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1. Introduction 

The importance of loop circuits linking the frontal cortex and the basal ganglia has 

constantly been highlighted in the performance of various motor schemes [1-4]. These 

cortico–basal ganglia loop circuits originate from anatomically and functionally diverse 

motor-related areas, which include the primary motor cortex (MI), the supplementary motor 

area (SMA), and the premotor cortex (PM). Two opposing mechanisms are possible for the 

processing of motor information in the cortico–basal ganglia loops. One is "information 

funneling" in which inputs from multiple motor-related areas are highly concentrated in 

common territories of the basal ganglia. The other is "parallel processing" in which inputs 

from distinct motor-related areas are topographically distributed to individual territories of 

the basal ganglia. For understanding the mode of motor information processing in the basal 

ganglia, it is crucial to investigate which mechanism organizes the projections from the 

frontal motor-related areas to the input stations of the basal ganglia, the striatum and the 

subthalamic nucleus (STN). 

According to several physiological studies [5-8], it has been revealed that the caudal aspect 

of the dorsal premotor cortex (F2; see [9,10]) in area 6 of macaque monkeys plays a crucial 

role in the planning and execution of arm movements, and that there is certain functional 

specialization between the caudal sector of F2 (F2c), located ventral to the superior 

precentral dimple, and the rostral sector of F2 (F2r), located dorsal to the genu of the arcuate 

sulcus. Since our prior work demonstrates that F2c and F2r receive largely segregated inputs 

from the cerebellum [11], it is of great interest to explore the organization of cortico–basal 

ganglia loop circuits that arise from F2c and F2r. 
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In this chapter, we first summarize a series of our previous anatomical studies about the 

mode of information processing in the basal ganglia based on the distribution patterns of 

corticostriatal and corticosubthalamic inputs from the frontal motor-related areas of 

macaque monkeys, including the PM [12-18]. The overall results indicate that the 

corticostriatal and corticosubthalamic inputs from the motor-related areas are orderly 

arranged according to segregation versus overlap rules. We then introduce the data of our 

recent work concerning the organization of multisynaptic pathways that connect the basal 

ganglia with F2. In this study, we investigated the distributions of cells of origin in the basal 

ganglia of multisynaptic inputs to F2c and F2r [19]. Employing retrograde transsynaptic 

transport of rabies virus, we have demonstrated that neuronal populations giving rise to the 

projections to F2c and F2r are substantially segregated in the internal segment of the globus 

pallidus (GPi) and the substantia nigra pars reticulata (SNr) (i.e., the output stations of the 

basal ganglia), whereas intermingling rather than segregation governs for the other basal 

ganglia components, involving the external segment of the globus pallidus (GPe), STN, and 

the striatum (i.e., the input stations of the basal ganglia). This suggests that the loop circuits 

linking F2 and the basal ganglia may possess a common convergent window at the input 

stage and constitute parallel divergent channels at the output stage. The major part the 

present experiments was carried out at the Tokyo Metropolitan Institute for Neuroscience, 

Tokyo Metropolitan Organization for Medical Research. The experimental protocol was 

approved by the Animal Care and Use Committee of the Tokyo Metropolitan Institute for 

Neuroscience, and all experiments were conducted in accordance with the Guidelines for 

the Care and Use of Animals (Tokyo Metropolitan Institute for Neuroscience, 2000). 

2. Organization of corticostriatal and corticosubthalamic inputs 

In a series of our previous anatomical studies, we have analyzed the distribution patterns of 

corticostriatal and corticosubthalamic inputs from the frontal motor-related areas of macaque 

monkeys [12-18]. The frontal motor-related areas that we have examined widely include the 

MI, SMA, dorsal and ventral divisions of the PM (PMd and PMv), presupplementary motor 

area (pre-SMA), and rostral and caudal divisions of the cingulate motor area (CMAr and 

CMAc). In our studies, we initially performed intracortical microstimulation to map these 

areas. Then, different anterograde tracers were injected separately into somatotopically 

corresponding regions of given areas; the forelimb regions were tested except for the MI and 

SMA). The overall results indicate that corticostriatal and corticosubthalamic input zones from 

the frontal motor-related areas are orderly distributed in a topographical fashion, but display 

complex patterns of segregation versus overlap of one another (Figs. 1, 2). 

With respect to the corticostriatal inputs from the MI and SMA, dense input zones from the 

MI are located predominantly in the lateral aspect of the caudal putamen, whereas those 

from the SMA are in the medial aspect. On the other hand, corticostriatal inputs from the 

PMd and PMv are distributed mainly in the dorsomedial sector of the putamen, although 

these two input zones are virtually devoid of overlap. Thus, the corticostriatal input zones 

from the MI and SMA were considerably segregated though partly overlapped in the 

mediolateral central aspect of the putamen, while the corticostriatal input zones from the 
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PMd and PMv largely overlap that from the SMA, but not from the MI (Fig. 1; see also 

[14,15]). In addition, the corticostriatal input zone from the pre-SMA is located primarily in 

the striatal cell bridges and their neighboring regions of the caudate nucleus and the 

putamen, thus indicating that the corticostriatal input from the pre-SMA is spatially 

separate from those from the MI, SMA, and PMd/PMv (Fig. 1; see also [17]). As for the 

CMAr and CMAc, corticostriatal inputs from the CMAr and CMAc are located within the 

rostral striatum, with the highest density in the striatal cell bridge region or the ventrolateral 

portion of the putamen, respectively. There is no substantial overlap between these input 

zones. The corticostriatal input zone from the CMAr considerably overlaps that from the 

pre-SMA, while the input zone from the CMAc displays a large overlap with that from the 

MI (Fig. 1; see also [16]). Moreover, it has also shown that the rostral aspect of the PMd (F7; 

see [9,10]) projects predominantly to the striatal cell bridge region [18]. 

 

Figure 1. Summary diagram showing the organization of corticostriatal input zones in the putamen 

that arise from the frontal motor-related areas.  These input zones are orderly distributed in a 

topographical fashion, but display complex patterns of segregation and overlap. 

The overall pattern of corticosubthalamic input distributions is essentially the same as that 

of corticostriatal input distributions. The corticosubthalamic input zones from the MI and 

CMAc are located mainly within the lateral aspect of the STN, thereby leading to a large 

overlap of the two input zones. On the other hand, the major input zones from the SMA, 

pre-SMA, PMd, PMv, and CMAr within the medial aspect of the STN where a varying 

degree of overlaps are apparent between the input zones (Fig. 2; see also [12,13,16,17]. 

In terms of the somatotopical representation, the corticostriatal input zones from regions of the 

frontal motor-related areas (i.e., the MI, SMA, and PM) representing the hindlimb, forelimb, 

and orofacial part are, in this order, arranged from dorsal to ventral within the putamen (Fig. 

3; see also [14]). A similar pattern is most likely to organize the somatotopical arrangement of 

cortical motor inputs within the GPe and GPi (Fig. 3). Of particular interest is that dual sets of 

body part representations underlie the somatotopical arrangement in the STN. Somatotopical 

representations in the lateral part of the STN are arranged from medial to lateral in the order of 

the hindlimb, forelimb, and orofacial part. By contrast, these body parts in the medial 
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counterpart are represented mediolaterally in the inverse order, as though reflecting a “mirror 

image” against the somatotopical arrangement in the lateral STN (Fig. 3; see also [12]). 

 

Figure 2. Summary diagram showing the organization of corticosubthalamic input zones from the 

frontal motor-related areas.  Broken arrows represent minor projections. 

 

Figure 3. Cortico–basal ganglia loop circuits arising from the frontal motor-related areas (i.e., the MI, 

SMA, and PM) in terms of the somatotopical representation.  Corticostriatal input zones from regions of 

representing the hindlimb, forelimb, and orofacial part are, in this order, arranged from dorsal to 

ventral within the putamen and GPe/GPi.  In the STN, there exist dual sets of body part representations.  

Somatotopical representations in the lateral STN are arranged from medial to lateral in the order of the 

hindlimb, forelimb, and orofacial part, whereas the medial STN exhibits a mediolaterally reversed 

pattern of the representations, thereby reflecting a “mirror image” against the somatotopical 

arrangement in the lateral STN. 
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3. Organization of multisynaptic pathways linking F2 and the basal 

ganglia 

3.1. Rabies injections 

Multiple injections of rabies virus were made into F2c and F2r in the PMd (Fig. 4). The 

injection sites were determined according to the results of our previous electrophysiological 

work in which we demonstrated that the neuronal response properties involved in planning 

and executing reaching movements differed in F2r and F2c [20]. This rostrocaudal 

segregation is consistent with the classification schema that emerged in previous studies 

[10,21,22]. The rabies injections were carried out lateral to the superior precentral dimple for 

the F2c procedure (Fig. 4B). For the F2r procedure, on the other hand, the rabies injections 

were done around the genu of the arcuate sulcus (Fig. 4C). 

 

Figure 4. Locations of the injection sites in F2c and F2r. (A) Diagram illustrating the macaque lateral 

frontal lobe. The rectangular area drawn with broken lines in (A) is enlarged in (B) and (C).  (B,C) 

Injection sites of rabies virus in F2c (B) and F2r (C). In (B) and (C), the border between the PMd/PMv 

and the MI is represented with the broken line.  AS, arcuate sulcus; CS, central sulcus; Dimple, superior 

precentral dimple; Genu, genu of the AS; PS, principal sulcus; Spur, spur of the AS. 
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3.2. Origins of basal ganglia inputs to F2c and F2r  

Three days after the rabies injection into F2c or F2r, a number of labeled neurons were 

observed in the GPi and SNr. These neurons are considered to send outputs to F2c or F2r via 

the ventral nuclei or mediodorsal nucleus of the thalamus. No labeled neurons were found 

in the GPe at this stage, indicating that only the second-order neuron labeling occurred at 

the 3-day postinjection period.  

The distribution of labeled neurons observed in the GPi after the F2c injection differed from 

that observed after the F2r injection (Fig. 5). Two-dimensional density maps of the GPi were 

prepared to separately represent the labeling patterns in outer and inner portions (Fig. 5A). 

These maps showed that the distributions of GPi neurons projecting to F2c and F2r were 

segregated in both portions, each of which received input from the striatum [23]. After the 

F2c injection, the labeled neurons were distributed broadly in the ventral part of the GPi at 

its caudal level (Fig. 5B). By contrast, the labeled neurons after the F2r injection were located 

in the dorsal part of the GPi at its rostocaudal middle level (Fig. 5C). 

 

Figure 5. Density maps of GPi neuron labeling after rabies injections into F2c and F2r.  (A) Procedures 

to construct two-dimensional density maps of the GPi.  The unfolding process started with drawing 

lines through the center of the outer (oGPi) and inner (iGPi) portions of the GPi (left).  The reference 

points were placed at the bottom (specified by pink stars or red circles) and the top (specified by cyan 

triangles or blue squares) of the GPi.  The position of each labeled neuron was projected onto the central 

line.  Then, each line through the nucleus was aligned on the ventral edge of the GPi (right).  The GPi 

was divided into 300 µm x 300 µm bins.  (B) Density maps of oGPi and iGPi neuron labeling after F2c 

injection.  (C) Density maps of oGPi and iGPi neuron labeling after F2r injection.  The number of labeled 

neurons in each bin was counted and color-coded. 
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The rabies injections into F2c and F2r resulted in different distributions of neuronal labeling 

in the SNr. After the F2c injection, labeled neurons in the SNr were found in the central part 

through the caudal half of the SNr. After the F2r injection, on the other hand, labeled 

neurons were distributed primarily throughout the rostral half of the SNr (data not shown). 

By extending the postinjection period to 4 days, we detected neuronal labeling in the GPe, 

STN, and striatum. In the GPe, labeled neurons were widely distributed over the nucleus 

following the F2c injection, whereas they occupied a more restricted area following the F2r 

injection (Fig. 6). To compare the two distribution patterns in detail, two-dimensional 

density maps of the GPe were prepared to depict the results from the F2c and F2r injections 

(Fig. 6A). In the F2r injection case, the labeled neurons were located only in the rostral and 

dorsal portions of the GPe (Fig. 6C), while those in the F2c injection case were found not 

only in the rostral and dorsal portions, but also in the caudal and ventral portions of the GPe 

(Fig. 6B). These data indicated that the area in which GPe neurons projected trisynaptically 

to F2r was included within the area in which GPe neurons projected to F2c. 

 

Figure 6. Density maps of GPe neuron labeling after rabies injections into F2c and F2r.  (A) Procedures 

to construct two-dimensional density maps of the GPe. The unfolding process started with drawing 

lines through the center of the GPe (top).  The reference points were placed at the bottom (specified by 

red stars) and the top (specified by blue triangles) of the GPe.  The position of each labeled neuron was 

projected onto the central line.  Then, each line through the nucleus was aligned on the ventral edge of 

the GPe (bottom).  The GPe was divided into 300 µm x 300 µm bins.  (B) Density map of GPe neuron 

labeling after F2c injection.  (C) Density map of GPe neuron labeling after F2r injection. The number of 

labeled neurons in each bin was counted and color-coded. 
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In Figure 7, density maps of neuronal labeling in the STN are shown. After the F2r injection, 

labeled neurons were located primarily in the ventral aspect (Fig. 7, lower row), whereas the 

area of rabies labeling after the F2c injection expanded more dorsally (Fig. 7, upper row). 

 

Figure 7. Distributions of STN neuron labeling after rabies injections into F2c and F2r.  Three 

equidistant coronal sections are arranged rostrocaudally in a-c (after F2c injection) and a’-c’ (after F2r 

injection).  The STN was divided into 300 µm x 300 µm bins. The number of labeled neurons in each bin 

was counted and color-coded. 

Large numbers of labeled neurons were observed in the striatum. Following each injection, 

the labeled neurons were widely distributed in the striatal cell bridges and their neighboring 

regions of the caudate nucleus and the putamen (Fig. 8). In addition, dense neuron labeling 

was seen in the ventral striatum (Fig. 8). 
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Figure 8. Distributions of striatal neuron labeling after rabies injections into F2c and F2r.  Six 

equidistant coronal sections are arranged rostrocaudally in a-f (after F2c injection) and a’-f’ (after F2r 

injection).  The striatum was divided into 500 µm x 500 µm bins.  The number of labeled neurons in 

each bin was counted and color-coded.  ac, anterior commissure; Cd, caudate nucleus; Put, putamen. 
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4. Conclusion 

Here, we propose that two separate channels, each of which projects multisynaptically to 

F2c and F2r, may be operated in the output stations of the basal ganglia (i.e., the GPi and 

SNr), although segregation may be obscured in the input station (i.e., the striatum) where 

neurons projecting multisynaptically to F2c and F2r intermingle (Fig. 9). This indicates that 

each of the two parallel loops (i.e., the F2c-basal ganglia loop and the F2r-basal ganglia loop)  

 

Figure 9. Schematic diagram showing the distribution patterns of cells of origin in the basal ganglia of 

multisynaptic inputs to F2c and F2r. In the striatum, GPe/STN, and GPi/SNr, open and filled circles 

indicate neurons projecting multisynaptically to F2c and F2r, respectively.  In the output stations of the 

basal ganglia (i.e., GPi/SNr), the cells of origin of multisynaptic projections to F2c and F2r are basically 

segregated.  On the other hand, intermingling rather than segregation is prominent for the other basal 

ganglia components, including the input station (i.e., striatum).  Note that in the GPe/STN that connects 

the input and output stations, the F2r territory tends to be included within the F2c territory (see the text 

for detail).  Ass, association cortical areas such as the prefrontal cortex; Mot, motor cortical areas such as 

the MI and SMA; Th, thalamus. 
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collects diverse inputs from the motor and association territories with which F2c and F2r are 

cortically interconnected. Given that individual neurons in the GPi and SNr have  

widespread dendritic trees [24,25], these structures may consist of zones where diverse 

inputs are sorted and integrated, which allows each structure to send outputs to F2c and F2r 

separately. On the other hand, the distribution pattern of neurons in the GPe and STN that 

project multisynaptically to F2c and F2r differs from that of neurons in the GPi and SNr; the 

F2r territory seems to be included within the F2c territory in the GPe and STN. This suggests 

that the mode of information processing in the GPe and STN may be distinct from that in 

the GPi and SNr. Together with a previous notion that there is the precise network 

architecture in each component of the basal ganglia [26-28], our overall results will provide a 

novel framework for understanding the mode of information processing in the cortico–basal 

ganglia loop circuits. 

By analyzing the network linking F2 and the cerebellum, we have revealed that the cells of 

origin in the cerebellum of multisynaptic projections to F2c and F2r are segregated at the 

output station (i.e., the deep cerebellar nuclei), whereas both integration and segregation are 

evident at the input station (i.e., the cerebellar cortex) [11]. The networks connecting the 

basal ganglia/cerebellum with F2 may be governed by a common rule organizing the 

segregation at the output stage and the intermingling rather than the segregation at the 

input stage. 
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