We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter 9

Implementation of Lapped Biorthogonal
Transform for JPEG-XR Image Coding

Muhammad Riaz ur Rehman, Gulistan Raja and
Ahmad Khalil Khan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53100

1. Introduction

Advancements in digital image devices have culminated in increase in image size and quali-
ty. High quality digital images are required in different fields of life for example in medical,
surveillance, commercials, space imaging, mobile phones, play stations and digital cameras.
As a result, memory requirement for storing these high quality images has been increased
enormously. Moreover, if we want to transmit these images over communication channel, it
will require high bandwidth. Thus there is a need to develop techniques that reduces the
size of image without significantly compromising the quality of digital image so that it can
be stored and transmitted efficiently.

Compression techniques exploit redundancy in image data to reduce the required amount of
storage for image. Different compression performance parameters such as compression ratio,
computation complexity, compression / decompression time and quality of compressed image
vary with different compression techniques. Most widely used image compression standard is
JPEG (ISO/IEC IS 10918-1 | ITU-T T.81) [1]. It supports baseline, hierarchical, progressive and
lossless modes and provides high compression at low computational cost. Figure 1 shows steps
in JPEG encoding. It uses Discrete Cosine Transform (DCT) which is applied on 8x8 image
block. However at low bit rate it produces blocking artifacts.

To overcome the limitations of JPEG, new standard i.e. JPEG2000 (ISO/IEC 15444-1 | ITU-T
T.800) was developed [2]. JPEG2000 uses Discrete Wavelet Transform (DWT) and provides
high compression ratio without compromising the quality of image quality even at low bit
rates. It supports lossless, lossy, progressive and region of interest encoding. However, these
advantages are achieved at the cost high computational complexity. Therefore there was a

I NT E C H © 2012 ur Rehman et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits

open science | open minds unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

188 Advanced Video Coding for Next-Generation Multimedia Services

need for a compression technique that not only preserves the quality of high resolution im-
ages but also keep the storage and computational cost as low as possible.

Input Image P
8x8 Block [DCT —»1 Quantization

Compressed Entropy Zig-Zag

Image Rl Coding Rl Scanning

Figure 1. JPEG Encoding

A new image compression standard, JPEG eXtended Range (JPEG XR) has been developed
which addresses the limitations of currently used image compression standards [3-4]. JPEG
XR (ITU-T T.832 | ISO/IEC 29199-2) mainly targets to increase the capabilities of exiting cod-
ing techniques and provides high performance at low computational cost. JPEG XR com-
pression stages are almost same at higher level as compared to existing compression
standards but lower level operations are different such as transform, quantization, scanning
and entropy coding techniques. It supports lossless as well as lossy compression. JPEG XR
compression stages are shown in Figure 2.

Input Image SR
—»-| Biorthogonal | Quantization
4x4 Block y
Transform
Adaptive
Coefficient
. . Prediction
Compressed Adaptive Adaptive
| — Entropy 44— Coefficient }t¢———
mage -]
Coding Scanning

Figure 2. JPEG XR Encoding

JPEG XR use Lapped Biorthogonal Transform (LBT) to convert image samples into frequen-
cy domain coefficients [5-8]. LBT is integer transform and it is less computationally expen-
sive than DWT used in JPEG2000. It reduces blocking artifacts at low bit rates as compared
to JPEG. Thus due to less computational complexity and reduced artifacts, it significantly

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding
http://dx.doi.org/10.5772/53100

improves the overall compression performance of JPEG XR. Implementation of LBT can be
categorized into software based implementation and hardware based implementation. Soft-
ware based implementation is generally used for offline processing and designed to run on
general purpose processors. Performance of software based implementation is normally less
than hardware based implementation and mostly it is not suitable for real time applications.
Hardware based implementation provide us superior performance and mostly suitable for
real time embedded applications. In this chapter we will discuss LabVIEW based software
implementation and Micro Blaze based hardware implementation of LBT. Next section de-
scribes the working of Lapped Biorthogonal Transform.

2. Lapped Biorthogonal Transform (LBT)

Lapped Biorthogonal Transform (LBT) is used to convert image samples from spatial do-
main to frequency domain in JPEG XR. Its purpose is the same as discrete cosine transform
(DCT) in JPEG. LBT in JPEG XR is operated on 4x4 size image block. LBT is applied on
blocks and macro blocks boundaries. Input image is divided into tiles prior to applying LBT
in JPEG XR. Each tile is further divided into macro blocks as shown in Figure 3.

Input Image

Pixels Blocks

Figure 3. Image Partitioning

189

190 Advanced Video Coding for Next-Generation Multimedia Services

Each macro block is a collection of 16 blocks while a block is composed of 16 image pixels.
Image size should be multiple of 16; if size is not multiple of 16, then we extend the height
and or width of image to make it multiple of 16. This can be done by replicating the image
sample values at boundaries. Lapped Biorthogonal Transform consists of two key opera-
tions:

1.
2.

Overlap Pre Filtering (OPF)
Forward Core Transform (FCT)

Encoder uses OPF and FCT operations in following steps as shown in Figure 4.

Input Image
Perform Perform
OPF_4Ptand —» — Stage 1
OPF_4x4 FCT_4x4 9
DC, Low pass Perform Perform
and High Pass <— cr, , < OPF_4Ptand « Stage 2
Coefficients - OPF_4x4

Figure 4. Lapped Biorthogonal Transform Stages [9]

OPF is applied on block boundaries, areas of sizes 4x4, 4x2 and 2x4 between block bounda-
ries are shown in Figure 5.

The various steps performed in LBT are as follows:

1.

In Stage 1, Overlap pre filter (OPF_4pt) is applied to 2x4 and 4x2 areas between blocks
boundaries. Additional filter (OPF_4x4) is also applied to 4x4 area between block boun-
daries.

A forward core transform (FCT_4x4) is applied to 4x4 blocks. This will complete stage 1
of LBT.

Each 4x4 block has one DC coefficient. As macro block contains 16 blocks so we have 16
DC coefficients in one macro block. Arrange all 16 DC coefficients of macro blocks in
4x4 DC blocks.

In stage 2, Overlap pre filter (OPF_4pt) is applied to 2x4 and 4x2 areas between DC
blocks boundaries. Additional filter (OPF_4x4) is also applied to 4x4 area between DC
block boundaries.

Forward core transform (FCT_4x4) is applied to 4x4 DC blocks to complete stage 2 of
LBT. This will results in one DC coefficient, 15 low pass coefficients and 240 high pass
coefficients per macro block.

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding
http://dx.doi.org/10.5772/53100

4x4 Area
Between

Block
Boundaries

Figure 5. Image partitioning

The 2-D transform is applied to process the two dimensional input image. A 2-D transform
is implemented by performing 1-D transform in rows and columns of 2-D input image. Ma-
trix generated by Kronecker product is also used to obtain 2-D transform. Transform Y of 2-
D input image X is given by Eq. (1) and Eq. (2):

Y = MX D
M =Kron(T1, T2) ()

Where T1 and T2 are 1-D transform matrix for rows and columns respectively. Forward
Core Transform is composed of Hadamard transform, Todd rotation transform and Tod-
dodd rotation transform. Hadamard transform is Kronecker product of two 2-point hada-
mard transform Kron(Th, Th) where Th is given by Eq. (3):

" @

Todd rotation transform is Kronecker product of 2-point Hadamard transform and 2-point
rotation transform Kron (Th, Tr) where Tr is given by Eq. (4):

Tr =

1 [1+2 1
| | @

4+22 |1 -(1++2]

191

192 Advanced Video Coding for Next-Generation Multimedia Services

Toddodd rotation transform is Kronecker product of two 2-point rotation transform Kron
(Tr, Tr). Overlap pre filtering is composed of hadamard transform Kron (Th, Th), inverse ha-
damard transfom, 2-point scaling transform Ts, 2-point rotation transform Tr and Toddodd
transform Kron (Tt, Tr). Inverse hadamard transform is Kronecker product of two 2-point
inverse hadamard transform Kron (inverse (Th), inverse (Th)).

3. LabVIEW based Implementation of LBT

LabVIEW is an advanced graphical programming environment. It is used by millions of sci-
entists and engineers to develop sophisticated measurement, test, and control systems. It of-
fers integration with thousands of hardware devices. It is normally used to program, PXI
based system for measurement and automation. PXI is a rugged PC-based platform for
measurement and automation systems. It is both a high-performance and low-cost deploy-
ment platform for applications such as manufacturing test, military and aerospace, machine
monitoring, automotive, and industrial test. In LabVIEW, programming environment is
graphical and it is known as virtual instrument (VI).

LabVIEW implementation of LBT consists of 10 sub virtual instruments (sub-VIs). LBT im-
plementation VI hierarchy is shown in Figure 6.

A 4

LBT

v

Fwd
Rotate

Figure 6. LBT VI Hierarchy

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding 193
http://dx.doi.org/10.5772/53100

These sub-VIs are building blocks of LBT. Operations of these sub-VIs are according to
JPEG XR standard specifications [3]. OPF 4pt, FCT 4x4, OPF 4x4 are main sub-VIs and are
used in both stages of LBT. OPF 4pt further uses FWD Rotate and FWD Scale VIs. Simi-
larly FCT 4x4 and OPF 4x4 require T_ODD, 2x2T_h, T_ODD ODD, T2x2h_Enc, FWD_T
ODD ODD sub-VIs.

Figure 7 shows main block diagram of LBT implementation in LabVIEW that performs se-
quence of operations on the input image.

Image Size Horzonkal

.':ﬁ.'éé‘" +
LY
Input image Samples
— OFF U oFF oer | Fer
i|[iz= p-|[— 2pr L 4pt i H ded P
i Haorizon “ertical=|=F -
Ulb
L [{ LET image Cofficients
— oc-Le Hoc-Lrd OC-LF -H oc-Le [[[iz=]
— oFF | OFF wer L[FoT H
‘ptHor.l dpt Wer. = dxd dxd LIII:

Figure 7. LBT Block Diagram

In stage 1, image samples are processed by OPF 4pt in horizontal direction (along width) of
the image. This operation is performed on 2x4 boundary areas in horizontal direction. Fig-
ure 8 shows block diagram of OPF 4pt.

a..ﬁ'z"a' i ‘1?1

o

sty L

c
fizsi)

fiz3

Figure 8. OPF 4pt Block Diagram

194 Advanced Video Coding for Next-Generation Multimedia Services

Each OPF 4pt performs addition, subtraction, multiplication and logical shifting on four im-
age samples. The OPF 4pt requires four image samples and process them in parallel. For ex-
ample, addition of samples a, d and b, c are performed in parallel as shown in Figure 8. Data
is processed simultaneously when it is available to operators: addition, subtraction, multipli-
cation or logical shifter. This parallel computation speeds up the overall execution time. It
uses two additional sub-VIs i.e., Fwd Rotate and Fwd Scale. These sub-VIs require two im-
age samples and can be executed in parallel. In OPF 4pt, two Fwd Scale sub VIs are executed
in parallel. Two OPF 4pt sub-VIs are required for 2x4 and 4x2 block boundaries areas. Fig-
ure 9 shows processing of OPF 4pt.

10 array of Image samples

Start paint
for OPF 4 pt

Figure 9. Block Diagram for OPF 4pt Processing

OPF 4pt operation is also performed in vertical direction (along height) of the image. For
processing in both directions OPF 4pt requires 1D array of input image samples, starting
point for the operation of OPF 4pt and dimensions of input image.

After the operation of OPF 4pt, OPF 4x4 is performed on 4x4 areas between block bounda-
ries to complete overlap pre filtering. Figure 10 shows block diagram of OPF 4x4.

OPF 4x4 operates on 16 image samples. It uses T2x2_Enc, FWD Rotate, FWD Scale, FWD
ODD and 2x2T_h sub-VIs. Here these sub-VIs are also executes in parallel. Four T2x2h_Enc
and 2x2T_h sub-VIs are executing in parallel. Similarly FWD Rotate, FWD Scale and FWD
ODD are also executed in parallel. OPF 4x4 starts processing on 16 image samples at once
and outputs all 16 processed image samples at same time. Figure 11 shows block diagram
for processing of OPF 4x4.

For processing of image samples for OPF 4x4 operation: start point of OPF 4x4 and image
dimensions are required along with input images samples. After the processing of OPF 4x4,
FCT 4x4 is performed on each 4x4 image block. Figure 12 shows block diagram of FCT 4x4.

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding 195
http://dx.doi.org/10.5772/53100

16 samples af

input Image g::
H[EEE] 4 g...
i N oukput coeff_16
g [iz=
1 ooo | L Il:gjj: .!I
—@ —0] Ulh
L_EI:
[} o
ﬂj =
o
22 T_h |~ oo
Fu'D — !
.JA_@» |_ |
L — |
Fw'D
Riotate M
—| 2 2T_h

Figure 10. Block Diagram of OPF 4x4

Image samples

Image
Yerkical size

..... o
4,
&
Skart paoint L =
For OPF_dxd o
= B L—‘I:/ aFF
B (2] 4t
LIbY|
Irmage
hotizonkal size
123 1l
LY
i
"]

Figure 11. Block Diagram for OPF 4x4 Processing

196 Advanced Video Coding for Next-Generation Multimedia Services

2x2T_h|

—

T_00D0|

T_0D0—

Dooooooooooooooo)
I R

I
[
i

T_0D0|

— aoD [—|—

Input_coeff_16

iffizx

H
[
Uk

Tors.

.
el

E_

e,

Figure 12. Block Diagram of FCT 4x4

FCT 4x4 operation requires 2x2T_h, T_ODD and T_ODDODD sub-VIs. These sub-VIs are
also executed in parallel to speed up the operation of FCT 4x4. It is operated on 16 image
samples that are processed in parallel. This completes the stage 1 of LBT. This will result
one DC coefficient in each 4x4 block. In stage 2, all operations will be performed on these
DC coefficients of all blocks. DC coefficients will be considered as image samples and ar-
ranged in 4x4 blocks. OPF 4pt is performed in horizontal and vertical directions on DC
coefficients block boundaries with 4x2 and 2x4 areas. OPF 4x4 is also applied on 4x4 areas
between DC blocks boundaries. FCT 4x4 is performed on each DC 4x4 blocks to complete
stage 2 of LBT. At this stage, each macro block contains 1 DC, 15 low pass coefficients
and 240 high pass coefficients.

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding
http://dx.doi.org/10.5772/53100

We tested LabVIEW implementation on NI-PXIe 8106 embedded controller. It has Intel
2.16GHz Dual core processor with 1GB RAM. It takes 187.36 ms to process test image of size
512x512. We tested LBT in lossless mode. Functionality of implementation is tested and veri-
fied with JPEG XR reference software ITU-T T835 and standard specifications ITU-T
T832.Memory usage by top level VI is shown in Table 1.

Resource Type Used

Front panel Objects 22.6 KB
Block Diagram Objects 589.4 KB
Code 73.7 KB
Data 66.6 KB
Total 752.2 KB

Table 1. Memory Usage

Important parameters of implementation of top level VI and sub-VIs are shown in Table 2.

Vi No. of Nodes Wire Sources Connector Inputs Connector Outputs
LBT.vi 561 641 0 0
OPF 4pt.vi 61 60 4 4
OPF 4x4.vi 56 90 1 1
FCT 4x4.vi 48 71 1 1
Fwd Scale.vi 28 26 2 2
Fwd Rotate.vi 14 12 2 2
2x2 T_hwi 19 15 5 4
FWD T_ODD ODD.vi 41 37 4 4
T2x2h Enc.vi 25 21 4 4
T_ODD ODD.vi 45 41 4 4
T_ODD.vi 58 54 4 4

Table 2. VIs Parameters

4. Soft processor based hardware design of LBT

To use Lapped Biorthogonal transform in real time embedded environment, we need its
hardware implementation. Application specific hardware for LBT provides excellent per-
formance but up-gradation of hardware design is difficult because it requires remodeling of
whole hardware design. Pipeline implementation of LBT also provides outstanding per-
formance but due to sequential nature of LBT, it requires large amount of memory usage
[10-12]. In this section, we describe a soft embedded processor based implementation of
LBT. The proposed architecture design is shown in Figure 13.

197

198 Advanced Video Coding for Next-Generation Multimedia Services

Imaging

Device / DDR
Image SDRAM
Data

Storage

External
Processor Bus Memory

Processor Bus
’ Controller

Micro Blaze
Embedded
Processor

Core

Instruction -
Instruction Bus Data Bus
Memory

Figure 13. Proposed Architecture Design

Soft embedded processor is implemented on FPGA and its main advantage is that we can
easily reconfigure or upgrade our design. The processor is connected to UART and external
memory controller through processor bus. Instruction and data memories are connected to
soft embedded processor through instruction and data bus respectively. The instructions of
LBT processing are stored in instruction memory that will be executed by the proposed soft
embedded processor core. Block RAM (BRAM) of FPGA is used as data and instruction
memory.

For the processing of LBT, digital image is loaded into DDR SDRAM from external source
like imaging device through UART. Image is first divided into fix size tiles i.e. 512x512. Tile
data is fetched from DDR SDRAM into the data memory. Each tile is processed independ-
ently. OPF_4pt and OPF_4x4 operations are applied across blocks boundaries. After that
FCT_4x4 operation is applied on each block to complete first stage of LBT. At this stage,
each block has one DC coefficient.

For second stage of LBT, we consider these DC coefficients as single pixel arranged in DC
blocks of size 4x4 and same operations of stage 1 are performed. After performing OPF_4pt,
OPF_4x4 and FCT_4x4, stage 2 of LBT is completed. At this stage, each macro block has 1
DC coefficient, 15 low pass coefficients and 240 high pass coefficients. We send these coeffi-
cients back to DDR SDRAM and load new tile data into data memory. DDR SDRAM is just
used for image storage and can be removed if streaming of image samples from sensor is
available. Only data and instruction memory is used in processing of LBT. Flow diagram in
Figure 14 gives summary of operations for LBT processing.

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding 199
http://dx.doi.org/10.5772/53100

| Start |

v

Load Image in
DDR SDRAM
through UART

Divide image
into 512x512
tiles

Fetch Tile
Data from
DDR SDEAM
into Data
Memory

Y

Perform
OPF_4pt,OPF
_4x4 and
FCT_4x4 on
image Blocks

FPerform
OPF_4pt,OPF
_4x4 and
FCT_4x4 on
DC image
Blocks

send DC, low
pass and high
pass
coefficients to
DDR SDRAM

No

All Image Tiles
Processed

Exit

Figure 14. Flow Diagram of LBT Processing in Proposed Design [9]

200 Advanced Video Coding for Next-Generation Multimedia Services

The proposed design is tested on Xilinx Virtex-II Pro FPGA and verified the functionality of
design according to standard specifications ITU-T T832 and reference software ITU-T T835.
Test Image is loaded into DDR SDRAM through UART from computer. Same test image is
also processed by reference software and compares the results. Both processed images were
same when indicates correct functionality of our design. FPGA resources used in implemen-
tation are shown in Table3.

Resource Type Used % age of FPGA
Number Slice Registers 3,742 13%
Number of occupied Slices 3,747 27%
Number of 4 input LUTs 2,962 10%
Number of RAMB16s 25 18%
Number of MULT18X18s 3 2%

Table 3. FPGA Resource Utilization

Processor specifications of design are listed in Table 4.

Processor Speed 100MHz
Processor Bus Speed 100MHz
Memory for Instruction and Data 32KB

Table 4. Processor Resources

Memory required for data and instruction in our design is 262,144 bits. As the input im-
age is divided into fix size tiles i.e. 512x512, design can process large image sizes. Mini-
mum input image size is 512 x 512. Due to less memory requirements, easy up-gradation
and tile based image processing. It is suitable for low cost portable devices. Test image is
used of size 512x512 and in unsigned-16 bit format. Execution time to process test image
is 27.6ms. Compression capability for test image is 36 frames per second. Figure 15 shows
original and decompressed image which was compressed by proposed design. Lossless
compression mode of JPEG XR is used to test the implementation so recovered image is
exactly same as original image.

Implementation of Lapped Biorthogonal Transform for JPEG-XR Image Coding
http://dx.doi.org/10.5772/53100

(a) (b)

Figure 15. Figure (a) shows original image. Figure (b) shows decompressed image which was compressed by pro-
posed LBT implementation.

5. Conclusion

In this chapter we have discussed the implementation of Lapped Biorthogonal Transform in
LabVIEW for state of art image compression technique known as JPEG XR (ITU-T T.832 |
ISO/IEC 29199-2). Such implementation can be used in PXI based high performance embed-
ded controllers for image processing and compression. It also helps in research and efficient
hardware implementation of JPEG-XR image compression. Moreover we also proposed an
easily programmable, soft processor based design of LBT which requires less memory for
processing that’s makes this design suitable for low cost embedded devices.

Author details

Muhammad Riaz ur Rehman, Gulistan Raja and Ahmad Khalil Khan

Department of Electrical Engineering, University of Engineering and Technology, Taxila,
Pakistan

References

[1] Wallace and G K. The JPEG still picture compression standard. IEEE Transactions on
Consumer Electronics 1992; 38(1) xviii - xxxiv.

[2] Taubman and D S. JPEG2000: standard for interactive imaging. Proceedings of the
IEEE 2002; 90(8) 1336 — 1357.

201

202 Advanced Video Coding for Next-Generation Multimedia Services

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[13]

ITU-T JPEG XR image coding system — Image coding specification. ITU-T Recom-
mendation T.832; 2009.

Frederic Dufaux, Gary Sullivan and Touradj. Ebrahimi. The JPEG XR Image Coding
Standard. IEEE Signal Processing Magazine 2009; 26(6) 195-199.

Malvar and H S.The LOT: transform coding without blocking effects. IEEE Transac-
tions on Acoustics, Speech and Signal Processing 1989; 37(4) 553 — 559.

Malvar and H S.Biorthogonal and nonuniform lapped transforms for transform cod-
ing with reduced blocking and ringing artifacts. IEEE Transactions on Signal Process-
ing 1998; 46(4) 1043 — 1053.

J Z Xu, F Wu,] Liang and W Zhang. Directional Lapped Transforms for Image Cod-
ing. IEEE Transactions on Image Processing 2010; 19(1) 85-97.

Maalouf, A Larabi and M C. Low-complexity enhanced lapped transform for image
coding in JPEG XR / HD photo. In: 16th IEEE International Conference on Image
Processing (ICIP), 7-10 Nov. 2009, 5 - 8.

M R Rehman and G Raja. A Processor Based Implementation of Lapped Biorthogonal
Transform for JPEG XR Compression on FPGA. The Nucleus 2012; 49(3)

Ching Yen Chien, Sheng Chieh, Huang, Chia Ho Pan, Ce Min Fang and Liang-Gee
Chen. Pipelined arithmetic encoder design for lossless JPEG XR encoder. In: 13" IEEE
International Symposium on Consumer Electronics, 25-28 May. 2009, 144 — 147.

Groder, S H Hsu and K W. Design methodolgy for HD Photo compression algorithm
targeting a FPGA. In: IEEE International SOC Conference, 17-20 Sept. 2008, 105 — 108.

Ching Yen Chien, Sheng Chieh Huang, Shih-Hsiang Lin, Yu-Chieh Huang, Yi-Cheng
Chen, Lei-Chun Chou, Tzu-Der Chuang, Yu-Wei Chang, Chia-Ho Pan and Liang-
Gee Chen. A 100 MHz 1920x1080 HD-Photo 20 frames/sec JPEG XR encoder de-
sign.In: 15th IEEE International Conference on Image Processing (ICIP), 12-15 Oct.
2008, 1384 — 1387.

Chia Ho Pan, Ching Yen Chien, Wei Min Chao, Sheng Chieh Huang and Liang Gee
Chen. Architecture Design of Full HD JPEG XR Encoder for Digital Photography Ap-
plications. IEEE Transactions on Consumer Electronics 2008; 54(3) 963 — 971.

