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1. Introduction

The immune system can be defined as a complex system that protects the organism against
organisms or substances that might cause infection or disease. One of the most fascinating
characteristics of the immune system is its capability to recognize and respond to pathogens
with significant specificity. Innate and adaptive immune responses are able to recognize for‐
eign structures and trigger different molecular and cellular mechanisms for antigen elimina‐
tion. The immune response is critical to all individuals; therefore numerous changes have
taken place during evolution to generate variability and specialization, although the im‐
mune system has conserved some important features over millions of years of evolution that
are common for all species. The emergence of new taxonomic categories coincided with the
diversification of the immune response. Most notably, the emergence of vertebrates coincid‐
ed with the development of a novel type of immune response. Apparently, vertebrates in‐
herited innate immunity from their invertebrate ancestors [1].

In higher vertebrates, the immune system consists of primary and secondary lymphoid or‐
gans with distinct compartments and morphology located in anatomically distinct sites. The
thymus and bone marrow constitute the primary lymphoid organs, while the spleen, lymph
nodes, and mucosal associated lymphoid tissue (MALT) comprise the secondary lymphoid
organs [2].

Fish are a heterogeneous group divided into three classes: Agnatha (jawless fish such as the
hagfish and lampreys), Chrondrichthyes (cartilaginous fish such as sharks, rays and skates)
and Osteichthyes (bony fish) [3]. As in all vertebrates, fish have cellular and humoral im‐
mune responses and organs, the main function of which is immune defence. Most genera‐
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tive and secondary lymphoid organs in mammals are also found in fish, except for
lymphatic nodules and bone marrow [3].

The head kidney or pronephros has hematopoietic functions [3, 4], and unlike in higher ver‐
tebrates, it is the immune organ involved in phagocytosis [5], antigen processing, produc‐
tion of IgM [6, 7] and immune memory through melanomacrophagic centres [8, 9]. The
thymus, another lymphoid organ situated near the opercular cavity in teleosts, produces T
lymphocytes involved in allograft rejection, stimulation of phagocytosis and antibody pro‐
duction by B cells [10, 11]. The spleen is a large, blood-filtering organ that undergoes in‐
creasing structural complexity in order to augment its efficiency in trapping and processing
antigens [12-15]. Melanomacrophage centres are present for clearance of ingested material
and can be surrounded by immunoglobulin-positive cells, especially after immunization [8].
Proliferation of granular cells has also been observed in association with ellipsoids and mel‐
anomacrophage centres after immunization [16].

1.1. Innate and adaptive immune response

The development of an immune system is essential for the survival of living organisms. In
vertebrates, immunity can be divided into two components, the innate immune response
and the adaptive immune response. The innate immune response is the initial line of de‐
fence against infection, which includes physical barriers and cellular response. The adaptive
immune response is capable of specific antigen recognition and is responsible for the secon‐
dary immune response.

The innate immune system recognizes conserved molecular structures common to patho‐
genic microorganisms such as polysaccharides, lipopolysaccharides (LPS), peptidoglycans,
bacterial DNA, and double-strand viral RNA, among others, through their interaction with
specific receptors like toll receptors (TLRs). These mechanisms of recognition may lead di‐
rectly to successful removal of pathogens, for instance by phagocytosis, or may trigger addi‐
tional protective responses through induction of adaptive immune responses [17]. Cells of
the innate immune system have a diverse array of functions. Some cells are phagocytic, al‐
lowing them to engulf and degrade pathogenic particles. Other cells produce and secrete cy‐
tokines and chemokines that can stimulate and help guide the migration of cells and further
direct the immune response [18].

The  adaptive  system  recognizes  foreign  structures  by  means  of  two  cellular  receptors,
the  B  cell  receptor  (BCR)  and  the  T  cell  receptor  (TCR).  Adaptive  immunity  is  highly
regulated  by  several  mechanisms.  It  increases  with  antigen  exposure  and produces  im‐
munological  memory,  which  is  the  basis  of  vaccine  development  and  the  preventive
function of  vaccines [19,  20].  The adaptive response generally starts  days after  infection
and  is  capable  of  recognizing  specific  protein  motifs  of  peptides,  which  leads  to  a  re‐
sponse that  increases  in  both speed and magnitude with each successive exposure [21].
The main effector cells of the adaptive immune response are the lymphocytes, specifical‐
ly B cells and T cells. When B cells are activated, they are capable of differentiating into
plasma cells  that  can secrete  antibodies.  Upon activation T cells  differentiate  into either
helper T cells  or cytotoxic T cells.  Helper T cells  are capable of  activating other cells  of
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the adaptive immune response such as B cells and macrophages,  while cytotoxic T cells
upon activiation are able to kill cells that have been infected [22].

1.2. Fish immune response

Immune responses in fish have not been as well characterized as they have in higher verte‐
brates. Consequently, there is not enough information about the components of the fish im‐
mune system and its function and regulation. Key immune mammalian homologous genes
have been identified in several fish species, suggesting that the fish immune system shares
many features with the mammalian system. For example, the identification of α and β T cell
receptor genes (TCR) [23], key T cell markers such as CD3, CD4, CD8, CD28, CD40L, and a
great number of cytokines and chemokines [24-26] suggest that T helper (Th)1, Th2 and
Th17 and the regulatory subset Treg are present in fish. Some cell subsets have been better
studied mainly because their activity can be easily differentiated and measured, as in the
case of cytotoxic cells [27] and macrophages [28, 29]. Finally, B cells have been much more
studied due to the availability of monoclonal antibodies that have been isolated and identi‐
fied by a number of techniques [30, 31]. Phenotypic characterization of leukocytes has been
hampered mainly by the lack of membrane cell markers [32, 33]. Researchers anticipate de‐
veloping antibodies for cell lineage markers of fish immunocompetent cells that can be used
to isolate and characterize immune cells to obtain insights into their regulation and role in
immune response [34-36].

Antibodies in teleosts play a key role in the immune response. In general, IgM is the main
immunoglobulin in teleosts that can elicit effective specific humoral responses against vari‐
ous antigens. For IgM, one gene alone can generate as many as six structural isoforms.
Therefore, diversity is the result of structural organization rather than genetic variability
[37]. Recently, several reports have provided evidence for the existence of IgD/IgZ/IgT in
fish [38-41]. Interestingly, B cells from rainbow trout and salmon have high phagocytic ca‐
pacity, suggesting a transition in B lymphocyte during evolution in which a key cell type of
the innate immunity and phagocytosis evolved into a highly specialized component of the
adaptive immune response in higher vertebrates [42, 43].

1.3. Fish cytokines

Cytokines are secreted proteins with growth, differentiation, and activation functions that
regulate the nature of immune responses. Cytokines are involved in several steps of the im‐
mune response, from induction of the innate response to the generation of cytotoxic T cells
and the production of antibodies. In higher vertebrates, the combination of cytokines that
are secreted in response to an immune stimulation induces the expression of immune-relat‐
ed genes through multiple signalling pathways, which contributes to the initiation of the im‐
mune response. Cytokines can modulate immune responses through an autocrine or
paracrine manner upon binding to their corresponding receptors [44].

Cytokines have overlapping and sometimes contradictory pleiotropic functions that make
their classification difficult. Cytokines are produced by macrophages, lymphocytes, granulo‐
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cytes, DCs, mast cells, and epithelial cells, and can be divided into interferons (IFNs), inter‐
leukins (ILs), tumor necrosis factors (TNFs), colony stimulating factors, and chemokines
[45]. They are secreted by activated immune-related cells upon induction by various patho‐
gens, such as parasitic, bacterial, or viral components [46]. Macrophages can secret IL-1,
IL-6, IL-12, TNFα, and chemokines such as IL-8 and MCP-1, all of which are indispensable
for macrophage, neutrophil, and lymphocyte recruitment to the infected tissues and their ac‐
tivation as pathogen eliminators [47]. Meanwhile, cytokines released by phagocytes in tis‐
sues can also induce acute phase proteins, including mannose-binding lectin (MBL) and C-
reactive protein (CRP), and promote migration of DCs [48].

Fish appear to possess a repertoire of cytokines similar to those of mammals. To date several
cytokine homologues and suppressors have been cloned in fish species [24, 25, 49]. Some cy‐
tokines described in fish are TNFα, IL-1β, IL-6 or IFN.

Current knowledge of fish cytokines is based on mammal models of the cytokines network
and their complex interactions. In this review we included the pro-inflammatory cytokines
associated with innate and adaptive immunity, regulatory cytokines and anti-inflammatory
cytokines.

1.4. Pro-inflammatory fish cytokines

1.4.1. Tumour necrosis factor α (TNFα)

TNFα (tumour necrosis factor alpha) is a pro-inflammatory cytokine that plays an important
role in diverse host responses, including cell proliferation, differentiation, necrosis, apopto‐
sis, and the induction of other cytokines. TNFα can induce either NF-kB mediated survival
or apoptosis, depending on the cellular context [50]. TNFα mediates powerful anti-microbial
responses, including inducing apoptosis, killing infected cells, inhibiting intracellular patho‐
gen replication, and up-regulating diverse host response genes. Many viruses have evolved
strategies to neutralize TNFα by direct binding and inhibition of the ligand or its receptor or
modulation of various downstream signalling events [51].

TNFα has been identified, cloned, and characterized in several bony fish, including Japanese
flounder [52], rainbow trout [53, 54], gilthead seabream [55], carp [56] catfish [57], tilapia
[58], turbot [59] and goldfish [60]. These studies have revealed the existence of some obvious
differences from their mammalian counterpart, such as the presence of multiple isoforms of
TNFα in some teleost species [54, 56] the high constitutive expression of this gene in differ‐
ent tissues of healthy fish and its relatively poor up-regulation by immune challenge in vitro
and in vivo [53, 55, 57]. However, the most unexpected and interesting difference between
fish and mammal TNFα concerns the weak in vitro effects of TNFα on phagocyte activation
in goldfish [60], rainbow trout [57], turbot [59] and gilthead seabram [61]. This weak in vitro
activity of fish TNFα sharply contrasts with the powerful actions exerted by the i.p. injection
of recombinant TNFα in gilthead seabream, which includes the recruitment of phagocytes to
the injection site, with a concomitant strong increase in their respiratory burst [61]. Appa‐
rently endothelial cells are the main target cells of fish TNFα, suggesting that TNFα is main‐
ly involved in the recruitment of leukocytes to the inflammatory foci rather than in their
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activation [62]. Despite the above, differential expression has been observed in studies with
rainbow trout leucocytes, which have shown increased response to different pro-inflamma‐
tory stimuli, as human recombinant TNFα [63], LPS [53, 64], zimosan and muramyl dipep‐
tide as a peptidoglycan constituent of both gram-positive and gram-negative bacteria [64].
Moreover, it is known that Infectious Pancreatic Necrosis Virus (IPNV)-mediated up-regula‐
tion of TNFα regulates both the Bad/Bid-mediated apoptotic pathway and the RIP1 (recep‐
tor-interacting protein-1)/ROS-mediated secondary necrosis pathway [65].

1.4.2. Interleukin 1 family

In  mammals,  the  11  members  of  the  Interleukin-1  family  include  IL-1α  (IL-1F1),  IL-1β
(IL-1F2),  IL-1  receptor  antagonist  (IL-1ra/IL-1F3),  IL-18  (IL-1F4),  IL-1F5-10  and  IL-33
(IL-1F11).  These molecules tend to be either pro-inflammatory or act  as antagonists that
inhibit  the activities of particular family members [66].  Despite these semantic issues,  to
date  only two clear  homologues of  these molecules  have been discovered in fish,  IL-1β
and IL-18 [24].

1.4.2.1. Interleukin 1β

IL-1β is one of the earliest expressed pro-inflammatory cytokines and enables organisms to
respond promptly to infection by inducing a cascade of reactions leading to inflammation.
Many of the effector roles of IL-1β are mediated through the up- or down-regulation of ex‐
pression of other cytokines and chemokines [67]. Mammalian IL-1β is produced by a wide
variety of cells, but mainly by blood monocytes and tissue macrophages. IL-1β was the first
interleukin to be characterized in fish and has since been identified in a number of fish spe‐
cies, such as rainbow trout [68], carp [69], sea bass [70], gilt head seabram [71], haddock [72],
tilapia [73]. A second IL-1β gene (IL-1beta2] has been identified in trout [74]

In mammals pro-IL-1β remains cytosolic and requires cellular proteases to release the ma‐
ture peptide. It is known that the peptide is cleaved by the IL-1β converting enzyme (ICE)
[75]. However, the aspartic acid residue for which this enzyme has specificity is not present
in all fish genes sequenced to date. Nevertheless, using a combination of multiple align‐
ments and analysis of the N-terminal sequences of known mature peptides, it is possible to
predict fish gene cutting sites. In trout, this gives a mature peptide of 166 and 165 aminoa‐
cids for IL-1β1 and IL-1β2 [76].

Like its mammalian counterpart, teleost IL-1β has been found to be regulated in response to
various stimuli, such as LPS or poly I:C [68, 70-74, 77-81]. The biological activity of recombi‐
nant IL-1β (rIL-1β) has been studied in several fish species, indicating that fish IL-1β is in‐
volved in the regulation of immune relevant genes, lymphocyte activation, migration of
leucocytes, phagocytosis and bactericidal activities [77, 81-84].

1.4.2.2. Interleukin 18

In mammals, IL-18 is mainly produced by activated macrophages. It is an important cyto‐
kine with multiple functions in innate and acquired immunity [85-87]. One of its primary
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biological properties is to induce interferon gamma (IFNγ) synthesis in Th1 and NK cells in
synergy with IL-12 [88, 89]. It promotes T and NK cell maturation, activates neutrophils and
enhances Fas ligand-mediated cytotoxicity [90-92]. Like IL-1β, it is synthesized as an inactive
precursor of approximately 24 kDa and is stored intracellularly. Activation and secretion of
IL-18 is mainly effected through specific cleavage of the precursor after D35 by caspase 1,
also termed the IL-1β-converting enzyme (ICE), which is believed to be one of the key proc‐
esses regulating IL-18 bioactivity [93, 94]. Some other enzymes, including caspase 3 and neu‐
trophil proteinase 3, also cleave the IL-18 precursor to generate active or inactive mature
molecules [95, 96].

IL-18 was discovered in fish by analysis of sequenced fish genomes (fugu) and EST databas‐
es (medaka) [97, 98]. An alternative splicing form of the IL-18 mRNA was discovered in
trout that may have an important role in regulating IL-18 expression and processing in this
species. This form shows a lower constitutive expression relative to the full length tran‐
script, but unlike the full length transcript, it increases in response to LPS and polyI:C stimu‐
lation in the RTG-2 fibroblast cell line [98]. The expression level of the full length transcript
can increase in response to LPS plus IL- 1b in head kidney leucocyte cultures, and by IFNγ
in RTS-11 cells [99].

1.4.3. Other pro-inflammatory cytokines

1.4.3.1. Interleukin 6

A number of other interleukins are considered pro-inflammatory, some of which are re‐
leased during the cytokine cascade that follows bacterial infection. Of these IL-6 is one of the
best known, and is itself a member of the IL-6 family of cytokines that includes IL-11 and
IL-31, as well as cytokines such as mammalian CNTF, LIF, OSM, CT-1 and CT-2 [24]. Whilst
the homology of known fish molecules with many of these IL-6 family members is not con‐
clusive [100], true homologues appear to be present in at least in the cases of IL-6 and IL-11
[24]. IL-6 is produced by a diverse group of cells including T lymphocytes, macrophages, fi‐
broblasts, neurons, endothelial and glial cells. The pleiotropic effects of IL-6 are mediated by
a 2-subunit receptor [101] and include the regulation of diverse immune and neuro-endo‐
crine processes. IL-6 has been implicated in the control of immunoglobulin production, lym‐
phocyte and monocyte differentiation, chemokine secretion and migration of leukocytes to
inflammation sites [102-104].

IL-6 was first discovered in fugu by analysis of the genome sequence [105] and subsequently
in other species as part of EST analysis of immune gene-enriched cDNA libraries [106-108].
However, little is known about the function and signalling pathways of IL-6 in fish. Interest‐
ingly, trout IL-6 expression in macrophages is reported to be induced by LPS, poly I:C and
IL-1β in the macrophage cell line RTS-11, as well as in head kidney macrophages [109].
Moreover, IL-6 induces the expression of itself, so it can act in an autocrine and paracrine
fashion to increase its expression, with the potential to both amplify and exacerbate the
inflammatory response. However, IL-6 can significantly down-regulate the expression of
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trout TNFα1, TNFα2, and IL-1β, suggesting a potential role of trout IL-6 in limiting host
damage during inflammation [109].

1.4.3.2. Interleukin 11

In mammals,  IL-11 is  produced by many cell  types throughout the body.  Basal  and in‐
ducible  IL-11  mRNA expression can be  detected in  fibroblasts,  epithelial  cells,  chondro‐
cytes,  synoviocytes,  keratinocytes,  endothelial  cells,  osteoblasts  and certain  tumour  cells
and  cell  lines  [110].  Viral  [111]  and  bacterial  infection  [112]  and  cytokine  stimulation
(IL-1,  TNFα and TGF-β1]  induce IL-11 expression.  IL-11  acts  on multiple  cell  types,  in‐
cluding  hemotopoietic  cells,  hepatocytes,  adipocytes,  intestinal  epithelial  cells,  tumour
cells,  macrophages,  and both  osteoblasts  and osteoclasts.  In  the  hematopoietic  compart‐
ment  IL-11  supports  multilineage  and  committed  progenitors,  contributing  to  myeloid,
erythroid, megakaryocyte and lymphoid lineages [113]. IL-11 is also an anti-inflammatory
cytokine  that  inhibits  the  production  of  pro-inflammatory  cytokines  from  lipopolysac‐
charde  (LPS)-stimulated  macrophages  [114].  In  combination  with  its  trophic  effects  on
the gastrointestinal epithelium, IL-11 plays an important role in the protection and resto‐
ration of gastrointestinal mucosa [115, 116].

The  teleostean  IL-11  orthologue  has  been  found  to  consist  of  duplicate  IL-11  genes,
named IL-11a  and IL-11b  [117],  with  expression patterns  indicating  that  both  divergent
forms of teleostean IL-11 play roles in antibacterial and antiviral defence mechanisms of
fish  [117-119].  In  trout,  IL-11  molecule  is  grouped with  IL-11a  and is  constitutively  ex‐
pressed in  intestine  and gills  and is  highly up-regulated at  other  immune sites  (spleen,
head kidney, liver) following bacterial infection. In vitro, the macrophage-like RTS-11 cell
line  has  shown  enhanced  IL-11  expression  in  response  to  LPS,  bacteria,  poly  I:C  and
rIL-1β [118]. In carp, IL-11a is modulated by LPS, ConA and peptidoglycan in head kid‐
ney  macrophages  [117,  120]  and cortisol  has  been  found to  inhibit  IL-11  expression  on
its own and in combination with LPS [117]. In contrast to carp IL-11a, which shows low
levels  of  constitutive expression in blood leucocytes,  IL-11b in Japanese flounder shows
higher  expression at  this  site,  and strong up-regulation was found in response to  rhab‐
dovirus  infection  in  kidney  cells  [119].  This  suggests  that  these  paralogues  have  some
complementarity  of  function  related  to  their  differential  expression,  although  study  of
both forms in a single experiment is still required [24].

1.5. Chemokines

Chemokines are a superfamily of approximately 40 different small secreted cytokines that
direct the migration of immune cells to infection sites. Their activity is coordinated by bind‐
ing to G-protein-linked receptors with seven transmembrane domains. Four distinct sub‐
groups make up the chemokine superfamily. These are designated as CXC (or a), CC (or b),
C (or g) and CX3C (or d), which are defined by the arrangement of the first two cysteine resi‐
dues within their peptide structure. The CC subfamily can be further subdivided according
to the total number of cysteine residues, as some members of this group contain four cys‐
teines whilst the remainder possesses six (and are known as the C6-b group). Similarly, the
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CXC subfamily contains two subgroups based on whether or not the first two cysteines are
preceded by a Glu-Leu-Arg (ELR) motif associated with specificity to neutrophils [76, 121].

1.5.1. Interleukin 8

An important chemokine related to the pro-inflammatory process is CXCL-8, also called in‐
terleukin 8, this chemokine is a member of the CXC chemokine subfamily and attracts neu‐
trophils, T lymphocytes and basophils in vitro, but not macrophages or monocytes [122].
Many cell-types, including macrophages, produce IL-8 in response to a variety of stimuli
(LPS, cytokines and viruses). The neutrophil-attracting ability of IL-8 can be attributed to the
presence of the ELR motif adjacent to the CXC motifs at its N-terminus, presumably by af‐
fecting its binding to specific receptors [123, 124]. In contrast, CXC chemokines lack an ELR
motif and specifically attract lymphocytes but not neutrophils. The biological effects of IL-8
on neutrophils include increased cytosolic calcium levels, respiratory burst, a change in neu‐
trophil shape and chemotaxis[125].

The fish IL-8 has been found in flounder [126], trout [125, 127], catfish [128], and lamprey
[129]. In vitro stimulation of a trout macrophage cell line (RTS-11) [125] or in vivo intraperito‐
neal challenge [78] with either LPS or poly I:C did result in clear up-regulation of IL-8 ex‐
pression. Moreover, induction of IL-8 expression in primary cultures of rainbow trout
leukocytes stimulated for 24 hours with LPS and TNFα confirms that this fish chemokine is
associated with inflammatory response, as has been suggested in mammals [127]. Interest‐
ingly, the ELR motif associated with the neutrophil-attracting ability is absent from the
lamprey molecule and it is similar in flounder, where CXCL8 also lacks the ELR motif and
appears to be regulated by a bacterial mechanism, since its transcript has only been detected
in the major immune organs (spleen and head kidney) of an LPS stimulated flounder. The
case of the trout is different, although there is also no ELR preceding the CXC motif, it has a
very similar motif (DLR) in this position [130]. The human CXCL8 molecule, where the ELR
motif has been mutated to DLR, retains neutrophil-attracting ability, albeit at lower potency
[123]. Consequently, it is possible that the trout molecule has similar chemotactic activity to
that of mammalian CXCL8 [130].

1.6. The interleukin 2 family

The IL-2 subfamily of cytokines signals via the common gamma chain (gC or CD132), a
member of the type I cytokine receptor family expressed in most leucocytes.These cytokines
in mammals include IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. IL-2, IL-4, IL-9 and IL-21 are all
cytokines released from Th cells, which affect their responses [24], whilst IL-7 and IL-15 are
particularly important for the maintenance of T cell memory [131]. To date molecules with
homology to all of these have been found in fish, except IL-9 [24].

1.6.1. Interleukin 2

Interleukin-2 (IL-2 is an important immunomodulatory cytokine that primarily promotes
proliferation, activation and differentiation of T cells [132]. IL-2, initially known as T-cell
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growth factor (TCGF), is synthesized and secreted mainly by Th1 cells that have been acti‐
vated by stimulation by certain mitogens or by interaction of the T-cell receptor with the an‐
tigen/MHC complex on the surface of antigen-presenting cells [133-135]. Although CD4 T
cells are the major source of IL-2 production in response to TCR stimulation, transient in‐
duction of IL-2 mRNA and production of the protein has been detected in murine dendritic
cells activated by gram-negative bacteria [136]. IL-2 can also be produced by B cells in cer‐
tain situations [137, 138]. The produced IL-2 promotes the expansion and survival of activat‐
ed T cells and is also required for the activation of natural killer (NK) cells [139] and for
immunoglobulin (Ig) synthesis by B cells [140].

The IL-2 gene has been detected only recently in fish by analysis of the fugu genome se‐
quence,  which  also  identified  IL-21  as  a  neighbouring  gene,  as  in  mammals,  providing
the  first  direct  evidence  for  the  existence  of  a  true  IL-2  homologue  in  bony  fish  [141].
The gene  has  a  4  exon/3  intron organisation,  as  in  mammals,  and showed no constitu‐
tive expression in a range of tissues examined. However, injection of Fugu with poly I:C
induced expression of IL-2 in the gut and gills [141]. Moreover, IL-2 could be induced in
head kidney cell  cultures  stimulated with PHA, and in T-cell  enriched cultures  isolated
from PBL when stimulated with B7-H3 or B7- H4 Ig fusions proteins in the presence of
PHA [24, 142]. IL-2 has since been cloned in rainbow trout [143, 144]. The trout IL-2 was
significantly  up-regulated in  head kidney leucocytes  by the T cell  mitogen PHA and in
classical mixed leucocyte reactions and in vivo  following infection with bacteria (Y. ruck‐
eri) or the parasite Tetracapsuloides bryosalmonae.  More importantly, the recombinant trout
IL-2  produced  in  Escherichia  coli  was  shown  to  induce  expression  of  two  transcription
factors (STAT5 and Blimp-1) known to be involved in IL-2 signalling in mammals [143],
as  well  as  interferon-g  (IFNγ)  and  IL-2  itself,  and  a  CXC  chemokine  known  to  be  in‐
duced by IFNγ, termed a IFNγ-inducible protein (γIP) [145].

1.6.2. Interleukin 4

Interleukin-4 IL-4 is a pleiotropic cytokine produced by T cells, mast cells, and basophils and
is known to regulate an array of functions in B cells, T cells, macrophages, hematopoietic
and non-hematopoietic cells [146, 147]. IL-4 serves as a key cytokine in driving Th2 differen‐
tiation and mediating humoral immunity, allergic responses and certain autoimmune dis‐
eases [148]. The IL-4 gene is conserved evolutionally in the animal kingdom and has been
isolated from various animals including humans [149], mice [150, 151] and bovines [152], in
which the IL-4 locus has been mapped in a region adjacent to those of IL-5 and IL-13 on the
same chromosome [153, 154].

Teleost fish have two genes of the IL-4/13 family, IL-4/13A and IL-4/13B, which are situated
on separate chromosomes in regions that duplicated during the fish-specific whole genome
duplication (FS-WGD) around 350 million years ago [155, 156]. A few IL-4-like genes have
been found in fish to date. The first was discovered by searching the Tetraodon nigroviridis
genome [157]. In this work, IL-4 was constitutively expressed in head kidney, spleen, liver,
brain, gill, muscle and heart. The ubiquitous expression of IL-4 is consistent with a postulat‐
ed role in immune cytokines regulation. Stimulating the fish with a mixed stimulant con‐
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taining ConA, PHA and PMA significantly up-regulated the expression of IL-4, which
suggests that IL-4 is involved in the immune inflammatory responses triggered by mitogens
[157], as in mammals, where it has been observed that this mitogen increases IL-4 expression
[158]. However, the homology (amino acid identity) of this molecule was very low [12–15%),
making it difficult to be sure it is an IL-4 homologue, although clearly related to Th2-type
cytokines [24]. In fugu, T cell enriched PBL was found to express more IL-4/13A and
IL-4/13B after stimulation with recombinant B7 molecules [142]. In zebrafish a recombinant
IL4/13B was shown to increase the number of IgT-positive and CD209-positive cells in blood
[159, 160], and in zebrafish spleen the expression of IL-4/13B and transcription factor related
to Th2 immune response as GATA-3, and STAT6 was simultaneously enhanced after PHA
stimulation [161]. The IL-4/13A gene was identified in trout and salmon [162], where the tis‐
sue distribution of salmonid IL-4/13A and GATA-3 expression were compared to the ex‐
pression of IL-4, IL-13, and GATA-3 in mice. High levels of these transcripts were found in
both salmonid and murine thymus, while constitutive IL-4/13A richness of skin and respira‐
tory tissue was found in salmonids but not in mice. Experiments with isolated cells from gill
and pronephros (head kidney) indicated that trout IL-4/13A is mainly expressed by surface
IgM-negative cells, readily inducible by PHA but not by poly I:C, and regulated differently
from the Th1 cytokine IFNγ gene. In mammals, IL-5 is also considered a Th-2 type cytokine
and along with IL-3 and GM-CSF it signals through receptors with a common γ-chain (γC).
None of these cytokines have been discovered in fish to date [24].

1.6.3. Interleukin 7

The cytokine IL-7 plays several important roles during lymphocyte development, surviv‐
al,  and  homeostatic  proliferation  [163].  It  is  produced  by  many  different  stromal  cell
types,  including epithelial  cells  of  the thymus and the intestine [164-166].  There is  only
one report on IL-7 in fish, for the fugu molecule that was discovered using a gene synte‐
ny approach by searching with the mammalian IL-7 gene neighbours C8orf70 and PKIA.
Fugu IL-7 shows constitutive expression in head kidney, spleen, liver,  intestine, gill  and
muscle, with expression shown to increase in head kidney cultures stimulated with LPS,
poly I:C or PHA [24, 167].

1.6.4. Interleukin 15

The central action of IL-15 cytokine is on T-cells, dendritic cells and NK cells. IL- 15 is an
important regulator of the innate immune response to infection and autoimmune disease
conditions. This gene shares activities with IL-2 and utilizes IL-2R β and γ units [45].

Two genes with homology to IL-15 have been discovered in fish. One shows similar gene
organisation and synteny to mammalian and chicken IL-15, and has been termed IL-15. The
second gene, which has a 4-exon structure and is in a different genome location, has been
termed IL-15-like [168-170]. They show differential expression patterns in terms of the tis‐
sues where constitutive expression is apparent, and in terms of inducibility in PBL, with
IL-15L being refractory to induction [168]. Two alternative splice variants of IL-15L (IL-15La
and IL-15Lb) have also been described [170]. Trout IL-15, which has subsequently been
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cloned and sequenced, was strongly induced by rIFNγ in two trout cell lines (RTS-11 and
RTG-2). rIL-15 could up-regulate IFNγ expression in splenic leucocytes, suggesting a posi‐
tive feedback loop exists in fish between these two cytokines. Interestingly, unstimulated
head kidney leucocytes were not responsive to rIL-15, at least in terms of the IFNγ expres‐
sion level [171].

1.6.5. Interleukin 21

Interleukin 21 (IL-21) is a newly recognized member of IL-2 cytokine family that utilizes the
common γ-chain receptor subunit for signal transduction [172-174]. In humans and other
mammals, IL-21 is produced by both Th1 and Th2 cells [172, 175, 176]. IL-21 has pleiotropic
effects on both innate and adaptive immune responses and can act on CD4+ and CD8+ T
cells, B cells, NK cells, dendritic cells (DC), myeloid cells, and other tissue cells. IL-21 enhan‐
ces the proliferation of anti–CD3-stimulated T cells and acts in concert with other γc cyto‐
kines to enhance the growth of CD4+ T cells [177]. IL-21–producing CD4+ T cells exhibit a
stable phenotype of IL-21 production in the presence of IL-6 but retain the potential to pro‐
duce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions
[178]. IL-21 stimulates CD8+ T cell proliferation and synergizes with IL-15 in promoting
CD8+ T cell expansion in vitro and their antitumor effects in vivo [177, 179]. B cells that en‐
counter IL-21 in the context of Ag-specific (BCR) stimulation and T cell co/stimulation un‐
dergo class-switch recombination and differentiate into Ab-producing plasma cells. In
contrast, B cells encountering IL-21 during nonspecific TLR stimulation or without proper T
cell help undergo apoptosis [180].

Since its discovery in fugu as a gene neighbour of IL-2 [141], IL-21 has been reported in tet‐
raodon [181, 182] and rainbow trout [182]. Fugu IL-21 shows low constitutive expression.
However, stimulation of isolated kidney leucocytes with PHA induced IL-21 expression.
IL-21 was also up-regulated at mucosal sites as gill and gut when fish were injected with
LPS or poly I:C [141]. Similarly, in tetraodon IL/21 expression is low but detectable in the
gut, gonad and gills of healthy fish, and is induced in the kidney, spleen and skin following
LPS injection [181]. In trout IL-21 expression is highest in gills and intestine, and is induced
in vivo by bacterial (Y. ruckeri) and viral (VHSV) infection [182]. Relative to IL-2, induction of
IL-21 expression in head kidney cells appears more rapidly but has shorter duration after
stimulation. The trout rIL-21 has also been produced and shown to increase the expression
of IL-10, IL-22 and IFNγ, and to a lesser extent IL-21, and to maintain the expression levels
of key lymphocyte markers in primary cultures [182]. Thus, IL-21 may act as a survival fac‐
tor for fish T and B cells [24].

1.7. The interleukin 10 family

Interleukin-IL-10 is an anti-inflammatory cytokine and a member of the class II cytokine
family that also includes IL-19, IL-20, IL-22, IL-24, IL-26 and the interferons [183]. Although
the predicted helical structure of these homodimeric molecules is conserved, certain recep‐
tor-binding residues are variable and define the interaction with specific heterodimers of
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different type-2 cytokine receptors. This leads to diverse biological effects through the acti‐
vation of signal transducer and activator of transcription (STAT) factors [184].

1.7.1. Interleukin 10

Interleukin-10 (IL-10) was discovered initially as an inhibitory factor for the production of
Th1 cytokines. Subsequently, pleiotropic inhibitory and stimulatory effects on various types
of blood cells were described for IL-10, including its role as a survival and differentiation
factor for B cells. IL-10, which is produced by activated monocytes, T cells and other cell
types like keratinocytes, appears to be a crucial factor for at least some forms of peripheral
tolerance and a major suppressor of the immune response and inflammation. The inhibitory
function of IL-10 is mediated by the induction of regulatory T cells [185].

IL-10 was discovered in fish by searching the fugu genome. The translation showed 42–45%
similarity to mammalian molecules with very low constitutive expression in tissues [186].
IL-10 has since been cloned in several other fish species including carp [187] zebrafish [188],
rainbow trout [189], sea bass [190, 191] and cod [79]. Such studies have shown that IL-10 ex‐
pression can be increased by LPS stimulation, by bacterial infection, by bath administration
of immunostimulants [192] and by IPNV infection which may be associated with mecha‐
nisms of immune evasion [78].

1.7.2. Interleukin 20 (IL-20Like)

In mammals, IL-20 was discovered as a new member of the IL-10 family of cytokines. IL-20
shares the highest amino-acid sequence identity with IL-10, IL-24 and IL-19. It is secreted by
immune cells and activated epithelial cells like keratinocytes. A high expression of the corre‐
sponding IL-20 receptor chains has been detected on epithelial cells. In terms of function,
IL-20 might therefore mediate crosstalk between epithelial cells and tissue-infiltrating im‐
mune cells under inflammatory conditions [193].

In fish, the gene of IL-20 has been described in putterfish [183], zebrafish [194] and trout
[195].  In the latter work, the IL-20 gene, called IL-20-like (IL-20L) has been described as
having a high level of expression in immune related tissues and in the brain, suggesting
an important role of the fish IL-20L molecule in both the immune and nervous systems.
Although the exact cell types expressing IL-20L have yet to be defined, macrophages ex‐
press  IL-20L.  Moreover,  IL-20L expression in the macrophage cell  line RTS-11 is  modu‐
lated  by  pro-inflammatory  cytokines,  signalling  pathway  activators,  microbial  mimics
and the immuno-suppressor  dexamethasone.  These data  suggest  that  trout  IL-20L plays
an important role in the cytokine network. The increased expression of IL-20L was only
detected at late stages (4–24 h) of LPS stimulation in RTS-11 cells and in spleen 24–72 h
after  infection  with  Yersinia  ruckeri,  which  suggests  that  the  increased  expression  of
IL-20L by LPS and infection is via the rapid increase of pro-inflammatory cytokines (e.g.,
IL-1β) and other factors known to occur [195].
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1.7.3. Interleukin 22/26

In mammals, interleukin-22 is secreted by Th17 cells [196], as well as by a subset of NK cells,
designated as NK22 [197]; and even by some Th1 cells [198]. Studies have suggested there is
a distinct Th22 cell lineage [199, 200]. Many of the same cytokines that induce differentiation
and proliferation of IL-17-producing cells also lead to the secretion of IL-22 by Th17 cells,
NK22 cells, and putative Th22 cells, including IL-6, IL-23, IL- 1β, TGF-β, and TNFα [201].
IL-17 and IL-22 are therefore frequently produced together in response to infections [202].
Interleukin-22 interacts with a heterodimeric receptor, IL-10R2/IL-22R1 [203], which is ex‐
pressed on a variety of non-lymphoid cells, especially epithelial cells. Ligation of this recep‐
tor leads to both protective and detrimental effects. In synergy with IL-17, IL-22 induces
pro-inflammatory cytokines in human bronchial epithelial cells against Klebsiella pneumoniae
infection [204] and in colonic myofibroblasts [205]. Independently or in synergy with IL-17,
IL-22 acts in defence against intestinal infection of mice with Citrobacter rodentium [206].
Moreover, IL-22 has been implicated in intestinal homeostasis keeping commensal bacteria
contained in anatomical niches, which is key to our symbiotic relationship and normal intes‐
tinal physiology. However, the mechanisms that restrict colonization to specific niches are
unclear. David Artis and colleagues have described a crucial role for IL-22-producing innate
lymphoid cells (ILCs) in preventing lymphoid-resident commensal bacteria from escaping
their niche and causing inflammation [207].

IL-26 can be produced by primary T cells, NK cells and T cell clones following stimulation
with specific antigen or mitogenic lectins. IL-26 was initially shown by several groups to be
co-expressed with IL-22 [208]. IL-26 is co-expressed with IFNγ and IL-22 by human Th1
clones, but not by Th2 clones. It was subsequently found that IL-26 is co-expressed with
IL-17 and IL-22 by Th17 cells, an important subset of CD4+ T-helper cells that are distinct
from Th1 and Th2 cells [209-211]. More recently, a novel subset of CD56+ NKp44+ NK cells
was identified that co-expresses IL-22 and IL-26, especially following treatment with IL-23
[212]. Furthermore, a different subset of immature NK cells was described that do not ex‐
press CD56 or NKp44 but do express CD117 and CD161 and constitutively express IL-22
and IL-26 [213].

The mechanisms that regulate transcription of the human IL-26 gene are so far largely unde‐
fined. It is possible and perhaps likely that expression of the IL-26 gene is induced in an
IL-23-dependent manner because IL-23 is known to induce differentiation of Th17 cells, and
IL-23 amplifies expression of IL-17 and IL-22 by Th17 cells [214].

In fish, the IFNγ locus was discovered using a gene synteny approach, and was first re‐
ported for fugu [215].  It  contained a homologue of IL-22/26, that later studies of the ze‐
brafish  genome  revealed  to  be  two  genes,  one  with  clear  homology  to  IL-22  and  one
with somewhat less clear homology to IL-26 [216]. The IL-22 gene was expressed consti‐
tutively in intestine and gills in all the treated and non-treated tissues. The gene was al‐
so expressed in kidney and spleen in LPS and PolyI:C-treated tissues, respectively, while
IL-26  was  expressed  only  in  intestine  treated  with  PolyI:C  without  expression  [216].
IL-22  expression  has  been  correlated  with  disease  resistance  in  haddock  vaccinated
against  V.  anguillarum,  with  a  strong  constitutive  expression  in  gills  in  vaccinated  fish
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but not in control  fish 24 hours post bath challenge,  resulting in complete protection in
fish vaccinated [217]. Moreover, IL-22, a cytokine released by Th-17 cells in mammals, is
also interesting,  and such responses  are  thought  to  be crucial  for  protection against  ex‐
tracellular microbes and at mucosal sites [218]. This coupled with the recent discovery of
novel gill-associated immune tissue in fish [219] may provide a clue to a potential mech‐
anism of resistance elicited by the V. anguillarum vaccination [24].

1.8. The interleukin 17 family

Interleukin-17 and a related family of genes are known to have pro-inflammatory actions
and  are  associated  with  diseases  [220].  After  the  discovery  of  the  human  IL-  17  gene
[221],  five  cellular  paralogs  of  IL-17  were  identified,  namely  IL-17B,  C,  D,  E  and  F
[222-227].  These  paralogs,  identified  by  ESTs,  genomics  and proteomic  databases,  share
identities of  20–50% with IL-17A gene.  Human IL-17 A and F are present in tandem in
opposite  transcriptional  orientation  on  the  same  chromosome  6p12,  while  IL-17B  (Chr
5q24), IL-17C (Chr 16q24), IL-17D (Chr 13q11) and IL-17E (Chr 14q11) are dispersed. The
structural  similarities  lead to  the classification of  IL-17 A,  B,  C,  D,  E,  and F genes to  a
larger IL-17 sub-family [45]. Several IL-17 family members have been discovered in tele‐
ost  fish,  but  homology  to  mammalian  genes  has  not  always  been  easy  to  assign.  Two
IL-17A  or  F  homologue  genes  (IL-17A/F)  have  been  found  on  the  same  chromosome.
However,  it  has  been difficult  to  determine which gene codes IL-17A and F.  This  gene
in zebrafish was named IL-17A/F1 and 2.  Furthermore,  another IL-17A or F homologue
gene (IL-17A/F3) has been found in zebrafish localized on a chromosome different from
that of  IL-17A/F1 and 2 [228].  In addition to those in zebrafish,  IL-17A or F homologue
genes  have  been  found  in  rainbow  trout  [229],  Atlantic  salmon  [230],  pufferfish
(IL-17A/F1, 2 and 3) [231], and medaka (IL-17A/F1, 2 and 3) [232].

The tissue distribution of the fugu IL-17 gene family also differs. In particular, IL-17 family
genes are highly expressed in the head kidney and gills. Moreover, expression of IL-17 fami‐
ly genes is significantly up-regulated in the lipopolysaccharide-stimulated head kidney,
suggesting that Fugu IL-17 family members are involved in inflammatory responses [231].
In Atlantic salmon IL-17D expression is widely distributed in tissues, with the highest levels
of expression in testis, ovary and skin. Infection with A. salmonicida by injection increases
IL-17D expression levels in the head kidney (but not the spleen) in a time-dependent man‐
ner. Skin and kidney showed an increased IL-17D expression level in fish given a cohabita‐
tion challenge with A. salmonicida [230]. The two trout IL-17C genes show some degree of
differential expression within tissues, with IL-17C1 being more dominant in the gills and
skin, whilst IL- 17C2 is more dominant in the spleen, head kidney and brain. Expression of
both genes increases significantly with bacterial infection, although the increased expression
of IL-17C2 is greater in terms of fold change. Similarly, both genes could be up-regulated in
the trout RTS-11 cell line by LPS, poly I:C, calcium ionophore and rIL-1β, with IL-17C2
showing higher fold increases in all cases [229].
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1.9. Interleukin 12

IL-12 is a heterodimeric cytokine composed of p35 and p40 subunits. It can mediate a num‐
ber of different activities, including stimulation of IFNγ secretion from resting lymphocytes,
NK cell stimulation and cytolytic T cell maturation. Perhaps most crucially, IL-12 also affects
the progression of uncommitted T cells to either the Th1 lineage, which in general is charac‐
terized by secretion of lymphokines associated with cell-mediated rather than humoral im‐
munity [233].

The p35 and p40 subunits were discovered in fish by analysis of the fugu genome [234]. The
p35 locus is quite well conserved, with Schip1 being the immediate neighbour in all cases.
This association has allowed p35 to be cloned by gene walking from Schip1 from fish species
for which no genome sequence is available [24, 235]. The p40 subunit in fugu is constitutive‐
ly expressed in all the tissues examined, except muscle, and no increases in expression were
seen 3 h after injection with poly I:C or LPS. This constitutive and broad expression distribu‐
tion of the p40 subunit suggests that it may be expressed in most cell types. The expression
of the p35 subunit is more limited in its tissue expression and is induced after injection with
poly I:C in the head kidney and the spleen, but not after injection with LPS. These results
show that there are differences from the mammalian data in fugu IL-12 subunit expression.
Further investigation will be required to show whether this is unique to fugu, if IL-12 is in‐
volved more in antiviral defence in fish and if the two subunits are regulated differently
from their regulation in the mammalian system [234].

1.10. Transforming growth factor β (TGF-β)

TGF-β is a pleiotropic cytokine that regulates cell development, proliferation, differentia‐
tion, migration, and survival in various leukocyte lineages including lymphocytes, dendritic
cells, NK cells, macrophages and granulocytes [236, 237]. In the mammalian immune sys‐
tem, TGF-β1 is a well-known suppressive cytokine and its dominant role is to maintain im‐
mune tolerance and suppress autoimmunity [238, 239]. The potent immunosuppressive
effects of TGF-β1 are mediated predominantly through its multiple effects on T cells: TGF-
β1 suppress Th1 and Th2 cell proliferation, while it promotes T regulatory cell generation by
inducing Foxp3 expression. On the other hand, TGF-β also promotes immune responses by
inducing the generation of Th17 cells [236, 240, 241]. Therefore, the regulatory roles of TGF-
β as a positive or negative control device in immunity are widely acknowledged in mam‐
mals [238, 240, 241].

In teleost, despite the lack of extensive investigation on the functional role of TGF-β, some
recent studies have revealed that TGF-β1 also exterts powerful immune depressing effects
on activated leukocytes, as it does in mammals. For instance, TGF-β1 significantly blocks
TNFα-induced activation of macrophage in goldfish and common carp, but induces the pro‐
liferation of the goldfish fibroblast cell line CCL71 [242, 243]. In grass carp, TGF-β1 down-
regulates LPS/PHA-stimulated the proliferation of peripheral blood lymphocyte by contrast
with the stimulatory effect of TGF-b1 alone in the same cells [244]. In red sea bream, similar
phenomenon was observed during leukocyte migration under TGF-β1 treatment, with or
without LPS challenges [245]. These findings not only define TGF-β1 as an immune regula‐
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tor in teleost, but also indicate that TGF-β1 may have retained similar functions in immunity
during the evolution of vertebrates [246].

1.11. Interferons

Interferons genes are involved in mediating cellular resistance against viral pathogens and
modulating innate and adaptive immune systems. Broadly, IFNs are classified into two
main groups called type I and type II [45]. Type I IFN includes the classical IFNα/β, which is
induced by viruses in most cells, whereas type II IFN is only composed of a single gene
called IFNγ and is produced by NK cells (NK cells) and T lymphocytes in response to inter‐
leukin-12 (IL-12), IL-18, mitogens or antigens [247]. Structurally both IFN types belong to the
class II a-helical cytokine family, but have different 3-dimensional structures and bind to dif‐
ferent receptors [248].

Two IFNs (IFNα1 and IFNα2) have been cloned from Atlantic salmon and characterized
with respect to sequence, gene structure, promoter, antiviral activity and induction of ISGs
[249-252]. Salmon IFNα1 induces both Mx and ISG15 proteins in TO cells and thus has prop‐
erties similar to mammalian IFNα/β and IFNλ [251, 252]. Furthermore, salmon IFNα1 indu‐
ces potent antiviral activity against the IPNV in vitro [251], but this protection has not been
observed in vivo, despite a high level of expression of IFNα detected in spleen and head kid‐
ney of Atlantic salmon challenged intraperitoneally with IPNV [78].

At least three type I IFNs have been discovered in rainbow trout. The IFN1 (rtIFN1) and
rtIFN2 show high sequence similar to Atlantic salmon IFNα1 and IFNα2, which contains
two cysteines. On the other hand, rtIFN3 contains four cysteines, which further confirms the
relationship between mammalian IFNα and fish IFNs. Recombinant rtIFN1 and rtIFN2 have
both been shown to up-regulate expression of Mx and inhibit VHSV replication in RTG-2
cells. In contrast, recombinant rtIFN3 has been found to be a poor inducer of Mx and antivi‐
ral activity. Interestingly, the three rtIFNs show differential expression in cells and tissues
[253]. This suggests that the three trout IFNs have different functions in the immune system
of fish, which is an interesting subject for further research [254].

IFNγ has been identified in several fish species, including rainbow trout and Atlantic sal‐
mon [215, 216, 248, 255-257]. In contrast to the type I IFNs, fish and mammalian IFNγ are
similar in exon/intron structure and display gene synteny. However, some fish species also
possess a second IFNγ subtype named IFN gamma rel, which is quite different from the
classical IFNγ [258]. Rainbow trout and carp IFNγ have several functional properties in
common with mammalian IFNγ, including the ability to enhance respiratory burst activity,
nitric oxide production, and phagocytosis of bacteria in macrophages [257-259]. Far less is
known about the antiviral properties of fish IFNγ. However, it has been reported that it in‐
duces antiviral activity against both IPNV and the Salmon Alpha Virus (SAV) in salmon cell
lines [260]
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1.12. Tools for fish cytokine analysis

The major strategy of functional genomics is to identify the types of responses to specific
pathogens based on cytokines expression as a predictor of profile immune response, which
began by using suppressive subtractive hybridization as major tools at the beginning of the
immunogenomics and upgrade to platforms of wide screening that allow identify thousands
of EST’s that are differentially regulated in their expression and that allow identifying po‐
tential candidates as biomarkers in the progression of the immune response at differential
environmental conditions, not only against pathogens, but also in captivity stress conditions
that affect the fisheries production.

1.13. Suppressive subtractive hybridization (SSH)

One of the most important biological processes in higher eukaryotes against external stimuli
is the response mediated by differential gene expression. To understand the molecular regu‐
lation of these processes, the relevant subsets of differentially expressed genes of interest
must be identified, cloned, and studied in detail using specific molecular techniques. In this
matter, subtractive cDNA hybridization has been a powerful approach to identify and iso‐
late cDNAs of differentially expressed genes [261-263]. Numerous cDNA subtraction meth‐
ods have been reported. In general, they involve hybridization of cDNA from one
population (tester) to excess of mRNA (cDNA) from another population (driver) and then
separation of the unhybridized fraction (target) from the common hybridized sequences.
One of these tools is a PCR-based technique called representational difference analysis,
which does not require physical separation of single-strand (ss) and double-strand (ds)
cDNAs. Representational difference analysis has been applied to enrich genomic fragments
that differ in size or representation [264] and to clone differentially expressed cDNAs [265].
However, representational difference analysis has the problem of the wide differences in
abundance of individual mRNA species so that multiple rounds of subtraction are needed
[265]. Other strategies, such as mRNA differential display [266] and RNA fingerprinting by
arbitrary primed PCR [267], are potentially faster methods for identifying differentially ex‐
pressed genes, but both of these methods have high levels of false positives [268] that bias
high-copy-number mRNA [269], which can inappropriate in experiments where only a few
genes are expected to vary [268]. One of the techniques most often used to establish differen‐
tial expression pattern between two conditions is suppression subtractive hybridization
(SSH), which selectively amplifies target cDNA fragments (differentially expressed) and si‐
multaneously suppresses non-target DNA amplification. The method is based on the fact
that long inverted terminal repeats attached to DNA fragments can selectively suppress am‐
plification of undesirable sequences in PCR procedures [270]. This method overcomes the
problem of differences in mRNA abundance by incorporating a hybridization step that nor‐
malizes (equalizes) sequence abundance during the course of subtraction by standard hy‐
bridization kinetics [271]. Two types of SSH are possible: forward SSH, when the reaction
involves the hybridization of cDNA from one population indicated as the evaluated pheno‐
type (tester) to excess of mRNA (cDNA) from a control phenotype (driver); and reverse
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SSH, when the conditions described above are inverted. Together, the two processes are
called reciprocal SSH.

Different works have been done with SSH to evaluate fish immune response at the gene
expression  level  against  challenges  with  bacteria-derived  pathogen-associated  molecular
patterns (PAMP) like LPS [272,  273]  and whole bacteria  like Aeromonas salmonicida  [274,
275],  Listonella anguillarum  [276],  Edwardsiella tarda  [277],  and Vibrio parahaemolyticus  [278]
(Table 1).

A critical step in any immune response is the recognition of invading organisms. This is
mediated by many proteins, including pattern recognition receptors (PRR), which recognize
and bind to molecules present on the surface of microorganisms. LPS is an essential cell wall
component of gram-negative bacteria and is recognized by PRR, triggering a series of re‐
sponses that lead to the activation of the host defence system. These PRRs include a number
of toll-like receptors, as well as other cell-surface and cytosolic receptors that, upon stimula‐
tion, modulate immunity [279, 280]. In LPS-stimulated yellow grouper spleen a subtracted
cDNA library was constructed using SSH. The contigs and singlets obtained were analyzed
and a low number of immune-related genes were found [272]. In Asian seabass the up-regu‐
lation of differentially expressed genes like pro-inflammatory cytokines and related recep‐
tors, such as TNF receptor super family member 14 (TNFRSF14), IL-31 receptor A (IL31RA),
chemokine receptor-like 1 (CMKLR1), chemokine (C-X-C motif) receptor 3 (CXCR3), chemo‐
kine (C-C motif) receptor 7 (CCR7) and chemokine (C-C motif) ligand 25 (CCL25), was iden‐
tified at 24h post-challenge by bacterial LPS in spleen Complement components were also
identified [273]. These genes are a solid basis for a better understanding of immunity in
Asian seabass and for developing effective strategies for immune protection against infec‐
tions in that species.

Infection of Atlantic salmon by A. salmonicida was observed to stimulate an acute-phase re‐
sponse (APR) as part of the innate immune defence system to infection, whose gene expres‐
sion pattern was remarkably observed in liver at 7 days post-infection [275] indicating that
the liver appears to be the main source of APPs in fish, as in mammals. Not surprisingly, the
liver gene expression pattern observed in other fish species against L. anguillarum [276], E.
tarda [277], and V. parahaemolyticus [278]. The APR is characterized by alterations in the lev‐
els of plasma proteins referred to as acute-phase proteins (APPs), as well as the secretion of
some other innate defence molecules important for innate immunity, such as complementa‐
ry systems [281-283]. In Atlantic cod stimulated with atypical A. salmonicida (formalin-killed)
interleukin-1β (IL-1- β), interleukin-8 (IL-8), CC chemokine type 3, interferon regulatory fac‐
tor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin were identified in the forward
spleen SSH library. Atlantic cod IRF1 was constitutively expressed at low levels, and expres‐
sion was significantly elevated in spleen and head kidney at 24 h following A. salmonicida
stimulation, with the highest levels of induction observed in the spleen [274]. The target IRFI
genes, as well as their importance in innate immune responses in fish, have not yet been de‐
termined, although the expression of IRF1 in teleost macrophages can be induced by both
IFNγ and IL-1β, with IFNγ being a much more potent inducer of IRF1 than IL-1β [99].

New Advances and Contributions to Fish Biology20



Microorgan‐

ism

Fish Pathogen Tissue/Cell type Infection

route

Reference

Bacteria Atlantic salmon Aeromonas salmonicida

A449

Liver, head kidney

and spleen

Intraperito‐

neal

Tsoi et al., 2004

Yellow grouper LPS (E. coli) Spleen Intraperito‐

neal

Wang et al., 2007

Atlantic cod Aeromonas salmonicida

(formalin-killed)

Head kidney,

Spleen

Intraperito‐

neal

Feng et al., 2009

Asian seabass LPS (E. coli) Spleen Intraperito‐

neal

Xia and Yue 2010

Ayu Listonella anguillarum Liver Intraperito‐

neal

Li et al., 2011

Japanese flounder Edwardsiella tarda (NE8003) PBL Intraperito‐

neal

Matsuyama et al.,

2011

Marine medaka Vibrio parahaemolyticus Liver Intraperito‐

neal

Bo et al., 2012

Virus Mandarian fish ISKNV Spleen Intramuscular He et al., 2006

Sea bream Nodavirus (strain 475-9/99) Brain Intramuscular Dios et al., 2007

Atlantic cod poly I:C Spleen Intraperito‐

neal

Rise et al., 2008

Sea bass SBNNV Head kidney Intramuscular Poisa-Beiro et al.,

2009

Atlantic cod ACNNV Brain Intraperito‐

neal

Rise et al., 2010

Orange-spotted

grouper

SGIV Spleen Intraperito‐

neal

Xu et al., 2010

Table 1. Transcriptomics studies on fish after treatments with bacteria or virus in vivo analyzed with SSH. LPS:
Lipopolysaccharide; ISKNV: Infectious spleen and kidney necrosis virus; poly I:C: polyriboinosinic polyribocytidylic acid;
SBNNV: Sea bass nervous necrosis virus; ACNNV: Atlantic cod nervous necrosis virus; SGIV: Singapure grouper
iridovirus; PBL: Peripheral blood leukocytes.

SSH has been in several investigations to evaluate fish gene expression patterns against
challenges with PAMPs, such as polyriboinosinic polyribocytidylic acid (poly I:C) [284], In‐
fectious Spleen and Kidney Necrosis Virus (ISKNV) [285], Nodavirus [286-288], and Singa‐
pore grouper iridovirus (SGIV) [289].

Spleen gene expression in mandarin fish at 4 days post-infection with ISKNV of Mx protein,
interferon-inducible protein Gig-2, and viperin (interferon-inducible and antiviral protein)
was up-regulated, suggesting IFN pathway stimulation after ISKNV infection [285]. Also,
two inflammatory cytokine genes, CC chemokine and IL-8, were found in the forward SSH
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library, whereas the CD59/Neurotoxin/Ly-6-like protein gene was down-regulated. In mam‐
mals, CD59 is a complement regulatory protein, which can inhibit complement activation
and membrane attack complex (MAC) formation on autologous cells [290], suggesting that
down-regulation in the ISKNV-infected host cells may make these cells more sensitive to
complement attack, mounting an anti-virus mechanism of the host [285].

In orange-spotted grouper after 5 days of infection with Singapore grouper iridovirus
(SGIV) novel genes were annotated as immune-related, such as C-type lectin, epinecidin,
and complement components C3 and C9. Interestingly, the most abundant clone was C-type
lectin, and the microarray results at 1, 5 and 9 days post-infection indicated that its expres‐
sion was up-regulated in liver, spleen and kidney [289]. Lectins are multivalent carbohy‐
drate-binding proteins that function as important pattern-recognition receptors (PRR) and
have been isolated and characterized in fish [291-294]. C-type lectin represents a very large
family, most members of which are able to bind PAMP and microorganisms themselves
through sugar moieties and play important roles in non-self recognition and clearance of in‐
vading microorganisms. The up-regulation of C-type lectin in different organs with immu‐
nological functions confirmed as SSH as microarrays suggest an important role in the
development of control strategies against SGIV infection.

The SSH method was used to generate a subtracted cDNA library enriched in gene tran‐
scripts differentially expressed after 1 day post-infection in the brains of sea bream infected
with nodavirus. Most of the expressed sequence tags (ESTs) differentially expressed in in‐
fected tissues fell into gene categories related to cell structure, transcription, cell signalling
or different metabolic routes. Other interesting putative homologies corresponded to genes
expressed in stress responses, such as heat shock proteins (Hsp-70) and to immune-related
genes such as the Fms-interacting protein, TNFα-induced protein, interferon-induced with
helicase C domain protein (mda-5), which in mammals play an important role in the synthe‐
sis and secretion of IFN type I [295]. Another nodavirus, sea bass nervous necrosis virus
(SBNNV) was studied to identify genes potentially involved in antiviral immune defence in
sea bass head kidney using the SSH technique [287]. The results of up-regulated EST from
sea bass head kidney SSH showed significant similarities with immune genes, such as β-2
microglobulin, heat shock protein 90 (Hsp-90), IgM, MHC class I and class II, and β-galacto‐
side-binding lectin, identified as a member of the galectin family and closely related to the
galectin-1 group (Sbgalectin-1). When the recombinant protein (rSbgalectin-1) was produced
and functional assays were conducted, a decrease in IL-1β, TNFα, and Mx expression was
observed in the brain of sea bass simultaneously injected with nodavirus and rSbgalectin-1
compared to those infected with the nodavirus alone, suggesting a potential anti-inflamma‐
tory protective role of Sbgalectin-1 during viral infection. A similar nodavirus, the Atlantic
cod nervous necrosis virus (ACNNV), was studied to evaluate the transcript expression re‐
sponses in the Atlantic cod (Gadus morhua) brain to asymptomatic high nodavirus carrier
state [288]. In the forward brain SSH library was identified with significant similarity to
genes with immune-relevant functional annotations the interferon stimulated gene 15
(ISG15), IL-8 variant 5, DEXH (Asp-Glu-X-His) box polypeptide 58 (DHX58; LGP2), radical
Sadenosyl methionine domain-containing 2 (RSAD2; viperin), β-2-microglobulin (B2M), che‐
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mokine CXC-like protein, signal transducer and activator of transcription 1 (STAT1), and
CC chemokine type 2. Interestingly, ISG15, DHX58, RSAD2, and sacsin (SACS) transcripts
are all strongly upregulated by both high nodavirus carriage and intraperitoneal poly I:C
stimulation, suggesting a similar host response is significantly induced in the brain by both
nodavirus and poly I:C. This expression pattern is corroborated when the response of Atlan‐
tic cod spleen is evaluated against poly I:C stimulation, showing the up-regulation of ISG15,
RSAD2, LGP2 and other transcripts such as MHC class I, and IRF1, 7, and 10, indicating that
Atlantic cod recognize dsRNA and mount a interferon pathway response [284].

1.14. Microarrays

Microarray analysis measures the expression of large numbers of genes in parallel. This
methodology, which combines hypotheses-driven and hypotheses-free research strategies, is
used to infer molecular mechanisms, classify samples, and diagnose and search for novel bi‐
omarkers. With the use of standard platforms, laboratory protocols and procedures for proc‐
essing of primary data, the results of microarrays analyses are well suited for database
management and meta-analysis across multiple experiments, whilst data mining is based on
powerful statistical procedures with support from functional and structural annotations of
genes [296].

The Atlantic  salmon is  of  particular  importance to  the global  aquaculture industry.  Sal‐
monid  cDNA  microarrays  were  constructed  shortly  after  large-scale  sequencing  of  sal‐
mon and trout cDNA libraries by several research institutes.  One of the projects related
to salmon sequencing is GRASP (Genomics Research on Atlantic Salmon Project), an ini‐
tiative funded by Genome Canada that is intended to improve understanding of physio‐
logical  and evolutionary processes influencing the survival  and phenotype of  salmonids
and other fish in natural  and aquaculture environments.  The first  salmonid GRASP mi‐
croarray  platform (GRASP-1),  containing  7356  salmonid elements  representing  3557  dif‐
ferent  cDNAs  (3.7K),  was  obtained  from  80,388  ESTs,  principally  from  cDNA  libraries
[298]  of  different  salmon  species  such  as  Atlantic  salmon,  rainbow  trout,  Chinook  sal‐
mon,  sockeye  salmon,  and  lake  whitefish  cDNA  libraries.  The  second  version  of  the
GRASP microarray platform (GRASP-2) was developed and contained cDNAs represent‐
ing 16,006 genes (16K).  The genes identified in the array have been stringently selected
from  Atlantic  salmon  and  rainbow  trout  EST  databases  representing  a  wide  variety  of
different  classes  of  genes  [297].  Finally,  a  new  expanded  salmonid  cDNA  microarray
(GRASP-3)  of  32,000  features  (32K)  was  created  where  69%  of  the  total  EST  collection
used  was  from  Atlantic  salmon  [298].  The  Aleksei  Krasnov’s  group  designed  the  rain‐
bow trout  microarray  (SFA1.0)  by  identifying  a  relatively  small  number  of  genes  (1300
genes;  1.3K)  using  clones  from  normalized  and  subtracted  cDNA  libraries,  as  well  as
genes selected by the functional categories of Gene Ontology for inclusion in a microar‐
ray  aimed at  characterizing  transcriptome responses  to  environmental  stressors  [299]  to
maximize  the  presence  of  transcripts  related  directly  to  immune  response  in  rainbow
trout,  because  of  which  this  platform is  also  called  Immunochip  (SFA1.0  immunochip).
The updated SFA platform (1.8K; SFA2.0 immunochip) was specially designed for stud‐
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ies  of  responses to pathogens and stressors and has substantially improved coverage of
immune  genes  [300].  Another  cDNA  platform  in  commercial  fish  species  has  been  de‐
signed  in  Japanese  flounder  [301]  and  European  flounder  [302],  turbot  [303],  and  sole
[304].However despite impressive achievements,  cDNA platforms suffer from limitations
and disadvantages.  At present most research groups working with salmonids and other
aquaculture  species  do  not  have  full  access  to  clones  required  for  fabrication  of  cDNA
microarrays.  Maintenance  and  PCR  amplification  of  large  clone  sets  is  expensive  and
time  consuming,  while  the  risk  of  errors  is  high  [296].  Probably  the  most  important
drawback  of  cDNA  microarrays  is  their  limited  ability  to  discriminate  paralogs  since
long probes cross-hybridize with highly similar  transcripts  from members of  multi-gene
families [305]. In salmonids this problem is aggravated by the large number of expressed
gene  duplicates.  These  complications  can  be  resolved  with  oligonucleotide  microarrays
(ONM) that also provide greater accuracy and reproducibility of analyses. Until recently,
the use of ONM platforms was hampered by the cost,  but they are now rapidly replac‐
ing  cDNA  platforms.  Construction  of  ONM  platforms  begins  with  establishment  of
mRNA sequence sets for comprehensive coverage of transcriptomes with low redundan‐
cy.  The  next  stage  is  identifying  genes  by  searching  protein  databases  and  annotating
them  according  to  functions,  pathways  and  structural  features.  For  successful  develop‐
ment  and  use  of  ONM,  it  is  necessary  to  define  the  gene  composition  and  optimum
number of spot replicates and to choose criteria for quality assessment [296].

Because of the commercial importance of salmonid species, there is special interest gene ex‐
pression pattern against different pathogens. Initially salmonid (rainbow trout) ONM con‐
tained 1672 elements, representing more than 1400 genes [306]. Currently, one of the most
often used ONM platforms to evaluate the response against different conditions and patho‐
gens is the custom salmon ONM (SIQ-3), based on the Agilent Technology system (21K in
4x44K format). Because limited availability of peripheral blood leukocyte (PBL) markers is a
well-recognised problem of fish immunology, this platform compares the transcriptomes of
PBL and other tissues to search for genes with preferential expression in leukocytes [296],
making it a very significant tool to evaluate the response to pathogens in Atlantic salmon.
Another ONM platform based on 500K ESTs Atlantic salmon and 250K ESTs rainbow trout
[298] is the cGRASP 44K salmonid oligo array (Agilent eArray), although no studies em‐
ploying this platform have been published yet. Another ONM has been designed in fish
model organisms like zebrafish and in commercial fish species such as channel catfish and
turbot [307].

Functional genomic studies based on evaluating immune responses, also called immuno‐
genomics, have been conducted in vivo to evaluate the response to different pathogens at
the systemic level in different organs, especially the liver and head kidney. The function‐
al  genomic  approach  has  been  used  with  Salmo  salar  and  Oncorhynchus  mykiss,  where
PAMPs,  whole  bacteria  and  viruses  are  the  most  studied  pathogens.  Here  we  present
different works in fish challenged by bacteria or viruses where differential  gene expres‐
sion profiles were evaluated using microarray platforms with special emphasis on in vivo
fish immune response (Table 2).
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1.15. Studies with bacterial pathogens, PAMPs and cytokine network interactions

One of the most commonly studied bacterial pathogens is Aeromonas salmonicida, a gram-
negative bacteria and the causative agent of furunculosis. In fact prior to the development of
species-specific cDNA microarrays a preliminary study used a human microarray (GENE‐
FILTERS GF211) to explore the liver response in Atlantic salmon infected using a cohabita‐
tion model [275]. Only 4 mRNAs were consistently up-regulated (p < 0.01) from the 241
positively identified spots with a clearly detectable hybridization signal, none of them relat‐
ed to cytokine expression. This was probably due to the lack of sequence homology, a prob‐
lem commonly associated with cross-species cDNA hybridization. Thus the creation of
species-specific platforms was a key step in fish immunology. Using a custom Atlantic sal‐
mon cDNA microarray (NRC-IMB) consisting of over 4,000 different cDNA amplicons, the
first results for challenge with Aeromonas salmonicida were reported in 2005 [275]. The
study described a cohabitation challenge and identified 16 up-regulated mRNAs in all three
tissues studied (spleen, liver and head kidney), whereas 2 and 19 mRNAs were identified as
down-regulated in the head kidney and liver, respectively. The authors found that genes re‐
lated to the acute phase response were up-regulated in spleen and head kidney of infected
salmon, indicating that the infected fish underwent a typical acute phase response to infec‐
tion.

The effects of an Aeromonas salmonicida infection were recently reported in turbot, Scolphtal‐
mus maximus, [307]. Using a custom designed oligonucleotide-microarray (8x15K), the au‐
thors identified a set of 48 differentially regulated mRNAs in the spleen of challenged fish at
3 dpi, mostly related to the acute-phase and the stress/defence immune response. A study
using channel and blue catfish explored the effects of a gram-negative bacterial infection on
the acute phase response (APR) [308]. The authors showed up-regulation of mRNA tran‐
scripts involved in iron homeostasis, transport proteins, complement components and in‐
flammatory and humoral immune response, indicating that conserved APR occurs as part of
the innate immune response in both catfish species. Interestingly, a more acute response was
observed composed of several immune pathways in the blue but not the channel catfish.
More studies are required to elucidate expression patterns resulting from gram-negative
bacterial infection of phylogenetically similar and different fish are required to describe
common and divergent responses. This could lead to the development of marker systems,
consensus on the APR in fish and treatments tailored to certain species, all of which have
significant applied interest.

The activity of LPS from gram-negative bacteria, a common membrane-associated PAMP
used in immunological studies, has been explored in several fish species. These studies in‐
clude effects on the spleen in channel catfish [285], rainbow trout head kidney [309], and liv‐
er in the Senegalese sole [310]. Using a 19K oligonucleotide microarray (ONM) it was
observed that some pro-inflammatory mRNAs in the catfish spleen were up-regulated very
quickly, principally between 2 and 4 hours post-injection with LPS, whereas immunoglobu‐
lin- (2h post-injection) and antigenic presentation-related mRNA transcripts were repressed
24h post-injection [311]. A similar inhibition was reported in head kidney of rainbow trout,
where the suppression of major cellular processes, including immune function and an initial
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stress reaction, was followed by a proliferative hematopoietic-type/biogenesis response 3

dpi [309]. However, in the Senegalese sole a clear up-regulation of transcripts related to the

immune response was reported 24 hpi in the liver [310]. These results collectively highlight

the diversity of responses observed at the tissue level and reflect the nature of the immune

system that is diffusely located throughout many organ compartments.

Microorgan‐

ism

Fish Pathogen Tissue/Cell type Resource Platform Reference

Bacteria Atlantic

salmon

Aeromonas salmonici‐

da (A449)

Liver cDNA GENE- FIL‐

TERS GF211

Tsoi et al., 2003

Aeromonas salmonici‐

da (A449)

Head kidney/liver/

spleen

cDNA NRC-IMB Ewart et al., 2005

Aeromonas salmonici‐

da

Liver/spleen cDNA SFA-2 Skugor et al., 2009

Aeromonas salmonici‐

da (Brivax II)

Liver cDNA TRAITS/SPG Martin et al., 2010

Piscirickettsia salmonis Head kidney cDNA GRASP-1 Rise et al., 2004

Chinook

salmon

Vibrio anguillarum Head kidney cDNA GRASP-1 Ching et al., 2010

Rainbow

Trout

Vibrio anguillarum

(FDKC)

Liver ONM OSUrbt Gerwick et al., 2007

LPS (E.coli 026:B6) Head kidney cDNA SFA-1 MacKenzie et al.,

2008

LPS (E. coli 026:B6) HK macrophages cDNA SFA-1 Mackenzie et al.,

2008

LPS, PGN (E. coli

0111:B4)

HK macrophages cDNA SFA-2 Boltaña et al., 2011

PGN (E. coli 0111:B4,

K12)

HK macrophages cDNA SFA-2 Boltaña et al., 2011

LPS, PGN (E. coli

0111:B4)/poly I:C

Erythrocytes cDNA SFA-2 Morera et al., 2011

Brook

trout

LPS (E. coli 026:B6) HK macrophages cDNA SFA-1 Mackenzie et al.,

2006

Channel

catfish

LPS (E.coli 0127:B8 ) Spleen ONM UMSMED-1 Li et al., 2006

Edwardsiella ictaluri

(MS-S97-773)

Gills/head kidney/

liver/skin/spleen

ONM UMSMED-2 Peatman et al.,

2007
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Blue cat‐

fish

Edwardsiella ictaluri

(MS-S97-773)

Liver ONM UMSMED-2 Peatman et al.,

2008

Japanese

flounder

Edwardsiella tarda

(NE9505)

Head kidney cDNA Japanese

flounder

custom-3

Yasuike et al., 2010

Streptococcus iniae

(02; FKC)

Head kidney cells cDNA Japanese

flounder

custom-3

Dumrongphol et al.,

2008

Mycobacterium bovis

(TUMSAT-Msp001)

FKC

Kidney cells cDNA Japanese

flounder

custom-3

Kato el al., 2010

Zebra‐

fish

Mycobacterium mari‐

num (M, E11)

Whole fish ONM MWG - Sig‐

ma Genosys

- Affimetrix

Meijer et al., 2005

Mycobacterium mari‐

num (E11; Mma20)

Whole fish ONM ZF Agilent Van der Sar et al.,

2009

Streptococcus suis

(HA9801)

Whole fish ONM Affimetrix

Zebrafish

GeneChip

Wu et al., 2010

Turbot Aeromonas salmonici‐

da

Spleen ONM Turbot cus‐

tom Agilent

Millán et al., 2010

Solea LPS (E. coli 011:B4) Liver cDNA GENIPOL-1 Osuna-Jimenez et

al., 2009

Virus Atlantic

salmon

ISAV (Glesvaer 2/90) Gills/heart/liver/

spleen

cDNA SFA-2 Jorgensen et al.,

2008

ISAV (Glesvaer2/90) Heart/PBL ONM SIQ-3 Krasnov et al., 2011

Chinook

salmon

ISAV NA-HRP4 (970) Head kidney cDNA GRASP-3 Leblanc et al., 2010

Rainbow

Trout

IHNV (32/87)/attenu‐

ated IHNV

Head kidney cDNA SFA-1 MacKenzie et al.,

2008

IHNV (strain 220-90) Head kidney cDNA GRASP-2 Purcell et al., 2011

Japanese

flounder

VHSV (KRRV9822) Head kidney cells cDNA Japanese

flounder

custom-1

Byon et al., 2005

VHSV (KRRV9822) Head kidney cells cDNA Japanese

flounder

custom-2

Byon et al., 2006
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HIRRV (8601H) Kidney cells cDNA Japanese

flounder

custom-1

Yasuike et al., 2007

HIRRV (8601H) Kidney cells cDNA Japanese

flounder

custom-3

Yasuike et al., 2010

Zebra‐

fish

VHSV (07.71) Fin/head kidney/

liver/spleen

ONM ZF Agilent Encinas et a., 2010

Turbot Nodavirus (AH95)/poly

(I:C)

Kidney cDNA Turbot cus‐

tom

Park et al., 2009

Table 2. Transcriptomics studies on fish after treatments with bacteria or virus in vivo analyzed with microarrays.
FDKC: Formaldehyde –killed cells; LPS: Lipopolysaccharide; FKC: Formalin-killed cells; ISAV: Infectious salmon anemia
virus; PD: Pancreas disease; CMS: Cardiomyopathy syndrome; HSMI: Heart and skeletal muscle inflammation; IHNV:
Infectious hematopoietic necrosis virus; VHSV: Viral hemorrhagic septicemia virus; HIRRV: Hirame rhabdovirus; poly
I:C: polyriboinosinic polyribocytidylic acid; PBL: Peripheral blood leukocytes; ONM: oligonucleotide microarray.

For gram-positive infections in fish at the level of transcriptome analyses, infection of zebra‐
fish with Streptococcus suis is the only model reported [272]. Streptococcus suis is a pathogen
associated with zoonosis reported in several countries [312, 313]. The Affymetrix Zebrafish
GeneChip was used to identify 125 up-regulated transcripts where the most significant
pathways were antigen processing and presentation, leukocyte trans-endothelial migration
and the proteosome. The authors suggested that the target list obtained could serve as infec‐
tion markers for gram-positive infection in fish.

Undoubtedly, the identification of prognostic biomarkers for disease resistance is a major
aim for aquaculture. Functional genomics has the potential to identify such potential tools.
Disease resistance is normally measured by challenge with the pathogen of interest and as‐
sessing the cumulative mortalities. Surviving fish or non-challenged siblings from the same
family are then considered ‘resistant’. Because this process is costly there is a need for non-
lethal methodologies of measuring resistance, ideally based on molecular determinants of
resistance. An initial example of this approach used the GRASP 3.7K cDNA array to identify
in vitro macrophage and in vivo head kidney biomarkers in response to Piscirickettsia salmonis
infection, yielding a number of 11 regulated genes common to both challenges. The re‐
searchers proposed 19 highly regulated transcripts as potential biomarkers to evaluate the
efficacy of vaccines against Piscirickettsia salmonis [314]. C-type lectin 2-1, a gene whose
product is involved in endocytosis and the C/EBP-driven inflammatory response [315] was
identified and has been identified in almost all reports in which bacterial preparations have
been used to challenge live fish [275, 309, 314, 316, 317]. Another study aimed at identifying
biomarkers at the transcriptional level described differences between triploid and diploid
Chinook salmon under live Vibrio anguillarum challenge using the GRASP 3.7K cDNA mi‐
croarray [318]. Twelve annotated mRNAs were identified as showing significant differences
between diploid and triploid fish. The authors however were unable to provide a descrip‐
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tion of the underlying mechanisms to explain the observed reduced immune function of
triploid salmon.

Individual variation is a major hurdle for the development of prognostic markers as both ge‐
netic and epigenetic factors must be taken into account. The utility of, for example, C-type
lectin in salmon, and other potential biomarkers in other species for bacterial disease resist‐
ance, requires further development. The future publication of several fish genomes coupled
to array platforms with a much increased transcript representation could provide an excit‐
ing route to further develop this strategy by combining both functional and structural ge‐
nomics for species of commercial interest with a sequenced genome. Several studies have
attempted to correlate gene expression profiles with the activity of bacterins (killed bacteria
preparations) used to vaccinate fish in culture. Most studies have concentrated on the rain‐
bow trout and Japanese flounder [262, 277, 319, 320]. In trout, intraperitoneal administration
of killed V. anguillarum resulted in identifying 36 differentially expressed transcripts [320].
Most of the identified targets are involved in inflammatory response and respond to a broad
range of stimuli. This suggests that these targets have little use as markers for vaccination,
contrary to previous descriptions in other studies. Both the second and fourth versions of
the Japanese flounder cDNA microarray have been used to address vaccination [262, 277,
319]. The results of experimental infection with Gram-negative E. tarda indicated that a for‐
malin-killed preparation reduced mortality in vaccinated fish from 90% to 20% [277]. How‐
ever, a correlation between the transcriptome and the efficacy of vaccination could not be
identified.

The effects of a commercial vaccine for Atlantic salmon (a six-component oil-adjuvant vac‐
cine from PHARMAQ) were evaluated to correlate vaccine protection to high and low re‐
sistance to furunculosis. The authors did not find any association between either group and
suggested that “outcomes of vaccination depend largely on the ability of host to prevent the
negative impacts of immune response and to repair damages” [305]. Although this study
did not identify correlations between vaccination and gene expression profiles, the potential
of a functional genomics approach to evaluate the efficacy and underlying mechanisms of
vaccination is highlighted. In terms of the immune response and the resulting complexity in
expression patterns resulting from multiple cell types and different tissue responses, the in‐
vestigator has the potential to obtain a clearer ‘image’ of the biological response from global
expression data. A key objective is therefore to increase the available genomic resources
much facilitated by next generation sequencing technologies to form a more robust repre‐
sentation of the immune system among different fish species. Furthermore, the increasing
use of ONM platforms will also improve comparison across species as data sets become
more easily comparable.

It remains difficult to compare microarray experiments across distinct platforms. In this re‐
spect, Meijer et al. 2005, evaluated host transcriptome profiling to Mycobacterium marinum
infection of adult zebrafish employing three oligonucleotides platforms (MWG, Sigma
Genosys, and Affimetrix). At a significance level of P < 1.00E-5, there were differences
among the platforms in the total number of more than 2-fold up-regulated genes, whereas
the 2-fold down-regulated genes were in a similar range. Evaluation of the distribution of
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infection-induced genes over different categories reveled some divergence in the set from
MWG, probably due to the abundance of genes of the same UniGene cluster. As well, from
the total overlap of 4,138 UniGene clusters among the three microarrays, only 66 and 93
genes were up- and down-regulated, respectively [321]. With this antecedent, the same
group generated a new platform (Agilent 44K) that includes their 22K probes, a 16K set
probes similar to the Sigma-Compugen oligonucleotide library, and 6K set of probes for se‐
lected genes of interest indentified by previous data mining of zebrafish transcript and ge‐
nome databases [322], and they evaluated the transcriptome response to acute and chronic
infection by Mycobacterium marinum. This important effort in combing different platforms
makes it clear that not all relevant genes, including immune-related ones, are represented in
all platforms. Consequntly, new efforts are necessary to broaden our understanding of the
immune response in fish challenged with a pathogen of interest.

1.16. Wide screening in fish challenged with viral pathogens

Two studies have reported host responses to IHNV with the SFA and GRASP platforms
[309, 323]. The potential mechanisms responsible for host-specific virulence were assessed in
rainbow trout infected with high (M) and low virulence (U) strains of IHNV. A marked
down-regulation in biological processes, including the immune response, lymphocyte acti‐
vation, response to stress, transcription and translation, together with a greater viral load
(M), suggest that the higher virulence is due to the ability to suppress the immune response
via the transcriptional and translational machinery of cell [323]. Furthermore, in rainbow
trout was compared the expression profiles of IHNV and attenuated IHNV were compared
in rainbow trout over a short time frame of one and three days post-challenge. At 3 dpi, a
significant change in the transcriptional program of head kidney revealed an immunological
shift orientated toward the activation of adaptive immunity. This shift was IHNV-depend‐
ent as determined by differences between the attenuated and virulent IHNV specific expres‐
sion profiles. The rapid systemic spreading of IHNV inhibited TNFα, MHC class I, and
several macrophage and cell cycle/differentiation markers and favored a MHC class II, im‐
munoglobulin and MMP/TBX4-enhanced immune response [309].

Parallel studies were conducted with a cDNA microarray enriched with 213 immune-related
genes to study the immune response and the efficacy of DNA vaccines containing the viral
G proteins of VHSV and HIRRV administered intramuscularly in the Japanese flounder
[301, 324]. As expected, all DNA vaccines containing the viral G glycoprotein conferred spe‐
cific protection to the challenged fish one month after vaccination. It is suggested that the
protection occurs via the IFN type I system due to the number of IFN-related genes up-regu‐
lated in both studies, ISG-15, interferon-stimulated gene 56kDa (ISG56) and the Mx protein.
In both studies, VHSV and HIRRV in the Japanese flounder, the majority of differentially
up-regulated genes were identified between 3 and 7 days post-vaccination (dpv), including
the less effective DNA vaccine containing N protein of HIRRV. Interestingly, Mx, an antivi‐
ral protein commonly used as a marker for antiviral activity in animal species, was consis‐
tently up-regulated across vaccinations [301]. In a similar observation, IRF-3, Mx, Vig-1 and
Vig-8 were up-regulated in trout at the site of DNA vaccination against IHNV at 7 dpv [323].
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In turbot challenged with nodavirus, both Mx and IFN-inducible proteins were identified 24
hpi [303]. These and the previously described results suggest that both the host-expressed
viral glycoprotein and the virulent rhadovirus induce a systemic anti-viral state indicative of
non-specific IFN type1 innate immune response and that this canonical response is con‐
served among all fish. However, the mechanisms to develop a specific cytotoxic T or B lym‐
phocyte-mediated humoral response in fish vaccinated with plasmid DNA-IHNV G that
confers protective immunity have not been identified [323].

In direct relation to the above, a significant increase in transcript markers for adaptive im‐
munity was reported in Atlantic salmon during ISA virus (ISAV) infection [325]. Important‐
ly, a progressive increase was observed in IgZ mRNA parallel to a decrease in IgM
expression that peaked > 30 days post-infection. This coordinated increase in a group of
genes related to B lymphocyte differentiation and maturation and activation of T lympho‐
cyte-mediated immunity, including CD4, TGF-β, CD8α and IFNγ, provides strong evidence
for the coordinated regulation of the two arms of the immune system in response to viral
infection. An important technological contribution derived from the above study was the
development of an ONM for Atlantic salmon (SIQ-3). The first assessment of the perform‐
ance of these arrays was carried out in Atlantic salmon for the study of virus-responsive
genes from samples infected with ISA, salmonid alpha virus/PD-virus, cardiomyopathy syn‐
drome (CMS) agent, heart and skeletal muscle inflammation (HSMI) and PBL from fish in‐
fected with ISAV. Some 95 up-regulated transcripts were identified. Most of the regulated
transcripts are related directly to the immune response or associated with antiviral response
[296]. As previously mentioned, the creation of species-specific platforms has been a key
challenge for the study of the immune response against pathogens. Despite impressive ach‐
ievements, cDNA microarrays suffer from limitations and disadvantages, the most impor‐
tant drawback being the limited ability to discriminate between paralogs as long cDNA
probes cross-hybridize with highly similar transcripts from members of multi-gene families
[305]. Furthermore this information needs to be supplemented to establish if the increased
level of detected transcripts is consistent with specific protein synthesis. Recently, a study
employed a combined proteomic and transcriptomic approach to evaluate the immune re‐
sponse against VHS [326]. In the fins of infected fish a series of mRNA transcripts principal‐
ly related to complement components, immunoglobulin-related proteins, and macrophages
were up-regulated (> 2-fold), whereas in parallel using two dimensional differential gel elec‐
trophoresis (2D-DIGE), enzymes of the glycolytic pathway and some proteins related to cy‐
toskeletal remodelling and apoptosis (such as annexin A1a) increased with infection.
However, very few proteins related to anti-viral response were identified.

2. Concluding remarks

A complex network exists to regulate the innate and adaptive immune responses of fish
from the various cytokines that have been reported. The study of the functional activity of
these cytokines is in progress and it will be interesting to know whether mammalian Th1,
Th2, Th17 and Treg responses are present in fish, regulating specific cell-mediated immuni‐
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ty. The recombinant production of these cytokines and antibodies against them will be the
next challenge in understanding the balance of such immune responses and aid in the effec‐
tive design of therapeutic strategies to manipulate the fish immune system. towards humor‐
al or cellular immunity in response to specific antigen stimulation, vaccine strategies,
functional diets to increase the quality of fishery production and predict the health of cul‐
tured fish.

The  study  of  functional  genomics  in  fish  has  provided  substantial  data  on  species  of
commercial  interest.  The major aim has been to functionally identify the intensity of re‐
sponses to specific pathogens and their associated molecular components and to identify
transcripts  in  a  whole  organism  or  specific  tissue  that  contribute  to  such  responses.
However,  the  complex biology of  the  immune response,  in  which different  spatial-tem‐
poral expression occurs in multiple cell types at distinct body locations, makes complete
mapping of a response difficult and expensive. Moreover, considering that arrays are on‐
ly  as  good  as  the  transcripts  represented  upon  them.  Thus,  the  representation  of  tran‐
scripts  relevant  to  the  immune  response  is  intimately  linked  to  gene  discovery  efforts
through large-scale sequencing projects, where strategies like SSH contribute not only to
understanding  transcriptomic  response  against  specific  pathogens  but  also  to  gene  dis‐
covery.  In  this  area,  access  to  high-throughput  NGS technology has  increased in  recent
years  and  promises  to  make  an  important  contribution  to  understanding  immune  re‐
sponse in fish.  The major task now is the meta-analysis of  transcriptomic data to delin‐
eate  responses  common  among  fish  species  to  specific  pathogen  groups  and  highly
specific  responses.  This  approach will  reveal  host  specific  expression profiles  and facili‐
tate the identification of prognostic markers for diseases.
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