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1. Introduction 

During the process of tumorigenesis, some cells separate themselves from the tumor to 

invade distant tissues. Cellular migration in this process is similar to what occurs during 

embryonic development and wound healing. Unlike these two healthy processes, which 

involve the creation of a structure or the healing of tissue, metastasis results in the formation 

of a cellular mass that, if not eliminated, leads to the death of the organism. The process of 

metastasis includes the invasion of the basal membrane and nearby tissue by tumoral cells 

and the intravasation towards the blood vessels or infiltration of the lymphatic vessels. This 

is followed by the mechanisms of survival of tumor cells in these vessels and their 

extravasation to different tissues of the organism, where they may be able to proliferate. 

This pathogenic process requires a precise coordination of various signaling pathways that 

allows the tumor cells to move across the cell membrane, remodel the matrix, transport 

themselves by circulation [1] and create the appropriate conditions, at a distance, for 

establishing themselves in a different organ (Figure 1). 

Although exploring this complex process of motility and invasion by tumoral cells is 

fundamental for deepening the understanding of metastasis [2], much remains a mystery 

despite the enormous amount of research contributions. Both in vitro and in vivo, the time 

required for analyzing the evolution of this pathogenesis is excessive. Today the best way to 

make functional evaluations of the genetic changes that take place in humans with metastasis 

is with animal models. Although time consuming, a complete follow up can be carried out of 

the entire process, from the moment of the appearance of a primary tumor, to the strategies 

used by cancerous cells to escape from the controls of adhesion, their interaction with 

endothelial cells during their migration, and the establishment of a secondary tumor through 

the preparation of a new microenvironment favorable to tumor growth in the affected organ. 
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Figure 1. Separation of tumoral cells from a primary tumor and its migration to reach a blood or 

lymphatic vessel for dissemination to a secondary site is a very complex process that includes changes 

in the expression of multiple genes, which are genes involved in cell adhesion, survival, 

chemoattraction, growth factors, miRNAs. In the figure you can see some of the genes involved 

throughout this process. 
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2. Primary tumor migration 

The majority of deaths from cancer are due to metastasis. Nevertheless, in any given 

moment only a small proportion of tumoral cells acquire the capacity of invasion and 

dissemination [3]. This capacity is favored by the activation of signaling pathways that 

trigger the metastatic cascade, which results from the continuous exposure to the 

development of the primary tumor, to growth factors, to angiogenesis and to accumulated 

genetic changes [4]. Since the probability that tumoral cells that travel to new sites give rise 

to a tumor is very small [5], the process of tumorigenesis is actually quite lengthy. Yachida 

et al [6], after analyzing autopsies of victims of metastatic pancreatic cancer, proposed a 

quantitative model of tumor development and metastasis. They consider that at least a 

decade must pass between the occurrence of the initial mutation and the birth of the parent 

cancerous cell that eventually results in a tumor. Another five years or more are required for 

the acquisition of a metastatic capacity. After this latter event, the process takes place very 

quickly, with the life expectancy of two years for the affected patient. Hence, the challenge is 

to detect a tumor after the onset of the parent cancerous cell but before metastasis.  

Some years ago, Engel et al [7] found that the period from the onset of metastasis to the 

diagnosis of breast cancer was approximately 6 years. For the purpose of establishing such a 

diagnosis, two types of tumoral cells can be detected: those circulating in the blood and 

those disseminated in lymphatic nodes and bone marrow. Such tumor cells can persist for 

years, awaiting the adequate conditions in some organ to be able to establish themselves in a 

secondary tumor. In the event of the existence of both types of tumor cells in a patient, the 

likelihood of tumor development is quite high [8].  

There are two proposed models for explaining metastasis. Firstly, there is the model of 

linear progression, which considers that tumoral cells pass through multiple successive 

rounds of mutations, resulting in the selection of the most apt for proliferation in a relatively 

autonomous manner, followed by the transport of these clones to a new site. Secondly, the 

model of parallel progression holds that tumor cells separate themselves from the primary 

tumor before the acquisition of the malignant phenotype, and that these cells then undergo 

a somatic progression and metastatic growth at a distant site [9, 10].  

Detailed analysis of diverse data, including that from animal and computational models, 

suggests that dissemination is not a lengthy process, at least in breast cancer, prostate cancer 

or cancer of the esophagus [11,12]. Thus at least for these cancers, the model of parallel 

progression is best supported to explain metastasis from the primary tumor. Through the 

use of comparative genomic hybridization, Baudis [13] analyzed 5918 malignant epithelial 

neoplasias and observed typical imbalances: whereas there were recurrent findings of 

increases in 8q2, 20q, 1q, 3q, 5p, 7q and 17q, similar patterns of losses were seen in 3p, 4q, 

13q, 17p and 18q, among others. These genetic similarities between primary and metastatic 

tumors tend to indicate a convergent evolution more than the result of selection starting 

from a clone [5]. Nowadays it is well known that tumoral cells abandon the primary tumor 

before cancer is diagnosed. The possibility that these cells develop a tumor in a distinct 

organ depends largely on the characteristics of the primary tumor. 
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2.1. Cell invasion 

Tumor cells must acquire certain characteristics for cell migration to occur, such as polarity 

and disassociation from their point of origin. Afterwards, these cells must undergo cycles of 

extension and contraction, and at the same time they adhere to and are released from the 

substrate [14] to move from one site to another. During this process their form is radically 

modified. 

The ability of cells to migrate, studied since 1863 after the discovery by Virchow, allowed 

them to carry out various processes including embryogenesis, angiogenesis and wound 

healing to immune response [15], Cell migration can be divided into stages according to the 

changes observed in the morphology of the cell: polarization, protrusion, adhesion, 

translocation of the cell body, and retraction of the rear portion. The physiology of cell 

migration is diverse, depending on the type of cell involved [16]. For instance, fibroblasts 

and melanocytes generally migrate mesenchymally, as individual cells that are highly 

adhesive and require proteolytic remodeling of the matrix [17,18.]. These cells form 

specialized protrusions of the membrane, among which are lamellipodia, which are actin 

projections of the cytoskeleton formed in the extreme front part of the mobile cell, and 

invadopodia (invasive pseudopods), which are proteolytically active protrusions of the 

plasmatic membrane that are responsible for the focal degradation of the components of the 

extracellular matrix (ECM). The latter type, characteristic of highly invasive tumor cells, 

contains sites of matrix metalloproteinases (MMPs) [19]. Wolf et al [20] observed that tumor 

cells do not always require MMPs, since they can escape through openings in the ECM by 

means of a great contractile force. Also among specialized protrusions of the membrane of 

metastatic fibroblasts and melanocytes are philopodia and podosomes. The former 

protrusions are in the shape of thin bundles of actin, and are in charge of probing the 

environment in search of signals [21]. The latter are functionally the same as invadopodia, 

forming in macrophages and osteoclasts associated with a tumor, and aiding in the process 

of invasion. The capacity of malignant cells to migrate in a directional manner is due to the 

presence of receptors on their surface that allows them to follow the gradient of chemokines 

[22]. Among the most common type of chemokines are CXCR4 and CCR7, which have been 

found in diverse types of cancer and are attracted by CXCL12 and CCL21, respectively [23].  

2.2. Mechanisms of invasion 

Yilmaz et al [24] suggest classifying the invasion by cancerous cells as individual or 

collective. The use of one or another type of mobility depends on the type of malignant 

tumor and the surrounding tissue, defined by distinct patterns in the activity of extracellular 

proteases, matrix-cell adhesion mediated by integrins, cell-cell adhesion mediated by 

cadherins, cellular polarity and cytoskeletal arrangements [25]. Epithelial cells, which are 

the most common source of diverse cancers, can exhibit multiple phenotypes of migration. 

They commonly have a stationary behavior and form layers of cells interconnected with 

strong bonds. They are capable of moving individually, as a layer, or as a tubular structure. 

The latter type of structure is found during embryonic development [26]. Among epithelial 
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tumoral cells, all these three types can be found for any particular tissue, suggesting that 

these pathogenic cells have the capacity to change from individual to collective migration, 

according to the environment that they face.  

2.3. Individual cell migration 

The movement of cells inside of living organisms is highly complex and strictly coordinated. 

For instance, hematopoietic cells exhibit a highly individualized ameboid movement, with 

little adhesion and without causing remodeling of the matrix. Tumor cells are capable of 

taking advantage of the strategies of healthy cells, moving in the same individual manner 

for example as a leukocyte or fibroblast. Individual migration of cells can have some 

variants: ameboid or mesenchymal [27, 28], solitary or in single file. When cells are 

transported to a new location, their form is modified. They often, but not always, adopt a 

bottle form. The constriction of their apexes can have two functions: (i) the cells can 

transport much of their intracellular content and begin the movement out of the epithelium, 

and (ii) they can reduce the amount of non-adhesive apex membrane, since by passing 

through the epithelial layer to arrive to the new location the apical point breaks. 

Additionally, this form allows for passage through the epithelium layer with a reduced 

space left behind. The apical constriction is driven by contractions based on actinomiosine, 

while the apical membrane is reduced by endocytosis. The cells must carry out a process of 

de-epithelialization, which means that they lose an essential property of epithelial cells— 

contact with neighboring cells.  

Apart from the eventual loss of the adherence of the apical point, the adjoining surfaces 

forming the bottle neck are also broken up [29]. Due to employment of intravital 

multiphoton imaging, it has been possible to observe tumor cells in movement, and 

therefore to see breast cancer cells utilizing ameboid movement to transport themselves 

rapidly (4µm/min) [30]. During transport these cells acquire a polarized phenotype, 

bearing Ca2+ in front of and behind the cell, which allows for the retraction of the rear portion 

[31]. This process of retraction is supported by the contraction of miosine II and by the disassembly of 

focal adhesion at the rear of the cell, due to the breakage mediated by calpain of the proteins 

of focal bonds, including integrins, talin, vinculin and focal adhesion kinase (FAK) [32]. Focal 

adhesion is composed of a structural point and adhesion signaling between the ECM and 

the cytoskeleton. The velocity of the formation and disassembly of the focal adhesions is 

what determines the efficiency of cellular migration [33]. In tumor cells the loss of E-cadherin 

facilitates the formation of focal adhesion and better communication with the ECM. The 

small STPases (Rho, Rac, CDC42) are among the key molecules for initiating remodeling of 

the cytoskeleton. The remodeling of actin is mediated by actin-related proteins (such as 

ARP2/3) [34]. The other type of individual migration, mesenchymal migration, can be used 

by cells that undergo a transition from the epithelial to mesenchymal cell type, the latter of 

which is present in 10-40% of carcinomas [35]. This type of migration requires proteolysis of 

ECM proteins so that the cells can move through the matrix-filled spaces of the tumor [19].  
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2.4. Collective cell invasion 

Targeted multicellular migration can be of two types: (i) collective cellular migration, in 

which the cells undergoing transport maintain close contact with one another, and (ii) 

streaming, in which these cells are not always in direct contact [22, 23]. This latter type is 

carried out by cells during the stage of gastrulation in embryonic development and in 

wound healing. Collective cell migration, where the cells are bonded together in layers, is 

more common than individual migration under normal physiological conditions [36]. The 

best understood collective cell migration is that of wound healing. Neurons and smooth 

muscle cells also move collectively, as a cohesive group and in a coordinated and integrated 

manner. The cells involved in this movement retain much of their epithelial characteristics, 

such as the cell to cell adhesion, averting the need for an epithelial-mesenchymal transition 

that leads to a modification of cellular shape [37]. In all types of collective migration, the 

foremost cells of the migratory group actively participate in chemotaxis and degradation of 

the matrix in order to make way for passage. These leading cells are linked to the cells 

behind them, dragging them through the remodeled matrix [36].  

In tumor cell collective migration, the leading cell can be a tumor cell with proteolytic 

activity or a stromal cell of the tumoral microenvironment [38]. Among the most relevant 

proteins for collective cell migration are the 1 and 3 integrins grouped in the ruffling 

edges of the cell group in movement. These proteins are responsible for providing the 

adhesion and dynamic strength necessary for transporting the cell group. The leading cells 

have the greatest proteolytic capacity in relation to the ECM, and it is their production of the 

metalloproteinases MT1-MMP and MMP-2 that enable proteolysis, as these proteins cut 

collagen fibers and form a pathway for collective migration and expansion of the migratory 

group [39, 40]. In squamous carcinomas of the larynx, lungs, esophagus, cervix and skin, 

among other tissues, collective invasion has been associated with the presence of 

podoplanin and CDC42 proteins [41-43].  

3. The epithelial to mesenchymal transition (EMT) 

Regarding the acquisition of mobility, a fundamental process in the transformation to a 

malignant cell, the best understood phenomenon is the epithelial-mesenchymal transition. 

The epithelial layer is formed by cells with apical-basal polarity that maintain the laminar 

structure intact through various types of adhesion, thus forming the barrier necessary for 

the good functioning of the epithelial layers. This barrier, known as the apical joint complex, 

is formed and maintained by cell to cell contact at the cell surfaces that surround the apical-

lateral dominion. This complex includes the adhesive joints (AJ), which promote the 

integrity of the tissue by maintaining a strong bond between the cells [44] and have 

cadherins as their principal component [45]. The resulting tight joints (TJ) form a physical 

barrier to the movement of ions, macromolecules, immune cells and pathogens between the 

epithelial cells [46] and desmosomes. The AJ as well as the TJ are closely related with the 

actin cytoskeleton and are functionally regulated by filaments of the circumference of 

actomyosin [47]. Their dynamic interaction is important during the morphogenesis of 
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epithelial tissues in embryonic development, in tissue repair [48], and in the maintenance of 

an effective epithelial barrier in an adult [49].  

During early embryonic development, there is a process of essential differentiation resulting 

in the establishment of the germinal layers in the epithelial-mesenchymal transition (EMT) 

[29]. The EMT, discovered by Frank Lillie in 1908, is an important mechanism for the 

reorganization of the germinal layers [50]. This process, whose essential characteristics are 

the interruption of intercellular contacts and the acquisition of a fibroblast-type conjugated 

morphology, converts well-organized epithelial cells into isolated cells with a mesenchymal 

morphology that are capable of transporting themselves [51] to become established in new 

tissues, thus allowing for inductive interactions during embryogenesis. Currently, it is 

thought that three subtypes of EMT exist: EMT type 1 is related to embryonic development, 

EMT type 2 to wound healing, and EMT type 3 to tumor cells [52]. As Thiery [53] points out, 

it took a long time for EMT to be recognized as a mechanism of tumor progression due to 

the difficulty of detecting the process in patients. Today, it is known that tumor cells utilize 

the EMT as a key element in the invasive process, a phenomenon very similar to embryonic 

EMT. There are diverse pathways in common between embryonic and tumoral EMT, 

including the stimulation by TGF-β that induces phosphorylation of β-catenin, which in 

turn activates transcription factors such as Snail [54], as well as diverse growth factors and 

proteins. This is accompanied by a loss of diverse epithelial proteins such as E-Cadherin,  

and -catenins, Claudin, ocludin and citokeratins, and at the same time an overexpression of 

mesenchymal proteins such as vimentin, fibronectin, metalloproteinases, actin and integrins 

v and 1 [55, 56]. E-cadherin is a key protein because it facilitates the adhesion of epithelial 

cells and desmosomes [57], which in turn prevents cellular mobility and metastatic 

dissemination.  

The cadherin switch is essential to increase mobility, but is not always necessary for the 

morphological changes that accompany the EMT [58]. The expression of cadherins can be 

inactivated by somatic mutations, hypermethylation and desacetylation of histones or 

transcriptional repression. Some researchers have considered that the expression of N-

cadherin is more important for metastasis than that of E-cadherin [59], based on the fact that 

the former is a mesenchymal protein marker found overexpressed in cells with the EMT. 

Camand et al [60] found that a decrease in the N-cadherin levels, through regulation of focal 

adhesion formation, promotes a more rapid migration in healthy and tumoral glia cells. In 

the latter cells, this contributes to the invasive capacity of astrocyte tumors.  

Integrins, a determining factor in the process of cellular adhesion, can also induce EMT. 

Recently, Gupta et al [61] proposed that integrin 91 is implicated in EMT by accelerating 

lung tumor cell migration, mediated by scr, in a TGF-independent manner. To date, a wide 

variety of proteins and factors have been discovered that regulate EMT. Indeed, it is thought 

that hundreds of genes significantly modify their expression during EMT [52]. One example 

is Twist, a potent inducer of EMT that was originally identified as an inducer of the 

mesoderm in Drosophila [62]. Its expression in epithelial cells causes the loss of cell to cell 

adhesion mediated by E-cadherin, which leads to cell decomposition. It also activates BMI1 

polycomb proteins, which induce stem-like properties and thus annul the p53- and Rb-
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dependent pathways that would otherwise allow the cells to enter in premature senescence 

induced by oncogenes. Twist also suppresses the production of let-7i, which in turn allows 

cells to acquire mobility in the last stage of EMT [63, 64]. The overexpression and activation 

of the signaling pathways of HER-2/Neu and TGF activate EMT in tumoral cells of breast 

cancer.  

EMT is also regulated by alternative splicing, such as that of ENAH, a regulating protein of 

the cytoskeleton of actin. The transcript present in epithelial cells contains a small exon 11a, 

which is absent in mesenchymal cell lines and during the EMT [65]. RBFOX2 is a splicing 

factor which together with ESRP1 and ESRP2, proteins for binding with RNA that are 

specific to the epithelium, promote splicing of transcripts that are important in EMT [66]. 

The loss of ESRPs in epithelial cells induces morphological changes similar to EMT [67]. On 

the other hand, Shapiro et al [68] found a partial induction of the splicing program in 

mesenchymal cells by means of the ectopic expression of ESRP1 or by elimination of 

RBFOX2 in immortalized epithelial mammary cells. Mesenchymal isoform IIIc of FGFR2, 

isoform 3 of catenin p120, and isoform CD44s of CD44 are all expressed in mesenchymal 

cells and in tumoral cells with the EMT, as reviewed in [69]. 

Just as the process of EMT resembles that observed during embryonic development, it 

seems that both pathways are regulated by an intricate interaction of transcriptional and 

post-transcriptional programs, as was discovered by observing that the ribonucleoprotein, 

heterogeneous nuclear E1 (hnRNP E1) is a selective transductional regulator of transcripts of 

EMT induced by TGFβ. Due to its capacity to bind to RNA, hnRNP E1 adheres to 3'-UTR 

BAT structural elements present in the transcripts of mRNA necessary for EMT, and upon 

doing so silences these elements. This silencing, mediated by hnRNP E1, occurs during the 

stage of elongation when hnRNP E1 impedes the release of the elongation factor eukaryote 1 

A1 (eEF1A1) of the ribosomal site A. The phosphorylation of hnRNP by Akt2, mediated by 

TGFβ, restores the transduction of white transcripts of EMT. The attenuation of the 

expression of hnRNP E1 in non-invasive breast cancer cell lines induces not only EMT but 

also metastasis [70,71]. Furthermore, the steroid hormones such as androgens have also been 

observed to be implicated in the maintenance of cellular characteristics, evidenced by the 

fact that Sun et al [72] found that the absence of androgens in prostate tumors is associated 

with a worse prognosis and acquisition of cell characteristics typical of mesenchymal or 

stem cells.  

With triple negative breast cancer (ER-, PR- HET2-), there is an overexpression of N-cadherin 

and EMT, leading to a worse prognosis. Regulation by miRNAs is not an exception in EMT, 

particularly the miRNAs of the miR-200 (miR-200a, miR-200b, miR-200c, miR-141 and miR-

429) and miR-205 family. These miRNAs participate in the regulation of EMT induced by 

TGF by mediating the production of ZEB1 and ZEB2 [73,74]. Recently miR-29b was added 

to the list of miRNAs that regulate EMT, due to the fact that an increase in miR-29b in PC3 

prostate cancer cells inhibits the capacity of these tumoral cells to invade and colonize [75]. 

In addition to TGF, other growth factors such as EGF, HGF, PDGF, FGF2, TNF and IGF 

can induce EMT by activating the expression of transcriptional repressors of E-cadherin or 



 
Molecular Mechanisms of Metastasis: Epithelial-Mesenchymal Transition, Anoikis and Loss of Adhesion 173 

by activating the transduction signaling pathways, such as MAPK, PI3K, Wnt/-catenin, NF-

B and Notch [69 and references there].  

3.1. EMT reversion 

After tumoral cells are disseminated, they must reactivate their epithelial properties by 

means of the reversion of the process of EMT, known as the mesenchymal-epithelial 

transition (MET). In the metastatic process, just as EMT is essential for the initial 

transformation of cells from being part of the epithelial tissue to being released from 

intercellular connectedness and ready for transport, MET is critical for the later stages of 

metastasis. Possibly this latter change is triggered by the local environment after 

extravasation towards the parenchyma of the invaded organs [76]. Although EMT has been 

extensively studied, there is much yet to be discovered about the molecular mechanisms 

that regulate MET. One of the keys to the process of MET is the re-expression of E-cadherin, 

which enables tumor cells to interact with the tissue of the recently colonized organ [77]. 

Leontovich et al [78] demonstrated that the constitutive activation of Raf-1 induces the 

overexpression of HER-2/Neu, leading in turn to the development of metastasis in 

xenografts of MCF7 ER+ cells. This metastasis was linked to the activation of the MET 

pathway, and curiously it was characterized by a reduction in the expression of genes 

implicated in EMT, such as TGFB2, TWIST and FOXC1. On the other hand, Phino et al [79] 

found that the levels of glycosylation of E-cadherin regulated by Mgat3/GnT-III were 

diminished in EMT, and that they were recovered when the cells once again acquired an 

epithelial phenotype. Other genes identified in MET are WT1, BMB7, WNT4 and the protein 

formina IV of the cytoskeleton [53 and references there]. Diverse miRNAs have been found 

to be deregulated in tumors, particularly metastamir, which is implicated in metastasis [80]. 

Wang & Wang [81] summarized the types of metastamir that are deregulated in breast 

cancer cells: miR-9, -10b, -21, -29a, -31, -103/107, -126, -335, -210, and -373. All of these are 

involved in migration, aggressiveness and the worst prognoses. An increase in the levels of 

miR-200 induces MET by reducing motility and aggressiveness [82]. Likewise, the 

expression of miR124 modifies the morphology and capacity of metastasis of MDA-MB-231 

cells, as well as by decreasing the levels of vimentina, a mesenchymal marker [83]. The 

regulation of diverse transcription factors, receptors for growth factors (including FGFR2b, 

FGFR2c, EGFR and HER2), and the activation of Akt are other elements in the reversion of 

MET.  

3.2. Collective to ameboid transition and the mesenchymal to ameboid transition 

Through the process of metastasis, cells can undergo changes in the way in which they 

transport themselves. In explants of melanoma, it has been observed that the inhibition of 

the integrin 1 provokes the separation of groups of cells, which thus become individual 

ameboid cells. These cells acquire the capacity to migrate, independently of proteases and/or 

integrins, similar to that observed in ameboid movement. Hence, the transition from 

collective invasion to ameboid movement of individual cells is an interchangeable and 

bidirectional process that depends on environmental factors, making evident the great 
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plasticity that tumoral cells can have [84]. The mesenchymal-ameboid transition can serve as 

a compensatory mechanism of migration after the inhibition of pericellular proteolysis. This 

transition provokes a change from a cellular form similar to a fibroblast to a round or 

elliptical shape, and at the same time spurs a change in the cytoskeletal organization as well 

as the distribution of integrins [85]. 

4. The tumor microenvironment 

During the process of migration, cancerous cells pass through different microenvironments, 

including the stroma, the endothelium of blood vessels, the lymphatic vessels and the tissue 

of the organ where the secondary tumor forms [86]. In each of these sites, the 

microenvironment exerts a strict control over the behavior of tumor cells [87]. 

Cells can cross the basal membrane (BM) during embryonic development and immune 

vigilance, either as part of the embryonic process or more routine morphological processes 

such as leukocyte activity [88]. The BM is a dense layer of the extracellular matrix that is 

highly reticular and rich in laminina, collagen type IV, perlecan, nidogen-1 and nidogen-2. 

Its structural function is to delimit epithelial and endothelial tissue, and to give polarity to 

cells [89, 90]. After the loss of intercellular adhesion, cells acquire a mobile phenotype and 

produce metalloproteinases that allow them to digest the BM. Hence, the BM is the first 

barrier that tumor cells must cross [2]. As a tumor invades an organ, there is a dynamic 

interaction between invasive cells, the invaded tissue and the BM that separate the two. 

Although it has not been easy to study this process in vitro, the transmigration of leukocytes 

has proved to be a very useful model, allowing for the identification of regions of the 

perivascular BM that have less resistance to invasion. These regions contain reduced levels 

of laminin and collagen IV [91]. It is not yet clear how carcinoma cells initiate the invasive 

process after abandoning the primary tumor, but there is evidence that points to the 

participation of invadopodium in the proteolysis of vascular BM.  

4.1. Interactions with the extracellular matrix 

A critical component of the cellular microenvironment is the extracellular matrix (ECM), a 

biopolymer complex that provides healthy and tumor cells with biophysical and 

biochemical signals that influence their function and survival [92]. Cells are capable of 

sensing and responding to changes in the conformation of the ECM through a process of 

mutual feedback that involves cellular contractile mechanisms. Each cell type responds to 

the rigidity that is characteristic of its host [93]. Integrins are crucial participants in the 

communication of cells with the ECM, because they act as a conduit between extracellular 

ligands and the cytoskeleton. Therefore they have the capacity of responding to the rigidity 

of the external substrate through a counter-response exerted by the actomiosin network. 

They act as mechanosensors that undergo conformational changes in response to 

mechanical forces, resulting in increased adhesion between the cells and the ECM, the 

formation of focal adhesions, and the dispersion of the cells [94]. The extracellular signals 

mediated by integrins are transduced internally through focal adhesion components [95]. 
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Tumor cells have the capability of ignoring the conformational changes that take place in the 

ECM, and this capability is associated with the activation of integrin 1 and the 

phosphorylation of FAK in a manner dependent on fibronectin and the overexpression of 

αvβ3 [96]. Lysyl oxidase (LOX), a copper-dependent amine oxidase that catalyzes the 

crosslinking of collagen, elastin and fibrin in the ECM, can modulate metastasis by 

facilitating extravasation or by conditioning the metastatic niche, the latter done by 

increasing the rigidity of the ECM and fibrillar collagen [97]. As can be seen, although the 

ECM is considered a barrier for the dissemination of tumor cells, its remodeling by tumor 

cells actually converts it into a promoter of the same process. The release of proteins from 

the ECM by tumor MMPs can create a promigratory stimulus, in part by increasing the 

rigidity of the tissue, which in turn augments the motility of tumor cells [98].  

4.2. The cancer-associated fibroblast and the tumor associated macrophages and 

immune cells 

Diverse signals emanating from tumor cells allow them to recruit and activate host cells, 

particularly monocytes, fibroblasts and mesenchymal stem cells, all of which are abundant 

in the microenvironment of a tumor. Among these cell types, fibroblasts are the most 

abundant and important in the interaction with the tumor. The carcinoma associated 

fibroblasts (CAFs) are miofibroblasts with contractile properties and a staining capacity for 

alpha-smooth muscle actin (-SMA). Several studies have reported that they can potentiate 

tumorigenesis by expressing proteins that favor migration or by altering the stromal 

environment in a way that facilitates colonization. Brentnall et al [99] point out that the 

overexpression of paladin by the activation of k-ras can transform normal fibroblasts into 

miofibroblasts in 5 days. As a result, the expression of paladin alters the morphology and 

behavior of cells, leading to an increased cellular migration, the degradation of the ECM by 

the formation of invadopodia, and the creation of tunnels through which cancerous cells can 

transport themselves. Malanchi et al [100] found that to facilitate the process of colonization, 

infiltrating tumor cells need to induce the expression of stromal periostina (POSTN) in the 

target organ for a secondary tumor. POSTN is a component of the ECM that is expressed by 

fibroblasts, both in healthy tissue as well as in the stroma of a primary tumor. Møller et al 

[101] reported that fibulin 5, whose expression is downregulated by factors released by 

fibroblasts in tumors, is capable of suppressing metastatic colonization of the lungs and liver 

by inhibiting the production of metalloproteinase 9 and by reducing the invasive behavior 

of fibroblasts. Hence, tumor cells avoid the expression of this protein.  

Epithelial cells produce multiple factors that recruit various cells able to facilitate the 

infiltration of tumors, including tumor-associated macrophages (TAMs), tumor-associated 

neutrophils (TANs), lymphocytes, mesenchymal stem cells, endothelial cells and the 

aforementioned CAFs. In the case of macrophages, experimental evidence exists supporting 

the idea that they can differentiate into pro-inflammatory macrophages (M1) or anti-

inflammatory macrophages (M2), depending on the stimulus [102,103]. TAMs are similar to 

M2 macrophages, promoting tumor progression by their incapacity to induce T cells, their 

increased expression of manose and scavenger receptors, as well as their release of pro-
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tumorigenic factors (e.g., TGF-1, IL-10 and MMPs) and pro-angiogenic factors [104]. As 

they generally accumulate in hypoxic zones, the pro-angiogenic program of TAMs is 

triggered, resulting in the secretion of VEGF, IL-1b, TNF-a, angiogenin and semaphorin 4D. 

By secreting urokinasetype plasminogen activator (uPA) and its receptor, uPAR, TAMs can 

participate in the degradation of the ECM [105]. 

The non-neoplasic cells present in the stroma of the tumor produce a series of chemokines 

and growth factors that form a complex network of communication within the tumoral 

microenvironment. One factor produced by the CAFs is CXCL12, which promotes the 

migration of tumor cells towards blood vessels [106]. TAMs co-migrate with tumor cells in a 

paracrine-dependent manner. They produce EGF, which increases the migration of breast 

cancer cells that express EGFRs. In response, these tumor cells secrete CSF1, thereby 

attracting the TAMs that express CSF1Rs [107]. Campbell et al [108] found that the TAMS 

positive to CD68 and PCNA are associated with a worse prognosis for breast cancer 

patients.  

Macrophages are capable of regulating other stromal cells and of exerting influence through 

them. For instance, the loss of signaling by TGF- in mammary fibroblasts produces an 

increase in the secretion of CCL2, which in turn results in a progression of 4T1 tumors, 

either through direct action on cancerous cells or through the recruitment of macrophages 

[109]. The infiltration of lymphocytes is associated with metastasis and an increased 

expression of the activator of the NF-κB (RANK) receptor and of its ligand (RANKL). In 

particular, T regulatory cells (Treg) infiltrated in a breast cancer tumor stimulate metastasis 

in breast cancer through the signaling by RANKL-RANK to IKK-, causing the suppression 

of the inhibitor of the antimetastatic serine proteinase and maspin, and favoring the survival 

of circulating tumor cells [110]. It is possible that CAFs express CCL5, thus attracting Treg 

cells that express CCR1 and produce RANKL. Treg cells secrete IL-4 and IL-13, which in this 

case would result in the activation of TAMs and consequently the promotion metastasis in 

RANK-positive tumors [111]. Neutrophils, on the other hand, participate in the preparation 

of the tumoral microenvironment. They produce enzymes that remodel the ECM, and also 

produce ROS, which in turn activates NF-B and in this way allows tumor cells to attenuate 

their apoptotic response and increase their mutation rate [112]. 

5. Survival of tumoral cells and modulation of cell survival 

The metastatic process has various rate-limiting steps, and consequently only a minority of 

tumor cells is able to reach distant sites [86]. It has been suggested that approximately 0.01% 

of circulating tumor cells can manage to produce a metastasis [113]. Talin 1 is one of the 

proteins whose altered expression allows for the survival of tumor cells. It can recruit focal 

adhesion proteins ILK, FAK and Src through its interaction with integrin , resulting in the 

promotion of the survival, invasion and angiogenesis of tumor cells. Its overexpression 

allows prostate cancer tumor cells to activate survival signals and resist death by anoikis 

[114]. In this sense, the PI3K/Akt and Wnt/-catenin signaling pathways, along with 

mutations in p53 and other genes, play an important role in the avoidance of death by 

metastatic cells.  
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The adhesion of tumor cells to the ECM is not sufficient for inducing a survival signal. The 

changes in the cytoskeleton associated with adhesion signaling are critical for tumor cell 

survival. Halder & Johnson [115] indicate that the newly established Hippo suppressor 

pathway (which regulates the size of organs by maintaining a balance between proliferation 

and apoptosis in physiological conditions) might be involved in tumor proliferation. The 

Hippo pathway phosphorylates and inhibits the transcriptional coactivator Yes-associated 

protein (YAP), a key oncogene for the regulation of the size of organs. This inactivation is 

triggered by the reorganization of the cytoskeleton. Once the cell has separated, the Hippo 

kinases Lats 1/2 are activated, causing the inhibition of YAP, and therefore resulting in 

anoikis. It has been found that with metastatic prostate cancer, the levels of expression of 

Lats 1/2 are significantly downregulated [116], whereas, Lamar et al [117] demonstrated that 

increased YAP activity promotes metastasis and tumor growth at both the primary site and 

the metastatic site. 

5.1. Integrins in cell survival and apoptosis (anoikis) 

A loss of balance between cell division and cell death is common in cancer, due to a decrease 

in apoptotic cell death that leads to the progression of a tumor. There are various ways by 

which a malignant tumor cell averts or resists apoptosis.  

The distinctive morphological characteristic of apoptosis is the condensation of chromatin 

and the posterior fragmentation of the nucleus, accompanied by a reduction of cell volume, 

a retraction of pseudopods, and the formation of vacuoles, all leading to a loss of integrity of 

the cell membrane [110]. The biochemical changes that occur during apoptosis are: (i) the 

activation of caspases, (ii) the rupture of DNA and proteins, and (iii) changes in the 

membrane related to its recognition by phagocytes [111].  

Tumor cells can avert apoptosis by altering the balance of pro-and anti-apoptotic proteins, 

decreasing the function of caspases, and altering the signaling of receptors related to cell 

death [112]. A cancerous cell in an ectopic site, whether near a primary tumor or in route to 

a secondary organ, can employ various mechanisms to avert the process of apoptosis known 

as anoikis [113]. Through anoikis, a healthy cell in an inappropriate location activates its 

programmed death by separating itself from its neighbors and its microenvironment, and 

thus is eliminated. Anoikis is therefore a barrier against the formation and survival of 

potentially oncogenic clones. Only non-adherent cells, such as leukocytes and mature 

hematopoietic cells, are protected from anoikis [114].  

The principal effector mechanisms of anoikis are autophagy and apoptosis [115]. A critical 

step in the series of changes through which a tumor cell passes to avoid apoptosis is a 

change in the expression of integrins, which are a family of receptors that receive signals 

from the ECM. This change is based on genetic and epigenetic alterations that can only 

occur in the microenvironment of a tumor [116], allowing tumor cells to ignore signals by 

the ECM and act as if they were in the appropriate microenvironment. Besides this extrinsic 

pathway, tumor cells can also avoid apoptosis by damaging the mitochondria, an intrinsic 

pathway allowing these cells to hyperactivate mechanisms of survival and proliferation 
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[117]. Another important factor in anoikis is the integrity of the cytoskeleton [118], since 

many pro-apoptotic proteins, including BIM and BMF, co-locate with the cytoskeleton. 

In vertebrates, integrins are a family of receptors composed of 18 subunits  and 8 subunits 

, whose combination gives rise to 24 types of these receptors [119]. Changes in the integrins 

that act as receptors for the ECM are essential for the avoidance of anoikis. The normal 

functioning of these receptors not only provides a physical bond with the ECM, but also 

establishes a platform that depends on signals from adhesion molecules, including adaptor 

proteins and kinases [120, 121]. For instance, the integrins α1β1, α2β1, α3β1, α5β1, α6β1, 

α6β4 and αvβ3 have a profound impact on cell survival [122]. 

A particularly important structure in this sense is hemidesmosome, in which there are 

complexes of integrin-talin-paxilin-actin that receive signals from the ECM and transduce 

these signals through various proteins such as focal adhesion kinase (FAK) in order to avoid 

anoikis. FAK, the kinase linked to the integrin ILK, tyrosine kinase Src, PI3K, the 

extracellular signal-related kinase (ERK) and the adaptor protein Shc are key to the 

transduction of signals mediated by integrins for protection against anoikis [123]. The FAK 

binds to the cytoplasmic tails of the integrins and is autophosphorylated at the Y397 residue 

in order to transmit a survival signal [124]. After the adhesion of integrins with the 

appropriate proteins of the ECM, FAK and ILK recruit and activate PI3K/Akt, ERK and the 

Jun kinase (JNK) pathway [125].  

The separation of these cells, which move towards the vascular lymphatic space, as well as 

their implantation in a site with an unknown ECM can cause the separation of the  and  

subunits of the heterodimeric receptors of integrin, which in turn leads to the deactivation of 

FAK, of the family of tyrosine kinases Src, and of ILK. Whereas this attenuates pro-survival 

pathways, including the mitogen-activated protein kinase/ERK, Akt/phosphatase, tensin 

homologue (PTEN), and the nuclear factor B (NF-B) [126], it at the same time stimulates 

other mechanisms of survival. The latter mechanisms include the activation of PKB/Akt, 

which can inhibit anoikis at multiple levels. This inhibition takes place by the inactivation of 

caspase 9, by a scavenging process that is dependent on the phosphorylation of the pro-

apoptotic Bad protein by the 14-3-3 protein, by the activation of NF-B, and by the inhibition 

of transcription factors Fork-head [127-130].  

It has been seen that the response to anoikis can be recovered by silencing FAK with siRNAs 

in pancreatic cancer cells [131]. Recently it was found that the inhibition of the proteins of 

the subfamily of Rho and the expression of Akt in the B16F10 cell line inactivates the FAK 

pathway and induces anoikis in resistant cells [132]. Whereas healthy epithelial cells express 

the receptor for collagen α2β1 and receptors for laminin α3β1 and α6β1, hyperproliferative 

cells overexpress integrins αvβ5 and αvβ6 and squamous carcinoma cells overexpress αvβ6. 

The latter integrin is required for the adhesion of melanoma cells to dermic collagen and for 

survival in the environment of the new tissue [133-137]. Goldstein et al [138] found that the 

substitution of valine by glutamic acid at aminoacid 600 of B-RAF (B-RAFV600E), which is 

found in 66% of melanomas, is an event that leads to resistance to anoikis by continuous 

activation of MEK/ERK and the inhibition of BIM, a pro-apoptotic protein. Whereas in a 
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healthy cell BIM levels are increased upon its separation from its tissue as a mechanism to 

activate its programmed death, this does not occur in tumor cells. Although the 

overexpression of integrin αvβ3 is associated with an increase in invasiveness, it has also 

been implicated in the induction of anoikis, which suggests that it has a dual role in 

tumorigenesis [139, 140].  

ANGPTL4, a regulator of the metabolism of lipids, leads to the activation of Rac1 and FAK 

by binding to integrins β1 and β5. This phenomenon protects against anoikis through the 

activation of Src, Akt/PKB and ERK. Hence, the binding of ANGPTL4 with integrins is 

capable of deceiving the mechanism of programmed death by generating a false impression 

of anchorage [141]. The phosphorylation of ERK2 by FAK, though, leads to the 

phosphorylation of BIM, marking the latter for ubiquitination and degradation. Another 

critical protein for resisting anoikis is the 5 integrin, which as shown by Shen et al [142], 

has its expression in gastric cancer regulated by the S100A4 protein. S100A4 permits the 

survival of tumor cells and favors the overexpression of the 5 integrin.  

By interacting with integrins, the microenvironment modulates their function in an 

important way. Marchan et al [143] found that β3 expressed in pancreatic cancer cells has 

important effects, including the promotion of migration in single-layer cell cultures, the 

induction of anoikis in vitro, and the suppression of tumor growth in vivo. At the same time 

that tumor cells avoid programmed death by anoikis, they acquire a mesenchymal 

phenotype that allows them to begin migration.  

6. Transendothelial or lymphatic migration and extravasation 

Tumor cells must go in and out of blood vessels by crossing endothelial layers as part of the 

metastatic process, and in order to do this they undergo dramatic changes in their shape, 

driven by a reorganization of their cytoskeleton. The most difficult part of these changes in 

malignant cells, which adopt elastic and viscous properties for this purpose, is the 

deformation of the nucleus in interphase, because it is 10 times more rigid than the 

cytoplasm [144].  

Intravasation is the principal route for the dissemination of tumor cells coming from 

carcinomas. Once inside of a blood vessel, the survival of tumor cells is affected by various 

factors, including hemodynamic forces, immunological stress, and collisions with blood 

cells. Consequently, only a very small number of tumor cells manage to leave blood vessels 

[145]. The majority of tumor cells that enter the bloodstream are detained in the 

microvasculature of the first organ they pass through [146].  

It has been demonstrated that in breast cancer tumors, intravasation depends on the 

paracrine loop between tumor cells and TAMs [100]. In one clinical study of patients with 

breast cancer, the half-life of tumor cells in the bloodstream was from 1 to 2.4 h [147]. Png et 

al [148] pointed out that endothelial cells play an important initial role in metastasis by 

providing signals that promote this process. These researchers identified molecules such as 

secretory IGFBP2, the transference protein PITPNC1, and the kinase MERK as necessary for 

mediating the recruitment of metastatic endothelial cells.  
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Brown & Ruoslahti [149] suggested that there are molecules that favor the capture of tumor 

cells in blood vessels. In the case of breast cancer cells, the expression of metadherin favors 

homing in the pulmonary vasculature. In the majority of tumors of epithelial origin, the first 

sign of metastasis is found in regional lymphatic nodes. Once inside the lymphatic vessels, 

tumor cells can produce local or regional metastasis, or can enter in a quiescent state, whose 

duration depends in great part on the immune system. Immune vigilance can induce 

quiescence in individual cells by detaining the cell cycle through signals mediated by 

cytokines [150, 151]. It is estimated that 80% of metastasis of solid tumors, such as in breast 

cancer and melanoma, are disseminated through the lymphatic system [151].  

In the bloodstream a tumor cell can be detained or can succeed in passing through the wall 

of a blood vessel. If the tumor cell has a diameter greater than that of a given blood vessel, 

mechanical or occlusive detainment will occur. This mechanism of detention has been 

observed in mouse models of brain cancer metastasis [152]. On the other hand, if the tumor 

cell has a diameter less than that of the blood vessel, it must bond to the wall of this channel 

in order to be able to leave the bloodstream. There is evidence that tumor cells are associated 

with platelets, which can mask and protect these cells from being located by natural killer 

cells [153]. Platelets can also facilitate the accumulation of VEGF at the bond between a 

tumor cell and the endothelium tissue, favoring vascular hyperpermeability and 

consequently extravasation [154].  

7. Colonization 

During the progression of cancer, the colonization of distant organs by circulating tumor 

cells marks the difference between a possibly curable tumor and a systemic and generally 

incurable disease [155]. After an analysis of breast cancer tumors, Paget [156] concluded that 

the local microenvironment of some organs must be favorable for the dissemination of 

tumor cells or their progenitors. On the one hand, the microenvironment of the target organ 

is a determinant for the survival of tumor cells, and on the other hand the accumulation of 

these malignant cells in a given organ can create an adequate stromal microenvironment to 

allow metastasis [157].  

In the preparation of an adequate niche, the primary tumor secretes VEGFA to mobilize 

progenitor hematopoietic cells from bone marrow (HPCs) toward the bloodstream, and 

from there to the site of metastasis. The same process occurs with fibronectin, 

metalloproteinases and growth factors, all of which can be synthesized by the primary 

tumor and released to the bloodstream, later to accumulate in the target organ. In this way, 

these molecules prepare a premetastatic microenvironment, to which the HPCs arrive and 

continue this process of adaptation for the purpose of their own survival.  

Tumor cells and macrophages are recruited towards the premetastatic niche due to the 

chemokines synthesized by cells associated with cancer [158]. It has been shown that 

chemokines are chemotactic molecules important for colonization of a given organ [159, 

160]. Wendel et al [161], by utilizing intravital observation techniques, were able to 
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demonstrate that the receptor of chemokine CXCR4 plays an important role in the 

extravasation of breast cancer tumor cells towards their target organs.  

The anatomy of some organs provides a barrier to metastasis. In the case of the lungs, 

endothelial capillaries are surrounded by a basal membrane [162]. In the blood-brain barrier, 

capillaries have tight junctions and astrocyte foot processes [163]. Capillaries in bone 

marrow and the liver, on the other hand, are fenestrated, making them susceptible to 

invasion [162].  

Another important factor in the ability of a tumor to invade a distant organ is the type of 

primary tumor. Breast cancer tumors positive for estrogen receptors, as well as ocular 

prostate cancer tumors and melanoma tumors, can give metastatic signals decades after 

elimination of the primary tumor [7, 164-166]. This is due to the fact that tumor cells are 

disseminated from the primary tumor various years before detection of the primary tumor. 

Adenocarcinoma of pancreatic and lung cancer have malignant cells that rapidly acquire the 

capacity to infiltrate and colonize without requiring a process of quiescence to generate a 

macrometastasis [167, 168]. Furthermore, tumor cells in general can adopt two distinct states 

of quiescence while awaiting a favorable microenvironment. They can exist as individual 

cells (cellular quiescence) or as small indolent groups (tumor mass quiescence), in either 

case maintaining a balance between proliferation and death during the period of latency 

[169].  

7.1. Most frequent organs for metastasis 

Although no organ is totally protected from the development of metastasis, this process 

tends to take place more frequently in certain regions of the body, including the lymphatic 

nodes (lymphatic metastasis), lungs, liver, bone marrow, brain (haematogenic metastasis), 

peritoneum and pleura [145]. Each type of cancer is more prone to certain organs. When it 

occurs, metastasis exists in at least 2 organs, with an average of 5.6 metastases per patient.  

With breast cancer, metastasis generally is a slow process that occurs in the lymph nodes, 

lungs, bone marrow, liver or brain. Only in 6-18% of breast cancer patients does metastasis 

takes place in the gastrointestinal tract, with the stomach and small intestine being the most 

frequent hosts. On the other hand, colorectal cancer rarely metastasizes to bone marrow 

[170]. Adrenal glands are the preferred site for metastasis of lung cancer tumors with small 

cells [171]. In North and South America, lung and breast cancer are the first and second 

source of metastasis to the brain. Generally the earliest metastasis takes place with lung 

cancer [172], with 80% of such events occurring in the cerebellar hemispheres [173]. 

However, the most frequent metastasis to the cerebellar hemispheres occurs in breast cancer 

patients [174]. This frequency can be explained in part by the production of osteoclast-

activating factors, such as the parathyroid hormone related protein (PTHrP), IL-1, IL-6, IL-11 

and GM-CSF by breast cancer tumor cells [175]. These osteoclasts release growth factors 

derived from bones, such as TGF- and IGF-1 [176]. Contrarily, the metastasis of tumor cells 

from prostate cancer to bone marrow generally stimulates the formation of bone, regulated 

by the production of osteoblast-activating factors such as endothelin-1, BMPs and PDGF. In 
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this way, the activated osteoblasts can maintain the proliferation and survival of the tumor 

cells [177].  

Cyclooxygenase COX 2, EGFR, the ligand HBEGF and 2,6-sialyltransferase ST6GALNAC5 

are mediators of the passage of cancerous cells through the blood-brain barrier. 

Nevertheless, only ST6GALNAC5 mediates metastasis of breast cancer tumor cells to the 

brain, facilitating the both the passage through the blood-brain barrier and the adhesion of 

these cells to brain endothelial cells [178]. A recent study [179] reported that the greatest 

number of metastasis to the brain occur in breast cancer patients of African origin. The least 

frequent teratogenic metastases are found in the kidneys, gonads, spleen, subcutaneous fat 

and especially in the walls of the gastrointestinal tract, uterus, heart and skeletal muscle 

[180]. 

The gradients of chemokines can explain the tropism of some types of cancer. It has been 

suggested that in organs with high levels of chemokine expression, these latter molecules 

can attract metastatic tumor cells that express the corresponding receptor. This model has 

been demonstrated in the metastasis of breast and prostate cancer tumors to bone marrow 

due to the presence of CXCR4-CXCL12. With solid and hematopoietic tumors, chemokines 

CCL21 and CCL19 are present in metastasis to lymphatic nodules with the corresponding 

receptor CCR7 [18].  

8. Conclusion 

The capacity of tumor cells to be transported to organs distant from the primary tumor is 

driven by two types of factors: the complex interactions between tumor cells and their 

surroundings, and the changes in such cells that allow them to adapt to their environment. 

Among the latter factors is the hallmark of tumor cells: their capacity to avoid apoptosis. At 

the onset of the metastatic process, the epithelial-mesenchymal transition is critical for a 

tumor cell to escape the controls of adhesion and be released for transport from the primary 

tumor. It must then be able to move across the cell membrane, remodel the extracellular 

matrix, transport itself by circulation, and establish itself in a distant organ. The 

mesenchymal-epithelial transition is critical for this last stage in which the tumor cell 

survives in a new organ. Although very few tumor cells are able to achieve this task, 

metastasis unfortunately is a common occurrence with cancer patients due to the continuous 

exposure to the development of the primary tumor, to growth factors, to angiogenesis and 

to accumulated genetic changes. The great complexity of the regulatory network that is 

implicated in the susceptibility of an organ to metastasis, as well as the capacity of tumor 

cells to dodge the immune response and influence the microenvironment of a given organ to 

make it favorable to metastasis, makes the study of metastasis for the purpose of drug 

design for cancer treatment a titanic task. The advantage is that there are now thousands of 

researchers and hundreds of thousands of reports in the field of metastasis. Furthermore, 

metastasis is a lengthy process, often taking a decade. Hence, the challenge is to detect a 

tumor after the onset of the parent cancerous cell but before metastasis. 
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