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1. Introduction 

The relationship between noradrenergic function, stress, and memory has long been a 

subject of interest. What is normally adaptive during situations of extreme physical threat, 

including increases in heart rate and blood pressure, increased vigilance, hyperarousal, 

exaggerated startle, and enhancement of memory storage are considered to be part of a 

response elicited in a stressful situation [1]. Indeed, emotionally arousing experiences tend 

to be well remembered, and studies over the past five decades have provided considerable 

evidence suggesting that hormones released by stressful emotional experiences play an 

important role in mediating the effects of emotional arousal on lasting memory. One of the 

brain regions involved in the stress response is the amygdala, and neuromodulatory 

influences occurring selectively within this structure have been widely shown to regulate 

memory consolidation of newly acquired information through its projections to other brain 

structures. This review will focus on evidence from research findings investigating the 

relationship between stress-elicited noradrenergic brain activation and the role of the 

amygdala in mediating the effects of norepinephrine (NE) on memory consolidation. 

Furthermore, our findings suggest that this noradrenergic activation of the amygdala or, 

more precisely, of the basolateral nucleus of the amygdala, serves to modulate memory 

storage in other brain regions. 

2. Adrenergic catecholamines and stress 

The locus coeruleus (LC) noradrenergic system plays an important role in the fear response 

and anxiety. Other brain systems are also involved in the fear response and anxiety; these 
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include the corticotrophin-releasing factor hypothalamic-pituitary-adrenal axis system and 

the benzodiazepine, dopamine, opiate, and serotonergic systems. These neuropeptide and 

neurotransmitter systems function in a coordinated manner with NE, as reviewed elsewhere 

[2-4]. 

Diverse adaptive behavioral responses are evoked by acute exposure to a variety of stressful 

events. In coordination with neuroendocrine and autonomic responses induced by such 

events, behavioral adaptations serve to maintain homeostasis and, by enabling optimal 

functioning, ensure survival in the face of threat. In addition to the primary neural circuits 

mediating contextually specific responses, acute stress also activates other brain systems 

that play a modulatory role, serving to bring together the complex response of the organism 

to any stress. Of the systems modulated by stress, the brain noradrenergic system has been 

shown to be one of the most important.  

The noradrenergic system originates in a relatively small number of cells located in the LC 

and in other cell groups in the medulla and pons that utilize NE as a neurotransmitter. 

Nonetheless, the extensive network of noradrenergic terminals projecting from these few 

cells innervates essentially the entire neural axis. This widespread and divergent anatomical 

organization allows this system to influence the activity of the entire nervous system under 

conditions of elevated noradrenergic release during stress. 

Activation of the noradrenergic system alters the ‘‘signal to noise ratio’’ of responses evoked 

by other afferents (both excitatory and inhibitory), rather than inducing simple inhibition or 

excitation, thus enhancing synaptic transmission in target circuits [5]. Such modulatory 

effects of NE have been described in many brain circuits and have been shown to be 

mediated, via different transduction mechanisms, by both β and α-adrenergic receptors [6-

9]. Given the anatomical organization of the central noradrenergic system, it is suggested 

that stimuli that activate the small population of hindbrain noradrenergic neurons result in 

the release of NE in many widespread target regions throughout the brain, altering the 

reactivity of many neural circuits mediating a variety of behavioral and physiological 

responses. Furthermore, the anatomical organization and potential modulatory effects of the 

NE system suggest that it may facilitate a number of responses evoked by other afferents. As 

a consequence, the observed effects of increased noradrenergic release in a particular 

structure will depend on the set of specific neural circuits recruited and the set of specific 

behavioral responses elicited by the stressful stimulus which provoked the increase in NE 

release. 

Noradrenergic neurons are activated by specific sensory stimuli of several modalities [10, 

11], suggesting that information from the external, as well as the internal, environment is 

transduced by a variety of sensory systems before gaining access to the noradrenergic 

system. Moreover, some data suggest that the strength of a stimulus in a particular context 

is an important factor in determining the noradrenergic response [11-13]. Both 

electrophysiological and neurochemical studies (i.e., in vivo microdialysis) have shown that 

the brain noradrenergic system is phasically and robustly activated by a diverse array of 

acutely stressful stimuli [14-21].  
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3. Adrenergic catecholamines and memory storage 

Strong memories are often based on experiences that were emotionally arousing [22]. There 

is a large body of evidence suggesting that stress hormones released by emotional 

experiences play an important role in mediating the effects of emotional arousal on lasting 

memory. There is now extensive evidence supporting the hypothesis that the strength of 

long-term memories is influenced by hormonal systems activated by experience [23, 24], i.e., 

memory formation may involve stress-released hormones as endogenous modulators of the 

neurobiological processes underlying memory consolidation.  

Gold and van Buskirk [25] were the first to suggest the involvement of central NE in 

memory. Their study showed that inhibitory avoidance (IA) training increases brain NE 

levels under conditions that result in good retention, suggesting an enhanced release of this 

neuromodulator during training. In support of this view, Haycock et al. [26] showed that 

intraventricular infusion of NE facilitates retention, providing further evidence for the view 

that central NE function modulates memory. Other studies, e.g., those of Jensen et al. [27], 

reported that intracerebroventricular administration of diethyldithiocarbamate (DDC), a 

drug that decreases central catecholamine levels, impairs IA retention when administered 

post-training. Furthermore, concurrent infusion of NE into the ventricles or systemic 

injection of NE or epinephrine blocks the retention impairment produced by peripheral 

administration of DDC [28-30]. 

Further evidence suggesting that peripherally released catecholamines may influence 

memory consolidation came from experiments using amphetamines. Amphetamine is 

known to influence the release of catecholamines from peripheral storage sites [31]. 

Numerous studies [e.g. 32-34] have shown that amphetamine enhances memory when 

administered systemically either shortly before, or shortly after training. Enhancing effects 

of amphetamine have been observed in a variety of tasks, such as IA, active avoidance, 

discriminated avoidance, and appetitive discrimination [34-36]. Moreover, the fact that 

amphetamine enhances memory when administered post-training supports the view that it 

enhances retention by influencing memory storage processes. Since amphetamine crosses 

the blood-brain barrier, other studies have examined whether its memory-modulating 

effects involve influences on peripheral or central catecholamines. Post-training systemic 

injection of 4-OH amphetamine (an amphetamine derivative that does not cross the blood-

brain barrier) was also found to enhance IA retention, whereas central injection of 

amphetamine was ineffective. The effects of systemic injection of amphetamine and 4-OH 

amphetamine do not seem to involve peripheral sympathetic neurons, the primary source of 

peripheral NE, as sympathetic denervation induced by 6-hydroxydopamine hydrobromide 

induced 24 hours before training does not attenuate the memory-enhancing effects of either 

drug. In contrast, adrenal demedullation, i.e., elimination of peripheral epinephrine, blocks 

the effects of both amphetamine and 4-OH amphetamine on memory for active avoidance 

and IA training [37].  

More recently, Williams et al. [38] showed that the memory-enhancing effects of systemic 

injection of 4-OH amphetamine are blocked by the peripherally acting β-adrenoceptor 
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antagonist sotalol. These findings provide strong support for the view that amphetamine 

influences memory storage, at least in part, through effects involving the release of 

peripheral epinephrine from the adrenal medulla. 

Systemic administration of epinephrine also enhances retention in different tasks, including 

IA [39], multitrial avoidance [40], a one-trial appetitive task [41], and an aversively 

motivated discrimination task [42]. Epinephrine is effective when given immediately after 

training; moderate doses produce the greatest enhancement, larger doses being less effective 

or even impairing retention, and the doses of epinephrine found to enhance retention 

produce plasma epinephrine levels comparable to those found after IA training [43]. 

Retention enhancement induced by epinephrine is blocked by injection of the β-

adrenoceptor antagonist propranolol, a drug that readily enters the brain [41] as well as by 

sotalol, a β-adrenoceptor antagonist that does not enter the brain [44]. Post-training 

administration of β-adrenoceptor agonists that enter the brain, including dipivefrin and 

clenbuterol, also enhances memory consolidation, and the memory enhancement induced 

by dipivefrin and clenbuterol is blocked by propranolol, but not by sotalol [44]. Moreover, 

the memory-enhancing effect of clenbuterol is selectively blocked by centrally, but not 

peripherally, acting β-adrenoceptor antagonists [45]. Although the use of systemic 

nonspecific antiadrenergic agents has clearly implicated NE in learning and memory, the 

results obtained by Introini-Collison and Baratti [45] indicate that the effects of epinephrine 

on memory storage are initiated by activation of peripheral β-adrenoceptors, but also 

involve activation of β-adrenoceptors in the brain. 

4. Route of stress-induced brain activation: from the LC to higher brain 

structures  

As epinephrine does not readily cross the blood–brain barrier [46], its effects on memory 

consolidation appear to be initiated, at least in part, by activation of β-adrenoceptors in the 

periphery. This conclusion is supported by the finding that sotalol, a β-adrenoceptor 

antagonist that does not readily enter the brain, blocks the enhancing effects of peripherally 

administered epinephrine on memory [44].  

A large number of studies have suggested that the effects of epinephrine on memory are 

most likely mediated by activation of β-adrenoceptors located on vagal afferents. For 

example, anatomical data have provided evidence that the dorsal and ventral branches of 

the vagus nerve innervate the adrenal gland [47]. In another study, Niijima [48] showed that 

electrical stimulation of the adrenal nerve evokes action potentials in the vagus nerve. More 

recently, Miyashita and Williams [49], using electrophysiological recordings of vagus nerve 

activity, showed that systemically administered epinephrine produces a significant increase 

in vagal nerve firing that is blocked by concurrent administration of  the β-adrenoceptor 

antagonist sotalol. These data clearly show that the effects of epinephrine on the brain are 

mediated, at least in part, by the activation of ascending fibers of the vagus nerve and that 

these effects of epinephrine on vagal neural discharge are mediated through influences on 

peripheral β-adrenergic receptors. 
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Information regarding somatosensory activity, including that induced by footshock, is 

transmitted by ascending vagal fibers to the nucleus of the solitary tract (NTS), a brainstem 

structure with a high population of noradrenergic neurons [50-52]. In response to vagal 

nerve activation, NTS neurons influence central noradrenergic activity through direct 

synapses on neurons in the LC. Vagal afferents send noradrenergic projections directly and 

indirectly via the LC to forebrain regions [53-55], including the amygdala [56, 57]. Moreover, 

the finding that intra-NTS infusion of the β-adrenoceptor antagonist propranolol [58] or 

inactivation of the NTS with lidocaine [59] prevents epinephrine enhancement of memory 

provides evidence that the NTS is part of a brain stem system that, together with the LC, 

enables epinephrine-induced memory enhancement. Taken together, these data suggest that 

central noradrenergic neurons arising in the NTS mediate the effects of peripheral 

physiological influences on memory consolidation. This implication is supported by 

evidence that post-training infusion of the local anesthetic lidocaine into the NTS impairs IA 

retention [59]. Moreover, injection of lidocaine into the NTS blocks the memory-enhancing 

effects of systemic post-training injection of epinephrine [55]. Thus, the NTS appears to be 

an interface between peripheral adrenergic activation and brain processes regulating 

memory consolidation.  

5. The noradrenergic system of the amygdala is involved in modulating 

memory storage  

The amygdala is principally responsible for fear and anxiety responses to threatening 

environmental stimuli, including the increase in activity of the sympathetic nervous system 

in response to threat [60-62]. The LC densely innervates the amygdala [63, 64] and, in 

particular, projects to the central and basal nuclei [65-68].  

Activation of the LC by electrical stimulation or administration of drugs (e.g. yohimbine) 

results in increased anxiety [69-72], probably as a result of the potentiation of this excitatory 

pathway from the LC to the amygdala. In addition to a role in anxiety, the LC projection to 

the amygdala may also play a role in forming and retrieving emotional memories [73, 74]. 

Interestingly, level of arousal, which is highly correlated with LC activity, determines the 

likelihood of a memory being encoded and subsequently retrieved.  

Moreover, microdialysis data have shown that acute stressful immobilization induces 

increased NE release in the stria terminalis [15, 78], an important amygdala NE afferent, and 

in the medial and central nuclei of the amygdala [75-77]. 

Although the first evidence suggesting the involvement of the amygdala in learning and 

memory was published over 65 years ago [79], it is only in recent years that the amygdala 

has become a central focus of inquiry in studies of learning and memory. There is now 

extensive evidence suggesting that it is involved in the effects of attentional and reward 

processes [80-82] and that it may be a locus of the neural changes underlying the acquired 

association of cues with emotional responses, especially the somatosensitive responses 

elicited by fearful stimuli [83-85]. In addition, there is a strong consensus that it is involved 

in mediating the effects of emotional arousal on memory.  
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Extensive evidence indicates that the effects of peripheral epinephrine on memory are 

mediated by influences involving noradrenergic activation of the amygdala. For example, 

post-training intra-amygdala infusion of the β-adrenoceptor antagonist propranolol blocks 

the memory-enhancing effects of systemically administered epinephrine [86, 87] and the 

retention deficits induced by post-training infusion of propranolol into the amygdala are 

attenuated by concurrent infusion of NE [88]. Additionally, post-training infusion of NE or 

the β-adrenoceptor agonist clenbuterol into the amygdala induces a dose-dependent 

enhancement of retention [89-91] and attenuates retention deficits induced by adrenal 

demedullation [87]. Together, these findings strongly suggest that the amygdala mediates 

the effects of epinephrine on memory storage and that the effects involve activation of β-

adrenergic mechanisms. 

 

Figure 1. Effect of low- and high-intensity footshock on NE release in the amygdala assessed by in vivo 

microdialysis and HPLC. The data are shown as the mean (±SEM) NE levels expressed as a percentage 

of basal levels before footshock. **, p < 0.01 as compared to the no footshock group [94].  

Studies using in vivo microdialysis and high performance liquid chromatography support 

these findings. The figure 1 illustrates one of the results we obtained in an experiment where 

a significant increase in NE levels was measured in the dialysis sample collected after 
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exposure to footshocks of variable intensities. Other findings in our laboratory have shown 

that training conditions that evoke emotional arousal (e.g. footshock stimulation) or direct 

injection of epinephrine or corticosterone in doses that facilitate memory significantly 

increases NE release in the amygdala and this effect is directly related to the stimulus 

intensity [92-96].  

Interestingly, it has been shown that the relative severity of the stressor and its physiologic 

impact can vary between individuals [93]. Thus, the severity of stress produced by a 

stimulus, whether physiologic or psychogenic, has typically been defined in terms of the 

magnitude of the physiological response it elicits, e.g., by measuring activation of the 

hormonal hypothalamic–pituitary–adrenal (HPA) stress axis or of the peripheral 

sympathoadrenal autonomic response system. Whereas the brief bursts of electrical activity 

elicited by distinct, innocuous stimuli occur over a period of 100’s of milliseconds, phasic 

activation of noradrenergic neurotransmission by acutely stressful stimuli is much longer 

lasting, of the order of seconds to minutes or hours, depending on the stimulus, often 

outlasting the duration of the stimulus itself, and correlates temporally with peripheral 

physiological indicators of the stress response [77, 97]. 

For example, McIntyre et al. [98] examined NE release induced by IA training and, as 

expected on the basis of our previous studies of the effects of footshock stimulation [92, 94], 

found that NE levels were increased following training. However, in their study, perhaps 

somewhat surprisingly, the duration of the increased NE levels was greater than that 

previously found with footshock stimulation given without IA training [92, 94, 99]. Their 

findings suggest that the combination of footshock and the novel contextual information 

provided by training may have increased amygdala noradrenergic activation. Additionally, 

they showed that the extent of the increase in amygdala NE levels after training predicted 

the 24-h retention performance, as animals with a larger increase in NE release after training 

had longer retention latencies than those with smaller increases. These findings, taken 

together with those of studies of drug effects on NE levels, provide strong support for the 

hypothesis that NE release in the amygdala may play a critical role in modulating memory 

consolidation [100]. 

Studies using in vivo electrophysiological recordings in the cat also demonstrated that 

delivery of a footshock during IA training significantly increases the firing rate of 

lateral/basolateral amygdala neurons for 2 h following training [101]. These findings fit well 

with evidence that memory-modulating drugs can be effective when infused into the 

amygdala within hours after training [102]. Furthermore, NE release in the amygdala is 

potentiated by peripheral injection of epinehrine, the opiate antagonist naloxone, or 

amphetamine [94, 96, 103], findings consistent with evidence that intra-amygdala infusion of 

β-adrenoceptor antagonists blocks the effect of naloxone on memory storage [104, 105]  and 

that opiate agonists inhibit the release of NE in other brain regions [106]. Moreover, the 

finding that inactivation of the NTS blocks the effects of systemic epinephrine injection on 

NE release in the amygdala supports the view that the noradrenergic fibers terminating in 

the amygdala may originate from soma in the NTS [95]. 
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6. Different adrenoceptors in the basolateral amygdala are involved in 

memory storage modulation  

Noradrenergic receptors on cells receiving an afferent input from the LC can be classified as 

α1-, α2-, or β-adrenoceptors. Activation of α1-adrenoceptors by NE generally leads to 

excitation of the follower cells [107] and there is some evidence that β-adrenoceptors are also 

excitatory [108]. In contrast, activation of α2-adrenoceptors leads to inhibition of the follower 

cells [107], and also of the noradrenergic neurones themselves (“autoreceptors”). The 

consequences of autoreceptor activation can be detected as changes in the firing rate of 

amygdala neurons and in the release of NE. Alpha2-adrenoceptors are widely distributed in 

the brain [109, 110] and there are regional differences in their role in modulating NE release 

[111]. 

Several findings indicate that the memory-modulating effects of NE and other 

neuromodulatory and neurotransmitter systems are selectively mediated by the basolateral 

nucleus of the amygdala (BLA). The first series of experiments demonstrating a selective 

involvement of the BLA in memory storage showed that lesions of the BLA, but not of the 

central nucleus of the amygdala, block the memory impairment induced by systemic 

injection of benzodiazepines [112]. Furthermore, benzodiazepines infused into the BLA 

impair retention [113], whereas infusion of a benzodiazepine antagonist into the BLA 

enhances memory [114]. The findings of subsequent experiments suggested a selective 

involvement of the BLA in mediating noradrenergic influences on memory for many kinds 

of tasks [115, 116]. For example, Hatfield and McGaugh [117] showed that post-training 

infusion of NE into the BLA enhances memory for spatial learning in a water maze. In other 

studies, we found that infusion of the β-adrenoceptor agonist clenbuterol into the BLA 

enhances IA retention [119], whereas intra-BLA infusion of propranolol impairs memory of 

the same task [117]. 

Further studies demonstrated that NE in the BLA also interacts with glucocorticoids. 

Quirarte et al. (1997) showed that systemic injection of dexamethasone enhances IA 

retention when administered after training with a relative low footshock intensity and that 

infusion of a β1 or β2-adrenergic antagonist into the BLA, but not into the central nucleus of 

the amygdala, blocks the memory-enhancing effects of systemically administration of 

glucocorticoids (Fig. 2a). They also showed that the glucocorticoid receptor agonist RU 

28362 dose-dependently increases IA retention performance when infused into the BLA and 

that this effect is blocked by post-training co-infusion of the β1-adrenoceptor antagonist 

atenolol into the BLA (Fig. 2b). These findings strongly suggest that β-adrenergic 

mechanisms in the BLA mediate the effects of epinephrine on memory storage and that β-

adrenergic receptor activation in the BLA is required in order for glucocorticoids to 

modulate memory storage processes [118] (Fig. 2a and b). 

Other findings indicate that α-adrenoceptors within the BLA are involved in the regulation 

of memory processes via an interaction with β-adrenergic mechanisms. Both α1- and α2-

adrenoceptor subtypes are expressed at high levels in the amygdala [120, 121], though α1-

adrenoceptors predominate [122-127]. Thus, the tendency to impair IA retention that we  



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 211 

 

Figure 2. a. Inhibitory avoidance retention latencies of animals that received pretraining infusion of the 

nonspecific β-adrenergic antagonist propranolol (0.5 μg), the β1-adrenergic antagonist atenolol (0.5 μg), 

or the β2-adrenergic antagonist zinterol (0.5 μg) into the BLA or the central nucleus of the amygdala, 

followed by immediate post-training subcutaneous injection of dexamethasone (0.3 mg/Kg). The 

columns and bars show the mean (± SEM) latency in seconds. *, p < 0.05, **, p < 0.01 compared to the 

corresponding vehicle group; ●●, p < 0.01 compared to the vehicle-dexamethasone group (n=8-

14/group) [118].  

b. Inhibitory avoidance retention latencies of animals that received concurrent administration of the 

glucocorticoid receptor agonist RU 28362 (1.0, 3.0, or 10 ng) and the β1-adrenergic antagonist atenolol 

(0.5 μg) into the BLA. The columns and bars represent the mean (± SEM) latency in seconds. **, p < 0.01 

compared to the vehicle group; ●, p < 0.05; ●●, p < 0.01 compared to the corresponding RU 28362 group 

(n = 9-13 per group) [118]. 

obtained in our series of experiments with post-training intra-BLA infusion of low doses of 

the nonselective α-adrenoceptor agonist phenylephrine [128] very likely resulted from a 

combined activation of α1- and α2-adrenoceptors. In order to clarify the role of each 
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component of the α-adrenergic system in the BLA, we tested the effect of selective activation 

and/or blockade of these receptors in the BLA during IA training. Our results showed that 

post-training α1-adrenoceptor inactivation using the selective antagonist prazosin impaired 

IA retention and that selective activation of α1-adrenoceptors by infusion of a fixed 

concentration of the α2-adrenoceptor antagonist yohimbine together with increasing 

concentrations of phenylephrine dose-dependently enhanced IA retention i.e., yohimbine 

reversed the tendency of phenylephrine to impair retention. Given the higher affinity of NE 

for α2-adrenoceptors [151] and the fact that α2-adrenoceptors are mostly located 

presynaptically [142], our results suggest that the IA memory impairing effects produced by 

phenylephrine alone are mainly due to presynaptic α2-adrenoceptor activation [152]. This 

hypothesis is consistent with evidence that activation of presynaptic α2-adrenoceptors 

blocks NE release [129 130]. 

The α1-adrenergic influence on memory seems to be mediated by an interaction with β-

adrenoceptors within the BLA. Indeed, intra-BLA post-training infusion of atenolol blocks 

the memory enhancement induced by selective activation of α1-adrenoreceptors [128]. 

Moreover, we showed that intra-BLA infusion of the α1-adrenoceptor antagonist prazosin 

right-shifts the dose-response effects of the β-adrenoceptor agonist clenbuterol when the 

two drugs are infused together into the BLA post-training [131]. These results suggest that 

α1-adrenergic activity in the BLA facilitates the effects of β-adrenergic activation on memory 

formation. In a subsequent experiment, intra-BLA infusion of the synthetic cyclic adenosine 

monophosphate (cAMP) analog 8-bromo-cAMP was found to enhance retention in a 

manner similar to clenbuterol, but the effect induced by 8-bromo-cAMP was not affected by 

prazosin [131]. These findings are consistent with pharmacological evidence suggesting that 

β-adrenoceptors modulate memory storage by a direct coupling between Gs protein and 

adenylate cyclase and that α1-adrenoceptors may act indirectly on this process by 

influencing the β-adrenergic-induced synthesis of cAMP [132-134]. 

As mentioned above, the amygdala contains α2-adrenoceptors [125-127], which might be 

located on particular subsets of neurones involved in the autonomic response to stressful 

stimuli. In order to investigate the role of these receptors in memory for IA, we performed a 

series of experiments aimed at evaluating the effect of activation or blockade of these 

receptors in the BLA on IA retention processes. The behavioral data obtained in these 

experiments showed that bilateral microinfusion of the selective 2-adrenoceptor antagonist 

idazoxan into the BLA immediately after training induces dose-dependent enhancement of 

retention performance of IA when tested 24 h later (Figure 3), whereas post-training intra-

BLA infusion of the selective 2-adrenoceptor agonist UK 14,304 induces dose-dependent 

impairment of retention performance (Figure 4). 

These results are consistent with those of studies in which systemic injection of selective α2-

adrenergic drugs was found to disrupt and enhance consolidation of IA learning in the rat 

[136]. In addition, they fit with previous reports suggesting that the effects of peripheral 

administration of α2-adrenergic compounds on learning and memory performance are 

mediated through a direct action on central NE release [136-139] and with previous results 

implicating amygdala α2-adrenoceptors in footshock-based learning [140, 141]. Moreover, 
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they clearly indicate that, in addition to involvement of α1- and β-adrenoceptors, α2-

adrenoceptors in the BLA are involved in mediating the effects of training-induced or 

experimentally administered NE on memory storage [128, 131]. As pre-synaptic α2-negative 

feedback is known to regulate NE release [142], including NE release in the amygdala [127, 

129, 130, 140], the present findings provide additional evidence that memory consolidation 

is regulated by noradrenergic activation within the BLA. 

 

Figure 3. Effect of pre- or post-training infusion of various doses of idazoxan (a selective α2-

adrenoceptor antagonist) into the basolateral amygdala on inhibitory avoidance retention latencies. The 

columns and bars represent the mean ± SEM latency (in seconds) in entering the dark compartment 

during the retention test. The pre-training groups were infused 20 min before training, whereas the 

post-training groups were infused immediately after footshock administration. *, p < 0.05 compared to 

the corresponding value in the other group; ***, P < 0.001 compared to the vehicle-injected group; ●, p < 

0.05; ●●, p < 0.01; ●●●, p < 0.001 compared to the value using 0.3 μg of idazoxan in the same group. n = 

9–13 per group [135]. 

It is difficult to speculate when, and for how long, a single infusion of an adrenergic drug 

induces its effect on NE release, since the minimal time interval between sample collection 

using the microdialysis technique is about 15 min. However, the maximal effect of α2-

adrenergic drugs on NE release has been observed 30 min after infusion [143, 144]. Since the 

effect of α2-adrenergic drugs on NE release in the brain and the effect of a footshock on NE 

release are both maximal after 30 min [98], it is likely that the effects of pre-training local 

injection of UK 14,304 or idazoxan into the BLA mainly results from binding to α2-

adrenergic autoreceptors, which regulate the stress-induced release of NE. The fact that 

retention latencies were only influenced by the highest dose of UK 14,304 [135 and Fig. 4] 

suggests that the pool of NE release induced by footshock within seconds or minutes after 

shock administration is sufficient to enable the conditioned stimulus (CS)-unconditioned 

stimulus (US) association. Our finding, shown in Fig. 4, that pre-training intra-BLA infusion 

of UK 14,304 or idazoxan induces effects on memory that are similar, but of a smaller 
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amplitude, to those obtained in post-training groups suggests that, during IA, the α2-

adrenoceptor system in the BLA is more probably involved in very fine memory-modulated 

tuning control of IA consolidation, rather than in the encoding of CS-US association, as 

suggested previously [141]. The post-training effects are clearly consistent with the 

hypothesis that IA consolidation depends critically on the training-induced prolonged 

release of amygdala NE. 

 

Figure 4. Effect of immediate post-training infusion of various doses of UK 14,304 (a selective α2-

adrenoceptor agonist) into the basolateral amygdala on inhibitory avoidance retention latencies. The 

columns and bars bars represent the mean ± SEM latency (in seconds) in entering the dark compartment 

during the retention test. The pre-training groups were infused 20 min before training, whereas the 

post-training groups were infused immediately after footshock administration. **, p < 0.01 compared to 

the corresponding value in the other group; ***, p < 0.001 compared to the vehicle-injected group; ●●●, p 

< 0.001 compared to the groups injected with 0.1 or 1.0 ng of UK 14,304; ♦♦, p < 0.01 compared to the 

groups injected with 1.0 or 3.0 ng of UK 14,304; n = 9–12 per group. [135] 

In order to test this hypothesis, we investigated the effects of systemic and intra-BLA 

blockade or activation of α2-adrenoceptors on the dynamics of NE in the BLA.  

In the first study, anesthetized animals were microdialysed in the BLA while receiving 

systemic infusions of the α2-adrenoceptor antagonist dexefaroxan or the α2-adrenoceptor 

agonist UK 14,304. Results obtained in this study showed that dexefaroxan and UK 14,304 

induced respectively a rapid and reversible significant increase and decrease, in NE levels in 

the BLA (Figure 5). 

In a second study using retrodialysis, anesthetized animals received local infusion of 

dexefaroxan or UK 14,304 and the results showed that dexefaroxan induced a significant 

and reversible increase in NE levels in the BLA, whereas UK 14,304 caused a significant 

reduction (Figure 6).  



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 215 

 

Figure 5. Effect of systemic 2-adrenoreceptor blockade with the antagonist dexefaroxan (0.63 mg/kg) 

or activation with the agonist UK 14,304 (0.63 mg/kg) on NE levels in the basolateral amygdala in 

anesthetized animals assessed by in vivo microdialysis and HPLC. Norepinephrine levels are expressed 

as a mean (±SEM) value expressed as a percentage of basal levels; n = 7–9 per group. ∗, p < 0.05; ∗∗, p < 

0.01 compared to baseline levels [145]. 

Our retrodialysis data indicate that drugs infused into the BLA post-training cause maximal 

NE release about 15 min after infusion. Moreover, this time interval has been described to be 

critical for the involvement of the amygdala during consolidation of IA [146, 147]. It is 

therefore likely that the enhancing and inhibitory effects caused, respectively, by post-

training injection of idazoxan or UK 14,304 on IA retention were due to modulation of the 

prolonged training-induced increase in NE levels [98]. Additionally, and importantly, our 

findings are consistent with those of Pelletier et al. [101] showing that a single footshock 

increases the firing of neurons in the basolateral amygdala and that the increase peaks after 

30 min, but remains high for 2 h. 

In summary, our findings show that α2-adenoreceptor-induced modulation of NE release 

during post-trial consolidation significantly influences IA retention performance. Providing 

additional evidence of the memory-modulating role of NE release in the BLA, they also 

suggest that α2-adrenoceptors in the BLA are a critical component in the modulating 

influence of NE on IA memory consolidation and that the effect is probably due to a 

prolongation of the increase in training-induced levels of NE within the BLA. However, and 

in reference to previous results showing that NE activates three types of adrenoceptors, each 

involved in a different signaling pathway, a better understanding of the mechanisms by 

which NE in the BLA modulates the process of IA retention memory requires a detailed 

characterization of the signaling pathways downstream of NE binding. Indeed, NE activates 

β-, α1-, and α2-adrenoceptors, all of which are known to be metabotropic receptors.  

Beta-adrenoreceptors are associated with activation of the protein Gs, which activates 

adenylate cyclase, leading to production of cAMP, which then activates cAMP response 
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Figure 6. Effect of local 2-adrenoreceptor blockade with the antagonist dexefaroxan or activation with 

the agonist UK 14,304 on norepinephrine levels in the basolateral amygdala in anesthetized animals 

assessed by in vivo retrodialysis and HPLC. Norepinephrine levels are expressed as the mean (±SEM) 

value expressed as a percentage of basal levels. n = 7-8 per group; ∗, p < 0.05 compared to baseline levels 

[145]. 

element-binding (CREB) protein. Alpha1-adrenoceptors can mobilize calcium ions from 

intracellular stores, as well as increase calcium entry via voltage-gated calcium channels. 

Their stimulation leads to hydrolysis of membrane phospholipids via the G protein-

mediated activation (Gq protein) of phospholipase Cβ and the resultant production of 

inositol triphosphate (IP3) induces α1-adrenoceptor-elicited calcium release from 

intracellular stores, thereby increasing the cytosolic calcium concentration. The 

simultaneously produced diacylglycerol (DAG) activates protein kinase C (PKC) [148], 

which phosphorylates many cellular substrates, including membrane channels, pumps, and 

ion-exchange proteins. Alpha1-adrenoceptors have also been reported to modulate other 

signaling pathways, resulting in increased accumulation of cAMP and cGMP, potentiation 

of cAMP responses elicited by the Gs-linked receptors, activation of phospholipase A2 and 

phospholipase D, activation of cAMP phosphodiesterase, adenosine release, and stimulation 

of arachidonic acid release [149]. Alpha2-adrenoceptors are classically linked to Gi/o protein, 

with an action opposite to that of Gs, and act by inhibiting adenylate cyclase via a Gi protein 

and thereby inhibit cAMP production, while the βγ subunits of Gi protein increase 

potassium ion conductance. Alpha2-adrenoceptors also suppress voltage-activated calcium 

channels via Go protein, thus reducing the flow of extracellular calcium ions into target cells. 

Moreover, there is increasing evidence suggesting that α2-adrenoceptors are linked not only 

to the activation of the Gi/o cascade, but also, for example, to the activation of 

phospholipase C (PLC) and PKC, at least in some cell types [150]. 

Although pharmacological data show that α2-receptors have a higher affinity than α1-

receptors for NE and that both α2- and α1-receptors have a higher affinity for NE than β-

receptors [151], little is known about the distribution of the three receptors subtypes within 
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the BLA and further research is clearly needed to determine the signaling cascades initiated 

by the binding of NE to each of these subtypes linked to the various G proteins, which 

mediate the activation of specific signal transduction pathways.  

A comparison of the differences and similarities between the three adrenoceptors in terms of 

specificity, signaling, and trafficking [152] would result in a better understanding of the 

dynamics of NE action on the intracellular cascade of event in the BLA leading to plastic 

changes underlying memory modulation of IA.  

7. Conclusions 

These studies indicate that adrenal stress hormones and the amygdala, especially the BLA, 

are involved in regulating memory consolidation. Because of its anatomical position, the 

amygdala is able to translate sympathetic arousal into synaptic plasticity that is distributed 

throughout the brain. Thus, the amygdala appears to be the core of the system involved in 

the physiological mechanisms promoting brain plasticity and rapid consolidation of 

memory for major events that drive and condition the survival of the animal. In our review, 

we suggest that the sympathetic response to a particular emotional or stressful event is 

driven along the peripheral nervous system by activating the β-adrenoceptor system on 

vagal afferents, which bridge the peripheral and central nervous systems by stimulating the 

NTS in the brainstem. As a result, adrenergic stimulation of vagal afferents that project to 

the NTS, induces activation of the NE system in forebrain structures either directly or 

indirectly via the LC onto which the NTS projects. It is therefore likely that activation of the 

vagal nerve will induce NE release in the amygdala through these two pathways.  

The evidence that memory for various kinds of tasks is not lost when the amygdala is 

inactivated or lesioned [146,147,153,154] indicates that it is not the final storage site for 

emotionally arousing memories, but modulates memory storage in efferent brain regions 

[155, 156]. Indeed, several subsequent findings suggested that amygdala stimulation 

modulates memory consolidation and does so through influences mediated by amygdala 

efferents, and it has been shown that lesion of the stria terminalis, which carries both 

afferent and efferent projections of the amygdala, blocks the impairing effects of post-

training electrical stimulation of the amygdala on memory [157]. In addition, stria terminalis 

lesions block the memory enhancement induced by post-training systemic injection of 

clenbuterol or  intra-amygdala infusion of NE [89, 91]. These results strongly suggest that 

modulatory influences on memory involve projections from the amygdala to other brain 

regions. Consistent with this view, the amygdala shares extensive connections with cortical 

and subcortical regions implicated in memory storage processes [158-160]. Concerning this 

point, a large body of data shows that memory consolidation results from the direct 

interaction of the amygdala with many brain regions, including the nucleus accumbens [161, 

162], insular cortex [163], entorhinal cortex [164, 165], rostral anterior cingulate cortex [166], 

and medial prefrontal cortex [167], and most extensively the hippocampus [168]. With 

regard to the dynamic interactions between the amygdala and limbic and temporal lobe 

structures in human and non-human animals, it has been suggested that emotional arousal-
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induced NE release in the amygdala will induce modulation of synapses in the target areas 

that are engaged in memory processing. Despite the growing literature on the memory-

modulating role of the interaction between the amygdala and other brain regions, one must 

bear in mind that the present theoretical operating system is very simplistic, since memory 

is also modulated by the interaction between many neuromodulatory systems in the BLA. 

The roles of these latter interactions in memory modulation have been extensively 

documented and considered in recent reviews [155, 168, 169]. Very briefly, findings have 

shown that opioid peptides and gamma amino butyric acid both regulate NE release in the 

amygdala. Moreover, the acetylcholine and glutamate systems play a role in memory 

modulation at steps beyond the activation of β-adrenoceptors. The effects of glucocorticoids 

on memory consolidation are indirectly mediated by activation of the NTS and LC, both 

representing afferent NE projections to the amygdala, and directly by potentiating the 

noradrenergic signal cascade within the amygdala.  

In summary, the epinephrine and NE systems, which rise, respectively from the vagus nerve 

and the NTS, to the amygdala, form a complicated network of critical mechanisms leading 

to the emergence of a memory-modulation process. Although this cannot be a complete 

representation, our data show that the memory-modulated role of NE is mediated 

differently by the various adrenergic receptors in the BLA, each of which is involved in a 

specific process. Eventually, through the activation of all of these systems, interacting inside 

and outside the amygdala, the strength of our emotional memories is determined by the 

weight of their emotional significance.  

Author details 

Barbara Ferry 

Center for Research in Neuroscience of Lyon, UMR 5292 CNRS – INSERM U 1028 – Université 

Claude Bernard Lyon 1, Lyon, France 

Gina L. Quirarte 

Behavioral and Cognitive Neurobiology Department, Institute of Neurobiology,  

National Autonomous University of México, Campus Querétaro, Qro, México 

Acknowledgement 

We thank Norma Serafin for technical assistance and DGAPA-PAPIIT-UNAM (IN214111) 

and CONACYT 130524 for financial support. 

8. References 

[1] Bremner JD, Charney DS. The neurobiology of posttraumatic stress disorder: 

implications for treatment In: Darcourt G, Mendlewitcz J, Racagni G, Brunello N, eds. 



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 219 

Current Therapeutic Approaches to Panic and Other Anxiety Disorders. Monte Carlo: 

International Academy for Biomedical and Drug Research 1994:171-186. 

[2] Bremner JD, Davis M, Southwick SM, Krystal JH, Charney DS. The Neurobiology of 

Posttraumatic Stress Disorder. In: Oldham JM, Riba MG, Tasman A (eds) Reviews of 

Psychiatry. Washington: American Psychiatric Press; 1993. p182-204. 

[3] Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M. Psychobiologic 

mechanisms of posttraumatic stress disorder. Archives of General Psychiatry 

1993;50(4):294-305. 

[4] Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview 

of physical and behavioral homeostasis. The Journal of the American Medical 

Association 1992;267(9):1244-1252. 

[5] Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. Modulatory actions of 

norepinephrine on neural circuits. Advances in Experimental Medicine and Biology 

1991;287:193-208. 

[6] Aghajanian GK, Rogawski MA. The physiological role of α-adrenoceptors in the CNS: 

New concepts from single-cell studies. Trends in Pharmacological Sciences 

1983;4(7):315-317. 

[7] Jiang M, Griff ER, Ennis M, Zimmer LA, Shipley MT. Activation of locus coeruleus 

enhances the responses of olfactory bulb mitral cells to weak olfactory nerve input. The 

Journal of Neuroscience 1996;16(19):6319-6329. 

[8] Waterhouse BD, Azizi SA, Burne RA, Woodward DJ. Modulation of rat cortical area 17 

neuronal responses to moving visual stimuli during norepinephrine and serotonin 

microiontophoresis. Brain Research 1990;514(2):276-292. 

[9] Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. The cerebellar 

norepinephrine system: Inhibition, modulation, and gating. Progress in Brain Research 

1991;88:331-341. 

[10] Aston-Jones G, Chiang C, Alexinsky T. Discharge of noradrenergic locus coeruleus 

neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain 

Research 1991;88:501-520. 

[11] Rasmussen K, Morilak DA, Jacobs BL. Single unit activity of locus coeruleus neurons in 

the freely moving cat .1. During naturalistic behaviors and in response to simple and 

complex stimuli. Brain Research 1986;371(2):324-334. 

[12] Aston-Jones G, Rajkowski J, Cohen J. Role of locus coeruleus in attention and behavioral 

flexibility. Biological Psychiatry 1999;46(9):1309-1320. 

[13] Aston-Jones G, Rajkowski J, Cohen J. Locus coeruleus and regulation of behavioral 

flexibility and attention. Progress in Brain Research 2000;126:165-182. 

[14] Abercrombie ED, Jacobs BL. Single-unit response of noradrenergic neurons in the locus 

coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. 

The Journal of Neuroscience 1987;7(9):2837-2843. 

[15] Cecchi M, Khoshbouei H, Javors M, Morilak DA. Modulatory effects of norepinephrine 

in the lateral bed nucleus of the stria terminalis on behavioral and neuroendocrine 

responses to acute stress. Neuroscience 2002;112(1):13-21. 



 

The Amygdala – A Discrete Multitasking Manager 220 

[16] Morilak DA, Fornal CA, Jacobs BL. Effects of physiological manipulations on locus 

coeruleus neuronal activity in freely moving cats .2. Cardiovascular challenge. Brain 

Research 1987;422(1):24-31. 

[17] Morilak DA, Fornal CA, Jacobs BL. Effects of physiological manipulations on locus 

coeruleus neuronal activity in freely moving cats .3. Glucoregulatory challenge. Brain 

Research 1987;422(1):32-39. 

[18] Pacak K, Palkovits M, Kopin IJ, Goldstein DS. Stress-induced norepinephrine release in 

the hypothalamic paraventricular nucleus and pituitary-adrenocortical and 

sympathoadrenal activity: In vivo microdialysis studies. Frontiers in 

Neuroendocrinology 1995;16(2):89-150. 

[19] Page ME, Akaoka H, Aston-Jones G, Valentino RJ. Bladder distention activates 

noradrenergic locus coeruleus neurons by an excitatory amino acid mechanism. 

Neuroscience 1992;51(3):555-563. 

[20] Svensson TH. Peripheral, autonomic regulation of locus coeruleus noradrenergic 

neurons in brain: Putative implications for psychiatry and psychopharmacology. 

Psychopharmacology 1987;92(1):1-7. 

[21] Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating 

corticotropin-releasing factor and noradrenergic mediation of stress responses. Annals 

of the New York Academy of Sciences 1993;697:173-188. 

[22] Christianson SV. Remembering Emotional Events: Potential Mechanisms In: 

Christianson SV (ed) The Handbook of Emotion and Memory: Research and Theory. 

Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.; 1992. p307-340. 

[23] Gold PE, van Buskirk RB, McGaugh JL. Effects of hormones on time-dependent 

memory storage processes. Progress in Brain Research 1975;42:210-211. 

[24] Kety S. Brain Catecholamines, Affective States and Memory. In: McGaugh JL (ed) The 

Chemistry of Mood, Motivation and Memory New York Plenum Press; 1972. p65-80. 

[25] Gold PE, van Buskirk RB. Posttraining brain norepinephrine concentrations: Correlation 

with retention performance of avoidance training and with peripheral epinephrine 

modulation of memory processing. Behavioral Biology 1978;23(4): 509-520. 

[26] Haycock JW, Van Buskirk R, McGaugh JL. Effects of catecholaminergic drugs upon 

memory storage processes in mice. Behavioral Biology 1977;20(3):281-310. 

[27] Jensen RA, Martinez JL, Vasquez BJ, McGaugh JL, McGuinness T, Marrujo D, et al. 

Amnesia produced by intraventricular administration of diethyldithiocarbamate.  

Society for Neuroscience; 1977; Anaheim, Cal; 1977. p. 235. 

[28] McGaugh JL, Gold PE, Handwerker MI, Jensen RA, Martinez Jr JL, Meligeni JA, et al. 

Altering Memory by Electrical and Chemical Stimulation of the Brain In: Brazier MAB 

(ed) Brain Mechanisms in Memory and Learning: From the Single Neuron to Man. New 

York: Raven Press; 1979. p151-164. 

[29] Meligeni JA, Ledergerber SA, McGaugh JL. Norepinephrine attenuation of amnesia 

produced by diethyldithiocarbamate. Brain Research 1978;149(1):155-164. 

[30] Stein L, Belluzzi JD, Wise CD. Memory enhancement by central administration of 

norepinephrine. Brain Research 1975;84(2):329-335. 



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 221 

[31] Weiner N. Norepinephrine, Epinephrine, and the Sympathomimetic Amines. In: 

Gilman AG, Goodman LS, Rall TW, Murad F (eds) Goodman and Gilman's The 

Pharmacological Basis of Therapeutics. 7th ed. New York: MacMillan Publishing 

Company; 1985. p145-180. 

[32] Doty BA, Doty LA. Facilitative effects of amphetamine on avoidance conditioning in 

relation to age and problem difficulty. Psychopharmacologia 1966;9(3):234-241. 

[33] Martinez J, Joe L., Jensen RA, Messing RB, Vasquez BJ, Soumireu-Mourat B, Geddes D, 

et al. Central and peripheral actions of amphetamine on memory storage. Brain 

Research 1980;182(1):157-166. 

[34] McGaugh JL. Drug facilitation of learning and memory. Annual Review of 

Pharmacology 1973;13:229-241. 

[35] Evangelista AM, Gattoni RC, Izquierdo I. Effect of amphetamine, nicotine and 

hexamethonium on performance of a conditioned response during acquisition and 

retention trials. Pharmacology 1970;3(2):91-96. 

[36] Krivanek JA, McGaugh JL. Facilitating effects of pre- and posttrial amphetamine 

administration on discrimination learning in mice. Inflammation Research 1969;1(2):36-

42. 

[37] Martinez JL, Vasquez BJ, Rigter H, Messing RB, Jensen RA, Liang KC, et al. Attenuation 

of amphetamine-induced enhancement of learning by adrenal demedullation. Brain 

Research 1980;195(2):433-443. 

[38] Williams CL, Packard MG, Mcgaugh JL. Amphetamine facilitation of win-shift radial-

arm maze retention: The involvement of peripheral adrenergic and central 

dopaminergic systems. Psychobiology 1994;22(2):141-148. 

[39] Gold PE, Hankins L, Edwards RM, Chester J, McGaugh JL. Memory interference and 

facilitation with posttrial amygdala stimulation: effect on memory varies with footshock 

level. Brain Research 1975;86(23):509-513. 

[40] Liang KC, Bennett C, McGaugh JL. Peripheral epinephrine modulates the effects of 

post-training amygdala stimulation on memory. Behavioural Brain Research 

1985;15(2):93-100. 

[41] Sternberg DB, Isaacs KR, Gold PE, McGaugh JL. Epinephrine facilitation of appetitive 

learning: Attenuation with adrenergic receptor antagonists. Behavioral and Neural 

Biology 1985;44(3):447-453. 

[42] Introini-Collison IB, McGaugh JL. Epinephrine modulates long-term retention of an 

aversively motivated discrimination. Behavioral and Neural Biology 1986;45(3):358-365. 

[43] McCarty R, Gold PE. Plasma catecholamines: Effects of footshock level and hormonal 

modulators of memory storage. Hormones and Behavior 1981;15(2):168-182. 

[44] Introini-Collison I, Saghafi D, Novack GD, McGaugh JL. Memory-enhancing effects of 

post-training dipivefrin and epinephrine: Involvement of peripheral and central 

adrenergic receptors. Brain Research 1992;572(1-2):81-86. 

[45] Introini-Collison IB, Baratti CM. Opioid peptidergic systems modulate the activity of β-

adrenergic mechanisms during memory consolidation processes. Behavioral and 

Neural Biology 1986;46(2):227-241. 



 

The Amygdala – A Discrete Multitasking Manager 222 

[46] Weil-Malherbe H, Axelrod J, Tomchick R. Blood-brain barrier for adrenaline. Science 

1959;129(3357):1226-1227. 

[47] Coupland RE, Parker TL, Kesse WK, Mohamed AA. The innervation of the adrenal 

gland. III. Vagal innervation. Journal of Anatomy 1989;163:173-181. 

[48] Niijima A. Electrophysiological study on the vagal innervation of the adrenal gland in 

the rat. Journal of the Autonomic Nervous System 1992;41(1-2):87-92. 

[49] Miyashita T, Williams CL. Epinephrine administration increases neural impulses 

propagated along the vagus nerve: Role of peripheral β-adrenergic receptors. 

Neurobiology of Learning and Memory 2006;85(2):116-124. 

[50] Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the 

vagus nerve in the rat. The Journal of Comparative Neurology 1982;211(3):248-264. 

[51] Schreurs J, Seelig T, Schulman H. β2-Adrenergic receptors on peripheral nerves. Journal 

of Neurochemistry 1986;46(1):294-296. 

[52] Sumal KK, Blessing WW, Joh TH, Reis DJ, Pickel VM. Synaptic interaction of vagal 

afferents and catecholaminergic neurons in the rat nucleus tractus solitarius. Brain 

Research 1983;277(1):31-40. 

[53] Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the 

solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. 

Brain Research 1978;153(1):1-26. 

[54] Williams CL, Jensen RA. Vagal Afferents: A Possible Mechanism for the Modulation of 

Memory by Peripherally Acting Agents. In: Frederickson RCA, McGaugh JL, Felten DL 

(eds) Peripheral Signaling of the Brain: Role in Neural- Immune Interactions, and 

Learning and Memory. Lewiston, NY: Hogrefe & Huber; 1991. p467-471. 

[55] Williams CL, McGaugh JL. Reversible lesions of the nucleus of the solitary tract 

attenuate the memory-modulating effects of posttraining epinephrine. Behavioral 

Neuroscience 1993;107(6):955-962. 

[56] Liang KC, Gold PE. Epinephrine Modulation of Memory: Amygdala Activation and 

Regulation of Long-Term Memory Storage. In: Gold PE, Greenough WT (eds) Memory 

Consolidation: Essays in Honor of James L McGaugh. Washington, DC: American 

Psychological Association; 2001. p165-183. 

[57] Williams CL, Clayton EC. Contribution of Brainstem Structures in Modulating Memory 

Storage Processes. In: Gold PE, Greenough WT (eds) Memory Consolidation: Essays in 

Honor of James L McGaugh. Washington, DC: American Psychological Association; 

2001. p141-163. 

[58] Clayton EC, Williams CL. Adrenergic activation of the nucleus tractus solitarius 

potentiates amygdala norepinephrine release and enhances retention performance in 

emotionally arousing and spatial memory tasks. Behavioural Brain Research 2000;112(1-

2):151-158. 

[59] Williams CL, McGaugh JL. Reversible inactivation of the nucleus of the solitary tract 

impairs retention performance in an inhibitory avoidance task. Behavioral and Neural 

Biology 1992;58(3):204-210. 

[60] Damasio AR. Emotion in the perspective of an integrated nervous system. Brain 

Research 1998;26(2-3):83-86. 



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 223 

[61] Kiernan JA. Barr's The Human Nervous System: An Anatomical Viewpoint. 8th ed. 

Baltimore: Lippincott, Williams & Wilkins; 2005. 

[62] LeDoux J. Fear and the brain: where have we been, and where are we going? Biological 

Psychiatry 1998;44(12):1229-1238. 

[63] Jones BE, Yang TZ. The efferent projections from the reticular formation and the locus 

coeruleus studied by anterograde and retrograde axonal transport in the rat. The 

Journal of Comparative Neurology 1985;242(1):56-92. 

[64] Moore RY, Bloom FE. Central catecholamine neuron systems: Anatomy and physiology 

of the norepinephrine and epinephrine systems. Annual Review of Neuroscience 

1979;2:113-168. 

[65] Fallon JH, Koziell DA, Moore RY. Catecholamine innervation of the basal forebrain. II. 

Amygdala, suprarhinal cortex and entorhinal cortex. The Journal of Comparative 

Neurology 1978;180(3):509-532. 

[66] Jones BE, Moore RY. Ascending projections of the locus coeruleus in the rat. II. 

Autoradiographic study. Brain Research 1977;127(1):25-53. 

[67] Nieuwenhuys R. Chemoarchitecture of the Brain. New York: Springer-Verlag; 1985. 

[68] Szymusiak R, Alam N, Steininger TL, McGinty D. Sleep-waking discharge patterns of 

ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Research 1998;803(1-

2):178-188. 

[69] Myers EA, Banihashemi L, Rinaman L. The anxiogenic drug yohimbine activates central 

viscerosensory circuits in rats. Journal of Comparative Neurology 2005;492(4):426-441. 

[70] Redmond Jr. DE, Huang YH. New evidence for a locus coeruleus-norepinephrine 

connection with anxiety. Life Sciences 1979;25(26):2149-2162. 

[71] Redmond Jr. DE, Huang YH, Snyder DR, Maas JW. Behavioral effects of stimulation of 

nucleus locus coeruleus in stump-tailed monkey Macaca arctoides. Brain Research 

1976;116(3):502-510. 

[72] Uhde TW, Boulenger JP, Post RM, Siever LJ, Vittone BJ, Jimerson DC, et al. Fear and 

anxiety: relationship to noradrenergic function. Psychopathology 1984;17 Suppl 3:8-23. 

[73] Chen FJ, Sara SJ. Locus coeruleus activation by foot shock or electrical stimulation 

inhibits amygdala neurons. Neuroscience 2007;144(2):472-481. 

[74] Sterpenich V, D'Argembeau A, Desseilles M, Balteau E, Albouy G, Vandewalle G, et al. 

The locus ceruleus is involved in the successful retrieval of emotional memories in 

humans. Journal of Neuroscience 2006;26(28):7416-7423. 

[75] Cecchi M, Khoshbouei H, Morilak DA. Modulatory effects of norepinephrine, acting on 

alpha1 receptors in the central nucleus of the amygdala, on behavioral and 

neuroendocrine responses to acute immobilization stress. Neuropharmacology 

2002;43(7):1139-1147. 

[76] Pacák K, Palkovits M, Kvetnanský R, Fukuhara K, Armando I, Kopin IJ, Goldstein DS. 

Effects of single or repeated immobilization on release of norepinephrine and its 

metabolites in the central nucleus of the amygdala in conscious rats. 

Neuroendocrinology 1993; 57(4):626-33. 



 

The Amygdala – A Discrete Multitasking Manager 224 

[77] Ma S, Morilak DA. Norepinephrine release in medial amygdala facilitates activation of 

the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. 

Journal of Neuroendocrinology 2005;17(1):22-28. 

[78] Pardon MC, Gould GG, Garcia A, Phillips L, Cook MC, Miller SA, et al. Stress reactivity 

of the brain noradrenergic system in three rat strains differing in their neuroendocrine 

and behavioral responses to stress: implications for susceptibility to stress-related 

neuropsychiatric disorders. Neuroscience 2002;115(1):229-242. 

[79] Klüver H, Bucy PC. "Psychic blindness" and other symptoms following bilateral 

temporal lobectomy in Rhesus monkeys American Journal of Physiology 1937;119:352-

353. 

[80] Easton A, Gaffan D. Comparison of perirhinal cortex ablation and crossed unilateral 

lesions of the medial forebrain bundle from the inferior temporal cortex in the rhesus 

monkey: effects on learning and retrieval. Behavioral Neuroscience 2000;114(6):1041-

1057. 

[81] Everitt BJ, Cardinal RN, Hall J, Parkinson JA, Robbins TW. Differential Involvement of 

Amygdala Subsystems in Appetitive Conditioning and Drug Addiction. In: Aggleton JP 

(ed) The Amygdala: A Functional Analysis. 2nd ed. Oxford: Oxford University Press; 

2000. p353-390. 

[82] Gallagher M. The Amygdala and Associative Learning. In: Aggleton JP (ed) The 

Amygdala: A Functional Analysis. 2nd ed. Oxford: Oxford University Press; 2000. p391-

423. 

[83] Davis M. The Role of the Amygdala in Conditioned and Unconditioned Fear and 

Anxiety. In: Aggleton JP (ed) The Amygdala: A Functional Analysis. 2nd ed. Oxford: 

Oxford University Press; 2000. p213-287. 

[84] LeDoux JE. The Amygdala and Emotion: A View Through Fear. In: Aggleton JP (ed) 

The Amygdala: A Functional Analysis. 2nd ed. Oxford: Oxford University Press; 2000. 

p289-310. 

[85] Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, et al. Role of 

brain norepinephrine in the behavioral response to stress. Progress in Neuro-

Psychopharmacology & Biological Psychiatry 2005;29(8):1214-1224. 

[86] Liang KC, Chen LL, Huang TE. The role of amygdala norepinephrine in memory 

formation: Involvement in the memory enhancing effect of peripheral epinephrine. The 

Chinese Journal of Physiology 1995;38(2):81-91. 

[87] Liang KC, Juler RG, McGaugh JL. Modulating effects of posttraining epinephrine on 

memory: Involvement of the amygdala noradrenergic system. Brain Research 

1986;368(1):125-133. 

[88] Gallagher M, Kapp BS, Musty RE, Driscoll PA. Memory formation: Evidence for a 

specific neurochemical system in the amygdala. Science 1977;198(4315):423-425. 

[89] Introini-Collison IB, Miyazaki B, McGaugh JL. Involvement of the amygdala in the 

memory-enhancing effects of clenbuterol. Psychopharmacology 1991;104(4):541-544. 

[90] Introini-Collison IB, Ford L, McGaugh JL. Memory impairment induced by 

intraamygdala β-endorphin is mediated by noradrenergic influences. Neurobiology of 

Learning and Memory 1995;63(2):200-205. 



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 225 

[91] Liang KC, McGaugh JL, Yao HY. Involvement of amygdala pathways in the influence 

of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory 

storage. Brain Research 1990;508(2):225-233. 

[92] Galvez R, Mesches MH, McGaugh JL. Norepinephrine release in the amygdala in 

response to footshock stimulation. Neurobiology of Learning and Memory 

1996;66(3):253-257. 

[93] McReynolds JR, Donowho K, Abdi A, McGaugh JL, Roozendaal B, McIntyre CK. 

Memory-enhancing corticosterone treatment increases amygdala norepinephrine and 

Arc protein expression in hippocampal synaptic fractions. Neurobiology of Learning 

and Memory 2010;93(3):312-321. 

[94] Quirarte GL, Galvez R, Roozendaal B, McGaugh JL. Norepinephrine release in the 

amygdala in response to footshock and opioid peptidergic drugs. Brain Research 

1998;808(2):134-140. 

[95] Williams CL, Men D, Clayton EC, Gold PE. Norepinephrine release in the amygdala 

after systemic injection of epinephrine or escapable footshock: Contribution of the 

nucleus of the solitary tract. Behavioral Neuroscience 1998;112(6):1414-1422. 

[96] Williams CL, Men DS, Clayton EC. The effects of noradrenergic activation of the 

nucleus tractus solitarius on memory and in potentiating norepinephrine release in the 

amygdala. Behavioral Neuroscience 2000;114(6):1131-1144. 

[97] Jacobs BL, Abercrombie ED, Fornal CA, Levine ES, Morilak DA, Stafford IL. Single-unit 

and physiological analyses of brain norepinephrine function in behaving animals. 

Progress in Brain Research 1991;88:159-165. 

[98] McIntyre CK, Hatfield T, McGaugh JL. Amygdala norepinephrine levels after training 

predict inhibitory avoidance retention performance in rats. European Journal of 

Neuroscience 2002;16(7):1223-1226. 

[99] Hatfield T, Spanis C, McGaugh JL. Response of amygdalar norepinephrine to footshock 

and GABAergic drugs using in vivo microdialysis and HPLC. Brain Research 

1999;835(2):340-345. 

[100] McGaugh JL. Memory-a century of consolidation. Science 2000;287(5451):248-251. 

[101] Pelletier JG, Likhtik E, Filali M, Pare D. Lasting increases in basolateral amygdala 

activity after emotional arousal: Implications for facilitated consolidation of emotional 

memories. Learning & Memory 2005;12(2):96-102. 

[102] McGaugh JL, Roozendaal B. Drug enhancement of memory consolidation: historical 

perspective and neurobiological implications. Psychopharmacology 2009;202(1-3):3-14. 

[103] Mesches MH, McGaugh JL. Effects of D-amphetamine on extracellular norepinephrine 

levels in the amygdala of freely moving rats as measured by in vivo microdialysis.  

Society for Neuroscience; 1991; New Orleans, Louisiana 1991. p. 1398. 

[104] Introini-Collison IB, Nagahara AH, McGaugh JL. Memory enhancement with intra-

amygdala post-training naloxone is blocked by concurrent administration of 

propranolol. Brain Research 1989;476(1):94-101. 

[105] McGaugh JL, Introini-Collison IB, Nagahara AH. Memory-enhancing effects of 

posttraining naloxone: Involvement of beta-noradrenergic influences in the amygdaloid 

complex. Brain Research 1988;446(1):37-49. 



 

The Amygdala – A Discrete Multitasking Manager 226 

[106] Arbilla S, Langer SZ. Morphine and beta-endorphin inhibit release of noradrenaline 

from cerebral cortex but not of dopamine from rat striatum. Nature 1978;271(5645):559-

561. 

[107] Jones BE. Activity, modulation and role of basal forebrain cholinergic neurons 

innervating the cerebral cortex. Progress in Brain Research 2004;145:157-169. 

[108] Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation 

of behavioral state and state-dependent cognitive processes. Brain Research 

2003;42(1):33-84. 

[109] Brown RE, Sergeeva OA, Eriksson KS, Haas HL. Convergent excitation of dorsal raphe 

serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and 

noradrenaline). The Journal of Neuroscience 2002;22(20):8850-8859. 

[110] Hume SP, Lammertsma AA, Opacka-Juffry J, Ahier RG, Myers R, Cremer JE, et al. 

Quantification of in vivo binding of [3H]RX 821002 in rat brain: Evaluation as a 

radioligand for central α2-adrenoceptors. International Journal of Radiation 

Applications and Instrumentation Part B Nuclear Medicine and Biology 1992;19(8):841-

849. 

[111] Thomas DN, Nutt D, Holman RB. Regionally specific changes in extracellular 

noradrenaline following chronic idazoxan as revealed by in vivo microdialysis. 

European Journal of Pharmacology 1994;261(1-2):53-57. 

[112] Tomaz C, Dickinsonanson H, Mcgaugh JL. Basolateral amygdala lesions block 

diazepam-induced anterograde amnesia in an inhibitory avoidance task. Proceedings of 

the National Academy of Sciences of the United States of America 1992;89(8):3615-3619. 

[113] de Souza Silva MA, Tomaz C. Amnesia after diazepam infusion into basolateral but 

not central amygdala of Rattus norvegicus. Neuropsychobiology 1995;32(1):31-36. 

[114] Da Cunha C, Roozendaal B, Vazdarjanova A, McGaugh JL. Microinfusions of 

flumazenil into the basolateral but not the central nucleus of the amygdala enhance 

memory consolidation in rats. Neurobiology of Learning and Memory 1999;72(1):1-7. 

[115] Huff NC, Frank M, Wright-Hardesty K, Sprunger D, Matus-Amat P, Higgins E, et al. 

Amygdala regulation of immediate-early gene expression in the hippocampus induced 

by contextual fear conditioning. The Journal of Neuroscience 2006;26(5):1616-1623. 

[116] LaLumiere RT, Buen TV, McGaugh JL. Post-training intra-basolateral amygdala 

infusions of norepinephrine enhance consolidation of memory for contextual fear 

conditioning. The Journal of Neuroscience 2003;23(17):6754-6758. 

[117] Hatfield T, McGaugh JL. Norepinephrine infused into the basolateral amygdala 

posttraining enhances retention in a spatial water maze task. Neurobiology of Learning 

and Memory 1999;71(2):232-239. 

[118] Quirarte GL, Roozendaal B, McGaugh JL. Glucocorticoid enhancement of memory 

storage involves noradrenergic activation in the basolateral amygdala. Proceedings of 

the National Academy of Sciences of the United States of America 1997;94(25):14048-

14053. 

[119] Ferry B, McGaugh JL. Clenbuterol administration into the basolateral amygdala post-

training enhances retention in an inhibitory avoidance task. Neurobiology of Learning 

and Memory 1999;72(1):8-12. 



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 227 

[120] Unnerstall JR, Kopajtic TA, Kuhar MJ. Distribution of α2 agonist binding-sites in the 

rat and human central nervous-system: Analysis of some functional, anatomic 

correlates of the pharmacologic effects of clonidine and related adrenergic Agents. 

Brain Research Reviews 1984;7(1):69-101. 

[121] Zilles K, Qu M, Schleicher A. Regional distribution and heterogeneity of alpha-

adrenoceptors in the rat and human central nervous system. Journal fur Hirnforschung 

1993;34(2):123-132. 

[122] Day HE, Campeau S, Watson SJ, Jr., Akil H. Distribution of α1a-, α1b- and α1d-

adrenergic receptor mRNA in the rat brain and spinal cord. Journal of Chemical 

Neuroanatomy 1997;13(2):115-139. 

[123] Domyancic AV, Morilak DA. Distribution of α1A adrenergic receptor mRNA in the rat 

brain visualized by in situ hybridization. The Journal of Comparative Neurology 

1997;386(3):358-378. 

[124] Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, et al. Localization of 

the mouse α1A-adrenergic receptor (AR) in the brain: α1A AR is expressed in neurons, 

GABAergic interneurons, and NG2 oligodendrocyte progenitors. Journal of 

Comparative Neurology 2006;497(2):209-222. 

[125] Glass MJ, Colago EE, Pickel VM. Alpha-2A-adrenergic receptors are present on 

neurons in the central nucleus of the amygdala that project to the dorsal vagal complex 

in the rat. Synapse 2002;46(4):258-268. 

[126] Rosin DL, Talley EM, Lee A, Stornetta RL, Gaylinn BD, Guyenet PG, et al. Distribution 

of alpha(2C)-adrenergic receptor-like immunoreactivity in the rat central nervous 

system. Journal of Comparative Neurology 1996;372(1):135-165. 

[127] Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR. Distribution of α(2A)-adrenergic 

receptor-like immunoreactivity in the rat central nervous system. Journal of 

Comparative Neurology 1996;372(1):111-134. 

[128] Ferry B, Roozendaal B, McGaugh JL. Involvement of α1-adrenoceptors in the 

basolateral amygdala in modulation of memory storage. European Journal of 

Pharmacology 1999;372(1):9-16. 

[129] Langer SZ. Presynaptic regulation of catecholamine release. Biochemical 

Pharmacology 1974;23(13):1793-1800. 

[130] Starke K. Presynaptic Regulation of Release in the Central Nervous System. In: Paton 

DM (ed) The Release of Catecholamines from Adrenergic Neurons. Oxford Pergamon 

Press; 1979. p143-183. 

[131] Ferry B, Roozendaal B, McGaugh JL. Basolateral amygdala noradrenergic influences 

on memory storage are mediated by an interaction between β- and α1-adrenoceptors. 

The Journal of Neuroscience 1999;19(12):5119-5123. 

[132] Leblanc GG, Ciaranello RD. α-Noradrenergic potentiation of neurotransmitter-

stimulated cAMP production in rat striatal slices. Brain Research 1984;293(1):57-65. 

[133] Perkins JP, Moore MM. Characterization of adrenergic receptors mediating a rise in 

cyclic 3', 5'-adenosine monophosphate in rat cerebral cortex. Journal of Pharmacology 

and Experimental Therapeutics 1973;185(2):371-378. 



 

The Amygdala – A Discrete Multitasking Manager 228 

[134] Schultz J, Daly JW. Accumulation of cyclic adenosine 3', 5'-monophosphate in cerebral 

cortical slices from rat and mouse: stimulatory effect of α- and β-adrenergic agents and 

adenosine. Journal of Neurochemistry 1973;21(5):1319-1326. 

[135] Ferry B, McGaugh JL. Involvement of basolateral amygdala α2-adrenoceptors in 

modulating consolidation of inhibitory avoidance memory. Learning & Memory 

2008;15(4):238-243. 

[136] Chopin P, Colpaert FC, Marien M. Effects of acute and subchronic administration of 

dexefaroxan, an α(2)-adrenoceptor antagonist, on memory performance in young adult 

and aged rodents. Journal of Pharmacology and Experimental Therapeutics 

2002;301(1):187-196. 

[137] Abercrombie ED, Keller RW, Jr., Zigmond MJ. Characterization of hippocampal 

norepinephrine release as measured by microdialysis perfusion: pharmacological and 

behavioral studies. Neuroscience 1988;27(3):897-904. 

[138] Thomas DN, Holman RB. A microdialysis study of the regulation of endogenous 

noradrenaline release in the rat hippocampus. Journal of Neurochemistry 

1991;56(5):1741-1746. 

[139] Zarrindast MR, Fazli-Tabaei S, Semnanian S, Fathollahi Y, Yahyavi SH. Effects of 

adrenoceptor agents on apomorphine-induced licking behavior in rats. Pharmacology 

Biochemistry and Behavior 2000;65(2):275-279. 

[140] Fendt M, Koch M, Schnitzler HU. Amygdaloid noradrenaline is involved in the 

sensitization of the acoustic startle response in rats. Pharmacology, Biochemistry, and 

Behavior 1994;48(2):307-314. 

[141] Schulz B, Fendt M, Schnitzler HU. Clonidine injections into the lateral nucleus of the 

amygdala block acquisition and expression of fear-potentiated startle. European Journal 

of Neuroscience 2002;15(1):151-157. 

[142] Starke K. Presynaptic autoreceptors in the third decade: focus on alpha2-

adrenoceptors. Journal of Neurochemistry 2001;78(4):685-693. 

[143] Mateo Y, Meana JJ. Determination of the somatodendritic alpha2-adrenoceptor 

subtype located in rat locus coeruleus that modulates cortical noradrenaline release in 

vivo. European Journal of Pharmacology 1999;379(1):53-57. 

[144] Van Gaalen M, Kawahara H, Kawahara Y, Westerink BHC. The locus coeruleus 

noradrenergic system in the rat brain studied by dual-probe microdialysis. Brain 

Research 1997;763(1):56-62. 

[145] Ferry B, Chaussabel M, Lazarus C, Cassel JC. Alpha2-autoreceptors modulate 

norepinephrine release in the basolateral amygdala: A mechanism involved in 

inhibitory avoidance consolidation in the rat?  Society for Neuroscience; 2010; San 

Diego, CA; 2010. p.  407.412. 

[146] Bevilaqua LR, Ardenghi PG, Schroder N, Bromberg E, Schmitz PK, Schaeffer E, et al. 

Drugs acting upon the cyclic adenosine monophosphate/protein kinase A signalling 

pathway modulate memory consolidation when given late after training into rat 

hippocampus but not amygdala. Behavioural Pharmacology 1997;8(4):331-338. 

[147] Izquierdo I, Quillfeldt JA, Zanatta MS, Quevedo J, Schaeffer E, Schmitz PK, et al. 

Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in 



Role of Norepinephrine in Modulating Inhibitory  
Avoidance Memory Storage: Critical Involvement of the Basolateral Amygdala 229 

formation and retrieval of memory for inhibitory avoidance in rats. European Journal of 

Neuroscience 1997;9(4):786-793. 

[148] Tanaka C, Nishizuka Y. The protein kinase C family for neuronal signaling. Annual 

Review of Neuroscience 1994;17:551–567. 

[149] Jiao X, Gonzalez-Cabrera PJ, Xiao L, Bradley ME, Abel PW, Jeffries WB. Tonic 

inhibitory role for cAMP in alpha(1a)-adrenergic receptor coupling to extracellular 

signal-regulated kinases 1/2. Journal of Pharmacology and Experimental Therapeutics 

2002;303:247–256 

[150] Carr DB, Andrews GD, Glen WB, Lavin A. alpha2-Noradrenergic receptors activation 

enhances excitability and synaptic integration in rat prefrontal cortex pyramidal 

neurons via inhibition of HCN currents. Journal of Physiology 2007;584:437–450. 

[151] Arnsten AF. Through the looking glass: differential noradenergic modulation of 

prefrontal cortical function. Neural Plasticity. 2000;7:133–146. 

[152] Marzo A , Bai J, Otani, S. Neuroplasticity Regulation by Noradrenaline in Mammalian 

Brain. Current Neuropharmacology 2009;7(4):286-295. 

[153] Parent MB, Avila E, McGaugh JL. Footshock facilitates the expression of aversively 

motivated memory in rats given post-training amygdala basolateral complex lesions. 

Brain Research 1995;676(2):235-244. 

[154] Parent MB, West M, McGaugh JL. Memory of rats with amygdala lesions induced 30 

days after footshock-motivated escape training reflects degree of original training. 

Behavioral Neuroscience 1994;108(6):1080-1087. 

[155] McGaugh JL. The amygdala modulates the consolidation of memories of emotionally 

arousing experiences. Annual Review of Neuroscience 2004;27:1-28. 

[156] McGaugh JL, Cahill L, Roozendaal B. Involvement of the amygdala in memory 

storage: Interaction with other brain systems. Proceedings of the National Academy of 

Sciences of the United States of America 1996;93(24):13508-13514. 

[157] Liang KC, McGaugh JL. Lesions of the stria terminalis attenuate the enhancing effect 

of post-training epinephrine on retention of an inhibitory avoidance response. 

Behavioural Brain Research 1983;9(1):49-58. 

[158] McDonald AJ. Topographical organization of amygdaloid projections to the 

caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. 

Neuroscience 1991;44(1):15-33. 

[159] McDonald AJ. Organization of amygdaloid projections to the prefrontal cortex and 

associated striatum in the rat. Neuroscience 1991;44(1):1-14. 

[160] Petrovich GD, Canteras NS, Swanson LW. Combinatorial amygdalar inputs to 

hippocampal domains and hypothalamic behavior systems. Brain Research Reviews 

2001;38(1-2):247-289. 

[161] LaLumiere RT, Nawar EM, McGaugh JL. Modulation of memory consolidation by the 

basolateral amygdala or nucleus accumbens shell requires concurrent dopamine 

receptor activation in both brain regions. Learning & Memory 2005;12(3):296-301. 

[162] Setlow B, Roozendaal B, McGaugh JL. Involvement of a basolateral amygdala 

complex-nucleus accumbens pathway in glucocorticoid-induced modulation of 

memory consolidation. European Journal of Neuroscience 2000;12(1):367-375. 



 

The Amygdala – A Discrete Multitasking Manager 230 

[163] Miranda MI, McGaugh JL. Enhancement of Inhibitory avoidance and conditioned 

taste aversion memory with insular cortex infusions of 8-Br-cAMP: Involvement of the 

basolateral amygdala. Learning & Memory 2004;11(3):312-317. 

[164] Ferry B, Wirth S, Di Scala G. Functional interaction between entorhinal cortex and 

basolateral amygdala during trace conditioning of odor aversion in the rat. Behavioral 

Neuroscience 1999;113(1):118-125. 

[165] Roesler R, Roozendaal B, McGaugh JL. Basolateral amygdala lesions block the 

memory-enhancing effect of 8-Br-cAMP infused into the entorhinal cortex of rats after 

training. European Journal of Neuroscience 2002;15(5):905-910. 

[166] Malin EL, Ibrahim DY, Tu JW, McGaugh JL. Involvement of the rostral anterior 

cingulate cortex in consolidation of inhibitory avoidance memory: interaction with the 

basolateral amygdala. Neurobiology of Learning and Memory 2007;87(2):295-302. 

[167] Roozendaal B, McReynolds JR, McGaugh JL. The basolateral amygdala interacts with 

the medial prefrontal cortex in regulating glucocorticoid effects on working memory 

impairment. The Journal of Neuroscience 2004;24(6):1385-1392. 

[168] Roozendaal B, McGaugh JL. Memory modulation. Behavioral Neuroscience 

2011;125(6):797-824. 

[169] McIntyre CK, McGaugh JL, Williams CL. Interacting brain systems modulate memory 

consolidation. Neuroscience and Biobehavioral Reviews 2011;doi:10.1016/j. 

neubiorev.2011.11.001. 


