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1. Introduction

Physiologically based pharmacokinetic (PBPK) models differ from classical PK models in that
they include specific compartments for tissues involved in exposure, toxicity, biotransforma‐
tion and clearance processes connected by blood flow (Figure 1). Compartments and blood
flows are described using physiologically meaningful parameters, which allows for interspe‐
cies extrapolation by altering the physiological parameters appropriately [1]. A key benefit to
PBPK models is that factors influencing the absorption, distribution, metabolism, and elimi‐
nation of a compound can be incorporated into a PBPK model in a mechanistic, meaningful
way, if a mechanism is understood and sufficient data are available. This mechanistic aspect
is supported by physiological parameters influencing absorption (e.g., pH values and transit
times through various sections of the GI tract), distribution (e.g., tissue volumes and compo‐
sition), metabolism (e.g., expression levels of various hepatic enzymes and transporters
involved with metabolic elimination), and elimination (e.g., glomerular filtration rate and
expression levels of transporters in the kidneys involved with renal elimination), which can
be explicitly incorporated in the PBPK model.

Because the models have a mechanistic basis, extrapolation to situations differing from the
conditions of the data used to calibrate the model is justifiable [2]. The mechanistic basis allows
PBPK models to be used to determine if results from different experimental designs are
consistent, and to explore possible mechanisms responsible for unexpected or unusual data.
PBPK modeling has been used to great effect for interspecies extrapolation, both among animal
models [3] and for predicting human PK based on animal data [4-5].

© 2013 Reddy et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
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Figure 1. A schematic diagram of a PBPK model.

PBPK approaches have several advantages over other PK modeling approaches: (1) creating
models from physiological, biochemical and anatomical information, entirely separate from
collection of detailed concentration time-course curves; (2) evaluating mechanisms by which
biological processes govern disposition of a wide range of compounds by comparison of PK
results with model predictions; (3) using compounds as probes of the biological processes to
gain more general information on the way biochemical characteristics govern the importance
of various transport pathways in the body; (4) applying the models in safety assessments; and
(5) using annotation of a modeling data-base as a repository of information on PK properties,
toxicity and kinetics of specific compounds [6]. These attributes have led to widespread
development of PBPK models in recent years [7], with acceleration in publication of PBPK
modeling papers pertaining to drugs particularly over the last 10 years.

Here, we describe the historical development of the PBPK approach. Also, we discuss the
emerging role of PBPK modeling in the pharmaceutical industry throughout drug develop‐
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ment. Finally, we provide our thoughts on potential applications that have not yet been widely
explored. Although advances have been made in applying PBPK modeling for biotherapeutics,
this review focuses on small molecules.

2. Historical perspective

Interest in PK modeling in pharmacology and toxicology arises from the need to relate internal
concentrations of active compounds at their target sites with the dose administered to an
animal or human subject. The reason, of course, is a fundamental tenet in pharmacology or
toxicology that both beneficial and adverse responses to a compound are related to the free
concentration of active compound at the target tissue rather than the amount of compound at
the site of absorption. The relationship between tissue dose and administered dose can be
complex (Figure 2). PK models are valuable tools to assess internal dosimetry at target tissues
for a wide range of exposure situations.
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Figure 2. A schematic diagram of the processes impacting the free concentration of drug at the target. Modified from [8].
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In the 1930’s, Teorell [9-10] provided the first physiological model for drug distribution in a
set of equations for uptake, distribution, and elimination of drugs from the body. However,
computational methods were not available to solve the sets of equations at this time. Exact
mathematical solutions could only be obtained for simplified models in which the body was
reduced to a small number of compartments that did not have direct physiological corre‐
spondence. Over the next 30 years, PK modeling focused on simpler descriptions with exact
solutions rather than on models concordant with the structure and content of the biological
system. These approaches are sometimes referred to as ‘data-based’ compartmental modeling
since the work generally took the form of a detailed collection of time-course blood/excreta
concentrations at various doses. Time-course curves were analyzed by assuming particular
model structures and estimating a small number of model parameters by curve-fitting.

In early models, all processes for metabolism, distribution, and elimination were treated as
first-order (i.e., rates changed in direct proportion to drug concentration). Two issues that
particularly affected data-based PK models arose in the 1960’s and early 1970’s. First, increased
understanding of saturation of elimination pathways led to models that were not first-order,
making it difficult to derive exact solutions to the sets of equations. Second, it was realized
that blood flow rather than metabolic capacity of an organ might limit clearance; blood flow-
limited metabolism in an organ meant that the elimination rate could not increase indefinitely
as the metabolic capacity increased [11].

Scientists trained in chemical engineering and computational methods developed PBPK
models for chemotherapeutic compounds [12]. Many of these compounds are highly toxic and
have therapeutic efficacy by being slightly more toxic to rapidly growing cells (cancer cells)
than to normal tissues. Initial successes with methotrexate [13] led to PBPK models for other
compounds, including 5-fluorouracil [14] and cisplatin [15]. These seminal contributions
showed the ease with which realistic descriptions of physiology and relevant pathways of
metabolism could be incorporated into PBPK models.

Although PBPK modeling was initially developed in the pharmaceutical industry [6], until
recently its major use was in environmental risk assessment. In the pharmaceutical area, PBPK
model use was limited mainly due to the perceived mathematical complexity of the models
and the labor-intensive input data required. However, advances in the prediction of hepatic
metabolism and tissue distribution from in vitro and in silico data have made the use of these
models more attractive, providing the opportunity to integrate key input data from different
sources to estimate PK parameters, predict plasma and tissue concentration-time profiles, and
gain mechanistic insight into compound properties. Thus, interest in applying PBPK models
for the discovery and development of drugs is growing [16-19].

PBPK models require physiological, physicochemical, and biochemical parameters. The
physiological, mechanistic basis of the models is both their strength (the mechanistic basis
provides exceptional utility) and their weakness (PBPK models can be expensive and time-
consuming to construct). However, recent contributions to the literature have demonstrated
the effective application of “generic” PBPK models using the ADME data normally generated
during preclinical development [5,20-22]. Since the development of the generic PBPK model‐
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ing approach incorporating typical ADMET data, PBPK modeling has seen increased appli‐
cation in the pharmaceutical industry.

The past 10 years have seen tremendous advances in the capabilities of generic PBPK models
that can simulate PK for humans or preclinical species based on a combination of physico‐
chemical properties and in vitro data. Such generic PBPK models can be constructed using
programming packages such as MATLAB®, acslX, or Berkeley Madonna. Also powerful
commercial PBPK simulation tools, which incorporate useful physiologically-based absorp‐
tion models in the traditional PBPK model, are now available. Such packages include, e.g.,
GastroPlusTM (Simulations Plus Inc., www.simulations-plus.com), SimCyp (Simcyp,
www.simcyp.com/), and PK-Sim® (Bayer Technology Services, www.pksim.com). These tools
allow easy incorporation of preclinical ADMET data into a PBPK model for preclinical species
and humans. The availability of such tools simplifies the technical use of PBPK models;
however, a good understanding of the models and underlying equations is still mandatory in
order to guarantee good interpretation of output.

Instead of taking a month or a day to construct a PBPK model, these generic models can be
used to construct and validate models in a few hours, depending on the expertise of the user
and the time required to gather the data. The generic PBPK model is an increasingly important
tool in assessing DMPK properties in preclinical development [21-24]. PBPK models can
incorporate the many complex processes that impact PK (Figure 2) in a mechanistically
meaningful way (Figure 1).

3. Current applications of PBPK modeling in drug development

Increased application of PBPK in the pharmaceutical industry was characterized by Rowland
et al., who quantified the number of scientific publications per year containing the phrase
“physiologically-based pharmacokinetics” and pertaining to drugs in Web of Knowledge
(Thomson Reuters); the number of publications meeting these criteria appears to be increasing
exponentially over time [19]. While the extent of PBPK modeling in industry is difficult to
quantify, and depends on the company, clearly PBPK modeling is increasingly used and
useful, as we will illustrate in the following sections. PBPK modeling can be used from early
preclinical development throughout the development process (Table 1). Drug discovery is
increasingly “data rich” with high throughput chemistry generating numerous compounds
that are rapidly screened for pharmacological and PK properties. Much of the typically
generated preclinical ADMET data can be used in PBPK model development.

3.1. Lead identification and optimization stages

The first information generated includes in silico parameters (e.g., pKa, solubility, Peff, and
logP values are calculated). Metabolic stability studies (e.g., in microsomes or hepatocytes) are
often considered critical to determine if hepatic metabolism is a major route of elimination and
if first pass metabolism might result in unacceptably low bioavailability [35,36]. Screens for
permeability and solubility are often implemented early in the process. Plasma protein binding
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might be measured to determine if a compound will have a sufficient free concentration for
therapeutic efficacy [37]. The blood-to-plasma ratio might be measured aid in interpreting PK

Model application Impact Example

Lead optimization

Determining key in vitro data

impacting absorption and PK

Providing guidance to chemists and providing basis for

screening cascade

[24]

Predicting PK with in silico and in

vitro data as inputs

Verifying that the PK properties of a chemical series are

understood, prioritizing compounds for additional in vivo

experimentation

[21-23]

Understanding mechanisms

impacting PK

Comparing the PBPK model to in vivo PK data to identify

potential reasons for mismatch and to guide additional

experimentation

[25-27]

Clinical candidate selection

Absorption modeling Predicting whether a compound will exhibit a significant

food effect

[28]

Comparing exposure window

for lead candidates

Linking human PK to PK/PD models for pharmacological and

toxicological effects improves basis for choosing best

candidate

[20]

Identifying key uncertainties Allows targeted experimentation [24]

Entry into human

Predicting human PK and

efficacious dose

Determining whether a compound will be efficacious in the

clinic

[5]

Understanding key sources of

variability

Provides important information for clinical trial design [29]

Simulate clinical trial results Use the PBPK model simulation to optimize clinical trial

design

[30-31]

Clinical development

PBPK/PD modeling Increased understanding of dose of active compound

delivered to target tissues and its relationship to toxicological

and efficacious effects

[32]

Predicting PK for patient

population

Incorporating physiological changes from a disease state

allows prediction of PK in the patient population

[33]

Predicting PK for population of

different age

Incorporating age-specific physiological differences allows

prediction of PK for a specific age group, e.g., children or the

elderly

[34]

Table 1. Role of PBPK modeling at various stages in preclinical and clinical development.
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data [38]. PBPK models can be used to determine the key data that should be generated. For
example, absorption modeling can be used to determine if solubility or permeability is likely
to limit the compound’s bioavailability, i.e., to determine if a solubility or permeability assay
would be a useful addition to a screening cascade.

Determination of in vivo PK is more costly and slower than in vitro screening, and so using
simulations to prioritize compounds for in vivo experimentation can optimize resource
expenditure. PBPK can be used at an early stage to determine which compounds should go
on for further experimentation [21-23]. In a study applying generic PBPK modeling to predict
rat PK following iv or po administration of test compound [23], it was determined that
differences in PK parameters of more than twofold could be determined based upon minimal
in vitro data. But to apply the method for new series, the use of the model should be verified
for several compounds before it is generally applied.

For promising compounds, a rodent PK study might be performed to determine if a compound
has drug-like PK properties and adequate bioavailability. Later studies might include PK
studies in a nonrodent species. Hepatocyte or microsomal clearance data can be scaled to
estimate the in vivo metabolic clearance in preclinical species and humans [39-40]. The scaled
clearance in preclinical species can be compared to clearance in PK studies to determine if
hepatic metabolism is a major route of elimination in preclinical species. If the clearance seen
in PK studies is higher than the clearance scaled from hepatocyte or microsome data, urine
and/or bile might be collected in PK studies to provide additional information on mechanisms
of clearance.

Because of the mechanistic basis of PBPK models, when they do not adequately describe animal
PK data, this means that a biological phenomenon affecting PK has not been included in the
model and is not represented by the assays used to screen the compounds. Therefore, if a PK
issue for a promising compound becomes apparent, PBPK modeling allows you to determine
which mechanisms are consistent with the observed data. This information can be used to
guide further experimentation to arrive more rapidly at the desired information. For example,
Peters [25-26] proposed a method for assessing “lineshape” mismatch between simulated and
observed oral profiles to gain mechanistic insights into processes impacting absorption and
PK (e.g., saturable metabolism, enterohepatic cycling, transporter involvement in absorption
from the gut, and regional variation in gut absorption). In related work, Peters and Hultin [27]
used a similar approach to identify drug-induced delays in gastric emptying.

Preclinical ADMET studies provide pharmaceutical scientists with quantitative information
on the PK in preclinical species and qualitative information on the potential human PK
behavior of a compound. Using PBPK modeling, the results of the various preclinical assays
can be integrated to provide a quantitative prediction of human PK [5,41]. Once the PBPK
model exists, it can be used to determine which compounds have the largest impact on PK,
providing chemists with additional clear information for the development of improved
compounds.

During preclinical development, ADMET data is constantly being generated. A PBPK model
can act as a repository of current information, and is easily updated when new PK or PD data
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become available. But adequate data are necessary to apply PBPK, which can be a limitation.
For example, if a company does not generate hepatocyte or microsome data that can be scaled
for a reasonably accurate estimate of metabolic clearance, the utility of PBPK is reduced.

3.2. Clinical candidate selection

Once PO PK data and detailed pharmaceutical data are available, physiologically based
absorption modeling can be useful to verify that factors impacting oral absorption are
understood and to help guide formulation development. Data on solubility, dissolution,
precipitation, membrane permeation, whether a compound is a transporter substrate, and
metabolic stability (particularly for CYP3A4, but other enzymes are also expressed in entero‐
cytes [42]) are all important for predicting absorption [43]. PBPK models incorporate physio‐
logical information on the GI tract (e.g., transit times, pH values and transit times in the various
regions). However, it can be important to carefully consider whether typical physiological
conditions are appropriate for a given absorption simulation. For example, in typical dogs
administered a solution, the stomach pH might be over 7, but in pentagastrin-pretreated dogs
the stomach pH might be less than 3 for a period of time [44].

Absorption modeling can be very useful at later stages, e.g., for predicting whether PK will be
different when a compound is administered with food. Jones et al. [28] developed GastroPlus
human oral absorption models for six compounds. Food effects were predicted for a range of
doses and compared to the results from human food effect studies. In general, the models were
able to predict whether a food effect would be major (i.e., for two compounds) or minor (i.e.,
for four compounds).

PBPK can assist with clinical candidate selection where numerous factors must be considered
and data related to the PK and PD of a compound need to be combined and compared in a
rational way. Parrott et al. [20] demonstrated the use of PBPK modeling to select the best
compound from among five candidates for the clinical lead. The preclinical data for each
candidate was integrated and the efficacious human doses and associated plasma exposures
were estimated. The PBPK models were linked to an Emax PD model so that the dose resulting
in a 90% effect could be identified. This example showed that the PBPK approach facilitates a
sound decision on the selection of the optimal molecule to be progressed by integrating the
available information and focusing the attention onto the expected properties in human.
Importantly, the method can include estimates of variability and uncertainty in the predictions
to verify that decisions are based on significant differences between compounds.

3.3. Supporting entry into humans

After a clinical candidate has been selected, the first-in-human (FIH) dose must be selected.
One method for selecting the FIH dose is to use a human PK model (developed based on
preclinical ADMET data) to determine the dose that will result in a systemic exposure
identified as therapeutic based on preclinical pharmacology data [45]. Determining the
exposure required for efficacy requires a good understanding of the PK/PD relationship and
what is driving the PD, be it Cmin, Cmax, AUC, or time above a threshold concentration.

New Insights into Toxicity and Drug Testing204



Regardless of what is driving the PD, a human PBPK model can be used to determine the dose
and regimen that can meet the efficacy requirement.

Luttringer et al. [41] examined the ability of PBPK modeling to predict human PK using
epiroprim as a test compound due to significant species differences in its PK properties. By
incorporating information on species differences in PK properties from in vitro studies (e.g.,
in protein binding, the blood-to-plasma ratio, and intrinsic clearance in hepatocytes), PBPK
modeling was able to reduce the uncertainty inherent in interspecies extrapolation and to
provide a better prediction of human PK than allometric scaling or by direct scaling of
hepatocyte data.

Recently, Jones et al. [5] reported a method for predicting human PK based on preclinical data
by separately predicting absorption, distribution and elimination from a physiological
perspective. Human PK of 19 compounds that had entered into humans was predicted using
Dedrick plot analysis (i.e., a type of allometric scaling of concentration-time profiles) and PBPK
modeling. The ability of PBPK modeling to predict PK in preclinical species was tested, and
the human PK was only predicted if the model could predict PK in preclinical species. Based
on this criterion, for 70% of the 19 compounds included in the study a human PK prediction
could be made. The prediction accuracy using PBPK was good for oral clearance, volume of
distribution, terminal elimination half-life, Cmax, AUC, and tmax. The human PK data were
more accurately predicted by the PBPK modeling approach than by the empirical approach.
The strategy proposed by Jones et al. [5] can guide the strategy for gathering the data necessary
for a complete understanding of likely human PK behavior.

Poor predictions with PBPK models are often a result of incomplete knowledge resulting in
processes not correctly incorporated into the model (e.g., for biliary clearance and enterohe‐
patic recirculation there are limited options for quantitatively predicting the effects on human
PK). For such situations, an alternative method of performing the human PK extrapolation
(e.g., allometric scaling) might seem attractive. However, allometric scaling is based on the
assumption that clearance is proportional to BW0.75 and that steady-state volume of distribution
is proportional to BW1 due to physiological properties (i.e., the same physiological properties
that are incorporated in PBPK models). If PBPK modeling does not appear to be a good method
for a compound, there is no reason to believe that allometric scaling or other empirical methods
will work either. Additionally, developing methods for including increasingly complex PK
mechanisms (e.g., first-pass metabolism and transporters in the gut, EH cycling, biliary
excretion, impact of transporters on tissue concentration and elimination, and multiple
pathways of elimination) is an active area of research, and methods for predicting human PK
even with PK complications is increasingly possible.

In cases where uncertainty is high, the PBPK model can be a valuable tool for determining
appropriate experiments and simulating “what-if” scenarios. Uncertainty can be illustrated
by presenting a range of results (e.g., AUC, Cmax, Cmin, or complete time-course concentra‐
tions) for a range of values of a key parameter that is not known with great certainty. If
uncertainty is too great, additional experiments can be designed to aid in narrowing the
possible values of key parameters. PBPK modeling can be used as a tool to understand the
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quantitative impact of uncertainty from key knowledge gaps, and also helps to minimize
uncertainty due to species differences in PK properties.

3.4. Clinical development

Population PK approaches and nonlinear mixed effect modeling are the techniques most used
for analysis of clinical data. The Bayesian population PK approach can also be applied with
PBPK models [46-47]. But this alternative has not been adopted by the pharmaceutical
industry. Although several useful clinical applications of PBPK models have been demon‐
strated in the literature including the following examples, there are many potentially valuable
applications that remain to be exploited [48].

PBPK simulations can be used to optimize clinical design. Chenel et al. [30] recently demon‐
strated selecting time points for an optimized sparse sampling design for a DDI clinical trial
using Monte Carlo simulations for the victim midazolam and the CYP3A4 inhibitor that was
the test compound. The PBPK models were parameterized using only in vitro data. The PBPK
predictions of PK for both compounds were good using the PBPK model, but for the test
compound variability was overestimated somewhat [32]. Regardless, data from the optimized
trial design resulted in similar CL/F estimates and the same conclusion as the full empirical
design upon analysis using a population PK approach.

Blesch et al. [32] demonstrated how PBPK modeling could fit into a clinical modeling strategy
for capecitabine, a triple prodrug of 5-fluorouracil. For capecitabine, the modeling strategy
included nonlinear mixed-effect modeling and PK/PD modeling for safety and efficacy to
analyze clinical data. Nevertheless, a simple PBPK model incorporating the GI tract, blood,
liver, tumor, and non-eliminating tissues compartments describing the PK of capecitabine and
three metabolites including 5-fluorouracil was still useful for drug development. This ap‐
proach allowed mechanistic knowledge gained preclinically to be leveraged. The PBPK model
provided a tool for understanding the relationship between the dose of the triple prodrug
capecitabine and the delivery of active compound to the tumor.

Because of the heterogeneity of the human population, it is expected that there will be a broad
range of responses to biological effects of drugs. This heterogeneity is produced by interindi‐
vidual variations in physiology, biochemistry, and molecular biology, reflecting both genetic
and environmental factors, and results in differences among individuals in PK and PD. Because
the parameters in a PBPK model have a direct biological correspondence, they provide a useful
framework for determining the impact of observed variations in physiological and biochemical
factors on the population variability in dosimetry. Willman et al. [49] demonstrated an
approach for generically incorporating interindividual differences in physiological parameters
using PK-Sim and showed that for two drugs, ciproflaxin and paclitaxel, the predicted
variability was close to that observed clinically. Predicting variability in PK from factors
including genetics (e.g., polymorphisms in enzymes that metabolize drugs), disease state (e.g.,
hepatic impairment or impaired renal function), and age from pediatric to elderly patients is
a useful application of PBPK [19].
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Recently there has been considerable work ongoing to predict PK of drugs in the pedia‐
tric population using PBPK modeling. For such simulations, the PBPK model must incor‐
porate  age-specific  differences  in  body  weight,  organ  weights,  blood  flows  to  tissue
compartments, compartment volumes, plasma protein binding, renal function, and hepat‐
ic P450 expression levels, among other factors [50-51]. A recent study demonstrated suc‐
cessfully predicting PK in children for acetaminophen, alfentanil, morphine, theophylline,
and levofloxacin, based on existing PBPK models for adults verified and/or calibrated us‐
ing adult  PK data [34].  This approach has utility in designing clinical  trials  for the first
time dosing in children [50]. PBPK modeling can also be applied to predict PK in infants
and neonates,  e.g.,  as was done for oseltamivir [52].  PBPK modeling has been proposed
as  a  useful  tool  benefitting  the  learn-and-confirm  paradigm  in  pediatric  trials  and  im‐
proving pediatric drug development programs [53].

The mechanistic basis of PBPK modeling also allows the modification of physiological
parameters to describe disease state. For example, the physiological changes with cirrhosis of
the liver include alterations in hepatic P450 expression and liver size, albumin and α-1 acid
glycoprotein, blood flows, and renal function [54]. These physiological differences can be
specifically incorporated in the PBPK model, allowing the prediction of PK in the population
of people suffering from cirrhosis of the liver. The ability to predict PK for lidocaine and
alfentanil for patients with differing degrees of cirrhosis was recently demonstrated by
Edginton and Willmann [33] with promising results.

3.5. Support for regulatory decision making

Recent publications and regulatory guidance documents indicate that PBPK modeling is
becoming increasingly useful from a regulatory perspective. The EMA has indicated that PBPK
modeling can be a useful tool for the clinical investigation of hepatic impairment on pharma‐
cokinetics [55]. Both the FDA and EMA in their drug-drug interaction (DDI) guidance
documents mention PBPK modeling as a useful tool, e.g., for supporting DDI understanding
and for designing DDI studies, and potentially for supporting labeling [56-57]. The FDA
experience with applications of PBPK modeling during regulatory review [58-59] and pediatric
drug trials [53] have been described. Clinical pharmacology reviewers at the FDA have done
PBPK modeling to address PK and/or DDI issues in cases where the sponsor did not [58].

Guidance on best practices for PBPK modeling in addressing regulatory questions has been
offered [60]. The successful application of PBPK modeling requires sufficient data and
understanding of key processes impacting PK. For example, for using PBPK modeling to
understand and simulate DDIs, information is needed on the mechanism of elimination and
the fraction of compound metabolized through various pathways (e.g., mediated by different
P450s). It has been recommended that a human, in vivo mass balance study be completed for
the greatest confidence in DDI simulations [58]. To use PBPK modeling to address a regulatory
issue, not only must sufficient data be available, but the effect of physiology on PK for a given
issue must be understood. Potential data gaps such as a lack of understanding of development-
related and disease-related effects on physiology and PK can limit application of PBPK in
certain situations.
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An early example of the application of PBPK in regulatory decision making is the case of a
safety assessment for retinoic acid [61]. In the early 1990s all-trans retinoic acid (ATRA) was
being considered for marketing approval by the Food and Drug Administration (FDA) for the
indication of photo-damaged skin (wrinkles). The director of the FDA Center for Drug
Evaluation and Research (CDER) requested the sponsor to evaluate, using PBPK simulation,
the potential fetal exposure to ATRA applied topically in women of reproductive age. Aware
that ATRA, like its isomer 13-cis retinoic acid, is highly teratogenic and that up to 10% of a
topically applied dosage is absorbed systemically, FDA sought reassurance that significant
fetal exposure and teratogenic effect potential would not result during clinical use. PBPK
simulation was considered the only rational and ethical method of risk assessment available.
The sponsor supported a PBPK analysis [4] that provided the necessary assurance to the FDA
during its review and subsequent approval. FDA encourages sponsors to adopt PBPK, when
appropriate and depending on the questions, during drug development with the aim to
facilitate and enhance the capability to make better predictions, improve understanding, and
provide improved regulatory decision making [61].

4. Future directions

4.1. Interindividual variability

As described in a previous section, investigators have begun using PBPK to understand
variability from several sources: (1) variations across a population of healthy adults from
physiological differences (e.g., body weight or sex) [62] or genetic polymorphisms [63]; (2)
variations across a population from age differences, e.g., infants or the elderly [64-65]; and (3)
variations from health status (e.g., from differences in protein or enzyme expression, tissue
blood flow, or tissue compartment volumes or function altered by disease state) [33]. To the
extent that the variation in physiological and biochemical parameters across these population
dimensions can be elucidated, PBPK models can be used together with Monte Carlo uncer‐
tainty analysis to integrate their effects on the in vivo kinetics of a compound and predict the
resulting impact on the distribution of PK across the population. The use of Monte Carlo
uncertainty analysis has been described for drugs [66-67], but the ability of this powerful
approach to evaluate the impact of interindividual variability on clinical trials outcomes is not
yet fully utilized in the pharmaceutical industry.

There has been a tendency in drug development to use information on the variability of a
specific parameter, such as the in vitro activity of a particular enzyme, as the basis for expect‐
ations regarding the variability in dosimetry for in vivo exposures. However, whether or not
the variation in a particular physiological or biochemical parameter will have a significant
impact on in vivo dosimetry is a complex function of interacting factors. In particular, the
structures of physiological and biochemical systems frequently involve parallel processes (e.g.,
blood flows, metabolic pathways, excretion processes), leading to compensation for the
variation in a single factor. Moreover, physiological constraints may limit the in vivo impact
of variability observed in vitro. For instance, high affinity intrinsic clearance can result in
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essentially complete metabolism of all the compound reaching the liver in the blood; under
these conditions, variability in amount metabolized in vivo would be more a function of
variability in liver blood flow than variability in metabolism in vitro. Thus it is often true that
the whole (the in vivo variability in dosimetry) is less than the sum of its parts (the variability
in each of the PK factors). Due to the complex interactions among factors impacting PK,
speculation regarding the extent of population variability on the basis of the observed variation
in a single factor can be highly misleading. This possibility has been illustrated in the case of
the impact of the CYP2C9 polymorphism on warfarin kinetics [63].

4.2. Modeling of pharmacodynamics

The growing popularity of the PBPK modeling approach represents a movement from simpler
kinetic models toward more biologically realistic descriptions of the determinants that regulate
disposition of drugs in the body. To a large extent, the application of these PBPK models to
study the time courses of compounds in the body is simply an integrated systems approach
to understanding the biological processes that regulate the delivery of drugs to target sites.
Many PBPK models integrate information across multiple levels of organization, especially
when describing interactions of compounds with molecular targets, such as reversible binding
of ligands to specific receptors, as in the case of methotrexate binding to dihydrofolate
reductase [13,68]. In such cases, the PBPK models integrate molecular, cellular, organ level,
and organism-level processes to account for the time courses of compounds, metabolites, and
bound complexes within organs and tissues in the body.

While the goal in applying a PBPK model is to predict plasma and tissue concentrations of a
drug, the overall goal of using PBPK modeling in efficacy and safety assessment with drugs
is broader. PBPK models once developed are extensible. The goal in the larger context is to
understand the relationship between dose administered, the dose reaching the active site, and
the resulting biological response. The specific steps that lead from these dose metrics to tissue,
organ and organism-level responses, have usually been considered part of the PD process. In
general, PD models used in drug evaluation have been more empirical, utilizing simple effect
compartments correlated with blood or tissue concentrations of active compound. Inexorably,
the systems approach will advance into the PBPK/PD and physiologically based pharmaco‐
dynamics (PBPD) arena, i.e., into a systems biology approach for describing perturbations of
biological systems by compounds and the exposure/dose conditions under which these
perturbations become sufficiently large to pose significant health risks or to achieve specific
therapeutic outcomes. In fact, PBPK/PD models of toxic effects have been demonstrated to be
useful for risk assessment purposes, as in the case of a PBPK/PD model linking chloroform
metabolism, reparable cell damage, cell death, and regenerative cellular proliferation [69].

The systems biology approach focuses on normal biological function and the perturbations
associated with exposure to compounds. Perturbations of biological processes by compounds
lead to either adverse responses (toxicity) or restoration of normal function to a compromised
tissue (efficacy). The effects of compounds, whether for good or ill, can best be described by
PBPK approaches linked through PBPD models of responses of cellular signaling networks.
Toxicity and efficacy are then defined by an intersection of compound action with the biolog‐
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ical system. Toxicology and pharmacology are disciplines at the interface of chemistry/
pharmacokinetics and biology/pharmacodynamics. Clearly, the main differences in the next
generation of systems approaches in PK and PD modeling will be the increasingly detailed
descriptions of biology afforded by new technologies and the expansion of modeling tools
available for describing the effects of compounds on biological signaling processes.

Of particular importance, in using a PBPK model the pharmacodynamic effects of a drug can
be investigated more directly, relating the effects to free concentration in the tissue (e.g., the
brain) where the compound interacts with the biological system, rather than attempting to
elucidate a potentially indirect relationship with plasma concentrations. By obtaining quanti‐
tative information on the dose-responses for both the efficacy and toxicity of the compound,
the PBPK model can be exercised to evaluate the potential to increase the efficacy/toxicity ratio
of the drug through manipulation of dose and route using novel drug delivery systems. These
and other attributes of PBPK models for organizing and interpreting diverse data sets, with
the specific goals of understanding efficacy and toxicity, are reviving interest in applying these
tools in drug development and evaluation [32].

The rapid development of computational chemistry [70], genomics [71], and high-throughput
screening [72] has brought increasing attention to the discovery phase of drug development,
including growing interest in “discovery toxicology” [73]. PBPK modeling can play a com‐
plementary role to two other technologies that are finding increasing use in drug discovery:
QSAR analysis and genomics. QSAR can be used to estimate compound-specific parameters
for the PBPK model, while genomic data can provide mode of action insights that drive model
structure decisions such as the selection of the appropriate dose metric and its linkage to
pharmacodynamic elements. The PBPK model provides a quantitative biological framework
for integrating the physicochemical characteristics of the drug candidate, together with in
vitro data on its ADME and toxicity, within the constraints of the fundamental physiological
and biochemical processes governing compound behavior in vivo. This approach is particularly
effective when used consistently during drug development, because the information gained
from modeling of previous candidate compounds can greatly facilitate model development
for new compounds with similar structures or properties.

5. Conclusions

PBPK modeling has been identified as a technology that can be used by the pharmaceutical
industry to accelerate the drug development process [17,62,74-75]. Conveniently, ADMET data
typically generated during preclinical development can be used to develop PBPK models.
PBPK models allow better use of these data by serving as a structured repository for quanti‐
tative information on the compound, a conceptual framework for hypothesis testing, and a
quantitative platform for prediction. The power of PBPK modeling for understanding
properties underlying PK and for allowing uncertainty and variability analysis make this tool
valuable to the pharmaceutical industry.
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