient. Hence, com‐
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plex II subunits are encoded only by nDNA, complex II is suspected to normalize the activi‐
ty of ETC, when mtDNA defects are suspected [42].

Complex III (EC 1.10.2.2, ubiquinol:ferricytochrome-c oxidoreductase, CoQ-cytochrome c re‐
ductase) consists of two centers, Qi center - facing to matrix; and Qo center - oriented to in‐
termembrane space [43]. Complex III catalyses the oxidation of one molecule of ubiquinol
and the reduction of two molecules of cytochrome c. Reaction mechanism of complex III oc‐
curs in two steps called the Q cycle [44]. In the process of Q cycle four protons are released
into the inter membrane space.

Complex IV (EC 1.9.3.1, ferrocytochrome-c:oxygen oxidoreductase, cytochrome c oxidase,
COX) enables the terminal reduction of O2 to H2O, retains all partially reduced intermedi‐
ates until full reduction is achieved [45]. The complex IV mediates pumping of 4 protons
across the membrane. Previously, it was suggested as an endogenous metabolic marker for
neuronal activity [46].

Complex V (EC 3.6.3.14, ATP synthase, FoF1-ATPase) consists of two regions: 1. F1 portion is
soluble domain with three nucleotide binding sites, it is localized above the inner side of the
membrane and stably connected with Fo domain; 2. Fo portion is proton pore embedded in
the membrane, it consists of three subunits and spans the membrane from the inner to the
outer side [47-48]. This formation enables the conversion of electrochemical potential energy
to chemical energy - a portion of the Fo rotates as the protons pass through the membrane
and forces F1 as motor to synthetize ATP [47,49].

2.1.2. Monoamine oxidase

Monoamine oxidase (MAO, EC 1.4.3.4) is located in the outer mitochondrial membrane and
catalyses the oxidative deamination of amine neurotransmitters as well as xenobiotic
amines. It regulates the metabolic degradation of catecholamines and serotonin (5-hydroxy‐
tryptamin, 5-HT) in neural and other target tissues. A major physiological role of intra‐
neuronal MAO is to keep cytosolic monoamine concentrations very low. This membrane-
bound enzyme is a flavoprotein, which use FAD as cofactor. The cofactor was identified as
the site, where irreversible inhibitors of MAO are covalently linked [50-51]. It exists in two
isoforms MAO-A and MAO-B, they differ in substrate preference, inhibitory specificity, tis‐
sue and cell distribution, and in immunological properties [52]. MAO-A metabolizes 5-HT
and is sensitive to inhibition by low concentrations of clorgyline, whereas MAO-B prefers
benzylamine or 2-phenylethylamine (PEA) as substrate and is sensitive to inhibition by low
concentrations of l-deprenyl. Tyramine, tryptamine, dopamine, norepinephrine (NE) and
epinephrine are equally well oxidized by both isoforms of MAO [50]. The high levels of both
forms are found in the brain; MAO-B is found in dopamine-secreting neurons in the brain.

Monoamine metabolism by MAO involves oxidative deamination to corresponding alde‐
hyde and free amine. Catalysis in MAO depends on the transfer of electrons to FAD, and
mechanism-based inhibitors, such as the irreversible antidepressants, modify flavin [53].
The aldehyde is rapidly metabolized by aldehyde dehydrogenase to acidic metabolites. Me‐
tabolism of monoamines by MAO is a major source of hydrogen peroxide (H2O2) in the
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brain. Normally the H2O2 is then inactivated by glutathione peroxidase but it can be convert‐
ed, chemically, by Fe2+ ions (Fenton reaction) into the highly reactive hydroxyl radical. This
radical has widespread deleterious effects which can cause neuronal damage and death and
may account for associated health-related problems [51,54].

MAOs have important role in brain development and function, and MAO inhibitors
(MAOIs) have a range of potential therapeutic uses [53]. Generally, selective inhibitors of
MAO-A and nonselective MAOIs seem to be effective in the treatment of patients with de‐
pression, panic disorder, and other anxiety disorders [55]. It is supposed that MAO-B inhibi‐
tion may slow the course of various neurodegenerative disorders; so, selective inhibitors of
MAO-B may be efficacious in treating of Parkinson’s disease [56] and possibly Alzheimer's
disease [57]. MAO-B is the sole type in human platelets and the amino acid sequences of
MAO-B in both platelets and brain are identical [58]; thus, platelet MAO can be adopted as a
useful surrogate model for the study of aspects of central neuronal function related to mono‐
aminergic neurotransmission [3].

2.2. Regulation of OXPHOS

There are five levels of OXPHOS regulation: 1. direct modulation of ETC kinetic parameters,
2. regulation of intrinsic efficiency of OXPHOS (by changes in proton conductance, in the
P/O ratio or in the channelling of ECT intermediate substrates), 3. mitochondrial network
dynamics (fusion, fission, motility, membrane lipid composition, swelling), 4. mitochondrial
biogenesis and degradation, 5. cellular and mitochondrial microenvironment [59].

OXPHOS efficiency is dependent on delivery of reducing equivalents into ETC and on ac‐
tivities  of  participating enzymes or  enzyme complexes.  The optimal  efficiency and flow
ratios are determined by control  of  complex I  (reflects  integrated cellular  pathway) and
complex II (TCA cycle precedes) [60]. Depletion of TCA cycle intermediates plays an im‐
portant role in the OXPHOS flux control. In respirometry assays, supplies of complex I as
well as complex II are required. Convergent electron input and reconstitution of the TCA
cycle are needed to achieve maximal respiration [30]. It is controlled also by the availabili‐
ty of adenosine 5´-diphosphate (ADP) for the adenine nucleotide transporter in the inner
mitochondrial membrane [61].

Complex I is suggested to be responsible for adaptive changes and physiological set up of
OXPHOS efficiency [62]. The stoichiometric efficiency of OXPHOS is defined by the P/O
ratio, or the amount of inorganic phosphate (Pi) incorporated into ATP per amount of con‐
sumed oxygen. P/O ratio was analysed in rat brain, liver and heart mitochondria. There
were found tissue-specific differences and dependency of the P/O ratio on the respiratory
rates with complex I, but not with complex II substrates [62]. Metabolic control analysis,
which  compared  ETC  activities  and  oxygen  consumption  rates,  determined  the  role  of
complex I in rat brain synaptosomes. Results of the study suggest complex I as rate-limit‐
ing for oxygen consumption and responsible for high level of control over mitochondrial
bioenergetics [40].
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As mentioned above, mitochondria exhibit transmembrane potential across the inner mem‐
brane that is necessary for OXPHOS. Protons are transported outwardly and create proton
motive force (Δp), which consists of electrical part Δψm (negative inside) and chemical part
ΔpH [63-64]. In mitochondria, the Δp is made up of the Δψm mainly. The Δψm controls the
ability of the mitochondria to generate ATP, generate ROS and sequester Ca2+ entering the
cell. The Δψm and ATP synthesis express a degree of coupling; optimal ATP synthesis re‐
quires Δψm values between the range -100 mV and -150 mV. These values are reached pri‐
marily by Δψm, which maintain at higher values (about -200 mV) and by secondary control
mechanisms, which decrease the Δψm to lower levels [49]. Changes of Δψm influence perme‐
ability of biological membranes and ROS production, more negative Δψm (< -150 mV) leads
to exponentially increased permeability as well as O2

•-and H2O2 production [31]. Similarly,
mitochondrial membranes increase exponentially their permeability for protons [49]. On the
other hand, lower mitochondrial Δp and Δψm (e.g. caused by inhibition of respiratory chain)
can result in hydrolysis of cytoplasmic ATP and slightly lower potential than that generated
by the respiratory chain [65]. Therefore, Δψm is precisely controlled and can be regulated by
various parameters.

ATP production is controlled by different mechanisms, depending on energy demands,
thermogenesis, etc. [49]. First mechanism of OXPHOS control has been called as “respiratory
control”, and is based on feedback mechanisms controlling the rate of ATP synthesis, first of
all by Δp and Δψm. Higher levels of ADP in mitochondria lead to stimulation of ATP syn‐
thase together with decrease of Δp. Originally, pilot studies of OXPHOS dynamics used the
terminology of respiratory steady states, described by Chance and Williams. Respiration
was characterized by respiratory states (Table 1), by active state 3 (ADP stimulated) and fol‐
lowed by controlled state 4 (decrease after conversion of ADP to ATP) [66-67]. Decreased
P/O ratio (caused mostly by increased Δp) leads to energy waste - proton leak (slip in COX),
the decrease in the coupling, and increased thermogenesis [68]. However, conception of
states had limited applicability in intact cells and in isolated mitochondria, did not include
for instance COX, adenine nucleotide transporter, and extramitochondrial ATP/ADP ratio.

Recently, primary control has been implemented by secondary control mechanisms that are Δp
independent [49,70]. Mitochondrial Ca2+ levels have been included [31]. Ca2+ transport was pre‐
sumed to be important only in buffering of cytosolic Ca2+ by acting as sink under conditions of
Ca2+ overload. When the cytoplasmic Ca2+ level was overloaded, Ca2+ accumulated in mito‐
chondrial matrix and utilized Δψm [65,72-73]. Nowadays it is considered that Ca2+ regulates of
activities of dehydrogenases via phosphorylation; ATP synthesis is switched on by cAMP-de‐
pendent phosphorylation and switched-off by calcium induced dephosphorylation [29,74].

In the TCA cycle, glycerophosphate dehydrogenase, pyruvate dehydrogenase, isocitrate de‐
hydrogenase, and α-ketoglutarate dehydrogenase are influenced by Ca2+ levels and their
phosphorylation lead to increased ATP production, production of glycogen, and glucose ox‐
idation [73]. Reversible phosphorylation of pyruvate dehydrogenase complex mediated by
calcium partly regulates the supply of reducing equivalents (NADH/NAD+ ratio). Activation
of the TCA cycle enhances the NADH production that triggers movement of electrons down
complexes I through to complex IV by initially donating of complex I [75].
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ADP

level
Substrate level

Respiration

rate

Rate-limiting

component
Relevance

State 1 Low
Low-

endogenous
Slow

Phosphate

acceptor
Initial activity of the sample

State 2 High
Approaching

zero
Slow Substrate

1. Exhaustion of endogenous substrate utilized

in OXPHOS of ADP

2. Residual oxygen consumption (ROX)

State 3 High High Fast
Respiratory

chain

1. OXPHOS capacity at saturating ADP (State P)

2. Electron transfer system capacity at optimum

uncoupler concentration (State 3u)

State 4 Low High Slow
Phosphate

acceptor

1. Exhaustion of added ADP

2. LEAK respiration (resting state when oxygen

flux is maintained mainly to compensate for the

proton leak after inhibition of ATP synthesis)

(State 4o, L)

State 5 High High Zero Oxygen
1. Anoxia

2. Antimycin A treatment

Table 1. Characterization of respiratory states [30,69]

Regulation of complex I and COX subunits via specific protein kinases and protein phospha‐
tases was observed. cAMP-dependent protein kinase catalyses phosphorylation of complex I
subunit and stimulates ETC [76]. At low Ca2+ levels, protein phosphatase dephosphorylates
and inactivates complex I. It is presumed that COX is regulated by allosteric inhibition of
ATP at high ATP/ADP ratios [31]. Extramitochondrial ATP/ADP ratios regulate COX activi‐
ty by binding to the cytosolic subunit of COX, whereas high mitochondrial ATP/ADP ratios
cause exchange of ATP by ADP at COX and induce allosteric inhibition [77]. Similarly, in‐
creased intracellular Ca2+ levels are suggested to activate mitochondrial phosphatase, which
dephosphorylates COX and turns off the allosteric inhibition [78]. This respiratory control
by phosphorylated enzyme is assumed to keep the Δp low as prevention of increased Δp,
which leads to the slip of protons in COX and decreased H+/e- stoichiometry [79-80]. Howev‐
er, in isolated mitochondria high Δψm was measured even with high ATP/ADP ratios. The
decrease was measured after addition of phosphoenolpyruvate and pyruvate kinase and
could be explained as reversal of gluconeogenetic enzymes [61]. Under the physiological
conditions, allosteric inhibition is modulated by increased Ca2+ levels, high substrate concen‐
trations, and thyroid hormones. Ca2+ dependent dephosphorylation induced by hormones
results in loss of respiratory control by the ATP/ADP ratio and associated with the increased
Δp and respiration [79].

Thyroid hormone, mainly triiodothyronine (T3) and diiodothyronine (T2), has important ef‐
fects on mitochondrial energetics and mitochondrial genome [81]. Mechanism of allosteric
inhibition of COX has been closely linked to regulation by thyroid hormones. 3,5-diiodo‐
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thyronine (T2) mediates short term effects of thyroid hormones and increases immediately
basal metabolic rate. T2 is formed by intracellular deiodination of T3 and binds to specific
T2 binding sites, which were identified in the inner mitochondrial membrane [82]. This
binding to subunit Va of COX abolishes the allosteric inhibition of respiration by ATP [83]
that could result in partial uncoupling of OXPHOS via increased Δψm, and continue to in‐
trinsic uncoupling of COX by higher membrane potentials [49]. Therefore, thyroid hor‐
mones enhance the proton permeability; hyperthyroidism stimulated mitochondrial proton
leak and ATP turnover in rat hepatocytes, where non-mitochondrial oxygen consumption
remained unchanged [84-85]. Oppositely, in rat hypothyroid cells significant decrease of
non-mitochondrial oxygen consumption and proton leak were observed, ATP turnover was
unaffected [86].

2.3. Proton permeability of membranes

OXPHOS in cells is not fully efficient. Decrease of the proton gradient across the inner mito‐
chondrial membrane by “proton leak” causes uncoupling of fuel oxidation from ATP gener‐
ation, and some energy is lost as heat. The mechanism of the basal proton conductance of
mitochondria (insensitive to known activators and inhibitors) is not understood. There is
correlation between mitochondrial proton conductance and composition of inner mem‐
brane: phospholipid fatty acyl polyunsaturation correlates positively and monounsaturation
correlates negatively with proton conductance [87].

Uncoupling proteins (UCPs) and adenine nucleotide translocator (ANT) are two types of
mitochondrial carrier, which cause inhibitor-sensitive inducible proton conductance. UCPs
themselves do not contribute to the basal proton conductance of mitochondria; however,
they are important metabolic regulators in permitting fat oxidation and in attenuating free
radical production [88]. The amount of ANT present in the mitochondrial inner membrane
strongly affects the basal proton conductance of the membrane and suggests that ANT is a
major catalyst of the basal FA-independent proton leak in mitochondria [89].

2.3.1. Fatty acids

Long-chain fatty acids (FAs) are weak acids that can cross the membrane in both protonated
and deprotonated forms. Effects of FAs are interrelated to 1. increase uncoupling, 2. increase
ROS production, 3. opening mitochondrial permeability transition pores (MPTP) [90]. Fur‐
ther, they can modulate effects of thyroid hormones as well as sex steroid hormones [84].
FAs can act as like classic OXPHOS uncouplers with protonophoric action on the inner mito‐
chondrial membrane and/or interactions of FAs with ADP carrier, COX and ATP synthase
are presumed [91]. Recent study suggests that FAs are not only inducers of uncoupling, but
they also regulate this process. It supposes that transport of FA anions participates in both
ADP/ATP antiport and aspartate/glutamate antiport, at the same time [92]. On the other
hand, studies using lipid membranes suppose that FAs are capable of spontaneous flip-flop
[93]. Since FAs move across the membrane spontaneously and rapidly, no protein transport‐
ers are necessary. Further, coupling/uncoupling effects depend on their concentrations pH
gradient across the membranes [94-95].
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2.3.2. Uncoupling proteins

Uncoupling diverts a significant proportion of energy to thermogenesis. UCPs are mito‐
chondrial carriers catalysing a regulated proton leak across the inner membrane [96-97].
There are five types of UCP in mammals. UCP1 is presented exclusively in the inner mito‐
chondrial membrane of brown adipose tissue, and its main function is to catalyse adaptive
thermogenesis [98]. It can be stimulated by FA and has synergic action of norepinephrine
and thyroid hormones [49,99]. Concentrations of UCP2 and UCP3 in tissues are much lower
than of UCP1, and their functions are not exactly known. They probably minimally contrib‐
ute to basal metabolic rate, control of adaptive thermogenesis, preventive action against oxi‐
dative stress and ROS control, control of cellular energy balance, regulation of Ca2+

homeostasis, regulation of FA oxidation and ATP synthesis [100-103]. UCP2, UCP4 and
UCP5 are present in the central nervous system (CNS); they have been suggested to have
effects protecting neurons from the Ca2+ overload and/or oxidative stress [104-105].

UCP activities can be positively or negatively regulated by different factors. UCP are stimu‐
lated by FA and by ROS, generated by as a side reaction between CoQ and oxygen [106].
UCP mediate the FA dependent proton influx that leads to uncoupled ATP synthesis and
heat production [107]. It is supposed that UCP and FA decrease Δψm if it is sufficiently high.

2.4. Reactive oxygen species production

Reduction of O2 to water by aerobic respiration is accompanied by reactive intermediate for‐
mation. Generally, complex I and complex III are considered as the major O2

•- sources [108].

Complex I releases O2
•- to matrix, complex III can release O2

•- to both sides of the inner mito‐
chondrial membrane [109]. Additionally, other ROS sources, e.g. MAO, present in the outer
mitochondrial membrane, and α-ketoglutarate dehydrogenase (α-KGDH), the TCA cycle
enzyme complex, are able to generate H2O2. MAO catalyses the oxidative deamination of
biogenic and xenobiotic monoamines and increases the amount of ROS in mitochondria.
H2O2 production by α-KGDH is dependent on NADH/NAD+ ratio. Higher NADH leads to
higher H2O2 production, therefore, α-KGDH could significantly contribute to oxidative
stress in mitochondria [110].

Physiologically generated H2O2 and O2
•- from ETC are dependent on the magnitude of Δp

and the respiratory state of mitochondria [111]. State 4 is characterized with high rate of
ROS production, contrary to state 3 with high rate of oxygen uptake and slow ROS produc‐
tion. State 5, described as anoxic, with limited oxygen supply and lack of respiration pro‐
duce minimum ROS [98,112]. In isolated rat liver mitochondria ROS production and Δψm

were studied in state 3 and state 4. These states attenuate Δψm and ROS, correlation of ROS
with Δψm was observed [113]. However, this correlation with respiratory states was not ob‐
served in the study using isolated mitochondria, ROS production correlated directly with
Δψm [114].

Complex I is considered to be the primary source of ROS in brain under physiological condi‐
tions, as well as in pathological processes (e.g. neurodegenerative disorders). ROS seem to
be the key factors in brain aging processes and mitochondrial respiration with ROS produc‐
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tion significantly contributes to functional changes in brain during aging. Study in isolated
rat mitochondria found significantly increased H2O2 production and 30 % reduction of com‐
plex I activity in aged rats [115]. Defective mitochondria release large amounts of ROS, simi‐
larly, decline of antioxidative enzyme activities (e.g. in elderly) enhances ROS production
[116]. Negative results of ROS can affect respiratory chain: complexes I, III and IV seem to be
the most affected, whereas function of complex II appears to be unchanged [117].

2.5. Apoptosis

Mitochondrial dysfunctions may accompany the clinical picture of neuropsychiatric disor‐
ders and contribute to neural apoptosis [118]; mitochondria play a pivotal role in intrinsic
pathway of apoptosis [38]. Several interrelated mitochondrial pathways facilitate cell death:
mitochondrial permeability transition (MPT) and the release of apoptotic cell death promot‐
ing factors, cytochrome c release by proapoptotic members of the Bcl-2 (B-cell lymphoma 2)
family of proteins, disruption of ATP production, and alteration of the cell’s redox status
and overproduction of ROS [114]. If they are activated, change their conformations and in‐
duce formation of oligomers to form mitochondrial outer membrane pores, resulting to
MPT. In apoptotic cells rapid loss of mitochondrial Δψm is accompanied by ROS production.
Consequently, other proapoptotic proteins cytochrome c and Smac are released and trigger
the caspase cascade leading to apoptosis [119]. Released cytochrome c in cytosol binds to
apoptotic protease-activating factor-1 (Apaf-1) and induces formation of apoptosome [120].
MPT means alteration of permeability properties of membranes, originally was defined as
increase of the inner mitochondrial membrane permeability to solutes of molecular mass
less than 1500 Da [121]. Decreased MPT and activities of respiratory chain complexes, and
increased ROS production were observed in cultured fibroblasts obtained from patients
with CoQ deficiency [37]. MPT results from formation and opening of a channel known as
MPTP. MPTP is dynamic multiprotein complex that span both the outer and inner mito‐
chondrial membrane and contain the adenine nucleotide translocator (ANT) in the inner
membrane, and the voltage-dependent anion channels (VDAC) in the outer membrane and
cyclophilin D in the matrix [122]. Once open, MPTP allows the release of pro-apoptotic fac‐
tors, such as cyt c and apoptosis inducing factor (AIF), into the cytoplasm.

2.6. Specific inhibitors of complexes of ETC

Rotenone is a specific complex I inhibitor, thenoyltrifluoroacetone (TTFA) specifically inhib‐
its complex II. Both substances induce O2

•- production that may result to major ROS produc‐
tion [45,123-124]. Pyrrolnitrin inhibits both complex I as well as complex II. It affects electron
transport among NADH, CoQ and succinate, whereas COX remains unaffected [125].

Complex III inhibitors antimycin, myxothiazol and stigmatellin differ in their mechanism of
action. Antimycin A inhibits the transfer of electrons from cytochrome b to CoQ, blocks the
Qi side of complex III. Oppositely, myxothiazol or stigmatellin block electron transfer from
reduced CoQ at Qo side [75]. Stigmatellin inhibits transfer of electrons and recycling of CoQ;
myxothiazol inhibits electron transfer from reduced CoQ to cytochrome c [126].
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Complex IV inhibitors KCN and sodium azide decrease COX activity [127]. Azide specifical‐
ly blocks crossover between cytochrome a and cytochrome a3. Further, it inhibits succinate
oxidase activity specific for active respiration (state 3), but without any significant inhibition
of state 4 [128]. Inhibition of COX by KCN is reversible, cyanide inhibits both electron and
proton transport of COX [129]. Complex V is inhibited by oligomycin, which blocks its pro‐
ton channel (Fo subunit). This inhibitor increases Δψm and is used to prevent state 3 of respi‐
ration. Oligomycin induces artificially state 4, i.e. state of respiration independent of ADP
phosphorylation or resting state (LEAK) [130].

During the oxidation of complex I substrates (pyruvate, malate, glutamate), rotenone inhibi‐
tion did not increase H2O2; contrary, oxidation of complex I and II substrates in the presence
of antimycin A increased H2O2. Both myxothiazol and stigmatellin inhibited O2

•- production
and/or should inhibit the effect of antimycin [126,131]. The maximum of O2

•- production has
been observed in human skin fibroblasts with the prolonged treatment of rotenone, but not
with antimycin A [132]. Interestingly, rotenone prevented antimycin A to induce ROS pro‐
duction in complex I, but not in complex II [43]. Qo side of complex III was found as the
source of increased O2

•- after transient exposure to hydrogen peroxide [75]. KCN and so‐
dium azide increase ROS formation [126]. Oligomycin induces hyperpolarization of inner
mitochondrial membrane and can increase O2

•- levels [133].

2.7. Mitochondria and neuroplasticity

Mitochondrial distribution and activity are key factors in neuronal morphogenesis - synap‐
togenesis, developmental and synaptic plasticity and axogenesis. During the development,
neuronal stem cells proliferate and differentiate into neurons; subsequently axons and den‐
drites form synapses [134-135]. The role of mitochondria in neuroplasticity is illustrated in
Figure 3 [20]. Due to ATP production and importance of mitochondria in synaptic ion ho‐
meostasis and phosphorylation reactions, mitochondria would be accumulated at sites
where ATP consumption and Ca2+ concentration are higher. It was reported that mitochon‐
dria are more abundant in the regions of growing axons than in the non-growing axons. Mi‐
tochondrial net movement is anterograde in growing axons and is retrograde in non-
growing axons. Shortly before axogenesis mitochondria congregate at the base of the neurite
that is destined to become the axon. Nerve growth factor (NGF) was found as one of the sig‐
nals inducing accumulation of mitochondria in the active growing cone [136]. Interestingly,
when the ATP production is impaired and cells provide alternative source of energy, axo‐
genesis is abolished although growth of dendrites remains relatively unaffected [134].

There are changes in mitochondrial energy metabolism occurring in brain cells during CNS
development. During embryonic and early postnatal development fats are primarily used,
later on, glucose becomes as fuel. This fact supports the role of mitochondria in biochemical
requirements of highly proliferative neuronal stem cells and post-mitotic neurons. During
neuronal differentiation the number of mitochondria per cell increases, but the velocity at
which individual mitochondria move decreases as neurite outgrowth slows and synapto‐
genesis occurs [20,137].
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Figure 3. The role of mitochondria in neuroplasticity [20]. Principal mechanisms leading to neuronal impairment and
cell death are composed of decreased ATP production, increased production of reactive oxygen and nitrogen species
(RONS), initiation of apoptotic processes and impaired calcium homeostasis. Exhaustion of energy supplies and de‐
creased ATP production lead to impairment of ATP dependent processes and therefore to changed cellular functions.
Insufficient function of Na+/K+- ATPases leads to disturbances of ion transmembrane gradients, efflux of K+, and influx
of Na+, Cl- and Ca2+. Increased extracellular concentrations of K+ mediate depolarisation of membranes and change the
functions of amino acids transporters. Voltage gated ion channels (VGIC) and ligand dependent calcium channels
(LGIC) are activated and mediate increased cytosolic calcium concentrations. Intracellular calcium causes functional
changes of amino acid transporters and enhances the increased extracellular concentrations of excitatory amino acids,
glutamate especially, and extends neurotoxicity. Increased levels of synaptic glutamate can be mediated by release of
glutamate from astrocytes. Following bound of glutamate to NMDA and AMPA receptors causes higher Ca2+ influx
into cell, calcium activates phospholipases, proteases, and endonucleases, which degrade membranes, proteins and
nucleic acid. E.g. activation of phospholipase A2 (PLA2) by calcium releases membrane arachidonic acid (AA), which
induces production of superoxide. High intracellular calcium levels cause overload of mitochondrial calcium, increase
ROS production, and inhibit ATP production. Activation of calcium dependent protein phosphatases (e.g. calcineurin)
causes translocation of proapoptotic factor Bad into the mitochondria and triggers apoptosis by sequestration of anti‐
apoptotic factors Bcl-2 and Bcl-xL. Release of cytochrome c and other proapoptotic factors from the intermembrane
space of mitochondria induce the formation of apoptosome, and consequently trigger activation of caspases and
apoptosis. Apoptosis inducing factor (AIF) is another factor released by mitochondria. Disengaged AIF is transported
into nucleus and trigger caspases-independent apoptosis. Mitochondria in brain are also a target of nitric oxide (NO)
action; AA - arachidonic acid; AIF - apoptosis inducing factor; Bax, Bad, Bad - proapoptotic factors of Bcl-2 family; Bcl-2
- antiapoptotic factor of Bcl-2 family; BDNF - brain-derived neurotrophic factor; CaM - calmoduline; cAMP - cyclic ade‐
nosine monophosphate; CREB - cAMP response element-binding protein; cyt c - cytochrome c; Δψm - potential on the
inner mitochondrial membrane; EAAT - excitatory amino acid transporter; ER - endoplasmic reticulum; Glu - gluta‐
mate; MAO - monoamine oxidase; nNOS - neuronal nitric oxide synthase; NO - nitric oxide; PKA - protein kinase A;
PLA2 - phospholipase A2; PLC - phospholipase C; LGIC - ligand-gated ion channel; RONS, reactive oxygen and nitrogen
species; ROS - reactive oxygen species; RNS - reactive nitrogen species; VGIC - voltage-gated ion channel

It was demonstrated that neuronal activity is influenced by the mitochondrial functions, de‐
fective trafficking and dysfunction of mitochondria from axon terminals is implicated in the
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pathogenesis of axonal degeneration [138-140]. In addition, dendritic mitochondria are es‐
sential in the morphogenesis and plasticity of spines and synapses [141]. Recent findings
suggest roles for mitochondria as mediators of at least some effects of glutamate and BDNF
on synaptic plasticity [136]. BDNF promotes synaptic plasticity, in part, by enhancing mito‐
chondrial energy production. It increases glucose utilization and increases mitochondrial
respiratory coupling at complex [62,142].

Mitochondria are dynamic organelles; their function is modulated by fission, fusion and
moving within the axons and dendrites [38]. Their structure, functions and properties differ
in axons and dendrites [141,143]. Transport and positioning of mitochondria are essential for
neuronal homeostasis and the mitochondrial movement is a part of regulation by intracellu‐
lar signals.

3. Advances in biological hypotheses of mood disorders

Findings about intracellular processes associated with mood disorders and long-term effects
of antidepressants demonstrate an important role of signalling pathways primarily regulat‐
ed by monoamine neurotransmitters; this was settled as the basis of many biochemical hy‐
potheses [144-145]. While dysfunctions within monoaminergic neurotransmitter systems are
likely to play an important role in pathophysiology of mood disorders, it probably repre‐
sents the downstream effects of more primary abnormalities in signal transduction. Thus,
new theories about the pathophysiology of depression and the action of antidepressant
treatment proposes that mood disorders are caused by structural or functional changes in
particular molecules and signalling pathways in the brain, and that antidepressants function
by counteracting these molecular changes. It is supposed that structural and functional brain
abnormalities in patients with depressive disorder may be associated with low levels of
brain-derived neurotrophic factor (BDNF), abnormal function of hypothalamic-pituitary-
adrenal (HPA) axis, glutamatergic toxicity, activation of inflammatory and cell-mediated
immune response, decreased antioxidant capacity and increased oxidative and nitrosative
stress, disturbed chronobiological rythms, and mitochondrial dysfunctions [2,146-148].

Research on the biological basis of mood disorders emphasises the changes of neural net‐
works and synaptic plasticity. Evidence exists for impairment of neuroplasticity in major de‐
pression. Chronic stress is known to contribute both to development of major depression in
vulnerable persons and to reduction of synaptic plasticity, induction of structural changes in
dendrites, and impairment of neurogenesis [1]. Mitochondria may be primary regulators of
these processes, as they regulate not only neuronal survival and death, but also plasticity.
There is mounting evidence for the role of mitochondrial dysfunction in the pathophysiolo‐
gy and treatment of bipolar disorder [11].

3.1. Monoamine hypothesis

Discovery of the first  effective antidepressants,  MAOIs and tricyclic antidepressants,  im‐
plied hypothesis about significant role for the biogenic amine, particularly NE and 5-HT in
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the  ethiopathogenesis  of  affective  disorders.  Classic  monoamine  hypothesis  is  an  early
milestone in the field of depression. It proposed that depression might be produced by a 5-
HT or NE deficiency at  functionally important receptor sites in the brain,  i.e.  that brain
monoamine systems have a primary direct role in depression [149-150]. Soon it became evi‐
dent that the monoamine hypothesis in its original form could not explain all of the effects
of antidepressants [151-152]. In order to test this hypothesis, a series of studies was con‐
ducted to evaluate effects of monoamine depletion on depressive symptoms in depressed
patients and in healthy controls. Relapse to 5-HT depletion or to catecholamine depletion
was found to be specific to the type of antidepressant treatment and type of depletion. 5-
HT or NE/dopamine depletion did not decrease mood in healthy controls and slightly low‐
ered mood in healthy controls with a family history of major depressive disorder. In drug-
free patients with major depressive disorder in remission, a moderate mood decrease was
found for acute tryptophan depletion only. However, acute tryptophan depletion induced
relapse  in  patients  in  remission  who used  serotonergic  antidepressants  [153].  Depletion
studies failed to demonstrate a causal relation between 5-HT and NE with depressive dis‐
order [154-155]. The effects of acute tryptophan depletion on cognition in non-vulnerable
participants are independent of mood changes [155].  Even simultaneous disruption of 5-
HT and catecholamine systems didn’t significantly alter mood in unmedicated depressed
subjects [156]. These findings forced a major revision of the classic monoamine hypothesis
of depression. According to this revised monoamine theory of depression [148,157] monoa‐
mine systems are only modulating other brain neurobiological systems that have more pri‐
mary role in depression.

3.2. Neurotrophic hypothesis

The neurotrophic hypothesis of depression [5-6,8] supposed that vulnerability to depression
can arise as a result of neuronal damage, e.g. after chronic stress, long-term increased levels
of glucocorticoids, hypoglycemia, ischemia, effects of neurotoxins or certain viral infections,
etc. The therapeutic effects of antidepressants consist in the increased function of the nora‐
drenergic or serotonergic system, leading to increased activity of transcription factor CREB
(cAMP response element binding protein), higher expression of neurotrophin BDNF and its
receptor trkB, and consequently to increased neuronal plasticity and resumption of cellular
functions.

According to neurogenic hypothesis [158-159], depression may develop due to the de‐
creased neurogenesis in hippocampus, and antidepressants takes effect through the stimula‐
tion of neurogenesis. Hypothesis of cellular plasticity [160] relate the neurotrophic and the
neurogenic hypothesis to the statement that depression can be generally caused by damaged
cellular plasticity leading to inadequate relations between structure and function. Molecular
mechanisms leading to a disturbance of neuroplasticity are not known. The bioenergetic and
neurochemical model of bipolar disorder attempts to identify these mechanisms and focuses
attention on mitochondrial dysfunctions [9,161].
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3.3. Inflammatory and neurodegenerative hypothesis

The central nervous system, endocrine and immune systems use neurotransmitters, cyto‐
kines and hormones to communicate among them [162]. Now there is evidence that the acti‐
vation of the immune system is associated with the symptoms of depression [163-164]. The
inflammatory and neurodegenerative hypothesis of depression [165] supposes that depres‐
sion is associated with both inflammatory processes, as well as with neurodegeneration and
reduced neurogenesis. According to this hypothesis, enhanced neurodegeneration and im‐
paired neurogenesis in depression are caused by inflammatory processes, related to the pro‐
duction of oxidative and nitrosative stress, tryptophan catabolites along the
indoleamine-2,3-dioxygenase pathway, proinflammatory cytokines and lowered ω-3 poly‐
unsaturated fatty acid status. Anti-inflammatory compounds should be able to counteract at
least partly the enhanced neurodegeneration and decreased neurogenesis.

3.4. Mitochondrial hypothesis

Mitochondrial dysfunctions (leading to decreased ATP production, oxidative stress, and in‐
duction of apoptosis) occur in the early stages of different neurodegenerative diseases, asso‐
ciated often with mood disorders.

The role of mitochondrial dysfunction during bipolar disorder is supported both by obser‐
vation of the changes of brain metabolism and by effects of mood stabilizers (lithium and
valproate) on mitochondrial functions. Metabolic changes in brain were observed in bipolar
disorder by magnetic resonance spectroscopy (MRS). It suggests the presumptions that mi‐
tochondrial dysfunctions include impaired OXPHOS, final shift to glycolytic production of
energy, general decrease of energy (decreased ATP production), changed concentrations of
phosphomonoesters and changed lipid metabolism [9].

mtDNA mutations in the brain, associations of mtDNA polymorphisms and bipolar disor‐
der and changes in gene expression related to mitochondria in the brain were observed
[10,166]. Mitochondrial dysfunction hypothesis of bipolar disorder is based on these obser‐
vations. According to this hypothesis, mtDNA polymorphisms/mutations or mtRNA dele‐
tions caused by nuclear gene mutations can cause mitochondrial dysregulation of calcium
leading to symptoms of bipolar disorder [10,161,167]. Mitochondrial hypothesis corresponds
to, above mentioned, neurotrophic hypothesis because of an important role of calcium sig‐
nalling pathway in synaptic plasticity regulation.

3.5. Biological markers of mood disorders

Biological markers are defined as a characteristic that is objectively measured and evaluated
as an indicator of normal biologic processes, pathogenic processes, or pharmacologic re‐
sponses to a therapeutic intervention. In medicine, a biomarker is an indicator of a particular
disease state or a particular state of an organism.

Identification of biologic markers of mood disorders and factors capable of predicting the
response to treatment with antidepressants has not been sufficiently successful [3,168-169].
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In accordance to actual neurochemical hypotheses of mood disorders, biological markers
have been primarily found at the level of neurotransmitter concentrations, their metabolites
or precursors. Subsequently, attention was shifted to the receptor systems, and since the
1990´s, intracellular processes have become main interest. The chance to find sensitive and
specific biological predictors of antidepressant treatment has been increased, because of in‐
troduction of new methods of molecular biology. These methods enable us better observa‐
tion of cellular processes connected with the transduction of nervous signals in the brain.
The choice of parameters, which should be studied as perspective biological markers of
mood disorders, have been derived first of all from new findings of signalling pathways in‐
volved in neurotransmission and from above mentioned neurochemical hypotheses of
mood disorders. From the view of intracellular processes, energetic metabolism, activities of
PKC, CREB, BDNF, Bcl-2, glycogen synthase kinase-3, caspases or calcium could play a
principal role in findings of biological markers of mood disorders. According to the com‐
plexity and connectivity of signalling pathways involved in etiopathogenesis of mood disor‐
ders, number of chosen parameters is not final.

4. Antidepressants, mood stabilizers and mitochondrial functions

Antidepressants are used mainly to alleviate mood disorders, such as major depression and
dysthymia and anxiety disorders. Mood stabilizers are psychiatric medication used in treat‐
ment of mood disorders, which are characterized by intense and sustained mood shifts (e.g.
bipolar disorder).

The antidepressant activity of the first generation of antidepressants, tricyclic antidepres‐
sants and MAOIs, was explained by their effects on availability of monoamine neurotrans‐
mitters. The next generations of antidepressants included selective serotonin reuptake
inhibitors (SSRIs), norepinephrine reuptake inhibitors (NRIs), serotonin-norepinephrine re‐
uptake inhibitors (SNRI), noradrenergic and specific serotonergic antidepressants (NaSSAs),
norepinephrine-dopamine reuptake inhibitors (NDRIs), serotonin antagonist and reuptake
inhibitors (SARIs), selective serotonin reuptake enhancer (SSRE), melatonergic agonists
(MASSA), sigma receptor agonists etc. The therapeutic response to antidepressants occurs
after long-term treatment; therefore, effects of antidepressants are linked to cellular adapta‐
tions including density and/or sensitivity of neurotransmitter receptors and transporters,
regulation of signal transduction cascades, and changes in gene expression [170].

Most of mood stabilizers are anticonvulsants (valproate, carbamazepine, and lamotrigine),
with an important exception of lithium, which is the oldest and the best known mood stabi‐
lizing drug. Some atypical antipsychotics (olanzapine, quetiapine, aripiprazole, risperidone,
ziprasidone) have mood stabilizing effects, as well.

Although a wide range of pharmacologically different antidepressants and mood stabiliz‐
ers is available, molecular mechanisms of their therapeutic effects haven’t yet been suffi‐
ciently  clarified.  Relatively  little  information  is  known  about  the  association  among
therapeutic and/or adverse effects  of  drugs and mitochondrial  enzyme activities.  Incom‐
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plete data exist on the effect of pharmacologically selective antidepressants and mood sta‐
bilizers on MAO activity. Measurement of both mitochondrial respiration and membrane
potential during action of appropriate endogenous and exogenous substances enables the
identification  of  the  primary  sites  of  effectors  and  the  distribution  of  control,  allowing
deeper quantitative analyses [171].

4.1. Inhibition of MAO

MAO inhibition is the best known direct action of some antidepressants on mitochondrial
enzymes. The antidepressant effect of MAOIs has been established more than 50 years ago.
Iproniazid became the first MAO inhibitor to be used successfully in the treatment of de‐
pression; it is an irreversible and nonselective MAO inhibitor [172]. It is known to act as a
pro-drug and can be converted into isopropyl hydrazine which binds covalently to MAO
[173]. Clorgyline is an irreversible inhibitor preferential for MAO-A, structurally related to
pargyline (MAO-B inhibitor). It has antidepressant activity, and may potentially be useful in
the treatment of Parkinson's disease. Selegiline (l-deprenyl) is an irreversible inhibitor pref‐
erential for MAO-B; it is used for the treatment of Parkinson's disease, depression and senile
dementia. Inhibitors of MAO lose its selectivity at high doses. Moreover, there are feedbacks
and interconnections of intracellular signalling pathways which lead to mutual interactions
of monoaminergic and other systems [4]. So, inhibiting of MAO-B should influence process‐
es mediated primarily by substrates for MAO-A, and vice versa. The major disadvantage
was the incidence of the cheese reaction with those early inhibitors [51].

The selective reversible MAO-A inhibitors such as moclobemide increase the content of 5-
HT, NE and dopamine in the brain [174] but did not provoke the cheese reaction. Moclo‐
bemide has been extensively evaluated in the treatment of a wide spectrum of depressive
disorders and social phobia. Overall, moclobemide appears to be safe and devoid of ma‐
jor side effects, although it is considered as a mild antidepressant, better tolerated by old‐
er patients [175-181]. Moclobemide undergoes extensive metabolism with less than 1 % of
the dose being excreted unchanged. Metabolic pathways of moclobemide include mainly
oxidative attack on the morpholine moiety [182].  However,  major metabolites in plasma
were found to be less effective MAO-A inhibitors than moclobemide or pharmacologically
inactive [183-184].

MAO inhibitors were developed as antidepressants but many drugs, including the oxazoli‐
dinone antibacterial agents, share similar molecular properties and have MAO inhibitory ac‐
tivity. These compounds were of interest as potential antidepressants because they could be
selective inhibitors of either the A or B isoforms and were usually reversible [53].

Antidepressants which act primarily as 5-HT and/or NE reuptake inhibitors show inhibitory
activity towards MAO also. It has been suggested that tricyclic antidepressants exert some
of their therapeutic effect by inhibiting MAO [185]. They are able to inhibit MAO-B both in
vitro [186-187] and in vivo [188-189]. However, in vivo inhibition of the human platelet MAO-
B in the patients taking tricyclic antidepressants was not confirmed by others [190-191]. Five
tricyclic antidepressants, amitriptyline, clomipramine, desipramine, imipramine and iprin‐
dole, have comparable potencies as inhibitors of MAO in rodent brain and liver [192]. These
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antidepressants have been shown to partially protect mouse brain MAO in vivo from the ir‐
reversible enzyme inhibition produced by subsequent injection of phenelzine [193]. Concen‐
trations of tricyclic antidepressants, which showed a pronounced inhibitory effect on the
MAOs activity, were significantly higher than plasma levels of the drug found under thera‐
peutic conditions [194-195]. MAO activity was inhibited after long-term administration of
viloxazine, nomifensine, zimelidine, maprotiline, imipramine, amitriptyline, and nortripty‐
line in systematic studies of Egashira [196-197]. Competitive inhibition of MAO-A and non‐
competitive inhibition of MAO-B was found for these drugs. Similar results were obtained
when different tricyclic antidepressants and SSRIs were examined with isolated rat brain
mitochondria [198]. Fluoxetine and norfluoxetine showed affinities both for MAO-A [199]
and MAO-B [200]. Fluoxetine and norfluoxetine also significantly inhibited the binding of
the specific radioligands to MAO in vivo. These results support a potential role of MAO in‐
hibition in the therapeutic effects of fluoxetine.

4.2. Effects of antidepressants on mitochondrial functions

There is relatively little data about effects of antidepressants on mitochondrial functions as sum‐
marized in the Table 2. In vitro study examined influence of pharmacologically different antide‐
pressants and mood stabilizers on activity both mitochondrial MAO [201] and respiratory chain
complexes; imipramine, desipramine, amitriptyline, citalopram, and mirtazapine were found
as complex I inhibitors in isolated pig brain mitochondria [202]. In isolated rat liver mitochon‐
dria effects of imipramine and clomipramine were compared to classic uncouplers, drugs en‐
hanced ATP synthase activity, hindered ATP synthesis and released respiratory control [203]. In
isolated rat liver mitochondria, nefazodone was found as inhibitor of mitochondrial complexes I
and IV; buspirone inhibited complex I but had no effect on complex IV. Trazodone did not affect
on both complex I and complex IV [204], but decreased oxygen consumption and reduced Na+, K
+-ATPase activity. Trazodone acts also as uncoupler of OXPHOS [205].

Effects of antidepressants on apoptotic markers, e.g. cytochrome c release and DNA frag‐
mentation, seem to be different. Various antidepressants exhibited potential anticancer
properties and caused cytotoxic effects. Paroxetine, fluoxetine and clomipramine increased
levels of apoptotic markers leading to apoptosis in glioma and neuroblastoma cells, whereas
imipramine and mianserin do not [206]. Desipramine induced apoptosis in rat glioma cells
by activation of caspases, without any change of mitochondrial membrane potential Δψm

[207]. Fluoxetine and amitriptyline protected PC12 cells from cell death induced by hydro‐
gen peroxide [208]. Amitriptyline and tranylcypromine prevented the loss of mitochondrial
Δψm, over expression of Bax, reduction in Bcl-2 level, cytochrome c release, caspase-3 activa‐
tion, and formation of ROS. In contrast, fluoxetine seemed to have additive toxic effect to 1-
methyl-4-phenylpyridinium (MPP+) against neuronal cell damage by increasing
mitochondrial damage and oxidative stress [209]. Nortriptyline was identified as strong in‐
hibitor of MPT and was observed as potential inhibitor of neuronal cell death; it protected
isolated mitochondria against programmed cell death, inhibited release of apoptotic mito‐
chondrial factors and caspases, increased Ca2+ retention in mitochondria and delayed the
Ca2+ induced loss of Δψm, further leading to neuronal cell death [210-211].
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4.3. Effects of mood stabilizers on mitochondrial functions

Mood stabilizers affect multiple sites in intracellular signalling pathways [4]. Main targets of
mood stabilizers are neurotrophin BDNF, ERK pathway, and pathways modulated by GSK-3 or
Bcl-2 [8,226-227]. Molecular and cellular targets of mood stabilizers include enzymes inhibited
by lithium (inositol monophosphatase, inositol polyphosphate 1-phosphatase, GSK-3, fructose
1,6-bisphosphatase, bisphosphate nucleotidase, phosphoglucomutase), enzymes inhibited by
valproate (succinate semialdehyde dehydrogenase, succinate semialdehyde reductase, histone
deacetylase), targets of carbamazepine (sodium channels, adenosine receptors, adenylate cy‐
clase), and components of signalling pathways regulated by multiple drugs (PKC, cAMP, arach‐
idonic acid) [228]. Furthermore, lithium and valproate reduce transport of myo-inositol into the
cells, which leads to reduced PKC activity. Lithium and valproate increase Bcl-2 concentrations
[229] and inhibit GSK-3 activity (lithium directly, valproate indirectly). Valproate activates
MAPK signalling pathway and regulates stress proteins of ER [230]. Through the effects on Bcl-2
and p53 (proapoptotic protein), lithium affects mitochondria by stabilization of membrane in‐
tegrity and prevention of MPTPs opening; i.e. by regulating the key process in cell death leading
to at least temporary loss of Δψm, input of water into matrix and equilibration of ions concentra‐
tions. Both lithium and valproate have neuroprotective effects based on protection from gluta‐
matergic neurotoxicity by inactivation of NMDA receptors, on activation of cell survival factors
such as phosphoinositide 3-kinase/protein kinase B pathway, and on induction of neurotrophic
and neuroprotective proteins. Lithium protects against DNA damage, caspases activation, and
apoptosis of neurons [231]. Increased concentrations of N-acetyl aspartate (NAA, marker of
neuronal viability and functionality) in grey matter after the chronic lithium administration
support its strong neuroprotective and neurotrophic effects in humans.

Effects of mood stabilizers on monoaminergic activity have been studied; majority of data is
about the effects of lithium. Lithium enhances the antidepressant effect both of MAOIs and
inhibitors of the reuptake of 5-HT and/or NE [232-234]. The mode of action for the lithium
augmentation of antidepressants is partly mediated by an increase of 5-HT neurotransmis‐
sion [235-237]. However, lithium could not either inhibit MAO-A or MAO-B in the brain mi‐
tochondrial [195,201]. Unipolar and bipolar depressive patients showed significantly higher
platelet MAO activity than controls, but there was no significant change in activity after the
institution of lithium treatment [191].

Antidepressant Biological model Affected mitochondrial function Reference

Imipramine Isolated rat liver mitochondria

Beef heart submitochondrial

particles

Uncoupling effects on OXPHOS (release of

respiratory control, hindered ATP synthesis,

enhanced ATP synthase activity)

Inhibition NADH oxidation, inhibition of ATP

synthase

[203]

Imipramine Rat brain mitochondria Increased state 3 and state 4 respiratory rates [212]

Imipramine Rat liver mitochondria Increased state 3 and state 4 respiratory rates [213]
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Antidepressant Biological model Affected mitochondrial function Reference

Imipramine, clomipramine,

citalopram

Human peripheral lymphocytes

and lymphoblasts

Dose-dependent induction of apoptosis [214,215]

Imipramine, clomipramine,

citalopram

Human acute myeloid leukaemia

HL-60 cells

Loss in cell viability, increased ROS production,

loss of Δψ m

[216]

Clomipramine, desipramine,

norfluoxetine,

Tianeptine

Rat heart isolated mitochondria

and CHO cells

Reductions of Δψ m,

decrease in state 3 respiration, inhibition of

activities of complexes I, II/III and IV

Insignificant change of Δψ m,

decrease in state 3 respiration, inhibition of

complex I activity

[217]

Tianeptine Rat liver mitochondria Inhibited beta-oxidation and TCA cycle [218]

Fluoxetine Rat liver mitochondria Inhibition of state 3 respiration, stimulation of

state 4 respiration, decrease of RCR and

uncoupling effects on OXPHOS

[219]

Fluoxetine Rat brain mitochondria Inhibition of OXPHOS, decreased activity of

ATP synthase

[220]

Amitriptyline, fluoxetine Differentiated rat

pheocytochroma PC12 cells

Prevention of the loss of Δψ m, cyt c release,

formation

of ROS induced by MPP+

[209]

Amitriptyline, fluoxetine Rat pheocytochroma cells Attenuation of H2O2 neurotoxic effects,

upregulation of superoxide dismutase

[208]

Nortriptyline *ALS mouse Strong inhibitor of MPT [210]

Nortriptyline Mouse model of ischemia Inhibition of Δψ m, inhibited release of

mitochondrial factors and caspase 3 activation

[211]

Nortriptyline Rat brain mitochondria Inhibitor of MPT, inhibition of ETC, mild

uncoupling

[221]

Fluoxetine and/or

Olanzapine

Rat brain homogenates Increased citrate synthase activity after acute,

but not chronic treatment

[222]

Nefazodone

Trazodone

Isolated rat liver mitochondria Severe inhibition of oxygen consumption,

inhibition complexes I and IV

Modest inhibition of oxygen consumption,

inhibition of complex I

[204]

Nefazodone

Trazodone

Isolated rat liver mitochondria Complex I and complex IV inhibitor

No effects

[205]

Fluoxetine Hippocampal synaptic plasma

membranes

Increased ATP synthase activity [223]
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Antidepressant Biological model Affected mitochondrial function Reference

Sertraline Isolated rat liver mitochondria Uncoupling effects on OXPHOS, inhibition of

complex I and complex V activities, induction

of Ca2+ mediated MPT

[224]

Venlafaxine, paroxetine,

nortriptiline

Rat brain homogenates (after 15

days of drug administration)

Differences in brain areas: increased or

unchanged citrate synthase and SDH activities

[225]

Paroxetine, fluoxetine,

klomipramine

Rat glioma and human

neuroblastoma cell lines

Increased cyt c release, caspase-3-like activity,

induction of apoptosis

[206]

Desipramine Rat glioma cells Activation of caspases 3 and 9, no changes of

Δψ m

[207]

ALS mouse – model of neurodegeneration

Table 2. Effects of antidepressants on mitochondrial functions

Studies have shown effects of mood stabilizing drugs on mitochondria. In isolated brain mi‐
tochondria lithium caused desensitisation to calcium, antagonized permeability transition,
and diminished cytochrome c release [238]. In isolated rat liver mitochondria valproate in‐
hibited OXPHOS [239]. In isolated pig brain mitochondria both lithium and valproate inhib‐
ited respiratory chain complexes I and IV [202]. According to study performed in rats [240],
valproate reversed the decreased activity of citrate synthase caused by amphetamine and
lithium prevented the inhibition. The cytoprotective effect of lithium and valproate was ob‐
served after 7 days, of pre-treatment of human neuroblastoma (SH-SY5Y) cells against cyto‐
toxicity resulting from oxidative stress evoked by rotenone and H2O2. This effect was not
observed after one day of pre-treatment [241]. Chronic treatment of SH-SY5Y cells prevents
reduction of methamphetamine-induced reduction of cytochrome c, mitochondrial antia‐
poptotic Bcl-2/Bax ratio and mitochondrial COX activity [242]. Interestingly, long-term lithi‐
um and valproate did not protect SH-SY5Y cells against endoplasmic reticulum stress-
induced cytotoxicity [241]. Lithium and carbamazepine could facilitate activation of CREB,
valproate and lamotrigine did not affect BDNF-mediated signalling [243]. Thus, these mood
stabilizers likely decrease the vulnerability of mitochondrial functions caused by oxidative
stress and have neuroprotective effects [241].

Chronic treatment with lithium, valproate and carbamazepine protects against NMDA-
mediated toxicity [244]. Interestingly, recent study performed with epileptic children exam‐
ined the influence of carbamazepine and lamotrigine on mitochondrial functions - both
drugs influenced respiratory chain complexes and significantly affected ATP production,
carbamazepine decreased the production, oppositely to stimulatory effect of lamotrigine
[245]. Carbamazepine interferes in adenylate cyclase pathway: inhibits adenylate cyclase
and the synthesis of cAMP [246]. Lamotrigine prevented the toxicity caused by rotenone and
MPP+ in rat PC12 cells by suppressing the MPT formation, which leads to cytochrome c re‐
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lease and subsequent apoptosis. Though, lamotrigine seems to have neuroprotective effect
due to the mitochondrial respiratory complex I inhibition [247].

Effects of mood stabilizers on mitochondrial functions are summarized in the Table 3.

Mood stabilizer Biological model Affected mitochondrial function Reference

Valproate Rat liver mitochondrial

fractions

Inhibition of oxygen consumption rate,

sequestration of intramitochondrial CoA

[248]

Valproate Isolated rat liver mitochondria State 3 rates of oxygen consumption inhibited [239]

Valproate Isolated beef brain α-KGDH Inactivation of α-KGDH complex [249]

Valproic acid Isolated rat hepatocytes CoA, acetyl-CoA and long chain acyl-CoA

fractions decreased (accumulation of valproyl-

CoA; without any evidence of this metabolite

in brain tissue)

[250]

Valproate and its

metabolites

Submitochondrial particles

from rat liver

Inhibition of pyruvate uptake [251]

Valproate Rat liver mitochondria.

Digitonin permeabilized rat

hepatocytes

Inhibition of pyruvate-driven OXPHOS.

Inhibition of the rate of ATP synthesis (pyruvate

as substrate used, no inhibitory effects caused

by succinate and glutamate as substrates)

[252]

Valproate and lithium Rat brain tissue obtained

from animals pretreated by d-

amphetamine

No modification of complex I, II, III and IV

activities after the treatment with valproate

and lithium in controls

[253]

Valproate and lithium Rat brain tissue obtained

from animals pretreated by d-

amphetamine

Treated animals with lithium and valproate

prevented inhibition caused by d-

amphetamine

[240]

Valproate and lithium Rat brain tissue obtained

from animals pretreated by d-

amphetamine

Reversed ATP synthase activity (increased after

d-amphetamine) after lithium and valproate

treatment

[254]

Valproate and lithium Human neuroblastoma and

glioma cells

Protective effects against H2O2 or rotenone

induced cytotoxicity in neuroblastoma cells

[241]

Valproate and lithium Human neuroblastoma cells Reduction of methamphetamine-induced

reduction of cyt c, antiapoptotic Bcl-2/Bax ratio

and COX activity

[242]

Lithium Plasma synaptic membrane

from rat brain

Impaired function of ATP synthase was

modulated (reversed by lithium, and prevented

by lithium pretreatment)

[255]

Lithium Isolated brain mitochondria Desensitisation to calcium, antagonized MPT,

diminished cytochrome c release

[238]
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Mood stabilizer Biological model Affected mitochondrial function Reference

Lithium Postmortem human brain

cortex

Dose-depedent increased activities of

complexes I+III, II+III and succinate

dehydrogenase

[256]

Lithium Human neuroblastoma SH-

SY5Y cells

Attenuation of rotenone-induced caspase-3

activation

[257]

Carbamazepine Rat liver mitochondria Decreased state 3 respiration, RCR, ATP

synthesis, Δψ m

[258]

Carbamazepine Rat brain mitochondria Protection against rotenone induced complex I

inhibition

[259]

Carbamazepine,

lamotrigine

Human white blood cells Carbamazepine decreased ATP production,

stimulatory effect on production by

lamotrigine

[245]

Lamotrigine Human neuroblastoma

SH-SY5Y cells

Suppression of MPT formation, attenuation of

rotenone-toxicity, inhibition of ROS production

[247]

Table 3. Effects of mood stabilizers on mitochondrial functions

5. Conclusions

Biological  markers  of  depression,  predictors  of  the  response  to  the  drug administration
and molecular targets of new antidepressants are searched on the basis of recently known
hypotheses of affective disorders.  We come out mostly from stimuli of neurotrophic hy‐
pothesis and mitochondrial hypothesis. According to these hypotheses, the leading role in
the pathophysiology of mood disorders and therapeutic effects of antidepressants has mi‐
tochondria, which are destined for changes in energetic metabolism of cells. Mitochondri‐
al  dysfunctions  and thereby  impaired  neuronal  metabolism can  lead  to  disturbances  in
neuronal function, plasticity and brain circuitry. Impaired functions of mitochondria con‐
tribute  to  a  wide range of  diseases;  the  role  of  mitochondria  in  the pathophysiology of
schizophrenia, bipolar disorder, and major depressive disorder is supported by studies in‐
vestigating  genomic  differences,  changes  of  energy  metabolism  and  mitochondrial
changes included.
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