
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322419821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 8

Integrating Modularity and Reconfigurability for
Perfect Implementation of Neural Networks

Hazem M. El-Bakry

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53021

1. Introduction

In this chapter, we introduce a powerful solution for complex problems that are required to
be solved by using neural nets. This is done by using modular neural nets (MNNs) that di‐
vide the input space into several homogenous regions. Such approach is applied to imple‐
ment XOR functions, 16 logic function on one bit level, and 2-bit digital multiplier.
Compared to previous non- modular designs, a salient reduction in the order of computa‐
tions and hardware requirements is obtained.

Modular Neural Nets (MNNs) present a new trend in neural network architecture de‐
sign. Motivated by the highly-modular biological network, artificial neural net designers
aim to build architectures which are more scalable and less subjected to interference than
the traditional non-modular neural nets [1]. There are now a wide variety of MNN de‐
signs for classification. Non-modular classifiers tend to introduce high internal interfer‐
ence because of the strong coupling among their hidden layer weights [2]. As a result of
this, slow learning or over fitting can be done during the learning process. Sometime,
the network could not be learned for complex tasks. Such tasks tend to introduce a wide
range of overlap which, in turn, causes a wide range of deviations from efficient learn‐
ing in the different regions of input space [3]. Usually there are regions in the class fea‐
ture space which show high overlap due to the resemblance of two or more input
patterns (classes). At the same time, there are other regions which show little or even no
overlap, due to the uniqueness of the classes therein. High coupling among hidden no‐
des will then, result in over and under learning at different regions [8]. Enlarging the
network, increasing the number and quality of training samples, and techniques for
avoiding local minina, will not stretch the learning capabilities of the NN classifier be‐
yond a certain limit as long as hidden nodes are tightly coupled, and hence cross talking

© 2013 M. El-Bakry; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

during learning [2]. A MNN classifier attempts to reduce the effect of these problems via
a divide and conquer approach. It, generally, decomposes the large size / high complexi‐
ty task into several sub-tasks, each one is handled by a simple, fast, and efficient mod‐
ule. Then, sub-solutions are integrated via a multi-module decision-making strategy.
Hence, MNN classifiers, generally, proved to be more efficient than non-modular alterna‐
tives [6]. However, MNNs can not offer a real alternative to non-modular networks un‐
less the MNNs designer balances the simplicity of subtasks and the efficiency of the
multi module decision-making strategy. In other words, the task decomposition algo‐
rithm should produce sub tasks as they can be, but meanwhile modules have to be able
to give the multi module decision making strategy enough information to take accurate
global decision [4].

In a previous paper [9], we have shown that this model can be applied to realize non-binary
data. In this chapter, we prove that MNNs can solve some problems with a little amount of
requirements than non-MNNs. In section 2, XOR function, and 16 logic functions on one bit
level are simply implemented using MNN. Comparisons with conventional MNN are given.
In section 3, another strategy for the design of MNNS is presented and applied to realize,
and 2-bit digital multiplier.

2. Complexity reduction using modular neural networks

In the following subsections, we investigate the usage of MNNs in some binary problems.
Here, all MNNs are feedforward type, and learned by using backpropagation algorithm. In
comparison with non-MNNs, we take into account the number of neurons and weights in
both models as well as the number of computations during the test phase.

2.1. A simple implementation for XOR problem

There are two topologies to realize XOR function whose truth Table is shown in Table 1 us‐
ing neural nets. The first uses fully connected neural nets with three neurons, two of which
are in the hidden layer, and the other is in the output layer. There is no direct connections
between the input and output layer as shown in Fig.1. In this case, the neural net is trained
to classify all of these four patterns at the same time.

x y O/P

0

0

1

1

0

1

0

1

0

1

1

0

Table 1. Truth table of XOR function.

Artificial Neural Networks – Architectures and Applications164

Figure 1. Realization of XOR function using three neurons.

The second approach was presented by Minsky and Papert which was realized using two
neurons as shown in Fig. 2. The first representing logic AND and the other logic OR. The
value of +1.5 for the threshold of the hidden neuron insures that it will be turned on only
when both input units are on. The value of +0.5 for the output neuron insures that it will
turn on only when it receives a net positive input greater than +0.5. The weight of -2 from
the hidden neuron to the output one insures that the output neuron will not come on when
both input neurons are on [7].

Figure 2. Realization of XOR function using two neurons.

Using MNNs, we may consider the problem of classifying these four patterns as two indi‐
vidual problems. This can be done at two steps:

1. We deal with each bit alone.

2. Consider the second bit Y, Divide the four patterns into two groups.

The first group consists of the first two patterns which realize a buffer, while the second
group which contains the other two patterns represents an inverter as shown in Table 2. The
first bit (X) may be used to select the function.

X Y O/P New Function

0

0

0

1

0

1

Buffer (Y)

1

1

0

1

1

0

Inverter (Ȳ)

Table 2. Results of dividing XOR Patterns.

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

165

So, we may use two neural nets, one to realize the buffer, and the other to represent the in‐
verter. Each one of them may be implemented by using only one neuron. When realizing
these two neurons, we implement the weights, and perform only one summing operation.
The first input X acts as a detector to select the proper weights as shown in Fig.3. In a special
case, for XOR function, there is no need to the buffer and the neural net may be represented
by using only one weight corresponding to the inverter as shown in Fig.4. As a result of us‐
ing cooperative modular neural nets, XOR function is realized by using only one neuron. A
comparison between the new model and the two previous approaches is given in Table 3. It
is clear that the number of computations and the hardware requirements for the new model
is less than that of the other models.

Figure 3. Realization of XOR function using modular neural nets.

Figure 4. Implementation of XOR function using only one neuron.

Artificial Neural Networks – Architectures and Applications166

Type of

Comparison

First model

(three neurons)

Second model

(two neurons)

New model

(one neuron)

No. of

computations

O(15) O(12) O(3)

Hardware

requirements

3 neurons,

9 weights

2 neurons,

7 weights

1 neuron,

2 weights,

2 switches,

1 inverter

Table 3. A comparison between different models used to implement XOR function.

2.2. Implementation of logic functions by using MNNs

Realization of logic functions in one bit level (X,Y) generates 16 functions which are (AND,
OR, NAND, NOR, XOR, XNOR, X̄ ,Ȳ , X, Y, 0, 1, X̄ Y, XȲ , X̄ +Y, X+Ȳ). So, in order to control
the selection for each one of these functions, we must have another 4 bits at the input, there‐
by the total input is 6 bits as shown in Table 4.

Function C1 C2 C3 C4 X Y O/p

AND 0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 1 1 1

...........

X+Ȳ 1 1 1 1 0 0 1

1 1 1 1 0 1 0

1 1 1 1 1 0 1

1 1 1 1 1 1 1

Table 4. Truth table of Logic function (one bit level) with their control selection.

Non-MNNs can classify these 64 patterns using a network of three layers. The hidden layer
contains 8 neurons, while the output needs only one neuron and a total number of 65
weights are required. These patterns can be divided into two groups. Each group has an in‐
put of 5 bits, while the MSB is 0 with the first group and 1 with the second. The first group
requires 4 neurons and 29 weights in the hidden layer, while the second needs 3 neurons
and 22 weights. As a result of this, we may implement only 4 summing operations in the
hidden layer (in spite of 8 neurons in case of non-MNNs) where as the MSB is used to select
which group of weights must be connected to the neurons in the hidden layer. A similar
procedure is done between hidden and output layer. Fig. 5 shows the structure of the first
neuron in the hidden layer. A comparison between MNN and non-MNNs used to imple‐
ment logic functions is shown in Table 5.

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

167

Figure 5. Realization of logic functions using MNNs (the first neuron in the hidden layer).

Type of

Comparison

Realization using

non MNNs

Realization using

MNNs

No. of

computations

O(121) O(54)

Hardware

requirements

9 neurons,

65 weights

5 neurons, 51 weights, 10

switches, 1 inverter

Table 5. A comparison between MNN and non MNNs used to implement 16 logic functions.

3. Implementation of 2-bits digital multiplier by using MNNs

In the previous section, to simplify the problem, we make division in input, here is an exam‐
ple for division in output. According to the truth table shown in Table 6, instead of treating
the problem as mapping 4 bits in input to 4 bits in output, we may deal with each bit in out‐
put alone. Non MNNs can realize the 2-bits multiplier with a network of three layers with
total number of 31 weights. The hidden layer contains 3 neurons, while the output one has 4
neurons. Using MNN we may simplify the problem as:

W CA= (1)

X AD BC = AD(B C) BC(A D)
= (AD BC)(A + B C D)
= Ä + + +

+ + + (2)

Y BD(A C) BD(A B C + D)= + = + + (3)

Z ABCD= (4)

Artificial Neural Networks – Architectures and Applications168

Equations 1, 2, 3 can be implemented using only one neuron. The third term in Equation 3
can be implemented using the output from Bit Z with a negative (inhibitory) weight. This
eliminates the need to use two neurons to represent Ā andD̄. Equation 2 resembles an XOR,
but we must first obtain AD and BC. AD can be implemented using only one neuron. An‐
other neuron is used to realize BC and at the same time oring (AD, BC) as well as anding the
result with (ABCD̄) as shown in Fig.6. A comparison between MNN and non-MNNs used to
implement 2bits digital multiplier is listed in Table 7.

Figure 6. Realization of 2-bits digital multiplier using MNNs.

Input Patterns Output Patterns

D C B A Z Y X W
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 6. Truth table of 2-bit digital multiplier.

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

169

Type of

Comparison

Realization using

non MNNs

Realization using

MNNs

No. of

computations

O(55) O(35)

Hardware

requirements

7 neurons,

31 weights

5 neurons,

20 weights

Table 7. A comparison between MNN and non-MNNs used to implement 2-bits digital multiplier.

4. Hardware implementation of MNNs by using reconfigurable circuits

Advances in MOS VLSI have made it possible to integrate neural networks of large sizes on
a single-chip [10,12]. Hardware realizations make it possible to execute the forward pass op‐
eration of neural networks at high speeds, thus making neural networks possible candidates
for real-time applications. Other advantages of hardware realizations as compared to soft‐
ware implementations are the lower per unit cost and small size system.

Analog circuit techniques provide area-efficient implementations of the functions required
in a neural network, namely, multiplication, summation, and the sigmoid transfer character‐
istic [13]. In this paper, we describe the design of a reconfigurable neural network in analog
hardware and demonstrate experimentally how a reconfigurable artificial neural network
approach is used in implementation of arithmetic unit that including full-adder, full-sub‐
tractor, 2-bit digital multiplier, and 2-bit digital divider.

One of the main reasons for using analog electronics to realize network hardware is that
simple analog circuits (for example adders, sigmoid, and multipliers) can realize several
of the operations in neural networks. Nowadays, there is a growing demand for large as
well as fast neural processors to provide solutions for difficult problems. Designers may
use either analog or digital technologies to implement neural network models. The ana‐
log approach boasts compactness and high speed. On the other hand, digital implemen‐
tations offer flexibility and adaptability, but only at the expense of speed and silicon area
consumption.

4.1. Implementation of artificial neuron

Implementation of analog neural networks means that using only analog computation
[14,16,18]. Artificial neural network as the name indicates, is the interconnection of artificial
neurons that tend to simulate the nervous system of human brain [15]. Neural networks are
modeled as simple processors (neurons) that are connected together via weights. The
weights can be positive (excitatory) or negative (inhibitory). Such weights can be realized by
resistors as shown in Fig. 7.

Artificial Neural Networks – Architectures and Applications170

Figure 7. Implementation of positive and negative weights using only one opamp.

The computed weights may have positive or negative values. The corresponding resistors
that represent these weights can be determined as follow [16]:

 / 1, 2, , in f inw R R i n= - = ¼¼ (5)

n Ro1 Win
Rppi1Wpp

Ro Ro Ro1
R1p R2p Rpp

æ ö
ç ÷
è ø

æ ö
ç ÷
è ø

+ å
=

+ + + +
(6)

The exact values of these resistors can be calculated as presented in [14,18]. The summing
circuit accumulates all the input-weighted signals and then passes to the output through the
transfer function [13]. The main problem with the electronic neural networks is the realiza‐
tion of resistors which are fixed and have many problems in hardware implementation [17].
Such resistors are not easily adjustable or controllable. As a consequence, they can be used
neither for learning, nor can they be used for recall when another task needs to be solved. So
the calculated resistors corresponding to the obtainable weights can be implemented by us‐
ing CMOS transistors operating in continuous mode (triode region) as shown in Fig. 8. The
equivalent resistance between terminal 1 and 2 is given by [19]:

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

171

Figure 8. Two MOS transistor as a linear resistor.

() 1 / – 2eq g thR K V V=
é ù
ë û (7)

4.2. Reconfigurability

The interconnection of synapses and neurons determines the topology of a neural network.
Reconfigurability is defined as the ability to alter the topology of the neural network [19].
Using switches in the interconnections between synapses and neurons permits one to
change the network topology as shown in Fig. 9. These switches are called "reconfiguration
switches".

The concept of reconfigurability should not be confused with weight programmability. Weight
programmability is defined as the ability to alter the values of the weights in each synapse.
In Fig. 9, weight programmability involves setting the values of the weights w1, w2, w3,....,
wn. Although reconfigurability can be achieved by setting weights of some synapses to zero
value, this would be very inefficient in hardware.

Figure 9. Neuron with reconfigurable switches.

Artificial Neural Networks – Architectures and Applications172

Reconfigurability is desirable for several reasons [20]:

1. Providing a general problem-solving environment.

2. Correcting offsets.

3. Ease of testing.

4. Reconfiguration for isolating defects.

5. Design arithmetic and logic unit by using reconfigurable neural
networks

In previous paper [20], a neural design for logic functions by using modular neural net‐
works was presented. Here, a simple design for the arithmetic unit using reconfigurable
neural networks is presented. The aim is to have a complete design for ALU by using the
benefits of both modular and reconfigurable neural networks.

5.1. Implementation of full adder/full subtractor by using neural networks

Full-adder/full-subtractor problem is solved practically and a neural network is simulated and
implemented using the back-propagation algorithm for the purpose of learning this network
[10]. The network is learned to map the functions of full-adder and full-subtractor. The
problem is to classify the patterns shown in Table 8 correctly.

I/P

x y z

Full-Adder Full-Subtractor

S C D B

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

0 0
1 1
1 1
1 0
0 1
0 0
0 0
1 1

Table 8. Truth table of full-adder/full-subtractor

The computed values of weights and their corresponding values of resistors are described in
Table 9. After completing the design of the network, simulations are carried out to test both
the design and performance of this network by using H-spice. Experimental results confirm
the proposed theoretical considerations. Fig. 10 shows the construction of full-adder/full-
subtractor neural network. The network consists of three neurons and 12-connection
weights.

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

173

I / P Neuron (1) Neuron (2) Neuron (3)

Weight Resistance Weight Resistance Weight Resistance

1

2

3

Bias

7.5

7.5

7.5

-10.0

11.8 Ro

11.8 Ro

11.8 Ro

0.1 Rf

15

15

-10

-10

6.06 Ro

6.06 Ro

0.1 Rf

0.1 Rf

15

15

-10

-10

6.06 Ro

6.06 Ro

0.1 Rf

0.1 Rf

Table 9. Computed weights and their corresponding resistances of full-adder/full-subtractor

Figure 10. Full-adder/full-subtractor implementation.

5.2. Hardware implementation of 2-bit digital multiplier

2-bit digital multiplier can be realized easily using the traditional feed-forward artificial
neural network [21]. As shown in Fig. 11, the implementation of 2-bit digital multiplier us‐
ing the traditional architecture of a feed-forward artificial neural network requires 4-neu‐
rons, 20-synaptic weights in the input-hidden layer, and 4-neurons, 20-synaptic weights in
the hidden-output layer. Hence, the total number of neurons is 8-neurons with 40-synaptic
weights.

Artificial Neural Networks – Architectures and Applications174

Figure 11. Bit digital multiplier using traditional feed-forward neural network

In the present work, a new design of 2-bit digital multiplier has been adopted. The new de‐
sign requires only 5-neurons with 20-synaptic weights as shown in Fig. 12. The network re‐
ceives two digital words, each word has 2-bit, and the output of the network gives the
resulting multiplication. The network is trained by the training set shown in Table 10.

I/P O/P

B2 B1 A2 A1 O4 O3 O2 O1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

1

Table 10. 2-bit digital multiplier training set

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

175

Figure 12. A novel design for2-Bit multiplier using neural network

During the training phase, these input/output pairs are fed to the network and in each itera‐
tion; the weights are modified until reached to the optimal values. The optimal value of the
weights and their corresponding resistance values are shown in Table 11. The proposed circuit
has been realized by hardware means and the results have been tested using H-spice computer
program. Both the actual and computer results are found to be very close to the correct results.

Neuron I/P W. Value Resistor

(1)

A1

B1

Bias

7.5

7.5

-10.0

1200

1200

100

(2)

A1

B2

Bias

N4

N5

7.5

7.5

-10.0

-30.0

20.0

1450

1450

100

33

618

(3)

A2

B2

bias

N4

7.5

7.5

-10.0

-10.0

1200

1200

100

100

(4)

A1

A2

B1

B2

bias

3.0

3.0

3.0

3.0

-10.0

1200

1200

1200

1200

100

(5)

A2

B1

Bias

7.5

7.5

-10.0

1200

1200

100

Table 11. Weight values and their corresponding resistance values for digital multiplier.

Artificial Neural Networks – Architectures and Applications176

5.3. Hardware implementation of 2-bit digital divider

2-bit digital divider can be realized easily using the artificial neural network. As shown in
Fig. 13, the implementation of 2-bit digital divider using neural network requires 4-neurons,
20-synaptic weights in the input-hidden layer, and 4-neurons, 15-synaptic weights in the
hidden-output layer. Hence, the total number of neurons is 8-neurons with 35-synaptic
weights. The network receives two digital words, each word has 2-bit, and the output of the
network gives two digital words one for the resulting division and the other for the result‐
ing remainder. The network is trained by the training set shown in Table 12

Figure 13. Bit digital divider using neural network.

I/P O/P

B2 B1 A2 A1 O4 O3 O2 O1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0

1
0
0
0
1
0
1
1
1
0
0
0
1
0
1
0

1
0
0
0
1
0
0
0
1
1
0
0
1
1
0
0

1
0
0
0
1
1
0
0
1
0
1
0
1
1
1
1

Table 12. 2-bit digital dividier training set

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

177

The values of the weights and their corresponding resistance values are shown in Table 13.

Neuron I/P W. Val. Resistor

(1)

A1

A2

B1

B2

Bias

-17.5

-17.5

5

5

5

56

56

2700

2700

2700

(2)

A1

A2

B1

B2

Bias

7.5

7.5

-10

7.5

-17.5

1200

1200

100

1200

56

(3)

A1

A2

B2

Bias

7.5

-10

7.5

-10

1200

100

1200

100

(4)

A1

A2

B1

B2

Bias

-4.5

7.5

7.5

-4.5

-10

220

1200

1200

220

100

(5)

A1

A2

B1

B2

N3

Bias

-20

-30

10

25

-25

17.5

50

33

1200

500

40

700

(6)

N1

N3

Bias

10

10

-5

1000

1000

220

(7)

N1

N4

Bias

10

10

-5

1000

1000

220

(8)

N1

N2

Bias

10

10

-5

1000

1000

220

Table 13. Weight values and their corresponding resistance values for digital divider.

Artificial Neural Networks – Architectures and Applications178

The results have been tested using H-spice computer program. Computer results are found
to be very close to the correct results.

Arithmetic operations namely, addition, subtraction, multiplication, and division can be re‐
alized easily using a reconfigurable artificial neural network. The proposed network consists
of only 8-neurons, 67-connection weights, and 32-reconfiguration switches. Fig. 14 shows
the block diagram of the arithmetic operation using reconfigurable neural network. The net‐
work includes full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider.
The proposed circuit is realized by hardware means and the results are tested using H-spice
computer program. Both the actual and computer results are found to be very close to the
correct results.

Full-Adder

Full-

Subtractor

2 Bit Digital

Multiplier

A1

A2

B1

B2

Reconfiguration

switches

O1

O2

O3

O4

2 Bit Digital

Divider

Neurons

I/P
Connection

weights

Selection

C1 C2
Neurons

Figure 14. Block diagram of arithmetic unit using reconfigurable neural network.

The computed values of weights and their corresponding values of resistors are described in
Tables 9,10,116. After completing the design of the network, simulations are carried out to
test both the design and performance of this network by using H-spice. Experimental results
confirm the proposed theoretical considerations as shown in Tables 14,15.

6. Conclusion

We have presented a new model of neural nets for classifying patterns that appeared expen‐
sive to be solved using conventional models of neural nets. This approach has been intro‐
duced to realize different types of logic problems. Also, it can be applied to manipulate non-
binary data. We have shown that, compared to non MNNs, realization of problems using
MNNs resulted in reduction of the number of computations, neurons and weights.

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

179

I/p Neuron(1) Neuron(2) Neuron(3)

X Y Z Practical Simulated Practical Simulated Practical Simulated

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

-2.79

-2.73

-2.73

3.46

-2.73

3.46

3.46

3.46

-3.4157

-2.5968

-2.5968

3.3761

-2.5968

3.3761

3.3761

3.4231

-2.79

3.46

3.46

3.46

-2.79

-2.75

-2.75

3.48

-3.4135

3.3741

3.2741

3.4366

-3.4372

-3.3081

-3.3081

3.4120

-2.79

3.46

3.46

-2.75

3.46

-2.75

-2.75

3.48

-3.4135

3.3741

3.3741

-3.3081

3.3741

-3.3081

-3.3081

3.4120

Table 14. Practical and Simulation results after the summing circuit of full-adder/full-subtractor

Neuron (1) Neuron (2) Neuron (3) Neuron (4) Neuron (5)

Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim.

-2.79

-2.34

-2.79

-2.34

-2.34

3.46

-2.34

3.46

-2.79

-2.34

-2.79

-2.34

-2.34

3.46

-2.34

3.46

-3.415

-2.068

-3.415

-2.068

-2.068

3.390

-2.068

3.390

-3.415

-2.068

-3.415

-2.068

-2.068

3.390

-2.068

3.390

-2.79

-2.72

-2.79

-2.72

-2.79

-2.72

3.45

3.45

-2.72

3.45

-2.72

3.45

-2.72

3.45

3.45

-2.73

-3.409

-2.498

-3.409

-2.498

-3.409

-2.498

3.397

3.424

-2.498

3.373

-2.498

3.373

-2.498

3.373

3.373

-3.398

-2.79

-2.79

-1.63

-1.63

-2.79

-2.79

-1.63

-1.63

-1.63

-1.63

3.45

3.45

-1.63

-1.63

3.45

-2.70

-3.413

-3.314

-1.355

-1.355

-3.413

-3.413

-1.355

-1.355

-1.355

-1.355

3.399

3.399

-1.355

-1.355

3.399

-2.710

-2.79

-2.78

-2.78

-2.78

-2.78

-2.78

-2.78

-2.74

-2.78

-2.78

-2.78

-2.74

-2.78

-2.74

-2.74

1.86

-3.447

-3.438

-3.438

-3.423

-3.438

-3.423

-3.423

-3.384

-3.438

-3.423

-3.423

-3.384

-3.423

-3.384

-3.384

2.519

-2.79

-2.79

-2.34

-2.34

-2.34

-2.34

3.46

3.46

-2.79

-2.79

-2.34

-2.34

-2.34

-2.34

3.46

3.46

-3.415

-3.415

-2.068

-2.068

-2.068

-2.068

3.390

3.390

-3.415

-3.415

-2.068

-2.068

-2.068

-2.068

3.390

3.390

Table 15. Practical and Simulation results after the summing circuit of 2-bit digital multiplier

Author details

Hazem M. El-Bakry

Faculty of Computer Science & Information Systems, Mansoura University, Egypt

Artificial Neural Networks – Architectures and Applications180

References

[1] J, Murre, Learning and Categorization in Modular Neural Networks, Harvester
Wheatcheaf. 1992.

[2] R. Jacobs, M. Jordan, A. Barto, Task Decomposition Through Competition in a Modu‐
lar Connectionist Architecture: The what and where vision tasks, Neural Computa‐
tion 3, pp. 79-87, 1991.

[3] G. Auda, M. Kamel, H. Raafat, Voting Schemes for cooperative neural network clas‐
sifiers, IEEE Trans. on Neural Networks, ICNN95, Vol. 3, Perth, Australia, pp.
1240-1243, November, 1995.

[4] G. Auda, and M. Kamel, CMNN: Cooperative Modular Neural Networks for Pattern
Recognition, Pattern Recognition Letters, Vol. 18, pp. 1391-1398, 1997.

[5] E. Alpaydin, , Multiple Networks for Function Learning, Int. Conf. on Neural Net‐
works, Vol.1 CA, USA, pp. 9-14, 1993.

[6] A. Waibel, Modular Construction of Time Delay Neural Networks for Speach Recog‐
nition, Neural Computing 1, pp.39-46.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representation by error
backpropagation, Parallel distributed Processing: Explorations in the Microstructues
of Cognition, Vol. 1, Cambridge, MA:MIT Press, pp. 318-362, 1986.

[8] K. Joe, Y. Mori, S. Miyake, Construction of a large scale neural network: Simulation
of handwritten Japanese Character Recognition, on NCUBE Concurrency 2 (2), pp.
79-107.

[9] H. M. El-bakry, and M. A. Abo-elsoud, Automatic Personal Identification Using Neu‐
ral Nets, The 24th international Conf. on Statistics computer Science, and its applica‐
tions, Cairo, Egypt, 1999.

[10] Srinagesh Satyanarayna, Yannis P. Tsividis, and Hans Peter graf, “A Reconfigurable
VLSI Neural Network,” IEEE Journal of Solid State Circuits, vol. 27, no. 1, January
1992.

[11] E. R. Vittos, “Analog VLSI Implementation of Neural Networks,” in proc. Int. Symp.
Circuits Syst. (new Orleans, LA), 1990, pp. 2524-2527.

[12] H. P. graf and L. D. Jackel, “Analog Electronic Neural Network Circuits,” IEEE Cir‐
cuits Devices Mag., vol. 5, pp. 44-49, July 1989.

[13] H. M. EL-Bakry, M. A. Abo-Elsoud, and H. H. Soliman and H. A. El-Mikati " Design
and Implementation of 2-bit Logic functions Using Artificial Neural Networks ,"
Proc. of the 6th International Conference on Microelectronics (ICM'96), Cairo, Egypt,
16-18 Dec. , 1996.

Integrating Modularity and Reconfigurability for Perfect Implementation of Neural Networks
http://dx.doi.org/10.5772/53021

181

[14] Simon Haykin, “Neural Network : A comprehensive foundation”, Macmillan college
publishing company, 1994.

[15] Jack M. Zurada, “Introduction to Artificial Neural Systems,” West Publishing Com‐
pany, 1992.

[16] C. Mead, and M. Ismail, “Analog VLSI Implementation of Neural Systems,” Kluwer
Academic Publishers, USA, 1989

[17] H. M. EL-Bakry, M. A. Abo-Elsoud, and H. H. Soliman and H. A. El-Mikati " Imple‐
mentation of 2-bit Logic functions Using Artificial Neural Networks ," Proc. of the 6th

International Conference on Computer Theory and Applications, Alex., Egypt, 3-5
Sept. , 1996, pp. 283-288.

[18] I. S. Han and S. B. Park, “Voltage-Controlled Linear Resistor by Using two MOS
Transistors and its Applications to RC Active Filter MOS Integration,” Proceedings
of the IEEE, Vol.72, No.11, Nov. 1984, pp. 1655-1657.

[19] Laurene Fausett, “Fundamentals of Neural Network : Architectures, Algorithms, and
Applications,” Prentice Hall International.

[20] H. M. El-bakry, “Complexity Reduction Using Modular Neural Networks,” Proc. of
IEEE IJCNN’03, Portland, Oregon, pp. 2202-2207, July, 20-24, 2003.

[21] H. M. El-Bakry, and N. Mastorakis “A Simple Design and Implementation of Recon‐
figurable Neural Networks Detection,” Proc. of IEEE IJCNN’09, Atlanta, USA, June
14-19, 2009, pp. 744-750.

Artificial Neural Networks – Architectures and Applications182

