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1. Introduction 

Emergent experimental and clinical evidence supports the notion that the cortico-basal 

ganglia–thalamo-cortical loops progress along parallel circuits connecting cortical and 

subcortical regions subserving the processing of sensorimotor information, associative and 

affective knowledge [1]. In particular the role of the basal ganglia has long been known to be 

involved in motor control because of the marked deficits associated with their damage. 

However, the exact aspects of motor control that they have under normal conditions have 

not been clear at all. The traditional view is that the basal ganglia are involved in the 

selection and inhibition of action commands [2], but an increasing number of brain-imaging 

studies show that the basal ganglia, besides being involved in motor tasks are also involved 

in more integrative and cognitive processes such as mental imagery [3,4], sensory 

processing [5,6], planning [7], attention [8,9], and language [6,10,11]. This evidence supports 

the view that the basal ganglia output not only targets the primary sensory-motor cortices, 

but also specific areas of premotor and prefrontal cortex, which include the oculomotor area 

of the cortex, the dorsolateral prefrontal cortex, lateral orbitofrontal cortex, and anterior 

cingulate/medial orbitofrontal cortices [12]. Thus, having the ability to influence not only 

sensory-motor control, but also several different types of cognitive and limbic affective 

functions [12] which underlie complex and integrative processes such as self-awareness, 

introspective perspective of one’s own self and consciousness [13]. This integrative role 

between lower afferent input and higher integrative and executive stages of information 

processing require an intact and closed loop of information flow to generate the primary 

experience of self and thus self-agency. Self-agency has tentatively been defined as the 

feeling of being the author of one’s own actions [14]. Thus, when we move our arm, we 

know (a) that it is our arm and (b) that it is us, who moves the arm. One approach to 

understand the complex integration of afferent and efferent information processing and the 

integration in the self is the internal model theory of motor control [15]. According to this 

theory there are two functionally different components in the motor system, inverse and 
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forward circuits. It is assumed that inverse models provide the motor commands necessary 

to achieve a desired consequence of an action, specified by higher-level goals (e.g., 

intentions). One is fully aware of the desired consequences of an action, but unaware of the 

motor programs per se. Forward models predict the sensory consequences of each motor 

program to be executed, an idea known as the efference copy, a model first put forward in 

von Holst and Mittelstaedt [16] and which has been extended in recent years with the “null” 

hypothesis of Ramachandran [17]. Accordingly, it is claimed that, whenever a motor 

program is issued, an efference copy is produced in parallel, this is, a prediction of the 

sensory consequences expected after the execution of the program based on exactly this 

efference copy. The internal model theory of motor control has been successfully applied to 

explain a whole variety of disorders related to the awareness of actions [for a review see 17] 

but the role played by the basal ganglia in this model has not been very clear. Here we 

follow this model extending it to the performance of a complex cognitive task, such as 

mental imaginary movement of a limb and the coexistent conscious awareness of just 

imagining it and actually refraining from moving it which involves exactly this subtle 

combination between the forward model requiring intact peripheral efferent/afferent 

information pathways and the inverse model requiring intact higher-level cortical areas 

which include the basal ganglia-thalamus-cortex pathway [19]. Moreover, we contrast the 

normal integrity of this forward/inverse model loop in healthy subjects with an abnormal 

open loop in amputees where an essential part of the loop has been disrupted. We thus 

argue that because of this abnormal and open loop involving the basal ganglia and the 

thalamocortical system the conscious awareness of the phantom phenomenon is created. 

2. Problem statement 

Waking up from anesthesia, an amputee faces the conflict in the experience of self, between 

the conscious vividness of his phantom limb (PL) and the lack of correlation with reality 

[20–23]. In the urge to discover whether he was actually amputated, the patient looks under 

the sheet for visual self-recognition and is, in a flash, confronted with this new reality of an 

absent limb. The resulting cognitive conflict between the seen embodiment and the felt one, 

in most cases carries on resulting in the perception of a ghost of their amputated limb as a 

phantom [24]. Giummarra et al. [20] report phantom limb experiences that include 

phenomena of (a) perception of bodily aspects of phantom limbs such as size (in relation to 

the intact limb), shape, posture, and telescoping (or shortening) of the phantom; (b) 

exteroceptive and proprioceptive sensations and (c) prosthesis embodiment. Early studies of 

phantom limb movement were carried out using combined techniques of EEG, MEG, and 

fMRI in order to locate its representation in the sensory-motor cortex [25–28] and in the 

cerebellum [29,30]. Later studies described the distinct functional anatomy of the mental 

representation of imaginary movements [31], during planning, visualizing, and motor 

intention [32], both in healthy subjects as well as in patients with different neural diseases. 

Other studies have centered on the difference between imaginary movement and executed 

movement [3,33]. A recent study by Diers et al. [34] showed activation in the supplementary 

motor area (SMA) cortex after PL imagined movement. And in a more recent study Pasaye 

et al. [35] have described nuerocorrelates of the PL perception using fMRI. Since the first  
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conceptualization of the phenomenon of phantom limb in amputees in 1915, as the 

manifestation of the persistence of the body schema of the missing limb [36], many theories 

have arisen. Most of these theories suggest a central role of reorganization of the 

somatosensory cortex, others advocate for a perceptual completion [37], or the product of 

conflicting cues from central reorganizational changes [38].  Although some degree of 

sensory or motor impairment is constant, recent models of motor awareness suggest that the 

reduction in afferent information may be less critical than higher-level reorganization related 

to the subjective correlates of action planning and motor intention [15,39]. In contras, a 

number of studies of patients with amputated limbs encourage that a conscious perception 

of a body part by tactile stimulation does not necessarily require the integrity or even 

existence of the tactile receptors on the skin, or the body parts themselves. That is, the neural 

representation of the body in the brain is sufficient to elicit an awareness of the body part or 

tactile stimuli in the absence of its physical counterpart (e.g., the limbs themselves) [40]. We 

believe that the reduction or absence in afferent information is a key factor that in 

combination with higher-level reorganization generates the conscious awareness of the 

phantom phenomenon. Here we hypothesize that for the performance of a complex 

cognitive task, such as imaginary movement of a limb, and the concomitant conscious 

awareness of just imagining it and actually refraining from moving it, an involvement of a 

subtle combination between intact peripheric (efferent/afferent) information pathways and 

intact higher-level cortical areas (basal-ganglia-thalamus-cortex pathway) are needed [19]. 

In amputees, this normal combination of lower- and higher-level processes is disrupted and 

could be the underlying cause of conscious awareness of the phantom limb. This 

arrangement of processes was reported by Staub et al. [41], who found an increased blood 

oxygen level dependent (BOLD) signal in the Basal Ganglia-Thalamic-Motor-Cortex loop 

pathway during imaginary movement of a patient with chronic supernumerary phantom 

limb, which developed only in association with motor intent directed at a hemiplegic-

anesthetic upper limb. Staub’s finding is analogical to what Ramachandran proposes as the 

“null” signal hypothesis in the mirror neuron system (MNS), which prevents activity in the 

MNS from reaching the threshold for conscious awareness [17] or related to what Fitzgibbon et 

al. [42] suggests as the underlying cause in synesthesia for pain. We think that the logic behind 

Ramachandran’s hypothesis is plausible, and if applied to an intact afferent somatosensory-

proprioceptive and efferent motor feedback, no activity in the basal-ganglia-thalamus-cortex 

loop would be seen in healthy subjects, in contrast to the incomplete closing of the 

afferent/efferent loop and therefore an absence of the “null” signal in the case of amputees. 

Hence the inhibition of activity in the basal ganglia-thalamus-cortex pathway is disrupted, 

thereby generating an abnormal open loop functioning of the thalamocortical system and its 

consequent activation. This abnormal activation of the thalamocortical system, we suggest, 

could be the underlying cause of the conscious awareness of the phantom phenomenon. 

This hypothesis is also in accordance with an emergent change of view in the functionality of 

the basal ganglia, from the classic view of being just part of the common motor pathway, to a 

more integrative, dynamic and resource-selection mechanism that participates in the sensory-

motor, affective, and cognitive process related to the executive planning and selection of an 

action mechanism [43]. Furthermore, the conscious awareness and the subsequent sense of 
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agency [44] which patients report to have had as they perform imagined tasks with their 

amputated limbs has never between contrasted with healthy subjects. 

In the current study, we tested the hypothesis that the basal ganglia-thalamus-cortex 

pathway is disrupted in amputees, as compared to control subjects, and that this disruption 

is the key to the cascade of conscious awareness of the phantom limb. We contrasted 

between lower limb amputees and control subjects as they performed a simulated 

neurocognitive motor-imagery task with their phantom toes or intact toes respectively.  

3. Method used 

3.1. Subjects 

Six unilateral lower limb amputees, 3 with left lower limb (LLL) and 3 with right lower limb 

(RLL) amputation (mean age 35.3, range 15-60 years, for details see Table 1), and 6 healthy 

controls (HC, mean age 29.16, range 20-59 years) participated in the study. All participants 

gave written informed consent prior to taking part in the study and the local institutional 

review board approved the protocol, which adhered to the Declaration of Helsinki. None of 

the subjects had neurological or psychiatric disorders.  

 

 Age1 

Ctrl 

 

Age2 

Pat 

 

Amp3   

side 

Amp4 

site 

Cause of5 

Amputation 

SP6 PLP7 PLS8 

 

1 

20 34& RLL TF Traumatic + - + 

2 21 15 RLL TT Traumatic + - + 

3 22 44 RLL TT Traumatic + - + 

4 24 60 LLL TT Traumatic + - + 

5 29 33 LLL TF Traumatic + - + 

6 59 26 LLL TT Traumatic + - + 

Table 1. Clinical data description of controls and patients. All subjects are right handed males. 1Column 

for control subjects’ age. 2Column for patients’ age. 3Three patients had right lower limb amputation 

and three had left lower limb amputation.4Site of surgery.  5Car or train accident was main cause of 

amputation. 6All the patients reported stump pain (SP), but 7none ever had Phantom Limb Pain (PLP). 
8All patients were able to move at will their phantom toes (extension/flexion).  

3.2. Experimental procedure 

The experiment consisted of two parts. In the ‘executed movement’ condition the participants 

were instructed to make a flexion/extension movement with the intact (amputees) or non-

dominant (HC) toes. In the condition ‘imagined movements’ the amputees imagined making a 

flexion/extension movement with the phantom toes and the HC imagined the same movement 

with their dominant toes. For all conditions the subjects had their eyes open. All movements or 
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imagined movements were observed under close scrutiny by the researcher. All conditions 

were separate blocks of fMRI measurements with durations of 30 seconds each, separated by 

resting periods of 30 seconds. Each condition was repeated three times. There was no training 

session for either the control subjects or the amputees.  

3.3. fMRI measurement 

The fMRI scans were conducted with a GE 1.5 T GE LX Magnetic Resonance instrument 

(Milwaukee, WI, USA) using the standard quadrature headcoil. Subject’s head was securely 

fastened in the head holder to minimize movement. Functional images were acquired with 

GE EPI-BOLD pulse sequence with 90° flip angle TE=60 ms, TR=3000 ms, over seven 

contiguous coronal sections, 8.0 mm thick with zero gap. Imaging was centered near the 

central gyrus. Structural images localized exactly over the same seven sections of the 

functional studies were obtained using a high resolution T1 weighted protocol. The 

activation was done in boxcar block paradigm of 30 seconds of stimulated state and 30 

seconds of un-stimulated state, over a total of three blocks each. 

3.4. Image analysis  

All MR data was transferred to an offline workstation all images were translated into time-

ordered stacks using the software MRIcro (Chris Rorden, http://www.cabiatl.com/mricro/). 

The experiments were analyzed subject by subject following a standard motion correction 

with image registration, to do a more precise alignment, since the study was acquired in 

coronal slices, the high resolution T1-weighted images were aligned to the T1-weighted 

SPM mask in MNI space, the transformations were saved and applied to the functional EPI 

time ordered stacks, and then the functional images were normalized to a ROI of the EPI 

standard provided by SPM, spatial smoothing using a Gaussian kernel of FWHM 6mm and 

high pass temporal filtering. Functional signal was obtained with a block model convolved 

with an hemodynamic response function (HRF) without time derivative correction these 

single subject analysis resulted in contrast maps used in the second level analysis.  The 

second level analysis was executed to estimate group average activation using a Student–t 

maps limited and adjusted with p = 0.05 with no Volterra interactions. 

4. Results 

Analysis of the data was carried out for each subject individually, to see if there were 

statistically significant activation clusters, and then by group after combining all subjects. 

The average functional maps obtained revealed ipsilateral or contralateral brain activation 

sites, which were colored according to the tasks performed on each lower limb of all 

subjects: green-colored brain activation sites correspond to the right leg, while red-colored 

brain activation sites correspond to the left leg. Yellow-colored sites correspond to areas of 

overlapping activation during the performance of the tasks on each limb. The results of the 

three groups’ brain activation sites are summarized in Table 2. 
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  Talairach coordinates RIGHT  Talairach 

coordinates 

BRAIN REGION BA x y z   BRAIN REGION BA x y z 

     Left amputee,  

executing right 

imaginary motion 

     

Middle Temporal 

Gyrus 

22 -61 -37 6  Middle Temporal 

Gyrus 

21 51 -29 -5 

Paracentral Lobule 4 -10 -38 63       

Medial Frontal 

Gyrus 

6 -6 -14 62       

Precentral Gyrus 6 -30 -20 64       

Lentiform Nucleus, 

Putamen 

* -26 -8 4             

     Left amputee, executing 

left virtual motion 

     

Medial Frontal 

Gyrus 

6 -8 -11 50  Medial Frontal 

Gyrus 

6 2 -26 64 

Sub-Gyral 37 -48 -39 -5  Medial Frontal 

Gyrus 

6 6 -9 61 

Superior Temporal 

Gyrus 

22 -59 -35 9  Substania Nigra * 8 -24 -14 

Thalamus * -8 -25 1  Superior Temporal 

Gyrus 

21 48 -27 -5 

Precentral Gyrus 4 -42 -11 47             

     Right amputee, 

executing left imaginary 

motion 

     

Superior Temporal 

Gyrus 

22 -65 -42 15  Superior Temporal 

Gyrus 

22 50 -4 -1 

Superior Temporal 

Gyrus 

22 -65 -18 -1  Superior Temporal 

Gyrus 

22 50 -12 1 

Postcentral Gyrus 3 -44 -17 54  Medial Frontal 

Gyrus 

6 8 -11 50 

Cingulate Gyrus 24 -8 -10 41  Middle Frontal 

Gyrus 

6 40 -5 46 

      Cingulate Gyrus 24 8 -12 37 

            Thalamus * 18 -9 13 

     Right amputee, 

 executing right virtual 

motion 

     

Precentral Gyrus 4 -12 -32 62  Superior Temporal 

Gyrus 

22 51 -4 -3 

Medial Frontal 

Gyrus 

6 -10 -26 58       
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  Talairach coordinates RIGHT  Talairach 

coordinates 

BRAIN REGION BA x y z   BRAIN REGION BA x y z 

Superior Temporal 

Gyrus 

42 -63 -28 14       

Superior Temporal 

Gyrus 

* -63 -21 3       

Precentral Gyrus 4 -50 -12 41       

Lentiform Nucleus, 

Medial Globus 

Pallidus 

 -16 -10 -6       

Substania Nigra * -8 -10 -10       

          Control, 

 executing left imaginary 

motion 

          

Inferior Frontal 

Gyrus 

45 -61 20 16  Medial Frontal 

Gyrus 

6 8 -12 71 

            Medial Frontal 

Gyrus 

6 2 -3 61 

     Control, 

 executing right 

imaginary motion 

     

Medial Frontal 

Gyrus 

6 -2 3 51  Postcentral Gyrus 43 65 -16 21 

Superior Frontal 

Gyrus 

6 -8 -6 68       

Medial Frontal 

Gyrus 

6 -8 1 53       

Superior Temporal 

Gyrus 

22 -50 4 2             

BA=Brodmann Area.        

Talairach coordinates: x (left[-], right[+]); y (posterior[-], anterior[+]), z (inferior[-], 

superior[+]). * no Brodmann area related 

    

Table 2. Anatomical location of activation clusters during imaginary and virtual motion. 

The average functional maps obtained from LLL amputee during the imaginary movement 

of the toes of both feet also present distinct cortical and subcortical activity. Performance of 

imaginary movement of the toes of the right intact toes showed activation sites bilaterally at 

the STG (BA 21,22), contralateral interhemispheric M1 (BA 4), contralateral SMA (BA 6), and 

contralateral Putamen. During the performance of imaginary movement with the left 

amputated toes, distinct cortical and subcortical activities were observed at the following 

sites: bilateral interhemispheric SMA (BA 6), bilateral STG (BA 21,22), ipsilateral M1 (BA 4), 

ipsilateral Subgyral (BA 37), ipsilateral Thalamus, and contralateral Substantia Nigra  

(figure 1,A). 
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Figure 1. Average functional activation maps during imaginary movement of the right leg (in green) 

and left leg (in red) for A) left lower limb amputees, B) right lower limb amputees and C) control 

subjects. All images are presented in radiological convention. 
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Average functional activation maps acquired from RLL amputees during the imaginary 

movement of the toes of both feet depict both cortical and subcortical activities. During the 

performance of imaginary movement of the toes of the left intact toes, there is bilateral 

Temporal activity (BA 22), and bilateral Anterior Cingulate Cortex (ACC, BA 24), ipsilateral 

Primary Somatosensory Cortex (SI, BA 3), contralateral SMA (BA 6), and contralateral 

Thalamic activity, while during the performance of imaginary movement with the right 

amputed toes, there is a distinct activation, namely of the bilateral STG (BA 42, 22), 

contralateral Primary Motor Cortex (M1, BA 4), contralateral SMA (BA 6), contralateral 

Basal Ganglia at the Medial Globus Pallidus and at the Substantia Nigra (figure 1, B).  

The average functional maps obtained from the six control subjects as they performed 

imaginary movement with (a) the toes of their right leg show activated contralateral sites 

corresponding to interhemispheric Supplementary Motor Area (SMA, BA 6), Superior 

Temporal Gyrus (STG, BA 22), and Ipsilateral Postcentral Gyrus (IPG, BA 43); while the 

performance of the same tasks with (b) the toes of their left leg, activated similar 

contralateral interhemispheric SMA (BA 6) and ipsilateral prefrontal (PF, BA 45) brain areas 

(figure 1,C). 

5. Discussion 

Here we compared the brain activations of imagined and executed movements of the intact 

toes and phantom toes in lower limb amputees, with the imagined and executed movement 

of the toes of healthy controls, using fMRI. Both, patients and control subject expressed that 

they initially had to exert greater effort in this self-generating dual process of 1) trying to 

resolve an apparent conflict between the simultaneous intent to move their toes and 

refraining from moving them or closing the sensory-motor feedback loop; and 2) locating, 

by means of imagery monitoring, a distant portion of the body-image, which is an 

attention/memory task. This sensation can be do to the increased contribution of the 

prefrontal cortex, in particular the dorsolateral prefrontal cortex (DLPFC), which is known 

to participate in motor imagery, not just in the sensory-motor integration and the 

attention/memory neurocognitive task with the anterior cingulate cortex, but also in a joint 

route with the posterior parietal cortex (PPC) during motor imagery [30,45–47]. The PPC, as 

a multisensory integrative cortex, plays an important role in the cognitive dynamics for 

spatial representation (limb-position) and movement intent, attention, working memory, 

and guidance of action [48,49]. As Jeannerod proposed “If motor imagery occurred with 

execution deliberately blocked or delayed, the representation would be protected from 

cancellation and would become accessible to conscious processing” [50]. Additionally, 

controls and amputees reported that they were consciously aware of their intact toes or, in 

the case of amputees, that they had the conscious perception of their phantom toes during 

the imaginary task.  The brain activations show similarities but also differences between 

amputee groups during the imaginary movement tasks of their intact and amputated toes. 

The differences were:  First, both amputee groups activate Basal Ganglia areas during the 

performance of the imaginary movement of the amputated toes. Second, the RLL amputee 

group shows more lateralized brain activation than the LLL amputee group. Third, during  
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the imaginary movement task, the RLL amputee group seems to require a greater attention 

control (ACC) as they performed the imaginary movement with their left intact toes than the 

LLL amputee group with their right intact toes. Additionally, the brain activations observed 

in the amputee group during the imagery movement task of the amputated toes involved 

the Basal Ganglia loop (RLL amputee group = Lentiform Nucleus, Medial Globus Pallidus, 

and Susbtantia Nigra; LLL amputee group = Thalamus and Substantia nigra). Thus, the 

imagined movement task in amputees demands different circuitry subsets for its 

accomplishment, namely: 1) the attention/memory/guidance loop, 2) the kinesthetic imagery 

loop, and 3) the conflict intention loop. The computational logistics for such activity can 

only be carried out by means of the intracortical and cortical-subcortical loops between 

Thalamus and Basal Ganglia nuclei. The kinesthetic representation of an action or a planned 

motor intent is the combined result of a widely distributed neuronal ensemble between 

DLPFC, inferior frontal cortex, and the SMA [31], together with the posterior parietal cortex 

(PPC) and the ACC for spatial awareness, attention and multisensory integration [49,51].  It 

is of mayor importance to notice here that the activation of the Basal Ganglia loop was not 

seen during imagery movement task of the intact toes in amputees or the healthy control 

group.  As far as the motor intent is concerned (Fig 1, B): a) in the control group, the 

performance of the task with the left (non-dominant) toes activated contralateral SMA (BA 

6) and ipsilateral inferior frontal cortex (BA 45), while the same task with the right 

(dominant) toes activated contralateral SMA (BA 6), STG (BA 22), and contralateral 

postcentral gyrus (BA 43). The minimal brain activity found in the controls’ kinesthetic 

representation correlates with the ensemble proposed [52,53]. b). In the RLL amputee group, 

in the coronal volumes (Fig 1, A), the performance of the imaginary motor intent with the 

left intact toes activated the bilateral ACC (BA 24), STG (BA 22), ipsilateral S1 (BA 3), and 

broad contralateral interhemispheric activity from SMA (BA 6) and contralateral thalamus. 

However, during the right imagined movement task of the amputated toes, there is bilateral 

activation at STG (BA 22/42), contralateral SMA (BA 6), M1 (BA 4), contralateral Lentiform 

Nucleus (medial globus pallidus), and Substantia Nigra. The RLL amputees’ brain activity 

for the kinesthetic representation differed between the performance of the intact imaginary 

movement and the amputated imaginary movement, since Lentiform Basal Ganglia activity 

is only present during the amputated toes imaginary movement. c) In the coronal-volumes 

of the LLL amputee group (Fig 1, C) during the performance of the imaginary movement 

task with the right intact toes, besides a bilateral MTG (BA 21/22) activation, there is clear 

contralateral Lentiform Nucleus-Putamen activation, together with SMA (BA 6) and M1 (BA 

4). However, during the imagery movement task with the amputated toes of the left leg, 

there is an ipsilateral thalamic and a Subgyral (BA 37) activation and a contralateral 

Substantia Nigra activation besides the large bilateral SMA (BA 6) and a bilateral MTG (BA 

21/22) activations observed during the intact toes imaginary movement. The LLL amputee 

brain activity for the kinesthetic representation differed slightly between the performance of 

the imaginary movement of intact versus amputated toes, since there is Basal Ganglia 

activity (Putamen) during imaginary movement of the intact toes, while during amputated 

toes imagined movement there is Thalamic and Substantia Nigra activity. This Basal 

Ganglia-Thalamo-Motor-Cortex loop subserves several cortex functions, such as memory 

tasks, orientation in space, and the ability to change behavioral set [43,54]. In the motor 
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imagery task, in particular in LL amputee research literature, the role of this ganglia-

thalamo-motor-cortex loop has never been mentioned. In this study we set out to establish 

its presence using the already mentioned task in the amputee and control groups. Thus, by 

comparing control and amputee groups, we found that there is minimal cortical activation 

difference between them, however, the difference occurs in the subcortical activation of the 

Basal Ganglia loop, since in both, the control group and during intact toes imaginary 

movement of amputated subjects there is no Basal Ganglia activation, while the activation of 

distinct Lenticular-Substantia-Nigra-Basal-Ganglia-Thalamic loop is clear in the amputee 

group performing imaginary movement of the amputated toes. We thus propose that the 

recruitment of these Basal Ganglia plays an important role in the process of conscious 

awareness of a missing limb reported by amputees.  

It is important to point out that we set out to find the involvement of the Basal Ganglia-

Thalamic-Motor-Cortex loop by means of this motor imagery task, as part of our hypothesis 

that the amputee can and does move the phantom limbs at will, this, do to his framework of 

body awareness as part of a self-related neurocognitive experience that can be as diverse as 

the perceiving of size, shape, posture, itch, touch, pressure, vibration, temperature, ‘electric’ 

sensations and prosthesis embodiment and has been well documented [20]. Similar to 

Ramachandran´s “null” hypothesis [17] we think that the interruption of the thalamic 

afferences/efferences may explain the persistence of an open loop functioning of the 

thalamocortical system and its consequent activation, which is a key factor to the cascade of 

conscious awareness and stability of the phantom phenomenon. This open loop functioning 

of the thalamocortical system is revealed in the present study by the increased blood oxygen 

level-dependent (BOLD) signal in the Basal Ganglia-Thalamic-Motor-Cortex loop pathway 

during imaginary movement of the amputated toes. Thus, supporting our hypothesis of the 

abnormal closed-loop functioning of the thalamocortical system as underlying the phantom 

phenomenon. 

6. Conclusion 

To conclude, we have put forward evidence of amputee patients’ indirect responses to PL 

experiences for an objective evaluation that suggests that the conscious awareness of a 

phantom limb emerges from both the reduction in afferent information and the higher-level 

brain reorganization of the cognitive representations of the amputee’s own body. We based 

our assumptions on the hypothesis that the thalamocortical loop is closed in healthy 

subjects, which enable them to distinguish an imaginary movement as actually being just 

imagined. This, do to the feedback received from intact peripheric (efferent/afferent) 

information pathways. The evidence shown here thus suggests that this abnormal open loop 

of the basal-ganglia-thalamocortical system underlies the conscious awareness of the 

phantom limb. The current approach further suggests that the basal ganglia within this 

basal-ganglia-thalamocortical system loop play a crucial and complex integration of afferent 

and efferent information processing. Furthermore, this integration creates the conscious 

awareness of the self and is in line with the internal model theory of motor control [15] 

where inverse and forward models of information processing interact continuously and 
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reciprocally. The inverse model component in the motor system providing the motor 

commands necessary to achieve a desired consequence of an action, specified by higher-

level goals and the forward model predicting the sensory consequences of each of these 

motor programs to be executed. Accordingly, whenever a motor program is issued, an 

efference copy is produced in parallel and an accurate prediction of the sensory 

consequences expected after the execution of the program, which in turn informs the 

inverse program of the actual state of the self and closing the loop for the next command. 

With this normally closed loop, the integration of the self is achieved and a normal body 

ownership and awareness is crated which is necessary to create the autobiographical 

experience of self. 

Glossary of terms 

Bottom-up: direction of information flow from the periphery (i.e. sensory cells or 

mechanoreceptors) to the central nervous system. 

Top-down: information flow from central nervous system toward peripheral effector cells 

(i.e. muscles). 

Efferent: Conveying away from the central nervous system 

Afferent: Conveying towards a central nervous system 

Phantom limb: is the sensation that an amputated or missing limb is still attached to the 

body  

Somatosensory system: sensory system composed of the receptors and processing centers to 

produce the sensory modalities such as touch, temperature, proprioception (body position), 

and nociception (pain). 

Proprioception: sensory modality that processes the body position 

Ipsilateral: same side of the body 

Contralateral: other side of the body 
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