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1. Introduction

Rough seas are a major cause for ship losses and significantly contribute to the risk to maritime
transportation. It is therefore important to take severe sea state conditions into account, with
due treatment of the uncertainties involved, in ship design and operation. There is thus a need
for appropriate stochastic models describing the variability of sea states and these should also
consider long-term trends related to climate change. This chapter presents such a stochastic
model, aiming at describing the spatial and temporal variability, as well as long-term trends,
in the ocean wave climate.

The stochastic ocean wave model presented in this chapter exploits the flexible framework
of Bayesian hierarchical space-time models. It allows modelling of complex dependence
structures in space and time and incorporation of physical features and prior knowledge, yet
at the same time remains intuitive and easily interpreted. Furthermore, by taking a Bayesian
approach, the uncertainties of the model parameters are also taken into account. Different
alternatives for modelling the long-term trend are suggested, with and without a regression
component with CO2 as an explanatory variable. The models have been fitted by monthly
maximum significant wave height data for an area in the North Atlantic ocean. The different
components of the model will be outlined in this chapter, and the results will be discussed.
Furthermore, the influence of the estimated expected long-term trends on the environmental
loads of ocean-going ships will be investigated.

According to the Intergovernmental Panel of Climate Change (IPCC) [21–23], the globe is
experiencing climate change. The IPCC report [21] also presents projections of future climate
change, and it is deemed very likely that frequencies and intensities of some extreme weather
events will increase. However, a more recent summary report is more careful in its conclusions
[23].

Ships and other marine structures are constantly exposed to the wave and wind forces of its

environment, and extreme ocean climate represents a risk to marine operations. Bad weather
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2 Climate Change

is indeed often involved in accidents and ship losses, and this stresses the importance of taking

extreme sea state conditions adequately into account in ship design. This is important to

ensure that the ships can withstand the environmental forces they are expected to encounter

throughout their lifetime. Hence, a correct and thorough understanding of meteorological

and oceanographic conditions and the extreme values of relevant wave and wind parameters,

in particular wave parameters such as the significant wave height (Hs) is of paramount

importance to maritime safety, and there is a need for appropriate statistical models to

describe the variability of these phenomena. Long-term statistics can then be combined with

individual wave statistics in order to estimate the highest waves that should be used in design

of marine structures, as outlined in e.g. [1].

In particular, with the observed and projected climate change that the globe is currently

experiencing, it may no longer be sufficient to base design codes and safety standards on

current knowledge about the past and present ocean environment. The implicit assumption

that the future will be like the past may no longer be even approximately valid and there is a

need to consider how wave parameters are expected to change in the future, as a consequence

of climate change. Thus, there is a need for time-dependent statistical models that can take

the long-term time-dependency of integrated wave parameters properly into account.

In this chapter, a Bayesian hierarchical space-time model ([46], [47]) will be outlined that has

been developed to describe significant wave height as a stochastic spatio-temporal process

([37]). The model is hierarchical and allows for modelling of complex dependence structures

in space and time and includes prior information by way of informative priors. It is built up by

different components including a purely spatial field, a short-term, spatio-temporal dynamic

component, a temporal seasonal component, and finally, a separate term for modelling

long-term trends, possibly as a consequence of climate change. The model has been fitted

to significant wave height data for an area in the North Atlantic ocean, selected because North

Atlantic conditions are used as design basis for the majority of sailing ships. The selection of

the modelling approach was based on a thorough literature survey, presented in [35]. Bayesian

hierarchical space-time models are also treated in the book [13].

The model and its various components will be outlined in a subsequent section. Furthermore,

different variations and extensions to the main model will be introduced. Most importantly,

a logarithmic transform of the data yields a different interpretation of the model ([39]) and

the long-term trend component will be modelled as a regression block, where the trends

in significant wave height are regressed on levels of atmospheric CO2 ([38]). In this way,

long-term trends in the data are identified, and projections of future ocean wave climate can

be made based on different emission scenarios.

Finally, it is demonstrated how the estimated expected increase in severity of future ocean

wave climate is related to the structural loads and responses of ships at sea and how these

effects can be taken into account in load calculations ([36]). It was found that the models

predict a non-negligible effect on the extreme environmental loads. Hence, the findings

indicate that the effect of climate change on the ocean wave climate may need to be considered

in ship and marine structures design.
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An Illustration of the Effect of Climate Change on the Ocean Wave Climate - A Stochastic Model 3

2. Description of location

The scope of this study is restricted to consider an area in the North Atlantic ocean, i.e. the

ocean area between 51◦-63◦ north and 12◦-36◦ west (or 324◦-348◦ east). The spatial resolution

of the data is 1.5◦× 1.5◦, hence a grid of 9 x 17 = 153 datapoints covers the area. It is noted that

due to the curvature of the surface of the earth, the distance between gridpoints will not be

constant throughout the area. The distance in the north-south direction is fairly constant but

the distance in the longitudinal direction (east-west) differs significantly for different latitudes.

However, in the following analysis of spatial variability, this fact will be ignored. The area

under consideration is illustrated on a map in figure 1.

Figure 1. The area of the North Atlantic ocean under consideration

3. Description of data

Data for significant wave height have been used to fit the stochastic model, and data on levels

of CO2 concentrations in the atmosphere have been used as covariates. In the following, a

brief description of these sets of data will be given.

3.1. Wave data

The reanalysis project ERA-40 [34] was carried out by the European Centre for Medium-Range

Weather Forecasts (ECMWF) and covers the 45-year period from September 1957 to August

2002. Data obtained from this reanalysis include six-hourly sampled global fields of significant

wave height; global, continuous data are available on a 1.5◦ x 1.5◦ grid, making this perhaps

the most complete wave dataset available to date.

It has been reported that the ERA-40 dataset contains some limitations which indicate

problems in using these data for modelling long-term trends in extreme waves ([32]).

However, corrected datasets for the significant wave height have been produced, resulting

in a new 45-year global six-hourly dataset of significant wave height ([10]). When compared
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4 Climate Change

to buoy measurement and global altimeter data, this corrected dataset, referred to as the

C-ERA-40 data, shows clear improvements compared to the original data ([11]). It is this

corrected dataset, which was kindly provided by the Royal Netherlands Meteorological

Institute (KNMI)1 that has been used in this study. It includes fields of significant wave

height sampled every 6th hour with a spatial resolution of 1.5◦× 1.5◦ covering the period from

January 1958 to February 2002 (i.e. a total of 44 years and 2 months which corresponds to a

sequence of 64 520 points in time). However, for this particular study it is deemed sufficient to

use monthly maximum data at each location, totalling 530 monthly maxima in time for each

location.

In general, it is acknowledged that wave buoys are regarded as highly accurate instruments,

and it is stated in e.g. [7] that both the systematic and random error of significant wave

height measurements by buoys are negligible. However, when calibrating hindcast data

against observations, the data will still be subject to epistemic uncertainty due to the way

the calibration is carried out and high values of significant wave height will normally be more

affected by uncertainties, as discussed in [6]. For the purpose of this study it is emphasized

that all modelling and all results are conditional on the input data and data validation and

data uncertainty is considered out of scope.

3.2. CO2 data

Concentrations of atmospheric CO2 have been used as covariates for explaining possible

long-term trends in the significant wave height, and basically two sets of data have been

exploited; historic data for model fitting and projections of future concentration levels for

future predictions.

3.2.1. Historic CO2 data

The aim of introducing a regression component with CO2 levels as covariates is to identify

long-term trends, and it is deemed sufficient to use monthly data. Hence, monthly average

CO2 data from the Mauna Loa Observatory, Hawaii, have been used ([33]). The data are on

the format of the number of molecules of carbon dioxide divided by the number of molecules

of dry air multiplied by one million (parts per million = ppm), and data are available from

March 1958 to present. The data set contains the monthly averages determined from daily

averages, as well as interpolated monthly averages where missing data have been replaced by

interpolated values. Finally, monthly trend values are given where the seasonal cycle has been

removed and where linear interpolation has been used for missing months. For the purpose

of this study, the monthly trend time series will be used as covariates for the long term trend.

The seasonal cycle in the monthly maximum significant wave height is accounted for in a

separate seasonal component in the model.

The monthly interpolated and trend data are illustrated in the graphs in figure 2 and the

vertical lines represent the part of the time series that overlap the C-ERA-40 data for significant

wave height. It is noted that the CO2 data starts at March 1958 whereas the significant wave

1 Private communication with Dr. Andreas Sterl, KNMI
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An Illustration of the Effect of Climate Change on the Ocean Wave Climate - A Stochastic Model 5

height data starts at January 1958. Therefore, when utilizing the CO2 data, the model will be

run with data starting at January 1959.

Figure 2. CO2 data from the Mauna Loa Observatory, monthly interpolated data (black line) and trend
data with seasonal effects removed (red lines)

It is acknowledged that CO2 is just one greenhouse gas (GHG) and that it does not alone

determine the radiative forcing of the globe; other important GHGs are for example methane

(CH4) and nitrous oxide (N2O). Nevertheless, it is generally agreed that CO2 is the most

important GHG and for the purpose of this study, it is construed as a proxy for the

concentration of GHG in the atmosphere. More sophisticated models could include other

GHGs and aerosols as covariates as well. It is also noted that the data stem from observations

outside of the area in the North Atlantic which is the focus of this study. However, it is

assumed that CO2 is well mixed in the atmosphere, and that this does not introduce any

notable bias in the results pertaining to expected long-term trends.

3.2.2. Future projections of CO2 levels

Future projections of the atmospheric concentration of CO2 will be exploited to make

projections of future wave climate. Future predictions are inevitably uncertain, and different

projections of CO2 levels have been made based on different emission scenarios ([27]).

Projected emissions and concentrations presented by IPCC for the four marker scenarios A1B,

A2, B1 and B2 have been considered2. The scenarios A2 and B1 correspond to the highest and

lowest projected CO2 levels respectively, and it is therefore assumed sufficient to employ these

two in the modelling. Scenario A2 might be an extreme scenario, but from a precautionary

perspective it is important to concider since this could be construed as a worst case scenario.

The CO2 projections data can also be found in appendix II of [20].

2 The IPCC Data Distribution Centre, URL: http://www.ipcc-data.org/ddc_co2.html
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The projected levels of atmospheric CO2 concentrations are given for every ten year towards

2100. For the purpose of this study, monthly averages are needed, and simple linear

interpolation within each decade has been used to estimate monthly projections. The decadal

projections are then assumed as the value for January of that year. In this way, monthly

projections of CO2 levels in the atmosphere from year 2010 until 2100 is obtained for use

as covariates. For the years 2002 to 2010, where actual observations are available, recorded

monthly averages from the Mauna Loa Observatory will be used. The interpolated monthly

projections are plotted together with the original decadal projections in figure 3 (the vertical

bars in the plots correspond to the decadal reference projections from the ISAM model ([24])).

Figure 3. Interpolated monthly CO2 level projections for scenarios A2 and B1

The uncertainty of the data is not accounted for and any results are also conditional on the

data used for the covariates. Uncertainties are of course large for future predictions, but it is

assumed that the projections suggested by the IPCC correspond to the best current knowledge

available. The uncertainties of future projections of CO2 concentrations were discussed in

e.g. [25] and it was suggested to assign probabilities for the various scenarios. However,

such probabilities have not been assigned in this study. The historic data and the projections

corresponding to the four marker scenarios are illustrated together in figure 4.

4. Initial inspection of the wave data

The density of all the monthly maxima is shown in figure 5 and two distinct modes can

be identified, one around 5 meters and another at about 8 meters. It is believed that these

correspond to different characteristics during calm and rough seasons. For the whole dataset,

the mean monthly maximum is 7.5 meters, and the average monthly maxima for each month

are given in table 1. Density plots (not shown) for each month show that the months

January - March and October-December have peaks around 8-9 meters and that the months

May-August have peaks around 5 meters. The remaining months, April and September are
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Figure 4. Atmospheric CO2 levels: Historic data and future projections

more flat with most probability mass between 5 and 8 meters. At any rate, the two modes in

the density plot seem to be explained by the peaks at the different months.

Figure 5. The density of the monthly maximum data

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

9.87 9.63 8.91 7.18 5.89 5.03 4.42 5.04 6.96 8.21 8.69 9.79

Table 1. Average monthly maxima for each month

One may also check for normality or log-normality, but tests show that the data are neither

Gaussian nor log-normal. Furthermore, attempts to describe the spatial and temporal

variability by simple regression and autocorrelation models fail. Hence, it is apparent that the
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data cannot be well described by simple models and a somewhat more sophisticated model

must be constructed. Hierarchical models are known to model spatio-temporal processes with

complex dependence structures at different scales [45]. Therefore, a Bayesian hierarchical

space-time model, along the lines drawn out by e.g. [46] will be constructed to model the

significant waveheight data in space and time.

4.1. Logarithmic transformation of the data

Higher wave heights are normally associated with higher uncertainty (noise), and

heteroscedastic features are observed in the significant wave height data. One way to account

for such heteroscedasticity could be to take the log-transform of the data. Furthermore,

taking the log-transform of the data yields a fundamentally different interpretation of the

contributions from the various model components, which become multiplicative rather than

additive. Hence, a revised model would associate higher trends with extreme sea states

compared to non-extremes. It is noted that for inference made on log-transformed data, biases

may be introduced when re-transforming back to the original scale. Bias correction factors and

how to deal with the re-transformation bias are discussed in [39].

5. The stochastic model

The spatio-temporal data will be indexed by two indices; an index x to denote spatial location

with x = 1, 2, . . . , X = 153 and an index t to denote a point in time with t = 1, 2, . . . , T = 530

for monthly maximum data. The structure of the basic model, as well as a revised model for

log-transformed data and an extended model with a regression block, will be outlined below.

5.1. Basic model

The basic model is similar to the model presented in [37], inspired by [28], and contains

an observation model and several state models, as outlined below. All the stochastic terms

introduced in the model are assumed mutually independent and independent in space and

time, having a zero-mean Gaussian distribution with some random, but identical variance,

i.e., with generic notation, εβ(x, t)
i.i.d
∼ N(0, σ2

β). It should be understood that the model is

defined ∀ x ≥ 1, t ≥ 1, as relevant for each component.

At the first level, the observations (monthly maximum significant wave height), Z at location

x and time t, are modelled in the observation model as the latent variable, H, corresponding

to the underlying significant wave height process, and some random noise, εz, which may be

construed as statistical measurement error:

Z(x, t) = H(x, t) + εz(x, t) (1)

The underlying process for the significant waveheight at location x and time t is modelled by

the following state model, which is assumed split into a time-independent component, µ(x),
a time- and space-dependent component θ(x, t) and spatially independent seasonal, M(t),
and long-term trend, T(t), components as shown in eq. 2. The long-term temporal trend is
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assumed spatially invariant and is, in fact, the component of most interest as it models the

effect of climate change on the ocean wave climate.

H(x, t) = µ(x) + θ(x, t) + M(t) + T(t) (2)

The time-independent part is modelled as a first-order Markov Random Field (MRF),

conditional on its nearest neighbours in all cardinal directions, and with different dependence

parameters in lateral and longitudinal direction, as shown in eq. 3, with xD = the location

of the nearest gridpoint in direction D from x, where D ∈ {N, S, W, E} and N = North, S =

South, W = West and E = East. If x is at the border of the area, the value at the corresponding

neighboring gridpoint outside the data area is taken to be zero.

µ(x) = µ0(x) + aφ

{

µ(xN)− µ0(xN) + µ(xS)− µ0(xS)
}

+ aλ

{

µ(xE)− µ0(xE) + µ(xW)− µ0(xW)
}

+ εµ(x) (3)

aφ and aλ are spatial dependence parameters in lateral (i.e. north-south) and longitudinal (i.e.

east-west) direction respectively. The spatially specific mean, µ0(x), is modelled as having

a quadratic form with an interaction term in latitude and longitude. Letting m(x) and n(x)
denote the longitude and latitude of location x respectively, it is assumed that

µ0(x) = µ0,1 + µ0,2m(x) + µ0,3n(x) + µ0,4m(x)2 + µ0,5n(x)2 + µ0,6m(x)n(x) (4)

The spatio-temporal dynamic term θ(x, t) is modelled as a vector autoregressive model of

order one, conditionally specified on its nearest neighbours in all cardinal directions, as shown

in eq. 5.

θ(x, t) = b0θ(x, t − 1) + bNθ(xN , t − 1) + bEθ(xE, t − 1)

+ bSθ(xS, t − 1) + bW θ(xW , t − 1) + εθ(x, t) (5)

b0 as well as the parameters corresponding to the nearest neighbours, bN , bE, bS, bW are

assumed invariant in space and are assumed to have interpretations connected to the

underlying sea state dynamics.

The temporal component is modelled with a seasonal and a long-term trend part. The seasonal

part is modelled as an annual cyclic contribution independent of space, see eq. 6. It has also

been tried to include the second harmonic to account for semi-annual seasonal contributions,

but these were found to be small compared to the annual contribution, as explained in [39].

M(t) = c cos (ωt) + d sin (ωt) + εm(t) (6)

The long-term trend of the basic model is modelled as a simple Gaussian process with a

quadratic trend, as shown in eq. 7. In [37], various model alternatives were suggested for

this component, i.e. with linear and quadratic trends, but in this chapter, only the results

pertaining to the linear models will be considered (model alternative 2 in [37]).

T(t) = γt + ηt2 + εT(t) (7)
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5.2. Revised model for log-transformed data

With the log-transformed data, denoting Z(x, t) the significant wave height at location x and

time t, the log-transforms are first carried out for each location and time-point ([39]),

Y(x, t) = ln Z(x, t) (8)

Then, at the observation level, the log-transformed data, Y, are modelled as the latent (or

hidden) variables, H, corresponding to some underlying significant wave height process, and

some random noise, εY :

Y(x, t) = H(x, t) + εY(x, t) (9)

An equivalent representation of the observation model would be

Z(x, t) = eH(x,t)eεY(x,t) , (10)

where now the noise term has become a multiplicative factor rather than an additive term and,

conditioned on H(x, t), the significant wave height Z(x, t) will be log-normally distributed.

The underlying process for the significant wave height at location x and time t is modelled

by the state model which is identical to the state model for the basic model in the preceding

section, but it corresponds to the alternative representation in eq. 11 on the original scale;

the significant wave height can be written as the product of five multiplicative factors and

therefore, the contribution from each of the model components will have a fundamentally

different interpretation compared to the model for the original data.

Z(x, t) = eµ(x)eθ(x,t)eM(t)eT(t)eεY(x,t) (11)

In particular, the long-term trend will be modelled as a multiplicative factor, meaning that a

higher trend will be ascribed to more severe sea states, i.e. extremes will be modelled with a

higher trend than non-extremes. This feature was also reported by e.g. [49].

The same model alternatives as for the basic model have been tried out, but in this chapter,

again only the results pertaining to the linear model will be reported.

5.3. Extended model with a regression component

Having established the basic model and found it to perform well for the significant wave

height data, a model extention is introduced, where the long-term trend component T(t) in

eq. 7 is replaced by the regression component in eq. 12 ([38]).

T(t) = γG(t) + η ln G(t) + δG(t)2 + εT(t) (12)

With this model, the long-term trend in monthly maximum significant wave height is

regressed on CO2 concentrations in the atmosphere, assuming first a combination of a linear,

square and logarithmic trend with respect to the level of CO2. G(t) denotes the average

level of CO2 in the atmosphere at time t. It is noted that CO2 is known to mix well in the

atmosphere, so there are no spatial description of this regression term. Different alternatives
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for the stochastic relationship were tried out in [38], but in this chapter only results pertaining

to the model alternative performing best will be presented, i.e. the model with a combination

of a linear and logarithmic relationship (setting δ = 0).

5.4. Critical assumptions and prior distributions

The models presented in this chapter are stochastic models and as such they are simplified

representations of the real world. All models imply simplifications and rely on a set of critical

assumptions. The validity of those assumptions determines how well the model describes

reality, and it is important to be aware of the most crucial model assumptions.

All the models presented in this chapter consist of different components in space and time,

and an implicit assumption is that this separation of the significant wave height process into

different contributions is reasonable. For example, this means that all long-term trends can

be described by the separate long-term component. Also, the assumption of independent

Gaussian noise associated with the various components is essential to the statistical model,

but this assumption can be checked by way of normal probability plots of the residuals.

The extended model uses a regression component towards CO2 to describe long-term

variation in the ocean wave climate. Hence, a very critical model assumption is the stochastic

dependence between levels of CO2 in the atmosphere and the ocean wave climate. It is

assumed that there is such a stochastic dependence and this might be a realistic assumption,

as increased levels of CO2 in the atmosphere are associated with higher temperatures, more

energy in the weather systems and consequently rougher wave climate. However, it is further

assumed that this stochastic dependence structure will remain essentially unchanged over

time, from the past into the future. This is of course a critical assumption inherent in the

model and any results are conditional on this assumption being realistic.

Furthermore, it is assumed that the CO2 projections are reliable and results are conditional

on the CO2 data that has been utilized. In particular, no particular attention has been drawn

towards possible climate tipping points or other effects that may skew the correlation between

CO2 levels in the atmosphere and ocean waves, and this introduces considerable uncertainty

that has not been accounted for. Notwithstanding, the models presented herein are still

believed to be interesting to investigate and they explore future ocean wave climate based

on the best available knowledge of the future levels of CO2 as a result of various emission

scenarios.

Only CO2 levels in the atmosphere have been considered, as a proxy of the level of greenhouse

gases. It is normally considered that this is the dominant greenhouse gas, but omitting all

other contributions is obviously a simplification. Furthermore, aerosols and other mitigating

factors have not been considered as well as variability in solar radiation and external forcing.

It is noted that the model presented herein is a purely stochastic model, concerned with the

stochastic dependencies in space and time, and the physics and regional characteristics of the

wave climate are not modelled explicitly. However, it is argued that the physics underlying

the wave generation process and all regional features are inevitably implicit in the data, and

when applying the model on a particular data set any such physics and regional features
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would unavoidably be incorporated by way of the data. It is noted that the models can easily

be updated to account for any known biases in the data.

Informative priors have been used in a Bayesian setting, where prior knowledge has been

taken into account. Conditionally conjugate priors were adopted for each model parameter.

For further details and exact values of the hyperparameters used for the priors, reference

is made to [37–39]. However, it is argued that the results are not overly sensitive to the

chosen prior distributions. It is well known in Bayesian analysis that the priors become

asymptotically irrelevant as the amount of data increases, and the amount of data is quite

large in this case.

5.5. Model comparison and prediction losses

Loss functions based on predictive power were constructed in order to compare model

alternatives. Only one-step predictions are considered; the models are fitted with all data

except for the last timepoint and predictions of the spatial field at this timepoint are compared

to the data. The standard loss function in eq. 13 is defined where, for the timepoint selected

for prediction, Z(x) denotes the data at location x and Z(x)∗j denotes the predicted value of Z

at location x in iteration j of the MCMC simulations.

Ls =

⎡

⎣

1

Xn

X

∑
x=1

n

∑
j=1

(

Z(x)− Z(x)∗j

)2

⎤

⎦

1
2

(13)

One alternative loss function where the squared prediction errors have been weighted

according to the actual observed significant wave height is also employed. A weight of size

Z(x) is included in order to give greater emphasis on prediction errors at locations where

large significant wave heights are observed. Hence, an alternative loss function as given in eq.

14 is calculated.

La =

⎡

⎣

1

n ∑x Z(x)

X

∑
x=1

n

∑
j=1

Z(x)
(

Z(x)− Z(x)∗j

)2

⎤

⎦

1
2

(14)

The predictions Z(x)∗j are taken as the estimated value of Z given the samples for all model

parameters and variables in iteration j. The model specification gives

Z(x)∗j = µ(x)j + θ(x, t)j + M(t)j + T(t)j + εz(t)j (15)

for the basic and extended models and

Z(x)∗j = eµ(x)j+θ(x,t)j+M(t)j+T(t)j+εY(x,t)j (16)

for the revised model for log-transformed data. The subscripts j denote the sampled

parameters in iteration j. When using log-transformed data, the predictions are retransformed

back to the original scale before the loss functions are calculated, i.e. the losses are on the same

scale and should in principle be comparable although it is acknowledged that the comparison

might not be completely fair for predictions made on a transformed scale.
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6. Simulation results: trends and future projections

Posterior estimates of the parameters of the various models presented above have been

obtained by Markov chain Monte Carlo methods, using the Gibbs sampler with additional

Metropolis-Hastings steps (see e.g. [30]). Normal probability plots of the residuals indicate

that the Gaussian model assumption is reasonable, and different informal tests suggest that

the samples are from the stationary distribution, i.e. that the Markov chains have converged

satisfactorily. Detailed results pertaining to all model components and posterior parameter

estimates (mean and standard deviation), as well as descriptions of the MCMC settings, are

presented in [37–40]. In this chapter, however, the main focus is on results pertaining to the

long-term trends and expected future projections as a result of climate change.

6.1. Basic model

The basic model is found to perform reasonably well on the monthly maximum significant

wave height data, with posterior estimates of the mean spatial field, µ(x), ranging from

6.1 to 7.3 meters over the area. The variability was greater in the north-south direction

than in the east-west direction, which is reasonable. The expected contributions from the

space-time dynamic part, θ(x, t) were between -1.1 and 1.8 meters and the expected seasonal

contributions correspond to an annual cyclic variation of about ± 2.5 meters.

The component of most interest in this chapter, however, is the contribution from the

long-term trend component T(t), which is included to model any long-term effects, possibly

related to global climate change. According to the linear model, an expected increase in

monthly maximum significant wave height of 69 cm is estimated over the data-period. The

90% credible interval ranges from 45 - 94 cm, i.e. the complete interval is positive. These

posterior trend contributions are illustrated in figure 6. The black line corresponds to the

mean sampled T(t), whereas the red lines correspond to the expected contribution γt as well

as the 90% credible interval of the mean. The green line corresponds to no trend and it is

clearly seen that the model detects a significant increasing trend in the wave climate.

In order to estimate future changes of the wave climate, possibly due to climate change,

the estimated linear trend is extrapolated towards the year 2100. Hence, assuming that the

identified long-term trend persists over 100 years, this would correspond to an expected

increase in monthly maximum significant wave height of 1.6 meters over 100 years, with a

95% credibility of an increase of at least 1.0 meter.

6.2. Revised model - log-transformed data

Also the revised model, applied on the log-transformed data, seems to perform rather well

on the monthly maximum data. The normal probability plots of the residuals suggest that the

model revision is an improvement compared to the basic model, but the estimated losses are

somewhat greater.

The expected contributions from the µ(x)-field are between 1.76 and 1.95, but the

interpretation is different. eµ(x) is now a multiplicative factor for the monthly maximum

significant wave height at location x, varying between 5.8 and 7.0 over the area. The mean
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Figure 6. Estimated temporal trends of the North Atlantic wave climate; basic model

contributions from the space-time dynamic part, θ(x, t) corresponds to factors between 0.70

and 1.4 for different times and locations. Hence, this component contributes from -30% to

+40%. The seasonal component corresponds to a factor 0.68 for calm seasons and 1.5 in rough

seasons.

The mean estimated long-term trend from the linear model corresponds to a factor about 1.07

over the data-period. The 90% credible interval ranges from 1.03 to 1.12. For typical monthly

maximum significant wave heights of, say, 5 and 8 meters respectively, this corresponds

to expected increases of about 36 and 57 cm. However, for more extreme sea states, say

significant wave heights of 10 or 15 meters respectively, corresponding expected increases

would be 70 cm and more than 1 meter respectively. Overall, these trends are somewhat

smaller than the trends estimated from the non-transformed data, but the trends pertaining

to extreme conditions are greater. A QMLE-estimate for bias correction ([18]) due to

retransformation has been adopted and is incorporated into the estimates above, see [39].

The estimated expected long-term trends with 90% credible interval are shown in figure 7 on

the original, i.e. re-transformed scale.

Also the estimated trends obtained from the log-transformed data were extrapolated in order

to obtain an estimate of future trends in the wave climate. Over 100 years, the expected

future increase in monthly maximum wave height corresponds to a factor of 1.15, with a

95% credibility of a trend factor larger than 1.04. Assuming such trends to persist and valid

for average monthly maximum sea states of 5 and 8 meters in calm and rough seasons, the

expected increase is about 75 cm and 1.2 meters respectively. However, for more extreme sea

states, with significant wave height of, say, 10 and 15 meters, expected increases would be 1.5

and 2.3 meters respectively towards the year 2100.
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Figure 7. Estimated temporal trends of the North Atlantic wave climate; log-transformed model

6.3. Extended model with regression component

With the extended model, the stochastic relationship between significant wave height and

atmospheric levels of CO2 is exploited together with future projections of CO2 trends in order

to obtain estimates of future trends in the wave climate. Expectantly, the estimated trends

should be similar to the trends estimated with the basic model, but future projections can be

obtained from various CO2 projections and may differ from the extrapolated linear trends.

It is noted that for the extended model, the long-term trend contribution does not necessarily

start at 0 for t=0, but in the results presented herein, necessary adjustments have been made

so that the long-term trend effectively starts at 0. For extracting the expected trends over the

period 1958-2001, the long-term trend is adjusted to be 0 in 1958 and for the future projections

towards 2100, the trend contribution is adjusted to start at 0 in 2001. This does not affect

the relative trend between two points in time, but is accompanied by a similar but opposite

adjustment of the mean spatial field.

The contributions from the adjusted time-independent field, µ(x), varies between 6.3 and 7.5

meters over the area, and this is in reasonable agreement to the estimates obtained from the

basic model. The short-term dynamic contribution from θ(x, t) varies from -1.1 to 1.9 meters

and the mean seasonal contributions lie between ± 2.66 meters, which also agrees well with

the estimates obtained from the basic model.

The contribution from the long-term trend, possibly due to climate change, is shown in figure

8, corresponding to an expected increase of 59 cm over the period. This is somewhat lower

than the estimated trend from the basic model, but still agrees fairly well. The 90% credible

interval ranges from 16 to 92 cm increases in monthly maximum significant wave height.
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Figure 8. Estimated temporal trends of the North Atlantic wave climate; model with CO2 regression

One of the main motivations for including the CO2 regression component into the model

was to facilitate future projections. Hence, projections of future significant wave heights

are made from two future scenarios for CO2 levels, referred to as the A2 and B1 scenario

respectively. The corresponding projected trends of significant wave height are illustrated in

figure 9, and it can be seen that scenario A2 yields future projections corresponding to an

increase of 5.4 meters and the B1 scenario corresponds to an increase of 1.9 meters towards

2100 compared to the year 2001. The large difference between the two projections is due to the

different CO2 levels projected by the two scenarios. However, both the projected trends are

considerably larger than the one obtained from extrapolating the linear trend obtained from

the basic model.

The expected future projections including 90% credible intervals are illustrated in figure 10.

The credible intervals are calculated from the credible intervals of the distribution of (γ, η)
and do not include the uncertainty due to εT. For scenario A2, the 90% credible interval at

year 2100 corresponds to increases in monthly maximum significant wave height over the 21

century ranging from 2.7 meters to 8.1 meters. For scenario B1, the corresponding credible

interval covers a range between 1.2 to 2.6 meters increase from 2001 to 2100.

6.4. Model comparison

A crude comparison of the different model alternatives can be carried out by comparing the

resulting posterior estimates of the model parameters (see [38–40]). By doing so, it is observed

that the spatial features of the model seem to be barely affected by the model alterations. Since

the model extensions were only related to the temporal trend, this is reassuring. The seasonal

part of the model also seems to behave similarly over the model alternatives. Hence, the main
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Figure 9. Estimated future trends in the North Atlantic wave climate for two emission scenarios

Figure 10. Estimated future trends in the North Atlantic wave climate with credible intervals

differences are, as would be expected, related to the long term temporal trend and the future

projections.

The models may also be compared by way of the loss functions for short-term prediction. The

estimated losses corresponding to the two loss functions for each of the model alternatives

discussed herein are presented in table 2.

It is observed that both the models fitted to the original data are associated with lower losses

compared to the model for log-transformed data. However, it is noted that comparison might

not be fair for predictions made on log-transformed data so it does not necessarily mean that

the revised model performs worst. Furthermore, the extended model with a CO2 regression
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Model alternative Ls Lw

Basic model 2.576 2.691
Revised model (log-transform) 3.346 3.412
Extended model (CO2 regression) 2.562 2.674

Table 2. Model comparison: Standard and weighted loss functions

component yields the lowest losses, which indicates that this is an improvement compared to

the basic model. The differences are small, however, and the estimated losses cannot be used

to reliably distinguish between the models, which all seem to describe the data reasonably

well.

7. Potential impact of climate change on ship structural loads

If indeed the future wave climate will become rougher, as predicted by the models presented

herein, this might have an impact on the safety of maritime transportation, since ships are

then likely to experience greater environmental loads. Extreme environmental loads represent

a serious hazard to ship operations and any increasing trends might thus lead to higher risk,

if not properly accounted for in design and operational procedures.

Having identified a trend in the significant wave height data, it would therefore be of

great interest to consider how such results could be related to the calculation of future

environmental loads and responses on ships and other floating structures. Trends in the ocean

wave climate will obviously also be important for offshore and coastal structures, and the

results can generally be applied also to offshore and coastal structures design. However, if

applied to fixed installations, location specific data should be used; North Atlantic data are

used only for ship design. For the purpose of this study, the trends towards 2100 estimated

from the basic model and the extended model with a CO2 regression component and scenario

B1 will be assumed. It will be investigated how to relate such trends to the calculations of ship

structural loads and responses. It is emphasized that potential influence of such trends on

structural design, as was discussed in [8] is not considered explicitly herein. Results pertaining

to any other projection period, such as 30 or 40 years ahead in time, could also easily have been

used.

The trends estimated above correspond to an addition, 100 years ahead in time, with mean

1.6 meters and standard deviation 0.39 meters from the basic model and mean 1.9 meters and

standard deviation 0.65 meters from the extended model adopting the B1 scenario. The mean

and standard deviation of the climatic trend contribution will be denoted by µct and σct when

stemming from the basic model and µB1 and σB1 when estimated by the extended model with

scenario B1, respectively, i.e. an additive trend, T ∼ (µ·, σ2
· ) will be assumed.

µct = 1.6m σct = 0.39m

µB1 = 1.9m σB1 = 0.65m
(17)

It is noted that the climate trend is estimated from monthly maxima although it is applied to

the whole body of the Hs distribution (the marginal distribution of significant wave height).

Thus the revised Hs distribution is more representative for high values of Hs. When the impact
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of the trend is explored, extreme loads are considered and this makes these assumptions less

troublesome; this simplification is considered acceptable for extremes but neither for fatigue

calculations nor specification of operational criteria when lower sea states are of importance.

7.1. Conditional modelling of joint metocean parameters

The marginal distribution of significant wave height is normally not sufficient for load

and response calculations of marine structures; the joint distribution of several metocean

parameters is required. As a minimum, the joint distribution of significant wave height and

wave period is needed.

The above trends were extracted from the corrected ERA-40 data (C-ERA-40) over an area

in the North Atlantic. Due to lack of information about wave period in the C-ERA-40 data,

the joint distribution of significant wave height and wave period used for load calculations

are based on the ERA interim data set3 for a particular location. However, that location is

contained within the area considered by the C-ERA-40 data and is assumed representative

for the whole area. Furthermore, main features of the C-ERA-40 and ERAInterim data sets

are similar, and it is assumed that any bias would be similar in the two data sets. The

long-term trends obtained in the present study are therefore incorporated in the established

joint distribution of significant wave height and wave period based on the ERAinterim data.

It has previously been proposed to model the marginal distribution of significant wave height,

Hs, according to a 3-parameter Weibull distribution and the conditional distribution of the

wave period, T, conditional on the significant wave height, as a log-normal distribution

([4, 26]). Hence, the joint distribution of significant wave height and wave period will

be the product of a Weibull and a log-normal distribution given Hs (eq. 18) according

to the Conditional Modelling Approach (for several met-ocean parameters see [2, 3]). The

3-parameter Weibull distribution was first applied to describe significant wave height by [29].

fHs ,T(h, t) = fHs
(h) fT|Hs

(t|h) (18)

It is assumed that the trend in the significant wave height corresponds to a modified

marginal distribution for the significant wave height, but that the distribution of wave period,

conditional on the significant wave height, remains unchanged. It is noted that even though

the conditional distribution is assumed unchanged, the marginal distribution of the wave

period will obviously change, so this assumption seems reasonable.

The 3-parameter Weibull distribution is parametrized by the parameters γ (location), α (scale)

and β (shape), as shown in eq. 19.

f (x) =
β

α

(

x − γ

α

)β−1

e−(
x−γ

α )
β

x ≥ γ (19)

It is assumed that the distribution of the significant wave height after the trend has been added

can be approximated by a 3-parameter Weibull distribution with the same shape parameter,

i.e. that the trend can be modelled as a modification of the location and scale parameters of

3 Website: http://www.ecmwf.int/research/era/do/get/era-interim
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the 3-parameter Weibull distribution. A simulation study confirms that this is a reasonable

approximation. With these assumptions, the modified parameters due to the long-term trend

can be calculated so that the modified Weibull distribution has the correct expectation and

variance, resulting in the modified parameters in eqs. 20-21.

γ → γ′ = γ + µct + Γ

(

1

β
+ 1

)

⎡

⎢

⎢
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α −

√

√

√

√

√

α2 +
σ2

ct

Γ
(

2
β + 1

)

− Γ
(

1
β + 1

)2

⎤





⎦

(20)

α → α′ =

√

√

√

√

√

α2 +
σ2

ct

Γ
(

2
β + 1

)

− Γ
(

1
β + 1

)2
(21)

The 3-parameter Weibull distribution was fitted to significant wave height data for one

location from the ERA-40Interim data and the estimated parameters together with the modified

parameters as a result of adding the projected long-term trends (over 100 years) are given in

table 3. The corresponding mean and standard deviation of the distributions are also given.

α β γ E[Hs] sd[Hs]

Fitted distribution 2.776 1.471 0.8888 3.401 1.737
Modified parameters (Basic model trend) 2.846 1.471 2.393 4.969 1.781
Modified parameters (Extended model / B1) 2.965 1.471 2.613 5.296 1.855

Table 3. Fitted and modified parameters for the 3-parameter Weibull distribution for significant wave
height

It is observed that the mean of the modified distribution is changed quite drastically, whereas

there is only a slight increase in the standard deviation as a result of adding the climatic trend

with uncertainties.

The conditional distribution of wave period is modelled as a log-normal distribution where

the parameters are modelled as functions of significant wave height, as shown in eqs. 22-23.

By assumption, this conditional distribution is not expected to change due to climatic trends,

and the parameters ai and bi for i = 1, 2, 3 are estimated from the data. The resulting joint

densities of the original and the modified distributions for significant wave height, Hs, and

zero-up-crossing period, Tz, are illustrated by the contour plots in figure 11 (on the same scale).

It is noted that Tz is one of several ways of describing the wave period, T.

µt = E[ln Tz|Hs = hs] = a1 + a2ha3
s (22)

σt = sd[ln Tz|Hs = hs] = b1 + b2eb3hs (23)

7.2. Case study: Impact of long-term trends on the load assessment of an oil

tanker

As an illustrative example, load characteristics will be calculated for an oil tanker of 250 m

length and 40 m width with the same characteristics as the one reported in [5].
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Figure 11. Contour plots of the joint distribution of significant wave height and zero-up-crossing period;
Fitted distributions (top left) and modified distributions with trends estimated from the basic model (top
right) and the extended model with the B1 scenario (bottom)

When specifying design criteria as well as carrying out load and response assessment for

marine structures a full long-term load and response analysis can be applied, or alternatively,

the environmental contour concept outlined in [48] can be used (IFORM). The latter is a valid,

simplified and rational method of estimating extreme conditions and is recommended by

DNV ([16]). The idea is to define contours in the environmental parameter space (usually

Hs, Tz) within which extreme responses with a given return period should lie. It requires

determination of the joint environmental model of sea state variables of interest. It should be

noticed that the contours are found by relating sea state variables to the standard normal

variables, an assumption that may affect their accuracy. Furthermore, adding the trend

introduces a dependency between the sea states at subsequent times, but the effect this might

have on the return values have been ignored in this study. Presumably, since the variability

of the estimated trend is small in comparison to the variability of sea states, this effect is not

very great.

Figure 12 shows the environmental contour lines of Hs and Tz for the North Atlantic location

considered in the present study. The 1, 10, and 25-year return period levels calculated by

IFORM are shown for the fit to the original ERAInterim data and for the corrected fits where the

long-term trends are included. The 3-parameter Weibull distributions for Hs given in table 3
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and the conditional log-normal distribution for Tz have been used in the analysis. As expected,

the modification of the distribution for significant wave height moves the environmental

contours upwards and to the right. Furthermore, the long-term trend correction has narrowed

the contours and increased the maximum 1, 10 and 25-year return Hs and related Tz.

Figure 12. Environmental contour lines for the ERAInterim data derived from the original data (top left)
and modified with the climatic trend over 100 years from the basic model (top right) and from the
extended model with the B1 scenario (bottom)

The 25-year stress amplitudes for the considered oil tanker have been calculated in the 25-year

sea states (Hs, Tz) given by the environmental contour lines. A 3-hour sea state duration and a

Rayleigh distributed stress process in a short-term sea state (see [5]) have been assumed in the

calculations. Table 4 includes the results of the analysis for the original joint (Hs, Tz) fit and

the modified ones, taking the estimated 100-year long-term trends into account. The response

characteristics obtained using the original (Hs, Tz) fit to the ERAInterim data are referred to

herein as a Base Case and only relative increases in comparison to the Base Case are given in

table 4.

Stress amplitude (MPa) Response period (s)

Base case 1.0 1.0
Modified fit - Basic model 1.07 1.02
Modified fit - Extended model / B1 1.10 1.02

Table 4. 25-year extreme load characteristics

As seen in table 4 incorporation of the long-term trend in the Hs distribution has increased

the 25-year stress amplitude significantly and also the zero-crossing response period has been

increased. The 25-year stress amplitude has increased by 7% or 10% while the zero-crossing

response period has increased by 2% due to the estimated long-term trend over 100 years. It
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is noted that similar calculations have not been done for the A2 scenario, but the effect would

presumably be even larger for such a worst-case trend. Furthermore, the potential effect of

the modified environmental contours on the structural loads is highly ship-dependent and

even though the loads were found to increase significantly for this particular ship, it does not

necessarily generalize to all types and sizes of ships.

8. Discussion

The models presented in this chapter aim at modelling the effect of climate change on the

North Atlantic wave climate, and all model variations agree that the ocean wave climate has

become rougher and is likely to become even rougher towards the next century. In [41], the

models have been fitted to data for 11 other ocean areas around the globe with increasing

trends predicted also for 9 of these.

Different emission scenarios have been assumed in the extended model to obtain different

future projections of the wave climate, and it has been seen that adopting an extreme

emission scenario, such as the A2 scenario, corresponds to predicting extreme future trends

in significant wave height. With a more moderate emission scenario, such as B1, the resulting

future projections are still larger than the extrapolation of observed recent trends, as predicted

by the basic model. As for any future climate predictions, uncertainties are large and it

is difficult to determine which predictions are best. According to the two loss functions

utilized in this study (eqs. 13-14), the extended model seems to represent an improvement

in describing the data at hand but this does not necessarily mean that the projections from

this model are more reliable than the others; significant uncertainties are also related to the

CO2 scenarios proposed by IPCC. However, the extended model may adopt different CO2

scenarios and investigate their effects on the trends in the future ocean wave climate.

An implicit assumption inherent in the extended model is that there is stochastic dependence

between atmospheric CO2 levels and the ocean wave climate, and also that this relationship

will remain essentially the same in the future. It is assumed that an increase of greenhouse

gases in the atmosphere will increase the temperature and put more energy into the weather

systems, leading to more powerful storms and wind fields. This might again change the

ocean wave climate, since it is well known that ocean waves are generated by wind and air

pressure gradients. This is obviously a simplification, and it is possible to refine the model

with different layers of dynamics and relationships, e.g. including projections of wind or

pressure fields as explanatory variables in the model. Notwithstanding, it is argued that the

physics underlying the wave generation process is inevitably implicit in the data, and when

applying the models to a particular data set any such physical effects would unavoidably be

incorporated by way of the data. On the other hand, the stochastic models are affected by data

uncertainties and possible biases.

Comparing the projections obtained with the different Bayesian hierarchical space-time

models with previous studies, it is seen that apart from the predictions pertaining to the

A2 scenario, the projections are comparable to those made for the North Atlantic in e.g.

[12, 14, 15, 19, 42–44]. The uncertainties are large, the estimated 90% credible intervals

correspond to about ± 50% of the expected projections, and the intervals generally overlap. It

should also be kept in mind that the trends predicted herein pertain to the monthly maxima
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and the maxima might experience a greater change than moderate sea states, as also suggested

in e.g. [49]. The A2 scenario can be construed as a worst case scenario and is important to

consider from a precautionary perspective. Nevertheless, even stronger trends were predicted

in [31], albeit for an area in the Pacific ocean.

It should be stressed that even though the models detect trends in the data, it does not

necessarily mean that the trend is a direct consequence of anthropogenic climate change. It

might be a result of decadal natural variability, as discussed in e.g. [9], and wave climate

variability has been reported to be considerable on different temporal scales ([17]). Great care

should therefore be taken when interpreting the meaning and the origin of this trend, even

though the correlation between anthropogenic CO2 emissions and the wave climate are found

to be strong in this study.

One practical implication of the predicted changes in the ocean wave climate due to global

climate change is that the structural loads and stresses on ships and other marine structures

might increase notably in the future. A case study indicates increases of up to 10% over the

current century. This is not negligible, and it is therefore recommended to carefully consider

and take into account the potential impact of climate change in the design and construction of

ocean going ships to avoid jeopardizing the safety of future maritime operations.

9. Conclusions

This chapter has been concerned with the potential impact of global climate change on the

ocean wave climate and, consequently, on the risk of maritime transportation. A Bayesian

hierarchical space-time model that has been developed to model the effect of climate change

on the ocean wave climate has been presented. Different versions of the model have been

discussed and they all agree in a non-negligible positive trend in the monthly maximum

significant wave height over a selected area of the North Atlantic ocean. Estimated expected

additive trends towards 2100 range from 1.6 - 5.4 meters and expected multiplicative trends

in the order of 15% are predicted. Assuming an average monthly maximum significant wave

height of 7.5 meters, the estimated trends related to the B1 and A2 scenarios correspond to

centurial increases of 25% - 72%, which are indeed significant. However, the uncertainties are

large, and 90% credible intervals for the expected trends range from 1.2 to 2.6 meters for the

B1 scenario and 2.7 to 8.1 meters for the A2 scenario.

One of the advantages of using a stochastic model is that estimates of the uncertainties are

given explicitly. These are important when future projections are to be incorporated in risk

analyses or utilized in probabilistic load calculations as illustrated by an example in this

chapter. The case study reveals that the effect of the predicted trend in the ocean wave climate

on environmental loads of ships is far from being negligible, and that this may need to be

taken into account in design and construction of ships. Obviously, a roughening of the ocean

wave climate also has the potential to severely impact other areas of society as well, related

to maritime, offshore and coastal activities. Combined with sea level rise and other possible

effects of climate change, coastal areas throughout the globe may be seriously affected.

How to adapt to climate change is one of the most important questions in society today.

It is a political question and perhaps a moral question as much as it is a scientific
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question. Nevertheless, an important prerequisite for making well-founded decisions is

reliable predictions of the future effect of climate change. The stochastic model presented

in this chapter aims at contributing to this discussion by providing a model for predicting

the effect of climate change on the ocean wave climate. Such an effect could again have

practical implications on many areas of society, most notably related to marine and coastal

management. It is acknowledged that the models represent a simplification of reality,

as inevitably all models do, and that there is potential for improvements to the models.

Nonetheless, it is believed that the study presented herein is an important contribution to

the scientific debate on the effects of climate change, and it is a hope that it can spur further

debate and motivate further research into the effects of climate change on the future ocean

wave climate.
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