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1. Introduction 

First of all, what is multivariate data analysis and why is it useful in waste management? 

Methods dealing with only one variable are called univariate methods. Methods dealing 

with more than one variable at once are called multivariate methods. Using univariate 

methods natural systems cannot be described satisfactorily. Nature is multivariate. That 

means that any particular phenomenon studied in detail usually depends on several factors. 

For example, the weather depends on the variables: wind, air pressure, temperature, dew 

point and seasonal variations. If these factors are collected every day a multivariate data 

matrix is generated. For interpretation of such data sets multivariate data analysis is useful. 

Multivariate data analysis can be used to process information in a meaningful fashion. 

These methods can afford hidden data structures. On the one hand the elements of 

measurements often do not contribute to the relevant property and on the other hand 

hidden phenomena are unwittingly recorded. Multivariate data analysis allows us to 

handle huge data sets in order to discover such hidden data structures which contributes 

to a better understanding and easier interpretation. There are many multivariate data 

analysis techniques available. It depends on the question to be answered which method to 

choose.  

Due to the requirement of representative sampling number of samples and analyses in 

waste management lead to huge data sets to obtain reliable results. In many cases extensive 

data sets are generated by the analytical method itself. Spectroscopic or chromatographic 

methods for instance provide more than 1000 data points for one sample. Evaluation tools 

can be developed to support interpretation of such analytical methods for practical 

applications. For specific questions and problems different evaluation tools are necessary. 

Calculation and interpretation are carried out by the provided evaluation tool.  
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In this study an overview of multivariate data analysis methods and their application in 

waste management research and practice is given.  

2. Multivariate data analysis in waste management 

The main objectives of multivariate data analysis are exploratory data analysis, classification 

and parameter prediction. Many different multivariate data analysis methods exist in 

literature. Thus the following list is not exhaustive however subdivided into the mentioned 

superior categories. It only concentrates on the methods applied in waste management.  

Table 1 gives an overview of the existing literature in waste management on multivariate 

data analysis applied by several authors. It can be summarised that PCA and PLS1 are the 

most popular multivariate data analysis methods applied in waste management. Details are 

given in the following sections 2.1 and 2.2. Due to easy traceability of the parameters 

investigated in the different papers parameter descriptions have been taken as they were 

mentioned in the original.  

In practice there are many software packages available which include different multivariate 

data analysis methods. Some software tools are: SPSS (www.spss.com\de\statistics), 

Canoco (www.canoco.com), The Unscrambler (www.camo.com) and the Free Software R-

project (www.cran.r-project.org). 

 

 Pattern recognition Calibration 

Method PCA FA CCA CA DA SIMCA MLR PLS1 PLS2 PSR 

Chapter 2.1.1 2.1.2 2.1.3 2.1.3 2.2.1 2.2.2 

Compost 

science 

[1-23] [24] [25] [1, 4, 

22, 24-

31] 

[3, 9] [8, 12] [29, 32, 

33] 

[2, 6, 8, 

19, 21, 

23, 34-

47] 

[8, 21, 

48] 

[49] 

Municipal 

solid waste 

[50-55]   [56]    [17, 53, 

57, 58]

  

Landfill 

research 

[59-72] [65] [73, 74] [72, 75] [66, 71, 

76, 77]

[78] [79, 80] [17, 61, 

62, 66, 

71, 78]

  

Logistics [81] [82]  [82]   [83, 84]    

Table 1. Literature review of different multivariate data analysis methods applied in waste 

management; PCA – Principal Component Analysis, FA – Factor Analysis, CA – Cluster Analysis, CCA 

– Canonical Correspondence Analysis, DA – Discriminant Analysis, SIMCA – Soft Independent 

Modelling of Class Analogy, MLR – Multiple Linear Regression, PLS-R – Partial Least Squares 

Regression, PSR – Penalised Signal Regression 
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2.1. Pattern recognition 

2.1.1. Exploratory data analysis 

 Principal Componant Analysis (PCA) 

PCA is mathematically defined as an orthogonal linear transformation that arranges the 

data to a new coordinate system in that the greatest variance by any projection of the data 

takes place along the first coordinate (called the first principal component), the second 

greatest variance along the second coordinate, and so on. Theoretically the PCA is the 

optimum transformation for a given data set in least square terms. That means PCA is used 

for dimensionality reduction of variables in a data set by retaining those characteristics of 

the data set that contribute most to its variance. The transformation to the new coordinate 

system is described by scores (T), loadings (P) and errors (E). In matrix terms, this can be 

written as X = T * P + E. Fig. 1 illustrates the mathematical transformation using PCA. The 

matrices can be displayed graphically. The scores matrix illustrates the data structure and 

the loading matrix displays the influence of the different variables on the data structure. 

 

Figure 1. Principle of the PCA (according to Esbensen [85]) 

PCA displays hidden structures of huge data sets. PCA is applied in different fields of waste 

management to find out the relevant parameters of a large parameter set. So we can see 

which properties of a sample are significant and important to answer a particular question. 

Due to the results obtained time and money can be saved in further research activities. 

Many applications can be found in compost science. Zbytniewski and Buszewski [1] applied 

PCA to reveal the significant parameters and possible groupings of chemical parameters, 

absorption band ratios and NMR data. Campitelli and Ceppi [3] investigated the quality of 

different composts and vermicomposts. The collected data were evaluated by means of PCA 

to extract the significant differences between the two compost types. Gil et al. [4] used PCA 

to show effects of cattle manure compost applied on different soils. Termorshuizen et al. [13] 

carried out a PCA based on disease suppression data determined by bioassays in different 

compost/peat mixtures and pure composts. PCA was applied by Planquart et al. [10] to 

examine the interactions between nutrients and trace metals in colza (Brassica napus) when 

sewage sludge compost was applied to soils. LaMontagne et al. [7] applied PCA on terminal 

restriction fragment length polymorphisms (TRFLP) patterns of different composts to reveal 

their characteristics with respect to microbial communities. Malley et al. [8] recorded near 

infrared spectra from cattle manure during composting. The collected spectral data were 
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evaluated by PCA to show the relationships among samples and changes due to stockpiling 

and composting. Hansson et al. [6] observed the anaerobic treatment of municipal solid waste 

by using on-line near infrared spectroscopy. For spectral data interpretation PCA was carried 

out. Albrecht et al. [2] also performed a PCA for near infrared (NIR) spectra evaluation from 

an ongoing composting process. Smidt et al. [12] used PCA to show differences in spectral 

characteristics of different waste materials. Lillhonga et al. [23] used PCA to observe spectral 

characteristics of different composting processes. Vergnoux et al. [21] applied a PCA on NIR 

spectra as well as on physico-chemical and biochemical parameters to derive regularities from 

the data. Nicolas et al. [9] used PCA to evaluate data from an electronic nose. The correlations 

between the sensor of an electronic nose and chemical substances were determined by Romain 

et al. [11] using PCA. PCA was applied to observations of a composting process by means of 

analytical electrofocusing. The electrofocusing profiles were evaluated by Grigatti et al. [5]. 

PCA was also used by Biasioli et al. [19] to evaluate odour emissions and biofilter efficiency in 

composting plants using proton transfer reaction-mass spectrometry. Bianchi et al. [18] also 

used PCA to reduce the complex data set and to analyse the pattern of organic compounds 

emitted from a composting plant, a municipal solid waste landfill and ambient air. The effect 

of 14 different soil amendments on compost quality were evaluated using a PCA by Tognetti 

et al. [20]. Smidt et al. [16] applied PCA to illustrate the influence of input materials and 

composting operation on humification of organic matter. Böhm et al. [14] and Smidt et al. [15, 

17] used PCA to illustrate spectral differences caused by different materials such as biowaste, 

manure, leftovers, straw and sewage sludge.  

PCA was also applied to illustrate the alteration of municipal solid waste during the 

biological degradation process reaching stability limits for landfilling as well as to 

demonstrate similarities and differences of reactor and old landfills based on thermal data 

[53, 66]. Scaglia and Adani [52] focused on municipal solid waste treatment. They used PCA 

to create a stability index for quantifying the aerobic reactivity of municipal solid waste. 

Abouelwafa et al. [54, 55] investigated the degradation of sludge from the effluent of a 

vegetable oil processing plant mixed with household waste from landfill. Abouelwafa et al. 

[54] applied PCA on various parameters measured during composting (e.g. pH, electrical 

conductivity, moisture, C/N, NH4/NO3, ash, decomposition in percent, level of polyphenols, 

lignin, cellulose, hemicellulose, humic acid) to find the main parameters in the 

decomposition and restructuring phase [54]. Abouelwafa et al. [55] extracted fulvic acids 

from the samples mentioned above and extended the data set used for PCA by a series of 

absorption band ratios resulting from of FTIR spectra. 

PCA has also been used in landfill research. Mikhailov et al. [62] applied PCA for 

monitoring data from different landfills. They included parameters such as depth, ash 

content, volumetric weight, humidity, amounts of refuse in summer and winter as well as 

the topsoil depth of landfill sections, sewage sludge lenses and the existence of a protection 

system. Kylefors [61] investigated data of leachate composition using PCA. The idea was to 

reduce the analytical monitoring program for further investigations. Durmusoglu and 

Yilmaz [60] used PCA to extract the significant independent variables of the collected data 

of raw and pre-treated leachate. A comparable work was done by De Rosa et al. [59]. They 

also investigated the leachate composition of an old waste dump connected to the 
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groundwater. Olivero-Verbel et al. [63] investigated the relationships between physico-

chemical parameters and the toxicity of leachates from a municipal solid waste landfill. PCA 

was used to find out which parameters were responsible for their toxicity. Jean and Fruget 

[72] used PCA to compare landfill leachates according to their toxicity and physico-chemical 

parameters. Ecke et al. [71] showed an example for PCA application in landfill monitoring of 

data from landfill test cells, leachate and gas data. Smidt et al. [64] investigated landfill 

materials by means of mid infrared spectroscopy, thermal analysis and PCA. They used 

PCA to support data interpretation. Van Praagh et al. [70] investigated the potential impacts 

on leachate emissions using pretreated and untreated refuse-derived material as a cover 

layer on the top of a municipal solid waste landfill. To interpret leachate characteristics they 

used PCA. Tintner and Klug [69] used PCA to illustrate how vegetation can indicate landfill 

cover features. Diener et al. [67] investigated the long-term stability of steel slags used as 

cover construction of a municipal solid waste landfill by means of a PCA.  Smidt et al. [17] 

used PCA to display spectral characteristics of different landfill types. 

Pablos et al. [68] used a PCA to evaluate toxicity bioassays for biological characterisation of 

hazardous wastes.  

Other publications focus on the process monitoring of municipal solid waste incineration 

residues. Ecke [50] performed PCA on leaching parameters from municipal solid waste 

incineration fly ash to get an overview of the mobility of metals under certain conditions. 

Mostbauer et al. [51] carried out PCA to observe the long-term behaviour of municipal solid 

waste incineration (MSWI) residues.  

In the field of waste management logistics PCA is rarely applied. Dahlén et al [81] used PCA 

to display the impact of waste costs on a weight basis in a specific municipality. 

 Factor Analysis (FA) 

FA is related to PCA but differs in its mathematical conception [86]. FA is also used to 

describe the variability of observed variables in terms of fewer variables called factors. That 

means factor analysis is a tool which reveals unobservable underlying features of a specific 

phenomenon by previous visible observations. The observed variables are modelled as 

linear combinations of the factors plus "error" terms. The information about 

interdependencies can be used to reduce the number of variables in a data set.  

In waste management practice PCA is preferentially used. Differences between factor 

analysis and PCA are found to be small [86]. Srivastava and Ramanathan [65] investigated 

the groundwater quality of a landfill site in India by means of FA. They explained the 

observed relationship in simple terms expressed as factors. Bustamante et al. [24] used FA to 

identify the principal variables associated to the composting of agro-industrial wastes. Lin et 

al. [82] used FA for selecting the best food waste recycling method. 

 Canonical Correspondence Analysis (CCA) 

CCA is a multivariate method to explain the relationships between biological communities 

and their environment [87]. The method is designed to extract environmental gradients from 
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ecological data sets. By means of the gradients an ordination diagram describing and 

visualising the diverse habitat preferences of taxa is calculated. 

CCA is sometimes used in waste management if, for example, microbial communities or 

vegetation surveys are analysed. CCA was applied by Franke-Whittle et al. [25] and El-

Sheikh et al. [73]. Franke-Whittle et al. [25] applied CCA to illustrate the similarities in 

microbial communities of three different composting processes. El-Sheikh et al. [73] 

investigated the ten-year primary succession on a newly created landfill at a lagoon of the 

Mediterranean Sea. Vegetation surveys where the basis for CCA. Kim et al. [74] applied 

CCA to investigate the vegetation and the soil of a not properly maintained landfill to 

suggest restoration alternatives by comparing the vegetation of the landfill to the nearby 

forests.  

2.1.2. Unsupervised pattern recognition  

 Cluster analysis (CA) 

Clustering is the classification of objects into groups called clusters. Objects from the same 

cluster are more similar to one another than objects from different clusters. The difference of 

clusters is based on measured distances without any unit. Cluster analysis can be illustrated 

graphically in a dendrogram as shown in Fig. 2. The samples 2, 3 and 5 are clustered due to 

the high degree of similarity as well as the samples 1 and 4. The two clusters show little 

similarity. 

 

Figure 2. Example of a cluster analysis visualised by a dendrogram  

CA was applied in compost science by Zybtniewskie and Buszewski [1]. They applied CA to 

conventional compost parameters and NMR data to find out the grouping depending on the 

composting time. He et al. [56] used a hierarchical cluster analysis to show the similarities 

and differences of UV-Vis and fluorescence spectra of water extractable organic matter, 

originating from municipal solid waste that had been subjected to different composting 

times. A hierarchical cluster analysis was also used by He et al. [22] to investigate water-
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extractable organic matter during cattle manure composting. Gil et al. [4] displayed 

dendrograms to illustrate the similarities or differences by application of cattle manure 

compost to different soils. Bustamante et al. [24] studied physico-chemical, chemical and 

microbiological parameters of different composts. The evaluation of the composts was 

conducted by a hierarchical cluster analysis [24]. 

Lin et al. [82] applied a CA for the selection of optimal recycling methods for food waste. 

A stepwise cluster analysis (SCA) was used to describe the nonlinear relationships among 

state variables and microbial activities of composts by Sun et al. [29]. Sun et al. [30] 

developed a genetic algorithm aided stepwise cluster analysis (GASCA) to describe the 

relationships between selected state variables and the C/N ratio in food waste composting. 

Furthermore CA has often been used to evaluate microbiological data, especially in compost 

science [25-28, 31]. Innerebner et al. [26] and Ros et al. [27, 28] used CA to identify related 

samples and similar groups of microorganisms. Franke-Whittle et al. [25] used CA to show 

the similarities of Denaturing Gradient Gel Electrophoresis (DGGE) data of three different 

compost types with proceeding compost maturity. Xiao et al. [31] used a hierarchical cluster 

analysis of DGGE data to estimate the succession of bacterial communities during the active 

composting process. 

Tesar et al. [75] applied CA to spectral data to illustrate the effect of in-situ aeration of a 

landfill. Jean and Fruget [72] used CA to compare landfill leachates on the basis of their 

toxicity and physico-chemical parameters. 

2.1.3. Supervised pattern recognition 

All supervised methods are classifications. Classification can be considered as a predictive 

method where the response is a category variable. Different classification methods exist. 

There are types of “hard” and “soft” modelling. Hard modelling means that a non-

relocatable line between the defined groups exists. One object can only belong to one group. 

Soft modelling allows an overlapping of the defined classes. An object can belong to both 

groups [88]. With regard to waste management practice two different classification methods 

are described in detail.  

 Discriminant analysis (DA) 

DA is a classification method of hard modelling. Campitelli and Ceppi [3] carried out a DA 

to distinguish between compost and vermicompost on the basis of parameters such as total 

organic carbon (TOC), germination index (GI), pH, total nitrogen (TN), and water soluble 

carbon (WSC). Nicolas et al. [9] performed a DA to classify data of an electric nose according 

to defined exceeded levels of odour. Ecke et al. [71] investigated samples from three 

different landfill sites by the biochemical methane potential and used DA for data 

evaluation. Huber-Humer et al. [77] applied DA to determine methane oxidation efficiency 

of different materials based on chemical and physical variables. Smidt et al. [66, 76] used DA 

to differentiate the infrared spectral [76] and thermal patterns [66] of municipal solid waste 
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incinerator (MSWI) bottom ash before and after CO2 uptake. A DA on the CO2 ion current 

recorded during combustion was applied to illustrate the effect of CO2 treatment of MSWI 

bottom ash [66]. DA was also used to illustrate the spectral characteristics of leachate from 

landfill simulation reactors under aerobic and anaerobic conditions [17]. 

 Soft independent modelling of class analogy (SIMCA) 

SIMCA is a special method of soft modelling recommended by Wold in the 1970s [88]. 

Objects can belong to one of the defined class, to both classes or to none. Whether SIMCA 

can be applied on the data set depends on the question to be answered. According to 

Brereton [88] it is often legitimate in chemistry that an object belongs to more than one class 

For example a compound may have an ester and an alkene group which are both reflected 

by an infrared spectrum. Thus they fit in both classes. In natural science it is allowed in most 

cases for an object to be in line with more than one class simultaneously. 

Contrarily in other cases an object can belong only to one class and the application of 

SIMCA is inappropriate. Brereton [88] gives a good example where the concept of SIMCA is 

not applicable: A banknote is either forged or not. In many cases there is only one true 

answer. For such problems SIMCA is not the adequate method.  

In compost science Malley et al. [8] and Smidt et al. [12] carried out a SIMCA. Malley et al. 

[8] classified different decomposition stages of manures by means of near infrared 

spectroscopy and SIMCA. Smidt et al. [12] carried out a SIMCA to classify different waste 

materials such as biowaste compost, mechanically-biologically pretreated waste and landfill 

materials based on their spectroscopic pattern.  Smidt et al. [78] used the SIMCA model 

developed by Smidt et al. [12] to identify different landfill types such as reactor landfill and 

industrial landfill samples. 

2.2. Calibration 

2.2.1. Multiple Linear Regression (MLR) 

MLR is directed at modelling the relationship between two or more explanatory variables 

and a response variable by fitting a linear equation to observed data. Every value of the 

independent variable X is associated with a value of the dependent variable Y, with 

explanatory or predictive purposes. A direct correlation between Y and X-matrix is performed. 

In waste management MLR was applied by Chikae et al. [32] to predict the germination 

index which was adopted as a marker for compost maturity. Thirty-two parameters of 159 

samples were measured. MLR was carried out to reduce this huge parameter set to some 

significant parameters. Lawrence and Boutwell [79] used MLR for predicting the 

stratigraphy of landfill sites using an electromagnetic method. Moreno-Santini et al. [80] 

applied MLR to determine arsenic and lead levels in the hair of residents in a municipality 

constructed on a former landfill. 

Noori et al. [84] compared two different statistical methods (artificial neural networks and 

MLR based on a PCA) to predict the solid waste generation in Tehran. Cheng et al. [83] used 
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MLR to predict the factors associated with medical waste generation at hospitals. Sun et al. 

[29] used MLR to predict mesophilic and thermopilic bacteria in food waste composts. 

Suehara and Yano [33] applied MLR to predict conventional compost parameters by NIR 

spectral data. 

2.2.2. Partial Least Squares Regression (PLS-R) 

 PLS1 

PLS-R is used to find out the fundamental relations between two matrices. PLS-R is a 

bilinear modelling method. The main idea behind it is to calculate the principal components 

of the X and the Y matrix separately (external correlation) and to develop a regression model 

between the scores of the principal components (inner correlation). The concept of PLS-R is 

demonstrated in Fig. 3.  

PLS1 is often used to predict time consuming or expensive parameters using an alternative 

analytical method. Modern analytical tools such as spectroscopic, chromatographic and 

thermo analytical methods generate data with inherent information on different parameters. 

With the development of an evaluated prediction model conventional analytical methods 

can be replaced by easier and/ or faster handling and robust methods.  

 

Figure 3. Principles of PLS-R (according to Esbensen [85])  

Many authors have developed such prediction models in compost science. Zvomuya et al. 

[44] predicted phosphorus availability in soils, amended with composted and non-

composted cattle manure by means of cumulative phosphorus analysis. Fujiwara and 
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Murakami [35] applied near infrared spectroscopy to estimate available nitrogen in poultry 

manure compost. Huang et al. [36] also used near infrared spectroscopy to estimate pH, 

electric conductivity, volatile solids, TOC, total N, the C:N ratio and the total phosphorus 

content. Furthermore they determined nutrient contents such as K, Ca, Mg, Fe and Zn of 

animal manure compost using near infrared spectroscopy and PLS1 [37]. Malley et al. [8] 

developed prediction models for total C, organic C, total N, C:N ratio, K, S and P by means 

of near infrared spectroscopy and PLS1. Morimoto et al. [43] carried out carbon 

quantification of green grass tissue using near infrared spectroscopy. Hansson et al. [6] 

predicted the concentration of propionate in an anaerobic process by near infrared spectra. 

Albrecht et al. [2] developed calibration models between spectral data and C, N, C:N ratio 

and composting time. Michel et al. [42] predicted chemical and biological properties of 

composts such as organic C (Corg), total N, C:N ratio, age, microbial biomass (Cmic), Cmic:Corg, 

basal respiration, enzymatic activity and plant suppression using near infrared 

spectroscopy. Ludwig et al. [39] also used near infrared spectroscopy to predict pH, electric 

conductivity, P, K, NO3- and NH4+ and phytotoxicity. Ko et al. [38] predicted heavy metal 

contents of Cr, As, Cd, Cu, Zn and Pb by means of near infrared spectroscopy and PLS1. 

They hypothesised that heavy metals are detectable by NIR when they are complexed with 

organic matter. Capriel et al. [34] found out that mid infrared spectroscopy is a rapid 

method to estimate the effect of nitrogen and relevant parameters such as total C, total N, 

the C:N ratio and the pH of biowaste compost. Meissl et al. [40] used PLS1 and the mid 

infrared region to predict humic acid contents in biowaste composts. Furthermore they 

determined humic acid contents by near infrared spectroscopy [41]. Sharma et al. [47] 

developed prediction models for conventional compost parameters, especially ammonia, 

pH, conductivity, dry matter, nitrogen and ash using NIR and Vis-NIR spectroscopy. 

Lillhonga et al. [23] used PLS-R for compost parameter prediction based on NIR spectra. 

They developed models for the parameters: time, pH, temperature, NH3/NH4+, energy 

(calorific value) and moisture content. Galvez-Sola et al. [45] used PLS1 to predict different 

compost quality parameters such as pH, electric conductivity, total organic matter, total 

organic carbon, total N, C/N ratio as well as nutrients contents (N, P, K) and potentially 

pollutant element concentrations (Fe, Cu, Mn and Zn) from near infrared spectra. Vergnoux 

et al. [21] applied a PLS1 to predict physico-chemical and biochemical parameters from NIR 

spectra. Physico-chemical parameters comprised age, organic carbon, organic nitrogen, C/N, 

total N, fulvic acids (FA), humic acids (HA) and HA/FA. The soluble fraction, lignin and 

biological maturity index were summarised as biochemical parameters. Mikhailov et al. [62] 

used PLS1 to predict maturity and stability based on conventionally measured data. 

Kylefors [61] developed prediction models for leachate concentrations of specific organic 

substances in leachate by means of conventional leachate analysis and PLS1. Biasioli et al. 

[19] used PLS1 to predict odour concentrations in composting plants by proton transfer 

reaction-mass spectrometry (PTR-MS). Mohajer et al. [46] used a PLS1 to generate a model 

to predict the microbial oxygen uptake in sludge based on different physical compost 

parameters.  
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Böhm et al. [57] used PLS1 to predict the respiration activity (RA4) based on FT-IR spectra of 

mechanically-biologically pretreated (MBT) waste. The potential of thermal data of MBT 

waste was shown by Smidt et al. [53]. They applied PLS1 to predict the calorific value, total 

organic carbon (TOC) and respiration activity (RA4). Smidt et al. [17] also developed a 

prediction model for the calorific value based on spectral data. Biasioli et al. [58] used PLS1 

to predict odour concentration from MSW composting plants based on PTR-MS. 

Ecke et al. [71] performed detoxification of hexavalent chromium to less toxic trivalent 

chromium in industrial waste and applied a PLS model to identify the relevant factors. 

Smidt et al. [78] predicted the biological oxygen demand and the dissolved organic carbon 

(DOC) of old landfill materials from spectral data. They also used PLS-R to predict the total 

organic carbon and total nitrogen based on thermal data [78]. Furthermore PLS-R was used 

to predict respiration activity (RA4) from MS data of old landfill materials [66]. Smidt et al. 

[17] developed a prediction model for the DOC and the TOC from spectral data of landfill 

materials. 

 PLS2 

PLS2 is a variant of the PLS-R method where several Y-variables are modelled 

simultaneously. An advantage of this method is to find possible correlations or co-linearity 

between the Y-variables. 

Malley et al. [8] developed prediction models for pH, total N, nitrate and nitrite, total C, 

organic C, C:N ratio, P, available P, S, K and Na by means of near infrared spectroscopy and 

PLS2. Suehara et al. [48] used PLS2 for simultaneous measurement of carbon and nitrogen 

content of composts using near infrared spectroscopy. Vergnoux et al. [21] applied PLS2 to 

predict physico-chemical (moisture, temperature, pH, NH4-N) and biochemical parameters 

(hemicellulose and cellulose) from NIR spectra. 

 Penalised signal regression (PSR) 

This special regression method is described in Galvez-Sola et al. [49].  Galves Sola et al. [49] 

used this method to predict the phosphorus content in composts. 

3. Selected examples from literature using multivariate data analysis in 

waste management 

In the following chapter four selected examples using multivariate data analysis in waste 

management are described in detail. To illustrate the application of principal component 

analysis (PCA) the study by Mikhailov et al. [62] is presented. He carried out multivariate 

data analysis for the ecological assessment of landfills. The second example illustrates the 

application of partial least squares regression (PLS-R). Michel et al. [42] applied PLS-R to 

predict conventional parameters by spectroscopic data. Ros et al. [27] applied a cluster analysis 

to data of polymerase chain reaction coupled with denaturing gradient gel electrophoresis 

(PCR-DGGE) to observe the long-term effects of compost amendment on soil microbial 

activity. A soft independent model of class analogy (SIMCA) was applied by Malley et al. [8]. 

They used SIMCA to classify different composts according to their spectroscopic characteristic. 
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3.1. Principal component analysis (PCA) 

3.1.1. Objective of the study 

The objective of the study by Mikhailov et al. [62] was to evaluate the stability of landfills 

based on many conventional parameters such as ash content, temperature, volume weight, 

pH, humidity and depth. They supposed that a multivariate approach could provide a more 

efficient data interpretation. Therefore they compared conventional and multivariate data 

analysis methods. 

3.1.2. Method of evaluation and results 

In a first step Mikhailov et al. [62] collected conventional data to describe landfill stability. 

They investigated 3 different landfills in Russia, one illegal dump, an old poorly-run dump 

and a modern well-run landfill. They focused on geodesic surveys to obtain the overall 

object properties such as size, volume and different layers. Furthermore they investigated 

the physical and chemical properties of the samples collected in different depths of the 

landfill. The physical and chemical properties include ash content, humidity, and acidity. 

Using the conventional collected data they carried out a PCA for each landfill site. They 

included the ash content, temperature, volume weight, pH, humidity and depth. The PCA 

for the two landfills in Bezenchuk and Kinel are presented in the study [62]. Based on the data 

pool Mikhailov et al. [62] could identify two important sources of waste around Bezenchuk, a 

poultry farm and a granary. In addition to regular domestic refuse, the agricultural and 

industrial wastes were disposed illegally in this dump. Kinel on the other hand is a modern, 

well operated landfill, in which both domestic and industrial wastes are disposed. These 

assumptions were confirmed by chemometric investigations based on PCA. The mentioned 

PCAs show clustering of the different classes. The results of the PCA of the third investigated 

landfill are not shown in their study. Otradny was shown to be a poorly maintained landfill. 

Clear separation of layers by means of the scores plot was not possible. They found out that 

the information by the landfill manager and the results obtained did not correspond.  

3.1.3. Conclusion 

Mikhailov et al. [62] concluded that multivariate data analysis is an appropriate tool for 

ecological monitoring. They pointed out that chemometric methods provide the possibility 

to explore the structure of waste disposal by identification of specific areas. 

3.2. Partial Least Square Regression (PLS1) 

3.2.1. Objective of the study 

The verification of compost quality has to be monitored consistently. However this is time-

consuming and laborious. Due to the fact that NIR is a simple, accurate and fast technique 

used for routine analysis Michel et al. [42] hypothesised that NIR could be used for 

parameter prediction. The objective of the study was to use NIR spectroscopy to determine 

chemical and biological properties.  
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3.2.2. Method of evaluation and results 

The first step was to define compost quality. Michel et al. [42] defined compost quality by C 

and N contents, suppression of pathogens, stability/ maturity and biological parameters, 

especially organic carbon (Corg), total N (Nt), C:N ratio, age, microbial biomass (Cmic), 

Cmic:Corg, basal respiration, enzymatic activity and suppression of plant disease. 

Spectroscopic data from 98 composts samples as well as the mentioned conventional 

parameters were collected. Fundamental relations between two matrices can be found by 

means of PLS1. Michel et al. [42] applied a PLS1 to express conventional parameters by 

spectral data. They designed for each conventional parameter a PLS1. Table 2 summarises 

the collected data and results obtained by Michel et al. [42]. The standard error of cross-

validation (SECV) and the coefficient of determination (r2) indicate the quality of prediction. 

The SECV provides information on the prediction error, r2 demonstrates the quality of 

correlation. Composting age and basal respiration show the highest r2. The specific 

enzymatic activity and the suppressive effect show the lowest r2. It should be emphasised 

that biological tests that are carried out with the original wet compost are more susceptible 

to interferences due to the heterogeneity of the material. Michel et al. [42] concluded that 

especially compost age and basal respiration are clearly reflected by the NIR spectrum and 

feature the best results. By contrast, the specific enzyme activity and suppressive effects 

show the worst prediction results. The assigned correlations are illustrated in the paper [42]. 

 

 n Mean Range Outliers 

removed 

SECV r2 

Age [d] 98 183.6 82.0 - 268.0 6 16.7 0.82 

Corg content [%] 97 26.0 16.4 - 41.5 5 2.32 0.77 

Nt content [%] 97 1.4 1.0 - 2.1 4 0.11 0.67 

C:N ratio 97 18.2 12.2 - 29.1 4 1.51 0.71 

Cmic [μg g-1] 98 4986 774 - 8587 5 954 0.68 

Cmic:Corg [mgCmicgCorg-1] 97 18.6 4.0 - 29.4 4 4.00 0.63 

Basal respiration [μg C g-1 d-1] 47 574.8 252.0 - 966.0 2 49.2 0.88 

qCO2 [μgCO2-C mg Cmic
-1 d-1] 47 9.7 4.2 - 17.1 1 1.98 0.83 

Hydrolysis of fluorescein diacetate 

(FDA-HR) [μg g-1h-1] 

98 517.9 256.0 - 879.0 5 74.7 0.75 

Specific enzyme activity [μgFDA 

mgCmic
-1h-1] 

98 118.7 48.6 - 370.9 6 48.6 0.49 

Suppression 5‰ (rating) [%] 98 57.3 8.0 - 101.0 2 19.3 0.71 

Suppression 5‰ (fresh weight) [%] 98 59.1 14.0 - 103.0 3 18.7 0.47 

Table 2. Excerpt of table 1 and 2 by Michel et al. [42], SECV = standard error of cross-validation, r2 = the 

coefficient of determination 

3.2.3. Conclusion 

Michel et al. [42] concluded that NIR spectroscopy was a capable method to predict various 

chemical and biological parameters using PLS regression. They believe NIR spectroscopy to 

be capable of monitoring compost quality. 
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3.3. Cluster analysis (CA) 

3.3.1. Objective of the study 

The objective of the study by Ros et al. [27] was to find out the long-term effects of composts 

on soil microbial communities. Different types of compost were applied over a period of 12 

years. DNA was extracted by Ros et al. [27] from differently treated soils. The microbial 

community was described by polymerase chain reaction coupled with denaturing gradient 

gel electrophoresis (PCR-DGGE). They used multivariate data analysis to show the 

differences or similarities of microbial communities using DGGE data.  

3.3.2. Method of evaluation and results 

A polymerase chain reaction coupled with denaturing gradient gel electrophoresis (PCR-

DGGE) was performed to characterize the microbial community. In Fig. 4 a DGGE 

fingerprint is shown. For the interpretation of such fingerprints statistical tools are 

necessary. DGGE data were converted into a binary system for cluster analysis (Fig. 4). As 

mentioned above, cluster analysis visualises the similarity between the samples in a 

dendrogram.  

Ros et al. [27] show the cluster analysis of the DGGE profiles of 16S rDNA from the whole 

bacterial community. The cluster analysis illustrates the segregation of two soil groups. The 

clusters are caused by two different amendments. One cluster comprises the soil with 

compost and nitrogen application, the second cluster represents the soil with amendment of 

different composts (compost + nitrogen as mineral fertiliser). 

 

Figure 4. DGGE fingerprint and an example of a binary DGGE data matrix 

3.3.3. Conclusion 

Ros et al. [27] concluded that the differences between soils with compost with additional 

nitrogen fertiliser, and the second cluster comprising compost, control and mineral fertiliser 

soils are stronger than the influence of the different compost types. Furthermore they 

hypothesised that a certain microbial community inherent to the different composts is 

irrelevant after 12 years of compost application. Based on the cluster analyses of the PCR-
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1 2 3 4 5 6 7 8 9 10 11 12 …  1 2 3 4 5 6 7 8 9 10 11 12 

80 0 0 0 0 0 0 0 1 1 0 0 0 

GC 0 0 0 0 0 0 0 1 1 0 0 1 

OWC 0 1 1 0 0 1 1 1 1 0 0 0 

MC 0 1 1 0 0 1 1 1 1 0 0 0 

SSC 0 1 1 0 0 1 1 1 1 0 0 0 

Control 0 1 1 0 0 1 1 1 1 0 0 0 

GC+80 0 1 0 0 0 1 1 1 1 0 1 1 

OWC+80 0 1 1 0 0 1 1 0 1 0 0 0 

MC+80 0 1 1 0 1 1 1 1 1 0 0 0 

SSC+80 0 1 1 0 0 1 1 1 1 0 0 0 
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DGGE data, they concluded that the combined application of compost and nitrogen affected 

soil properties regarding microbial communities much more.  

3.4. Soft independent modelling of class analogy (SIMCA) 

3.4.1. Objective of the study 

Malley et al. [8] used a portable near infrared (NIR) spectrometer to investigate changes of 

biogenic waste materials during composting. The idea of this study was to observe the 

composting process continuously in an easy and inexpensive way using NIR spectroscopy.  

3.4.2. Method of evaluation and results 

First of all many spectra were collected by Malley et al. [8]. The interpretation of spectral 

data requires experience in spectral interpretation. To provide rapid interpretation of the 

measured infrared spectra Malley et al. [8] applied the classification method SIMCA. The 

SIMCA model allows the assignment of a new sample to a defined class. A SIMCA model is 

always based on the PCAs of the various defined classes. Malley et al. [8] defined 3 different 

classes: raw manure (M), stockpiled manure (S) and manure compost (C). In the study 2 

years of composting were observed (2000 and 2001). Figure 2 by Malley et al. [8] shows the 

scores plot of the PCA based on the spectral data of the three different classes in the year 

2001. The PCA demonstrates a clear grouping of the 3 classes manure, stockpiled manure 

and manure compost. 

Malley et al. [8] illustrated the results of the SIMCA by means of a Coomans plot. In figure 3 

by Malley et al. [8] they show the Coomans plot for the investigations of 2001. The vertical 

and horizontal lines in the Coomans plot mark the 5 % level of significance. That means that 

95 % of the samples that truly belong to this group are found within the line. Due to the fact 

that compost lies on the opposite side of the vertical line from the raw and stockpiled 

samples Malley et al. [8] concluded that compost is significantly different from the other two 

classes. The groups of raw manure and stockpiled manure are overlapping. Thus Malley et 

al. [8] concluded that they did not differ significantly. Nevertheless some raw samples were 

different. With these results Malley et al. [8] demonstrated that spectroscopic data and 

multivariate data analysis, especially SIMCA provides a sensitive analysis to differentiate 

between the products of stockpiles and compost. 

3.4.3. Conclusion 

Malley et al. [8] concluded that NIR spectroscopy and the multivariate data analysis method 

SIMCA can be a rapid, inexpensive method for assessing a composting process.  

4. Critical discussion of multivariate statistical methods 

In fact there are some statistical restrictions, which cannot be solved easily. The simple 

situation starts with the general linear model. This model usually has a character variable y 

depending on one or more predictor variables x1, x2, …, xk: 
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In case of cross-classified two-way analysis of variance (equal subclass numbers): 

 yijk = μ + ai + bj+ wij + eijk, (i = 1,    , a; j = 1, …, b; k = 1, …, n)  (1) 

μ is the general mean, ai are the main effects of factor A, bj are the main effects of factor B, wij 

are the interactions between Ai and Bj, eijk are the random error terms. 

In case of multiple linear regression: 

 yj = β0 + β1 x1j + β2 x2j + … + βk xkj + ej, (j = 1, … , n),  (2) 

yj is the j-th value of y depending on the j-th values x1j, … xkj ; 

ej are error terms with E(ej) = 0, var(ej) = σ² (for all j), cov(ej', ej) = 0 for j'≠j 

The simple case assumes a linear dependency. The statistical parameters (the model 

coefficients) of the model can be estimated, y can be estimated for given values x1, … xk. 

Assuming that the ej are normally distributed, confidence intervals can be calculated for 

each model coefficient and finally tests of hypotheses about the model coefficients can be 

performed. By this procedure each variable can be tested whether its influence on the 

variable y is significantly different from 0 or not. The type I and type II error can be stated. 

Furthermore optimal designs for the experiments and surveys can be calculated [89]. Several 

assumptions are typically made regarding the distribution of the populations and regarding 

homoscedasticity. Furthermore the problem of extreme values and outliers respectively is 

critical, especially in environmental measurements. Increasing the number of regressors and 

factors respectively also increases the error terms. 

For some univariate models robust and powerful alternatives regarding the distribution 

assumptions and regarding homoscedasticity [90-92] already exist. In the case of cross 

classification there is still no satisfying, powerful alternative. Many multiple regressors 

methods (multiple regression models, logistic regression models, discriminant analysis, 

cross classification models) need independent variables. 

In chemometrics some of these problems are highly relevant. Usually the number of 

regressor variables exceeds the number of samples, which excludes most of the common 

oligovariate models. Many of the regressor variables are highly collinear. Due to these 

reasons dimension reduction methods are used such as correspondence analysis or factor 

analysis. The new factors in the latter are strictly independent from one another and can 

therefore be used in conventional models. There are several possibilities to extract these 

factors, like Principal Components or Maximum Likelihood. A possibility to model discrete 

variables is the classification by means of cluster analysis. These clusters can be tested later 

by contingency tables. Both steps (factor analysis and cluster analysis) lead to descriptive 

variables of the data set. Just as all descriptive methods in statistics they do not serve as tests 

against hypothesis of pure chance. There is no risk assessment of the results. Testing of the 

new descriptive variables implies the understanding of these new variables. By loading the 

original variables onto the new variables sometimes the interpretation can be done easily. 

Then models with these variables can be established (PCR or PLS-R) with several quality 



 
Application of Multivariate Data Analyses in Waste Management 31 

parameters (e.g. correlation coefficient). A test of significance for the cross-validated r² was 

performed by Wakeling and Morris [93]. In this paper critical values of r² occurring just by 

chance alone are tabulated for one to three dimensional models at a significance level of 5 % 

based on Monte Carlo simulations. A comparable method was used by Stahle and Wold [94] 

to develop a polynomial approximation of the test statistic for the two-class problem and the 

number of objects, the number of variables, the percentage variance explained by the first 

component in X and the percentage of missing values. 

 cvd/sd =√PRESS/RSS (3) 

cvd: cross-validated deviances 

sd: standard deviation 

PRESS: prediction error sum of squares 

RSS: residual sum of squares 

Unfortunately the definition of hypothesis regarding the regression coefficients still refers to 

the new components and provides no results regarding the original variables. There is no 

statistical possibility to prove whether the extraction method is optimal. Other methods of 

dimension reduction are already in use (e.g. Boosting, Random forest). Robust alternatives 

for PLS-R are also available [95]. 

As long as there are no satisfying testing routines, the results of the presented multivariate 

methods have to be interpreted very carefully. There is an inherent risk of over-

interpretation, especially when using descriptive methods such as PCA or cluster analysis. 

There is no definition of the error probability of the results. That means whatever 

interpretation of the picture is done, it could be just pure coincidence and there is no 

information about the risk. The only possibility to overcome these problems would be to 

analyse a large number of samples and in case of regression models to validate these 

models. 

5. Summary 

In waste management research and practice often huge data sets for statistical evaluation are 

required to verify the findings. This request concerns both the natural scientific and the 

logistic field of waste management. Huge data sets can be generated on the one hand by 

vast numbers of investigated parameters and samples and on the other hand by modern 

analytical methods such as spectroscopic, chromatographic methods or thermal analysis. 

Multivariate data analysis can help to explore data structures of the investigated samples. 

Another advantage is that the results can be displayed graphically. Furthermore, validated 

models can serve as adequate evaluation tools for practical application. Different software 

types are offered to develop such evaluation tools. 

In this study the most important multivariate data analysis methods applied in waste 

management were described in detail and documented by a literature review. It could be 

demonstrated that Principal Component Analysis (PCA) and Partial Least Square 



 
Multivariate Analysis in Management, Engineering and the Sciences 32 

Regression (PLS-R) are the most applied methods in waste management. PCA was used to 

find hidden data structures, groupings and interrelationships of data. In most cases PLS-R 

was applied to predict parameters using new analytical instruments that allow faster and 

cheaper analyses.  

In general it can be stated that multivariate data analysis was successfully applied in all 

experiments. Several authors compared different multivariate methods to determine which 

one provided the best results. Depending on the data set and the question to be answered 

the appropriate method must be identified. 
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