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1. Introduction 

Malignant mesothelioma (MM) is a highly aggressive tumor which arises from the 

mesothelial cell lining of the serosal surfaces, most cases (>90%) being of pleural origin 

(Attanoos & Gibbs, 1997; Robinson & Lake, 2005). The pathogenesis of MM has been mainly 

associated with previous asbestos exposure (Berman & Crump, 2008), with a latency period 

of up to 40 years, although other agents such as Simian virus 40 (SV40) or genetic 

susceptibility factors have been linked to the development of this tumor (Carbone et al., 

2002; Pisick & Salgia, 2005). Indeed, human mesothelial cells are highly susceptible to SV40-

mediated transformation in vitro and SV40 DNA sequences and large T antigen (Tag) have 

been detected in human MM cells (Bocchetta et al., 2000; Carbone et al., 2012; Gazdar et al., 

2003).  

MM is largely unresponsive to conventional chemotherapy or radiotherapy and, despite its 

low metastatic efficiency, it is highly invasive to surrounding tissues so that its extensive 

growth leads to the failure of the organs underlying the serosal membranes (Astoul, 1999). 

In fact, the primary cause of fatality in MM is related to the propensity of the tumor cells to 

invade locally, even though MM metastasis are more common after surgery and, at the 

autopsy, metastatic diffusion is observed in 50% of patients (Astoul, 1999). At present, the 

median survival from diagnosis of MM is less than two years (Palumbo et al., 2008). 

The mesothelium is not just a passive protective surface, but a highly dynamic membrane 

(Mutsaers, 2004). It consists of a single layer of elongated, flattened, squamous-like cells of 

mesodermal origin, characterized by dual epithelial/mesenchymal features. Cuboidal 

mesothelial cells can also be found at various locations in physiological conditions. Further, 

mesothelial cells can adopt a cuboidal morphology, which reflects a metabolically activated 

state, after injury or stimulation of the serosal surface (Mutsaers, 2004). Indeed, mesothelial 

cells are sentinel cells that can sense and respond to a variety of signals within their 
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microenvironment. They participate in serosal inflammation by secreting both pro- and anti-

inflammatory as well as immunomodulatory mediators. Besides, these cells can act as 

antigen presenting cells for T lymphocytes (Hausmann et al., 2000), regulate tissue repair, 

control fibrin deposition and breakdown, and modulate adhesion, growth and dissemination 

of tumor cells metastasizing to the serosal membranes (Mutsaers, 2002). In particular, in 

response to different types of stimuli, including cytokines and asbestos fibers, mesothelial cells 

have been reported to release prostaglandins, chemokines, reactive oxygen and nitrogen 

species and growth factors which represent key effectors in the modulation of inflammatory 

reactions that occur in response to pleural injury (Fleury-Feith et al., 2003; Mutsaers, 2002).  

2. Asbestos-induced carcinogenesis as an inflammation-driven process 

The association between exposure to asbestos fibers and development of lung cancer and 

mesothelioma is well established in both humans and animals models (Greillier & Astoul, 

2008; Huang et al., 2011; Mossman & Churg, 1998; Yarborough, 2007). A variety of 

mediators, either generated directly from asbestos fibers or elaborated intracellularly or 

extracellularly by cells exposed to asbestos, are implicated in the initiation and promotion of 

mesothelial cell transformation.  

The mechanisms underlying asbestos-induced carcinogenesis involve mutagenic and non-

mutagenic pathways, the latter including inflammation, enhanced mitogenesis, cell 

signaling alterations, and cytotoxic apoptosis/necrosis. Neither of these two mechanisms 

alone fully accounts for the complex biological abnormalities produced by asbestos fibers, 

even though in MM asbestos appears to act as a complete carcinogen (Dong et al., 1994; 

Huang et al., 2011). Still, the chronic inflammatory response induced by asbestos inhalation 

seems to play a critical role in mesothelial cell transformation.  

Asbestos exposure induces an inflammatory reaction with a large component of 

mononuclear phagocytes (Antony et al., 1993; Branchaud et al., 1993; Carbone et al., 2012; 

Choe et al., 1997). Upon differentiation into macrophages, these cells phagocytize asbestos 

fibers and, in response, release numerous cytokines and reactive oxygen species with 

mutagenic properties (Robledo & Mossman, 1999). Thus, many of the pathological 

consequences occurring in the lung following exposure to asbestos fibers are believed to arise 

from an inflammatory cascade involving both autocrine and paracrine events (Hillegass et al., 

2010). Persistent pulmonary inflammation is observed in animal models of asbestosis that can 

be correlated with fibroproliferative responses (Mossman & Churg, 1998).  

Experimental models, as well as in vitro studies, have shown that mesothelial cells are 

particularly susceptible to the cytotoxic effects of asbestos (Baldys et al., 2007; BéruBé et al., 

1996; Broaddus et al., 1996). Asbestos does not induce transformation of primary human 

mesothelial cells in vitro, instead, it is very cytotoxic to this cell type, causing extensive cell 

death. This finding raised an apparent paradoxical issue of how asbestos causes MM if 

human mesothelial cells exposed to this mineral die (Liu et al., 2000). This apparent paradox 

is reconciled by the current hypothesis that the chronic inflammation induced by asbestos 
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leads to the persistent activation of the nuclear factor kappa B (NF-κB) transcription factor, 

which in turn mediates the activation of prosurvival genes and prevents apoptosis of the 

damaged mesothelial cells (Mantovani et al., 2008; Micheau & Tschopp, 2003; Philip et al., 

2004). This allows mesothelial cells with asbestos-induced DNA damage to survive and 

divide rather than die and, if sufficient genetic damage accumulates, to eventually develop 

into a MM (Miura et al., 2006; Nymark, 2007). In fact, apoptosis is an important mechanism 

by which cells with DNA damage are eliminated without eliciting an inflammatory response 

(Ullrich et al., 2008; Yoshida et al., 2010). However, failure of apoptosis in cells with unrepaired 

DNA and chromosomal damage after chronic exposure to asbestos may lead to permanent 

genetic alterations and trigger the development of a clone of cancerous cells (Roos & Kaina, 

2006; Wu, 2006). Consistently, MM cells are found to be apoptosis-resistant as compared to 

primary cultured mesothelial cells (Fennel & Rudd, 2004; Villanova et al., 2008). 

2.1. Tumor Necrosis Factor-α and other pro-inflammatory cytokines 

Tumor Necrosis Factor-α (TNF-α) is probably the most studied candidate for initiating 

inflammatory and fibrotic events linked to lung diseases such as asbestosis. Asbestos fibers 

cause the accumulation of macrophages in the pleura and lung. When these macrophages 

encounter asbestos, they release TNF-α. At the same time, asbestos induces the secretion of 

TNF-α and the expression of TNF-α receptor I (TNF-RI) in mesothelial cells (Yang et al., 

2006). Remarkably, treatment of mesothelial cells with TNF-α significantly reduced asbestos 

cytotoxicity. Indeed, TNF-α activates NF-κB, which in turn promotes mesothelial cell survival 

and resistance to the cytotoxic effects of asbestos. Thus, TNF-α signaling through NF-κB-

dependent mechanisms increases the percentage of mesothelial cells that survive asbestos 

exposure, thereby increasing the pool of asbestos-damaged cells susceptible to malignant 

transformation (Haegens et al., 2007; Janssen-Heininger et al., 1999; Yang et al., 2006). 

It has been reported that rats receiving a single intratracheal instillation of fibrogenic 

chrysotile asbestos developed lung chronic inflammatory reactions characterized by the 

accumulation of alveolar macrophages producing elevated levels of both Interleukin (IL)-1 

and IL-6 (Lemaire & Ouellet, 1996). An increased production and/or release of these 

cytokines triggers inflammatory cell recruitment, thus amplifying and sustaining local 

inflammation. It has also been demonstrated that crocidolite asbestos and TNF-α can 

stimulate a dose-dependent increase in IL-6 expression and secretion from cultured, 

transformed and normal, human alveolar type II epithelial cells that is dependent upon 

intracellular redox potential (Simeonova et al., 1997). Interestingly, although MM cells appear 

to express low levels of IL-6 receptor (IL-6R), IL-6 can act as a growth factor for these cells 

through a trans-signaling mechanism involving the interaction of macromolecular complexes 

of IL-6 and soluble IL-6R (sIL-6R) with the transmembrane glycoprotein gp130 expressed on 

the surface of MM cells (Adachi et al., 2006; Rose-John et al., 2007). High levels of both IL-6 and 

sIL-6R are typical of several chronic inflammatory conditions (Rose-John et al., 2007). 

Thus, inflammatory cytokines such as TNF-α and IL-6 appear to play a dual role in MM 

pathogenesis: they induce and sustain pleural inflammation and at the same time can act as 

survival or mitogenic factors for normal and transformed mesothelial cells, respectively. 
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2.2. Reactive Oxygen and Nitrogen Species (ROS/RNS) 

The mechanisms of injury and disease development caused by asbestos fibers are presumed 

to be related to their greater fibrogenic and carcinogenic properties in comparison to other 

minerals. Asbestos–induced mutagenicity is mediated through both direct and indirect 

pathways. Asbestos fibers may induce mutagenicity and genotoxicity directly through 

physical interaction with the mitotic machinery after being phagocytized by the target cells, 

or indirectly as a result of DNA and chromosome damage caused by asbestos-induced 

reactive oxygen (ROS) and nitrogen species (RNS) (Kamp & Weitzman, 1999; Shukla et al., 

2003a, 2003b). ROS and RNS can be generated primarily by asbestos fibers or secondarily 

through fiber-induced inflammation (Aust et al., 2011; Gulumian, 2005; Hoidal, 2001). Free 

radicals generated from asbestos fibers plus the direct damage induced by the fibers are 

linked to cell signaling, inflammation, and a plethora of other responses (mutagenesis, 

proliferation, etc.) associated with the pathogenesis of asbestos-associated diseases (Heinz et 

al., 2010; Manning et al., 2002; Shukla et al., 2003a, 2003b). 

Several evidences indicate that a main factor in determining the surface and biological 

reactivity of different types of asbestos fibers is their ability to participate in redox reactions 

that generate free radicals (Kamp & Weitzman, 1999; Shukla et al., 2003a). Although the 

nature of the free radical-generating surface sites on asbestos fibers is not yet clear, asbestos 

fibers have an intrinsic redox activity and contain ferrous iron, which catalyzes reactions 

generating active oxygen intermediates on the fiber surface. Within the tissues several 

asbestos fiber types can produce reactive oxygen free radicals from hydrogen peroxide, a 

common product of intermediary tissue metabolism. Epidemiological studies have 

identified crocidolite as one of the most potent forms of asbestos associated with the 

induction of MM (Heintz et al., 2010). Crocidolite has a greater surface-area and a higher 

ferrous iron content compared to other fiber types such as chrysotile, and it is more 

biologically active in the generation of free radicals (Toyokuni, 2009). However, the ability of 

asbestos fibers to elicit these effects is not related to total iron content, suggesting the 

presence of specific iron active sites at the fibers’ surface (Shukla et al., 2003a).  

Cells exposed to asbestos have also been reported to produce a higher amount of nitric 

oxide (NO). In this regard, it has been reported that in human mesothelial cells crocidolite 

increases the expression of the inducible NO synthase (NOS) isoform (iNOS), the activity of 

the constitutive endothelial NOS (eNOS), and the synthesis of NO via NF-κB and Akt 

activation (Riganti et al., 2007). Thus, the asbestos-induced upregulation of iNOS or NO in 

the lungs, as well as the induction of inflammation by fibers, may contribute along with 

ROS, to the pathogenesis of lung and pleural injury (Hussain et al., 2003; Tanaka et al., 

1998). Indeed, ROS and RNS can cause breakage of DNA, lipid peroxidation, release of 

inflammatory cytokines such as TNF-α, and the modification of cellular proteins including 

phosphatases involved in cell signaling cascades (Gossart et al., 1996; Hussain et al., 2003), 

so that their increased synthesis by various cell types may have multiple roles in cellular 

events critical to the establishment of lung and pleural inflammation and uncontrolled cell 

proliferation. 
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Finally, in mesothelial and lung epithelial cells asbestos fibers, as opposed to nonpathogenic 

minerals, cause a persistent induction of the redox-sensitive transcription factors NF-κB and 

Activator Protein-1 (AP-1), which  is accompanied by chronic alterations in gene expression 

(Heintz et al., 1993; Janssen et al., 1995). As mentioned above, the aberrant activation of the 

NF-κB pathway is regarded as a critical event for mesothelial cell transformation (Toyooka 

et al., 2008). 

2.3. Transcription factors  

2.3.1. NF-κB 

NF-κB proteins are dimeric transcription factors composed of five different subunits, 

namely p65 (RelA), RelB, c-Rel, NF-κB1 p50 and NF-κB2 p52, which regulate gene 

expression events that impact on cell survival and differentiation. Moreover, since activation 

of NF-κB is critical in up-regulating the expression of many genes linked to proliferation, 

apoptosis resistance, and chemokine/cytokine production, this is undoubtedly a critical 

transcription factor in inflammatory responses occurring in target cells of asbestos-related 

diseases (Janssen et al., 1995, 1997). 

In unstimulated cells, the NF-κB transcription dimers are retained in the cytoplasm in an 

inactive state through the interaction with a family of inhibitors called IκBs (Inhibitors of κB) 

or with the p50 and p52 precursor proteins, p105 and p100, respectively (Hayden & Ghosh,  

2008; Scheidereit, 2006). Indeed, p50 and p52 are translated as precursors proteins 

containing an IκB-like C-terminal portion (Sun, 2011). 

Two different NF-κB-activation pathways exist: the classical and the alternative NF-κB 

pathway. The classical NF-κB pathway is initiated by signals elicited by diverse receptors, 

including TNF receptors type 1/2, Toll/IL-1 receptor, T-cell and B-cell receptors and EGF 

receptor, and also by cellular stresses and DNA damage (Hayden & Ghosh 2004; Le Page et 

al., 2005). These signals induce the activation of the IκB kinase (IKK) complex, which is 

composed by the catalytic subunits IKKα and IKKβ and by the regulatory subunit 

IKKγ/NEMO (Hayden & Ghosh, 2008; Scheidereit, 2006; Sun, 2011). The activated IKK 

complex phosphorylates IκB proteins, thereby triggering their proteasomal degradation. As 

a consequence, NF-κB dimers are released and can translocate into the nucleus. This 

pathway mainly leads to the activation of p50:RelA dimers (Sun, 2011). Conversely, the 

alternative NF-κB pathway predominantly targets activation of RelB:p52 complexes. This 

pathway relies on the inducible processing of p100 triggered by signaling from TNF 

receptor family members via the NF-κB-inducing kinase (NIK): NIK activates IKKα, which, 

in turn, phosphorylates p100 and triggers its processing to p52. This event results in the 

conversion of p100-inhibited NF-κB complexes into p52-containing NF-κB dimers, capable 

of translocating into the nucleus (Hayden & Ghosh, 2008; Scheidereit, 2006; Sun, 2011). 

NF-κB-regulated genes have distinct requirements for NF-κB dimers. For instance, the NF-

κB binding site of the IL-2 gene has been reported to bind preferentially c-Rel homodimers 
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and p50:c-Rel, while that of the gene encoding IL-8 has been found to selectively bind Rel A 

(Hoffman et al., 2003, 2006). On the other hand, several genes are redundantly induced by 

more than one dimer (Hoffman et al., 2003, 2006; Saccani et al., 2003). 

A number of studies have shown that nuclear retention and DNA binding of NF-κB protein 

complexes are increased following exposure of various cell types to a variety of extracellular 

stimuli that include oxidative stress (Bowie & O'Neill, 2000), hypoxia (Jung et al., 2003; 

Royds et al., 1998) and inflammatory cytokines (Mantovani et al., 2008). These observations 

are consistent with the hypothesis that persistent activation of NF-κB can contribute to the 

induction of multiple genes that are critical to the pathogenesis of asbestos-associated 

diseases, since oxidants, local hypoxia and inflammatory cytokines are all components 

involved in the effects induced by asbestos exposure. 

It is noteworthy that among various carcinogenic and non-carcinogenic fibers studied for 

their effect on nuclear translocation of NF-κB, only carcinogenic fibers were found to cause a 

dose-dependent translocation of this transcription factor to the nucleus, and this effect was 

reported to be oxidative stress-dependent (Brown et al., 1999). In lung macrophages, the 

asbestos-induced expression and secretion of TNF-α are mediated by iron-catalyzed ROS 

products (Simeonova & Luster, 1995) through a process that involves NF-κB activation (Cheng 

et al., 1999). In rat alveolar type 2 cells, the crocidolite-induced activation of NF-κB as well as 

the expression of the macrophage inflammatory protein-2 (MIP-2) gene have also been shown 

to be dependent on mitochondrial-derived oxidative stress (Driscoll et al., 1998).  

2.3.2. AP-1 

AP-1 is a homo- or heterodimeric transcription factor composed by proteins encoded by the 

fos and jun early response proto-oncogenes. This family of proteins includes c-Fos, FosB, 

FosL1 (Fra-1), FosL2 (Fra-2), c-Jun, JunB and JunD (Milde-Langosch, 2005). Whereas Jun 

members are capable of forming homodimers able to bind DNA and regulate transcription, 

all Fos members must form heterodimers with Jun family members to bind DNA.  

AP-1 is a redox-sensitive transcription factor typically associated with cell proliferation and 

tumor promotion (Eferl & Wagner, 2003). The first evidence showing that asbestos exerts 

regulatory effects linked to aberrant transcriptional responses, cell proliferation and cell 

transformation derives from studies in which asbestos fibers caused induction of c-fos and c-

jun proto-oncogene mRNAs in pleural mesothelial cells and tracheo-bronchial epithelial 

cells in a dose–response fashion (Heintz et al., 1993).  

The persistent induction of AP-1 by asbestos suggests a model of asbestos-induced 

carcinogenesis involving chronic stimulation of cell proliferation through activation of early 

response genes (Schonthaler et al., 2011). Of note, early response genes are a set of genes 

whose transcription is rapidly induced in response to growth factors. Furthermore, AP-1 

activity is induced by growth factors, pro-inflammatory cytokines and genotoxic stress 

(Jochum et al., 2001; Shaulian & Karin, 2002). These stimuli activate mitogen-activated 

protein kinase (MAPK) cascades through the phosphorylation of distinct substrates such as 
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ERK, JNK and p38 MAPK (Chang & Karin, 2001). Indeed, the MAPK signal transduction 

pathway uses AP-1 as a converging point not only to regulate the expression of various 

genes but also to autoregulate AP-1 gene transcription (Reuter et al., 2010).  

Several genes, which play very important roles in injury, repair, and differentiation, contain 

binding site(s) for AP-1 in their promoter and/or enhancer regions (Chang & Karin, 2001). 

These genes include extracellular matrix metalloproteinases (MMPs), antioxidant enzymes, 

growth factors and their receptors, differentiation markers, cytokines, chemokines and other 

transcription factors (Shaulian & Karin, 2001). 

2.3.3. Nuclear Factor of Activated T Cells (NFAT) 

The Nuclear Factor of Activated T cells (NFAT) family of transcription factors consists of 

five proteins that are evolutionarily related to the Rel/NF-κB family. NFAT can be present in 

both the cytoplasm and the nucleus. In the cytoplasm NFAT is in a highly phosphorylated, 

inactive state. Cell stimuli leading to the elevation of intracellular Ca2+ levels induce the 

activation of the phosphatase PP2B/Calcineurin which dephosphorylates NFAT. This results 

in its nuclear relocalization and transcriptional activation. Interestingly, NFAT family 

members can act synergistically with AP-1 on composite DNA elements which contain 

adjacent NFAT and AP-1 binding sites (Macián et al., 2001). A functional cooperation has 

also been reported to occur between NFAT and NF-κB (Jash et al., 2012). 

Initially, NFAT was identified in lymphocytes and was reported to be expressed in activated 

but not resting T cells (Macián et al., 2005; Shaw et al., 1988). NFAT regulates not only T cell 

activation and differentiation but also the function of other immune cells, including 

dendritic cells (DCs), B cells and megakaryocytes. In addition, NFAT has crucial roles in 

numerous developmental programs in vertebrates.  

Dysregulation of NFAT signalling is now known to be associated with malignant 

transformation and the development of cancer (Mancini & Toker, 2009; Müller & Rao, 2010). 

The observation that NFAT can be activated by asbestos-induced oxidative stress suggests 

that this transcription factor may play multiple roles in asbestos-induced inflammation and 

carcinogenesis (Li et al., 2002). Indeed, NFAT mediates the expression of several 

inflammatory cytokines, including TNF-α, and is involved in cell transformation, 

proliferation, invasive migration, tumor cell survival and tumor angiogenesis (Mancini & 

Toker, 2009).   

3. Multifaceted role of angiogenic growth factors in MM  

Angiogenesis is a common feature of solid tumors. Indeed, the development of a clinically 

observable tumor requires the neoformation of a vascular network sufficient to sustain 

tumor growth (Ribatti et al., 2007). Tumor angiogenesis is stimulated by the secretion of 

angiogenic molecules which induce endothelial cells from nearby vessels to switch from a 

quiescent to an activated state. Further, upon the stimulation of angiogenic growth factors, 

activated endothelial cells disrupt the extracellular matrix, proliferate and migrate (Ribatti et 
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al., 2007). Angiogenic growth factors include, among the others, Vascular Endothelial 

Growth Factor (VEGF), Placenta Growth Factor (PlGF), Platelet-Derived Growth Factor 

(PDGF) and acidic and basic Fibroblast Growth Factors (FGF-1 and -2, respectively). VEGF 

is regarded as the most important player in angiogenesis (Ono, 2008).  

The link between angiogenesis and tumor progression is provided by the negative prognostic 

value of intratumoral microvascular density (IMD) (Folkman, 2006;  Kerbel, 2008). In MM the 

IMD has an independent prognostic value (Kumar-Singh et al., 1997). MM demonstrates a 

higher IMD than colon and breast tumors and, consistently, presents with minimal central 

necrosis despite its huge size (Gasparini & Harris, 1995; Kumar-Singh et al., 1997). 

On the other hand, the involvement of angiogenic growth factors in MM goes beyond the 

stimulation of angiogenesis. Indeed, as discussed below, MM cells express receptors for 

several angiogenic factors which, accordingly, can directly modulate MM cell behavior.  

3.1. Angiogenic growth factors of the VEGF family 

The human VEGF family consists of five members: VEGF (VEGF-A), VEGF-B, VEGF-C, 

VEGF-D and PlGF. These growth factors are secreted as dimers and their biological effects 

are mediated by binding to three tyrosine kinase receptors, i.e. VEGF-R1/Flt-1, VEGF-

R2/KDR (whose murine homologue is known as Flk-1) and VEGF-R3/Flt-4, and two non-

enzymatic co-receptors known as neuropilin-1 and -2 (Ferrara et al., 2003; Koch et al., 2011; 

Roskoski, 2007).  

3.1.1. VEGF  

VEGF is regarded as the major mediator of tumor angiogenesis. It is expressed in the 

majority of cancers and has a central role in tumor growth and metastasis. In fact, this 

growth factor is essential for the mobilization of bone-marrow-derived endothelial 

precursors in neovascularization (Asahara et al., 1999), and stimulates vascular endothelial 

cells mobility, proliferation and survival (Waltenberger et al., 1994).  

High levels of VEGF are present both in malignant and non-malignant pleural effusions 

leading to increased vascular permeability. On the other hand, VEGF levels in serum or 

pleural effusions of MM patients are higher than those found in patients with non-

malignant pleuritis or lung cancer involving malignant pleural effusions. Further, in MM 

patients elevated serum or pleural effusion levels of VEGF correlate with a worse prognosis 

and may also contribute to increase resistance to chemotherapy (Hirayama et al., 2011; 

Yasumitsu et al., 2010; Zebrowski et al., 1999). In fact, VEGF status has proved to be of value 

in predicting the effectiveness of radiotherapy and chemotherapy on different cancers (Choi 

et al., 2008; Kumar et al., 2009; Toi et al., 2001).  

In addition to its role in tumor vascularization, VEGF can directly affect the behavior of 

cancer cells in an autocrine or paracrine manner. Indeed, many tumor cell types express 

VEGF receptors. VEGF has been found to promote the growth of transformed cell lines in 

vitro (Masood et al., 2001) and to act as a survival factor for tumor cells by enhancing the 
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expression of the antiapoptotic factors bcl-2 (Harmey & Bouchier-Hayes, 2002) and survivin 

(Kanwar et al., 2011). In this context, MM cells have been shown to express high amounts of 

VEGF, VEGF receptors and co-receptors both in vitro and in vivo, and VEGF has been 

demonstrated to act as an autocrine growth factor for this tumor cell type (Albonici et al., 

2009; Ohta et al., 1999; Pompeo et al., 2009;  Strizzi et al., 2001a).  

VEGF-R1 participates in cell migration; it has an important role in monocyte chemotaxis and 

promotes recruitment of circulating endothelial precursor cells from bone marrow (Hattori 

et al., 2002). Its expression is increased in various tumors, correlates with disease 

progression and can predict poor prognosis, metastasis and recurrent disease in humans 

(Dawson et al., 2009; Fischer et al., 2008; Kerber et al., 2008). This receptor is also expressed 

by MM cells in vitro and in vivo, where it appears to mediate proliferative and cell survival 

responses (Albonici et al., 2009;  Strizzi et al., 2001a). 

VEGF-R2 is the main mediator of VEGF-stimulated endothelial cell migration, proliferation, 

survival and enhanced vascular permeability (Olsson et al., 2006; Shibuya, 2006). VEGF-R2 

expression is induced in conjunction with active angiogenesis, such as during the reparative 

process, and in pathological conditions associated with neovascularization, such as cancer 

(Plate et al., 1993). VEGF-R2 is overexpressed in MM cells and specimens, and VEGF-R2 

silencing by small intefering RNA has been shown to induce cell death in MM or 

immortalized mesotelial cells in vitro (Albonici et al., 2009; Catalano et al., 2009; Pompeo et 

al., 2009; Strizzi et al., 2001a). Interestingly, it has been reported that in MM cells this 

receptor can be activated also via the semaphorin-6D receptor Plexin-A1, triggering a 

prosurvival program that promotes anchorage-independent growth through a NF-κB-

dependent pathway (Catalano et al., 2009). Remarkably, the expression of plexin-A1 is 

induced by asbestos fibers and overexpression of plexin-A1 in non-malignant mesothelial 

cells inhibits cell death after asbestos exposure, thus suggesting a role for this receptor not 

only in MM promotion and progression but also in asbestos-induced mesothelial 

carcinogenesis (Catalano et al., 2009).  

In vitro studies have shown that transfection of normal mesothelial cells with SV40 Tag 

potently increases VEGF protein and mRNA levels (Cacciotti et al., 2002) as well as 

mesothelial cell proliferation (Catalano et al., 2002). These data indicate that VEGF 

regulation by SV40 transforming proteins can also represent a key event in MM onset and 

progression. 

3.1.2. PlGF 

PlGF, originally identified in the placenta during the early embryonic development (Khaliq 

et al., 1996; Maglione et al., 1991), is expressed in several other organs including the heart, 

lung, thyroid, skeletal muscle and adipose tissue (Persico et al., 1999) but not normal 

mesothelium (Albonici et al., 2009). 

Although the role exerted by PlGF in tumor growth is controversial yet, PlGF can stimulate 

vessel growth and maturation directly by affecting endothelial and mural cells, as well as 

indirectly by recruiting pro-angiogenic cell types (Barillari et al., 1998; Carmeliet, 2003). It 
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also promotes the recruitment and maturation of angiogenesis-competent myeloid 

progenitors to growing sprouts and collateral vessels (Hattori et al., 2002; Luttun et al., 2002; 

Rafii et al., 2003). Further, PlGF is able to protect endothelial cells from apoptosis, in a 

similar manner as VEGF, by inducing the expression of antiapoptotic genes such as survivin 

(Adini et al., 2002).  

Under pathological conditions, PlGF abundance is elevated in various cell types and tissues, 

including vascular endothelial cells, and many different tumor cells (Albonici et al., 2009; 

Cao et al., 1996; Fischer et al., 2007; Oura et al., 2003). PlGF expression is switched on in 

hyperplastic/reactive mesothelium and in MM cells (Albonici et al., 2009). Moreover, in MM 

as well as in different types of cancer, including melanoma, gastric, colorectal and breast 

carcinomas, PlGF plasma levels and intratumoral expression have been found to correlate 

with tumor stage, vascularity, recurrence, metastasis and survival (Chen et al., 2004; 

Marcellini et al., 2006; Parr et al. 2005; Pompeo et al.; 2009; Wei et al., 2005).  

In vitro studies have shown that administration of recombinant PlGF to MM cells triggers 

the activation of Akt but does not elicit a significant stimulation of cell growth. Conversely, 

the administration of PlGF-neutralizing antibodies causes a significant reduction of MM cell 

viability, demonstrating the PlGF acts as a survival factor for MM cells (Albonici et al., 2009). 

PlGF binds VEGF-R1 and the co-receptors neuropilin-1 and -2, but, unlike VEGF, it does not 

bind VEGF-R2. Accordingly, it can act independently of VEGF in cells which primarily 

express VEGF-R1 (Fischer et al., 2007). Worthy of note, even though VEGF and PlGF both 

bind VEGF-R1, PlGF was reported to stimulate the phosphorylation of specific VEGF-R1 

tyrosine residues and the expression of distinct downstream target genes as compared to 

VEGF (Autiero et al., 2003). On the other hand, PlGF can also sustain VEGF activity through 

different mechanisms involving both VEGF-R1 and VEGF-R2. One of these mechanisms 

relies on the formation of PlGF:VEGF heterodimers. Indeed, PlGF:VEGF heterodimers have 

been isolated from cells producing both factors and shown to bind VEGF-R1:VEGF-R2 

receptor complexes, thus inducing receptor cross-talk and activation of VEGF-R2, the major 

mediator of VEGF activities (Autiero et al., 2003; Cao et al., 1996). In addition, the activation 

of VEGF-R1 by PlGF homodimers may induce the intermolecular transphosphorylation and 

activation of VEGF-R2 (Carmeliet et al., 2001). 

It is noteworthy that in vivo anti-PlGF treatment was reported to inhibit tumor growth 

without affecting healthy vessels, thus reducing tumor infiltration by angiogenic 

macrophages and severe tumor hypoxia, and preventing the switch on of the angiogenic 

rescue program leading to the enhanced release different angiogenic factors responsible for 

resistance to VEGF receptors inhibitors (Fischer et al., 2007). 

3.2. PDGF 

PDGFs comprise a family of dimeric growth factors structurally and functionally related to 

VEGFs  (Andrae et al., 2008). PDGF homodimers are formed by four different chains, i.e. 

PDGF-A, PDGF-B, PDGF-C and PDGF-D. In addition, PDGF-A and –B chains can form the 
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heterodimeric PDGF-AB. The biological effects of PDGF are mediated by two tyrosine 

kinase receptors, namely the PDGF receptor alpha (PDGFRα), which binds PDGF-A, -B, and 

–C chains, and the PDGF receptor beta (PDGFR), which binds PDGF-B and –D. Accordingly, 

upon ligand binding different receptor dimers may form depending on ligand configuration 

and the pattern of receptor expression. Cellular responses to PDGF signaling include 

stimulation of cell growth, differentiation, migration and inhibition of apoptosis (Andrae et 

al., 2008).  

An increased PDGF activity has been linked with tumors, vascular and fibrotic diseases 

(Andrae et al., 2008). Autocrine PDGF signaling leading to enhanced proliferation of tumor 

cells occurs in several types of cancer (Ostman, 2004). In addition, PDGF secretion by cancer 

cells and activated endothelial cells promotes the formation of both fibrous and vascular 

tumor stroma. In particular, PDGF-BB participates in tumor angiogenesis by stimulating 

endothelial cell motility and pericyte recruitment to neoformed vessels, thus leading to 

vessel stabilization, tumor cell survival and growth. Instead, both PDGF-AA and PDGF-BB 

appear involved in tumor recruitment of PDGFR-positive fibroblasts which, in turn, can be 

activated by PDGFs to produce VEGF and other tumor-promoting growth factors (Andrae 

et al., 2008; Cao et al., 2008; Homsi & Daud, 2007).  

Either high PDGF-AB serum levels or a strong expression of PDGFR signaling effectors in 

MM tissues have been associated with a lower survival in MM patients (Filiberti et al., 2005; 

Kothmaier et al., 2008). In fact, several evidence support a role for PDGF in MM promotion 

and progression through both autocrine and paracrine mechanisms.  

While PDGFRα expression levels are lower in MM than in normal mesothelial cells, 

PDGFRβ, PDGF-A and PDGF-B are overexpressed in MM cells as compared to their non-

transformed counterparts (Langerak et al., 1996a, 1996b; Metheny-Barlow et al., 2001). 

Functional studies have shown that transduction of MM cells with a hammerhead ribozyme 

against PDGFRβ mRNA reduced both PDGFRβ expression and MM cell proliferation, 

demonstrating the involvement of a PDGF-BB autocrine loop in MM cell growth (Dorai et al., 

1994). Conversely, the role of PDGF-A in MM cell proliferation is controversial. Indeed, the 

transfection of MM cells with antisense oligonucleotides to PDGF-A has been reported to 

either inhibit or stimulate MM cell growth in vitro (Garlepp & Leong, 1995; Metheny-Barlow et 

al., 2001). On the other hand, PDGF-A appears to play an important role in sustaining MM cell 

growth in vivo through paracrine mechanisms. Indeed, PDGF-A overexpression in MM cells 

inoculated in nude mice was found to increase tumor incidence, tumor growth rate and to 

decrease the latency period to tumor formation (Metheny-Barlow et al., 2001). In this regard, it 

has been suggested that PDGF-A participates in a malignant cytokine network through which 

MM cells instigates tumor-associated fibroblasts to produce growth factors, such as hepatocyte 

growth factor (HGF), with tumor-promoting activities (Li et al., 2011).  

3.3. FGF 

The FGF family encompasses 22 structurally related ligands in mammals. The effects of 

most FGF family members, including FGF-1 and -2, are mediated by binding to a family of 
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tyrosine kinase receptors designated FGF receptors (FGFR1 to FGFR5), whereas a smaller 

number of FGF isoforms does not bind FGFRs but interacts with voltage-gated sodium 

channels (Knights & Cook, 2010). 

FGFs regulate cell proliferation, differentiation, survival, wound healing and angiogenesis. 

In cancer, FGF signaling  is frequently de-regulated, resulting in mitogenic, anti-apoptotic 

and angiogenic responses (Knights & Cook, 2010). FGF-1 and -2, but also other less-studied 

FGF isoforms, exert pro-angiogenic effects by modulating proliferation and migration of 

endothelial cells and by stimulating the production of proteases (Lieu et al., 2011; Saylor et 

al., 2012). Worthy of note, it has been demonstrated that FGF-2 can synergize with both 

VEGF and PDGF-BB in stimulating neovascularization, this synergism relying on multiple 

mechanisms. For instance, FGF-2 promotes hypoxia-induced VEGF release by cancer cells 

and the expression of both VEGF and VEGFRs in endothelial cells, whereas VEGF, in turn, 

upregulates the expression of FGF-2 (Lieu et al., 2011; Saylor et al., 2012). Moreover, FGF-2 

upregulates PDGFRs expression and increases the responsiveness to PDGF-BB in 

endothelial cells, whereas PDGF-BB enhances FGFR1 expression and FGF-2 responsiveness 

in vascular smooth muscle cells (Cao et al., 2008; Liu et al., 2011). Remarkably, FGFs are 

thought to play a critical role in the resistance to anti-VEGF therapy (Lieu et al., 2011; Saylor 

et al, 2005). Besides, both FGF-1 and -2 may also be involved in tumor cell growth through 

cell-autonomous, autocrine mechanisms (Kumar-Singh et al., 1999).  

FGF-1 and -2 are expressed in the majority of MMs in vivo and high levels of FGF-2 in tumor 

tissues, serum or pleural effusions are associated with a worse prognosis in MM patients 

(Davidson et al., 2004; Kumar-Singh et al., 1999; Strizzi et al., 2001b). Furthermore, the 

combined expression levels of FGF-1, FGF-2, VEGF and Transforming Growth Factor beta 

(TGFβ) in MM tissues correlates with both IMD and a poorer prognosis (Kumar-Singh et al., 

1999). In addition to their role in tumor angiogenesis, FGFs act as autocrine growth factors 

for MM cells. Indeed, MM cells express FGFs and FGF receptors and the transfection with 

short interfering RNAs to FGF-1 and FGF-2 reduces MM cell proliferation (Kumar-Singh et 

al., 1999; Liu & Klominek, 2003; Stapelberg et al., 2005). It has also been reported that 

treatment of MM cells with exogenous FGF-2 stimulates the secretion of matrix 

metalloproteinases involved in tumor invasion and angiogenesis (Liu & Klominek, 2003). 

4. Cross-talk between inflammation and angiogenic growth factors  

Experimental and epidemiological evidences indicate that chronic inflammation is 

associated with most, if not all, tumors and supports their progression (Coussens & Werb 

2002; Mantovani et al., 2008; Mantovani et al., 2010; Porta et al., 2009). Chronic inflammation 

appears to have a versatile function in tumor onset and progression. Indeed, as discussed 

above, a long-lasting inflammation can contribute to cancer initiation through the 

production ROS and RNS with DNA-damaging properties. On the other hand, it can also 

participate in cancer promotion and progression by increasing the availability of mediators 

(growth factors, cytokines, chemokines, prostaglandins) which contribute to the growth of 

initiated cells and to neoangiogenesis (Mantovani, 2010). Besides, once a tumor is 
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established, cancer cells promote a constant influx of myelomonocytic cells that express 

inflammatory mediators supporting pro-tumoral functions. In this regard, myelomonocytic 

cells are key orchestrators of cancer-related inflammatory processes supporting proliferation 

and survival of malignant cells, subversion of adaptive immune responses, stromal 

remodeling and angiogenesis (David Dong et al., 2009; Loges et al., 2009; Porta et al., 2009).  

Tissue infiltration by macrophages is a dramatic and common feature of inflammation, 

angiogenesis and cancer (Pollard, 2004; Sica, 2010). High densities of tumor-infiltrating 

macrophages are associated with poor survival in patients with MM (Burt et al., 2011). In 

fact, the recruitment and infiltration of macrophages in the tumor microenvironment can 

activate them to support the malignant progression of cancer cells. These macrophages are 

called tumor-associated macrophages (TAMs) (Lawrence, 2011; Sica, 2010). Cancer cells co-

cultured with macrophages and incubated with inflammatory cytokines are synergistically 

stimulated to produce various angiogenesis-related factors (Izzi et al., 2009; Ono, 2008). This 

inflammatory angiogenesis is mediated, in part, by activation of NF-κB and AP-1 (Angelo & 

Kurzrock, 2007; Huang et al., 2000; Ono, 2008). In fact, treatment of both vascular 

endothelial cells and cancer cells with IL-1α/β, TNF-α and ROS in vitro results in a marked 

induction of VEGF and FGF-2, through the transcriptional activation of NF-κB, Specificity 

protein 1 (Sp-1), AP-1 and hypoxia response elements.  

In addition to macrophages, other tumor-infiltrating immune cells including T cells, B cells, 

natural killer cells and neutrophils can release cytokines, such as IL-1α/β, TNF-α and IL-6, 

able to sustain the synthesis of angiogenic growth factors (Angelo & Kurzrock, 2007). As for, 

IL-6, this pro-inflammatory cytokine has been reported to play a critical role in the 

stimulation of VEGF synthesis by different cell types, including MM cells (Adachi et al., 

2006; Angelo & Kurzrock, 2007). Of note, MMs usually produce high levels of IL-6 but 

express low levels of IL-6R, so that the presence of sIL-6Rs, which may be provided by 

inflammatory cells recruited to the tumor region, is essential for the IL-6-dependent 

stimulation of VEGF expression by MM cells (Adachi et al., 2006). Inflammation can also 

induce the expression of receptors for angiogenic growth factors. In this regard, the 

expression of PDGFRs is known to be induced by inflammatory cytokines such as TNF-α 

and IL-1 (Andrae et al.,  2008). Besides, inflammatory cells themselves can directly release 

angiogenic factors such as VEGF, PlGF, FGF-2 and PDGF, among many others, which exert 

mitogenic and migratory effects on surrounding cells (Sica 2010, Ono 2008). Inflammatory 

cells recruited in the tumor microenvironment can also produce matrix metalloproteinases 

which promote the formation of new vessels by degrading the basement membrane and by 

releasing angiogenic growth factors, such as VEGF, PlGF-2 and FGF-2, stored in the 

extracellular matrix (Barillari et al.,1998; Cao et al., 2008; Lieu et al., 2011). 

The high amount of chemokines/cytokines, growth factors, proteolytic enzymes, 

proteoglycans, lipid mediators and prostaglandins which is typically found in the tumor 

microenvironment sustains and exacerbates both inflammation and angiogenesis (Costa et 

al., 2007; Lin & Karin, 2007; Ono, 2008). In this context, the cross-talk between inflammation 

and angiogenesis is further corroborated by the evidence that, if on one hand inflammatory 

mediators have significant effects on angiogenesis, on the other hand angiogenic factors can 
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effectively promote inflammation. As a matter of fact, in addition to their angiogenic role, 

VEGF and PlGF appear to act as direct proinflammatory mediators in the pathogenesis of 

different inflammatory conditions (Angelo & Kurzrock, 2007; Yoo et al., 2008). In this 

regard, VEGF was found to increase the production of TNF-α and IL-6 by human peripheral 

blood mononuclear cells and macrophages (Yoo et al., 2008). Moreover, VEGF stimulates 

monocyte recruitment to tumor areas (Barleon et al., 1996). An additional link between 

inflammatory and angiogenic growth factors has been provided with the demonstration that 

in myelomonocytic cells TNF-α is upregulated by PlGF in a NFAT1-dependent manner and, 

in turn, contributes to PlGF-induced myelomonocytic cell recruitment (Ding et al., 2010). 

PlGF can also contribute to inflammation by acting as survival factor for monocytes and 

macrophages (Adini et al., 2002). 

5. Cooperation between asbestos and angiogenic growth factors in MM 

onset and progression 

As reported above, asbestos stimulates the expression of c-fos and c-jun mRNA in 

mesothelial cells in a dose-dependent fashion (Heintz et al., 1993; Ramos-Nino et al., 2002). 

One of the mechanisms by which VEGF and PlGF elicit biological responses is the induction 

of Fos-B and c-Fos expression in endothelial cells and monocytes (Holmes & Zachary, 2004). 

The coexistence of different stimuli, such as asbestos fibers and angiogenic growth factors, 

concurring to the activation of early response genes might lead to the persistent induction of 

AP-1 in mesothelial cells and to the chronic stimulation of mesothelial cell proliferation, thus 

favoring cell transformation.  

Further, asbestos and angiogenic growth factors can cooperate in inducing an 

immunosuppressive tumor microenvironement. Indeed, asbestos has been found to possess 

immunosuppressive properties. For example, chrysotile fibers have been shown to depress 

the in vitro proliferation of phytohemagglutinin-stimulated peripheral blood lymphocytes 

and to suppress natural killer activity. Moreover, asbestos significantly reduces the 

generation and activity of lymphokine-activated killer (LAK) cells, which are immune 

effectors with a strong lytic activity against MM cells (Manning et al., 1991; Valle et al., 

1998).  

Immunosuppressive properties have been reported for angiogenic growth factors as well 

(Ohm et al., 2001; Ziogas et al., 2012). Impaired antigen-presenting function in DCs as a 

result of abnormal differentiation is an important mechanism of tumor escape from immune 

control. It has been demonstrated that VEGF can inhibit the maturation of DCs induced by 

lipopolysaccharide (Takahashi et al., 2004). VEGF can also affect the ability of hematopoetic 

progenitor cells (HPCs) to differentiate into functional DCs during the early stages of 

hematopoiesis in vivo (Gabrilovich et al., 1996; Oyama et al., 1998). In this regard, it has been 

shown that VEGF binds to specific receptors on the surface of HPCs and this binding 

appears to involve VEGF-R1. Interestingly, the number of binding sites available for VEGF 

decreased with DC maturation and correlated with decreased levels of VEGF-R1 mRNA 

expression in the late-stage cells (Gabrilovich et al., 1996). PlGF was also found to inhibit the 
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activation and maturation of human DCs effectively and rapidly through the NF-κB 

pathway (Lin et al., 2007). The results of this study further indicate that by modulating the 

function of DCs, PlGF can down-regulate T helper immune responses (Lin et al., 2007). In 

addition, both VEGF and PlGF are also involved in the recruitment of macrophages with 

immunosuppressive, tumor-promoting roles to the tumor stroma.  

On the whole, these findings suggest mechanisms by which tumor-derived soluble factors 

such as VEGF or PlGF may synergize with asbestos to down-regulate immune responses to 

MM antigens.  

6. Conclusions 

Collectively, the reported findings demonstrate that a complex network involving asbestos, 

inflammation and angiogenic factors upregulation is involved in the pathogenesis of MM. In 

particular, the abnormal expression of angiogenic factors appears to play multiple roles in 

MM: it stimulates tumor neovascularization, increases pleural effusion formation by 

increasing vascular permeability, supports autocrine tumor cell growth and finally, in 

synergism with asbestos fibers, can sustain inflammation and bias host immune responses. 

Accordingly, the upregulation of angiogenic growth factors appears to be a crucial event in 

mesothelial cell transformation and MM progression. 

Given the involvement of multiple angiogenic growth growth factors in the formation of 

tumor vessels, in tumor inflammation and MM cell growth and survival, the therapeutic 

development of antiangiogenic agents for the treatment of this tumor should be aimed at 

blocking multiple growth factor signaling pathways and their complex interactive network 

(Cao et al., 2008; Ikuta et al., 2009; Homsi & Daud, 2007; Lieu et al., 2011). 

Author details 

Loredana Albonici, Camilla Palumbo and Vittorio Manzari 

Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, 

Rome, Italy 

7. References 

Adachi, Y., Aoki, C., Yoshio-Hoshino, N., Takayama, K., Curiel, D. T. & Nishimoto N. 

(2006). Interleukin-6 induces both  cell growth and VEGF production in malignant 

mesotheliomas. Int. J. Cancer, Vol. 119, No. 6, (September 2006), pp. 1303-1311, ISSN 

0020-7136 

Adini, A., Kornaga, T., Firoozbakht, F. & Benjamin, L. E. (2002). Placenta growth factor is a 

survival factor for human endothelial cells and macrophages. Cancer Res., Vol. 62, No. 

10, (May 2002), pp. 2749-2752, ISSN 0008-5472 

Albonici, L., Doldo, E., Palumbo, C., Orlandi, A., Bei, R., Pompeo, E., Mineo, T. C., Modesti, 

A. & Manzari, V. (2009). Placenta growth factor is a survival factor for human 



 
Malignant Mesothelioma 64 

malignant mesotelioma cells. Int. J. Immunopathol. Pharmacol., Vol. 22, No. 2, (April-June 

2009), pp. 389-401, ISSN 0394-6320 

Andrae, J., Gallini, R. & Betsholtz, C. (2008). Role of platelet-derived growth factors in 

physiology and medicine. Genes Dev., Vol. 22, No. 10, (May 2008), pp. 1276-1312, ISSN 

0890-9369 

Angelo, L. S. & Kurzrock, R. (2007). Vascular endothelial growth factor and its relationship 

to inflammatory mediators. Clin. Cancer Res.,  Vol. 13, No. 10, (May 2007), pp. 2825-2830, 

ISSN 1078-0432 

Antony, V. B., Godbey, S. W., Kunkel, S. L., Hott, J. W., Hartman, D. L., Burdick, M. D. & 

Strieter, R. M. (1993). Recruitment of inflammatory cells to the pleural space. 

Chemotactic cytokines, IL-8, and monocyte chemotactic peptide-1 in human pleural 

fluids. J. Immunol., Vol. 151, No. 12, (December 1993), pp. 7216–7223, ISSN 0022-1767 

Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., Inai, Y., Silver, M. 

& Isner, J. M. (1999). VEGF contributes to postnatal neovascularization by mobilizing 

bone marrow-derived endothelial progenitor cells.  EMBO J., Vol. 18, No. 14, (July 

1999), pp. 3964-3972, ISSN  0261-4189 

Astoul, P. (1999). Pleural mesothelioma. Curr. Opin. Pulm. Med., Vol. 5, No. 4, (July 1999), pp. 

259-268, ISSN 1070-5287 

Attanoos, R. L. & Gibbs, A. R. (1997). Pathology of malignant mesothelioma. Histopathology, 

Vol. 30, No. 5, (May 1997), pp. 403-418, ISSN 0309-0167 

Aust, A. E., Cook, P.M. & Dodson, R. F. (2011). Morphological and chemical mechanisms of 

elongated mineral particle toxicities. J. Toxicol. Environ. Health. B Crit. Rev., Vol. 14, No. 

1-4, pp. 40-75, ISSN 1093-7404 

Autiero, M., Waltenberger, J., Communi, D., Kranz, A., Moons, L., Lambrechts, D., Kroll, J., 

Plaisance, S., De Mol, M., Bono, F., Kliche, S., Fellbrich, G., Ballmer-Hofer, K., Maglione, 

D., Mayr-Beyrle, U., Dewerchin, M., Dombrowski, S., Stanimirovic, D., Van Hummelen, 

P., Dehio, C., Hicklin, D. J., Persico, G., Herbert, J. M., Communi, D., Shibuya, M., 

Collen, D., Conway, E. M. & Carmeliet, P. (2003). Role of PlGF in the intra- and 

intermolecular cross-talk between the VEGF receptors Flt-1 and Flk-1. Nat. Med., Vol. 9, 

No. 7, (July 2003), pp. 936-943, ISSN 1078-8956 

Baldys, A., Pande, P., Mosleh, T., Park, S. H. & Aust, A. E. (2007). Apoptosis induced by 

crocidolite asbestos in human lung epithelial cells involves inactivation of Akt and 

MAPK pathways. Apoptosis, Vol. 12, No. 2, (February 2007), pp. 433–447, ISSN 1360-

8185 

Barillari, G., Albonici, L., Franzese, O., Modesti, A., Liberati, F., Barillari, P., Ensoli, B., 

Manzari, V. & Santeusanio,  G. (1998). The basic residues of placenta growth factor type 

2 retrieve sequestered angiogenic factors into soluble form. Implication for tumor 

angiogenesis. Am. J. Pathol., Vol. 152, No. 5, (May 1998), pp. 1161-1166, ISSN 0002-9440 

Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A. & Marmé, D.(1996). 

Migration of human monocytes in response to vascular endothelial growth factor 

(VEGF) is mediated via the VEGF receptor flt-1. Blood, Vol. 87, No. 8, (April 1996), pp. 

3336-3343, ISSN 0006-4971 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 65 

Berman, D. W. & Crump, K. S. (2008). A meta-analysis of asbestos-related cancer risk that 

addresses fiber size and mineral type. Crit. Rev. Toxicol., Vol. 38, Suppl. 1, pp. 49–73, 

ISSN 1040-8444 

BéruBé, K. A., Quinlan, T. R., Fung, H., Magae, J., Vacek, P., Taatjes, D. J. & Mossman, B. T. 

(1996). Apoptosis is observed in mesothelial cells after exposure to crocidolite asbestos. 

Am. J. Respir. Cell. Mol. Biol., Vol. 15, No. 1, (July 1996), pp. 141-147, ISSN 1044-1549 

Bocchetta, M., Di Resta, I., Powers, A., Fresco, R., Tosolini, A., Testa, J. R., Pass, H.I., Rizzo, 

P. & Carbone, M. (2000). Human mesothelial cells are unusually susceptible to simian 

virus 40-mediated transformation and asbestos cocarcinogenicity. Proc. Natl. Acad. Sci. 

USA, Vol. 97, No. 18, (August 2000), pp. 10214–10219, ISSN 0027-8424 

Bowie, A. & O'Neill, L. A. (2000). Oxidative stress and nuclear factor-kappaB activation: a 

reassessment of the evidence in the light of recent discoveries. Biochem. Pharmacol., Vol. 

59, No. 1, (January 2000), pp. 13-23, ISSN 0006-2952 

Branchaud, R. M., Garant, L. J. & Kane A. B. (1993). Pathogenesis of mesothelial reactions to 

asbestos fibers. Monocyte recruitment and macrophage activation. Pathobiology, Vol. 61, 

No. 3-4, pp. 154–163, ISSN 1015-2008 

Broaddus, V. C., Yang, L., Scavo, L. M.,  Ernst, J. D. & Boylan, A. M. (1996). Asbestos induces 

apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J. 

Clin. Invest., Vol. 98, No. 9, (November 1996), pp. 2050–2059, ISSN 0021-9738 

Brown, D., Beswick, P. & Donaldson, K. (1999). Induction of nuclear translocation of NF-κB 

in epithelial cells by respirable mineral fibres. J. Pathol., Vol. 189, No. 2, (October 1999), 

pp. 258–264, ISSN 0022-3417 

Burt, B. M., Rodig, S. J., tilleman, T. R., Elbardissi, A. W., Bueno, R., Sugarbaker, D. J. (2011). 

Circulating and tumor-infiltrating myeloid cells predict survival in human pleural 

mesothelioma. Cancer, Vol. 117, No. 22, (November 2011), pp. 5234-5244, ISSN 0008-

543X 

Cacciotti, P., Strizzi, L., Vianale, G., Iaccheri, L., Libener, R., Porta, C., Tognon, M., Gaudino, 

G. & Mutti, L. (2002). The presence of simian-virus 40 sequences in mesothelioma and 

mesothelial cells is associated with high levels of vascular growth factor. Am. J. Respir. 

Cell. Mol. Biol., Vol.  26, No. 2, (February 2002), pp. 189-193, ISSN 1044-1549 

Cao, Y., Cao, R. & Hedlund, E. M. (2008). R Regulation of tumor angiogenesis and 

metastasis by FGF and PDGF signaling pathways. J Mol. Med. (Berl.), Vol. 86, No. 7, 

(July 2008), pp. 785-789, ISSN 0946-2716 

Cao, Y., Chen, H., Zhou, L., Chiang, M. K., Anand-Apte, B., Weatherbee, J. A., Wang, Y., 

Fang, F., Flanagan, J. G. & Tsang, M. L. (1996). Heterodimers of placenta growth 

factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, 

and high affinity binding to Flk-1/KDR. J. Biol. Chem., Vol. 271, No. 6, (February 1996), 

pp. 3154-3162, ISSN 0021-9258 

Carbone, M., Kratzke, R. A. & Testa, J. R. (2002). The pathogenesis of mesothelioma. Semin. 

Oncol., Vol. 29, No. 1, (February 2002), pp. 2-17, ISSN 0093-7754 

Carbone, M., Ly, B. H., Dodson, R. F., Pagano, I., Morris, P. T., Dogan, U. A., Gazdar, A. F., 

Pass, H. I. & Yang, H. (2012). Malignant mesothelioma: Facts, myths and hypotheses. J. 

Cell. Physiol., Vol. 227, No. 1 (January 2012), pp. 44-58, ISSN 0021-9541 



 
Malignant Mesothelioma 66 

Carmeliet, P. (2003). Angiogenesis in health and disease. Nat. Med., Vol. 9, No. 6, (June 2003), 

pp. 653-660, ISSN 1078-8956 

Carmeliet. P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., Wu, Y., 

Bono, F., Devy, L., Beck, H., Scholz, D., Acker, T., DiPalma, T., Dewerchin, M., Noel, A., 

Stalmans, I., Barra, A., Blacher, S., Vandendriessche, T., Ponten, A., Eriksson, U., Plate, 

K. H., Foidart, J. M., Schaper, W., Charnock-Jones, D. S., Hicklin, D. J., Herbert, J. M., 

Collen, D. & Persico, M. G. (2001). Synergism between vascular endothelial growth 

factor and placental growth factor contributes to angiogenesis and plasma extravasation 

in pathological conditions. Nat. Med., Vol. 7, No. 5, (May 2001), pp. 575-583, ISSN 1078-

8956 

Catalano, A., Lazzarini, R., Di Nuzzo, S., Orciari, S. & Procopio A. (2009). The plexin-A1 

receptor activates vascular endothelial growth factor-receptor 2 and nuclear factor-

kappaB to mediate survival and anchorage-independent growth of malignant 

mesothelioma cells. Cancer Res., Vol. 69, No. 4, (February 2009), pp. 1485-1493, ISSN 

0008-5472  

Catalano, A., Romano, M., Martinotti, S. & Procopio, A. (2002). Enhanced expression of 

vascular endothelial growth factor (VEGF) plays a critical role in the tumor progression 

potential induced by simian virus 40 large T antigen. Oncogene,  Vol. 21, No. 18 (April 

2002), pp. 2896-2900, ISSN 0950-9232 

Chang, L. & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, Vol. 410, 

No. 6824, (March 2001), pp. 37–40, ISSN 0028-0836 

Chen, C. N., Hsieh, F. J., Cheng, Y. M., Cheng, W. F., Su, Y. N., Chang, K. J. & Lee, P. H. 

(2004). The significance of placenta growth factor in angiogenesis and clinical outcome 

of human gastric cancer. Cancer Lett., Vol. 213, No. 1, (September 2004), pp. 73-82, ISSN 

0304-3835 

Cheng, N., Shi, X., Ye, J., Castranova, V., Chen, F., Leonard, S. S., Vallyathan, V. & 

Rojanasakul, Y. (1999). Role of transcription factor NF-kappaB in asbestos-induced 

TNFalpha response from macrophages. Exp. Mol. Pathol., Vol. 66, No. 3, (August 1999), 

pp. 201-210, ISSN 0014-4800 

Choe, N., Tanaka, S., Xia, W., Hemenway, D. R., Roggli, V. L. & Kagan, E. (1997). Pleural 

macrophage recruitment and activation in asbestos-induced pleural injury. Environ. 

Health Perspect., Vol. 105, Suppl. 5, (September 1997), pp. 1257-1260, ISSN 0091-6765 

Choi, C. H., Song, S. Y., Choi, J. J., Park, Y. A., Kang, H., Kim, T. J., Lee, J. W., Kim, B. G., Lee, 

J. H. & Bae, D. S. (2008). Prognostic significance of VEGF expression in patients with 

bulky cervical carcinoma undergoing neoadjuvant chemotherapy. BMC Cancer, Vol. 8, 

(October 2008), p. 295, ISSN 1471-2407 

Costa, C., Incio, J. & Soares, R. (2007). Angiogenesis and chronic inflammation: cause or 

consequence? Angiogenesis, Vol. 10, No. 3, pp. 149–166, ISSN 0969-6970 

Coussens, L. M. & Werb, Z. (2002). Inflammation and cancer. Nature, Vol. 420, No. 6917, 

(December 2002), pp. 860–867, ISSN 0028-0836 

David Dong, Z. M., Aplin, A. C. & Nicosia, R. F. (2009). Regulation of angiogenesis by 

macrophages, dendritic cells, and circulating myelomonocytic cells. Curr. Pharm. Des., 

Vol.  15, No. 4, pp. 365-379, ISSN 1381-6128 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 67 

Davidson, B., Vintman, L., Zcharia, E., Bedrossian, C., Berner, A., Nielsen, S., Ilan, N., 

Vlodavsky, I & Reich, R. (2004). Heparanase and basic fibroblast growth factor are co-

expressed in malignant mesothelioma. Clin. Exp. Metastasis, Vol. 21, No. 5, pp. 469-476, 

ISSN 0262-0898 

Dawson, M. R., Duda, D. G., Fukumura, D. & Jain, R. K. (2009). VEGFR1-activity-

independent metastasis formation. Nature, Vol. 461, No. 7262, (September 2009), pp. E4-

E5, ISSN 0028-0836. 

Ding, Y., Huang, Y., Song, N. Gao, X., Yuan, S., Wang, X., Cai, H., Fu, Y. & Luo, Y. (2010). 

NFAT1 mediates placental growth factor-induced myelomonocytic cell recruitment via 

the induction of TNF-alpha. J. Immunol., Vol. 184, No. 5, (March 2010), pp. 2593-2601, 

ISSN 0022-1767 

Dong, H. Y., Buard, A., Renier, A., Levy, F., Saint-Etienne, L. & Jaurand, M. C. (1994). Role of 

oxygen derivatives in the cytotoxicity and DNA damage produced by asbestos on rat 

pleural mesothelial cells in vitro. Carcinogenesis, Vol. 15, No. 6, (June 1994), pp. 1251–

1255, ISSN 0143-3334 

Dorai, T., Kobayashi, H.; Holland, J. F. & Onhuma, T. (1994). Modulation of platelet-derived 

growth factor-beta mRNA expression and cell growth in a human mesothelioma cell 

line by a hammerhead ribozyme. Mol. Pharmacol., Vol. 46, No. 3, (September 1994, pp. 

437-444, ISSN 0026-895X 

Driscoll, K., Carter, J., Howard, B., Hassenbein, D., Janssen, Y. & Mossman, B. T. (1998). 

Crocidolite activates NF-κB and MIP-2 gene expression in rat alveolar epithelial cells. 

Role of mitochondrial-derived oxidants. Environ. Health Perspect., Vol. 106, Suppl. 5, 

(October 1998), pp. 1171–1174, ISSN 0091-6765 

Eferl, R., & Wagner, E. F.(2003). AP1: a double-edged sword in tumorigenesis. Nature Rev. 

Cancer, Vol. 3, No. 11, (November 2003), pp. 859–868, ISSN 1474-175X 

Fennell, D. A. & Rudd, R. M. (2004). Defective core-apoptosis signaling in diffuse malignant 

pleural mesothelioma: opportunities for effective drug development. Lancet Oncol., Vol. 

5, No. 6, (June 2004), pp. 354-362, ISSN 1470-2045 

Ferrara, N., Gerber, H. P. & LeCouter, J. (2003). The biology of VEGF and its receptors. Nat. 

Med., Vol. 9, No. 6, (June 2003), pp. 669-676, ISSN 1078-8956 

Filiberti, R., Marroni, P., Neri, M., Ardizzoni, A., Betta P. G., Cafferata, M. A., Canessa, P. A., 

Puntoni, R., Ivaldi, G. P., & Paganuzzi, M. (2005). Serum PDGF-AB in pleural 

mesotelioma. Tumour Biol., Vol. 26, No. 5, (September-October 2005), pp. 221-226, ISSN 

1010-4283 

Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., Chorianopoulos, 

E., Liesenborghs, L., Kock M., De Mol, M., Autiero, M., Wyns, S., Plaisance, S., Moons, 

L., van Rooijen, N., Giacca, M., Stassen J. M., Dewerchin, M., Collen, D. & Carmeliet, P. 

(2007). Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without 

affecting healthy vessels. Cell, Vol. 131, No. 3, (November 2007), pp. 463-475, ISSN 0092-

8674 

Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. (2008). FLT1 and its ligands VEGFB and 

PlGF: drug targets for anti-angiogenic therapy? Nat. Rev. Cancer., Vol.  8, No. 12, 

(December 2008), pp. 942-956, ISSN 1474-175X 



 
Malignant Mesothelioma 68 

Fleury-Feith, J., Pilatte, Y. & Jaurand, M. C. (2003). Cells in the pleural cavity, In: Textbook of 

pleural diseases, Light, R. W. & Lee, Y. C. G., pp. 17-34, Arnold Publishers, ISBN 

9780340807941, London. 

Folkman, J. (2006). Angiogenesis. Annu. Rev. Med.,  Vol. 57, pp. 1–18, ISSN 0066-4219 

Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., 

Kavanaugh, D. & Carbone, D. P. (1996). Production of vascular endothelial growth 

factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med., 

Vol. 2, No. 10, (October 1996), pp. 1096-1103, ISSN 1078-8956 

Garlepp, M. J & Leong, C. C. (1995). Biological and immunological aspects of malignant 

mesothelioma. Eur. Respir. J., Vol. 8, No. 4, (April 1995), pp. 643-650, ISSN 0903-1936 

Gasparini, G. & Harris, A. L. (1995). Clinical importance of the determination of tumor 

angiogenesis in breast carcinoma: much more than a new prognostic tool. J. Clin. Oncol., 

Vol. 13, No. 3, (March 1995), pp. 765-782, ISSN 0732-183X 

Gazdar, A. F. & Carbone, M. (2003). Molecular pathogenesis of malignant mesothelioma and 

its relationship to simian virus 40. Clin. Lung Cancer, Vol. 5, No. 3, (November 2003), pp. 

177-181, ISSN 1525-7304 

Gossart, S., Cambon, C., Orfila , C., Séquélas, M. H., Lepert, J. C., Rami, J., Carrè, P. & Pipy, 

B. (1996). Reactive oxygen intermediated as regulators of TNF-alpha production in rat 

lung inflammation induced by silica. J. Immunol., Vol. 156, No. 4, (February 1996), pp. 

1540-1548, ISSN 0022-1767 

Greillier, L. & Astoul, P. (2008). Mesothelioma and asbestos-related pleural diseases. 

Respiration, Vol. 76, No. 1, pp. 1-15, ISSN 0025-7931 

Gulumian, M. (2005). An update on the detoxification processes for silica particles and 

asbestos fibers: successess and limitations. J. Toxicol. Environ. Health. B Crit. Rev., Vol. 8, 

No. 6, (November-December 2005), pp. 453-483, ISSN 1093-7404 

Haegens, A., Barrett, T. F., Gell, J., Shukla, A., Macpherson, M., Vacek, P., Poynter, M. E., 

Butnor, K. J., Janssen-Heininger, Y. M., Steele, C. & Mossman, B. T. (2007). Airway 

epithelial NF-kappaB activation modulates asbestos-induced inflammation and mucin 

production in vivo. J. Immunol., Vol. 178, No. 3, (February 2007), pp. 1800-1808, ISSN 

0022-1767 

Harmey, J. H. & Bouchier-Hayes, D. (2002). Vascular endothelial growth factor (VEGF), a 

survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays, Vol. 

24, No. 3, (March 2002), pp. 280-283, ISSN 0265-9247 

Hattori, K., Heissig, B., Wu, Y., Dias, S., Tejada, R., Ferris, B., Hicklin, D. J., Zhu, Z., Bohlen, 

P., Witte, L., Hendrikx, J., Hackett, N. R., Crystal, R. G., Moore, M. A., Werb, Z., Lyden, 

D. & Rafii, S. (2002). Placental growth factor reconstitutes hematopoiesis by recruiting 

VEGFR1(+) stem cells from bone-marrow microenvironment. Nat.  Med., Vol. 8, No. 8, 

(August 2002), pp. 841-849, ISSN 1078-8956 

Hausmann, M. J., Rogachev, B., Weiler, M., Chaimovitz, C. & Douvdevani, A. (2000). 

Accessory role of human peritoneal mesothelial cells in antigen presentation and T-cell 

growth. Kidney Int., Vol. 57, No. 2, (February 2000), pp. 476–86, ISSN 0085-2538 

Hayden, M. S. & Gosh, S. (2004). Signaling to NF-κB. Genes Dev., Vol. 18, No. 18, (Spetember 

2004), pp. 2195-2224, ISSN 0890-9369 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 69 

Hayden, M. S. & Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell, Vol. 132, 

No. 3, (February 2008), pp. 344–362, ISSN 0092-8674 

Heintz, N. H., Janssen, Y. M. & Mossman, B. T. (1993). Persistent induction of c-fos and c-jun 

expression by asbestos. Proc. Natl. Acad. Sci. USA, Vol. 90, No. 8, (April 1993), pp. 3299–

3303, ISSN 0027-8424 

Heintz, N. H., Janssen-Heininger, Y. M. & Mossman, B. T. (2010). Asbestos, lung cancers, 

and mesotheliomas: from molecular approaches to targeting tumor survival pathways. 

Am. J. Respir. Cell Mol. Biol., Vol. 42, No. 2, (February 2010), pp. 133–139, ISSN 1044-1549 

Hillegass, J. M., Shukla, A., Lathrop, S. A., MacPherson, M. B., Beuschel, S. L., Butnor, K. J., 

Testa, J. R., Pass, H. I., Carbone, M., Steele, C. & Mossman, B. T. (2010). Inflammation 

precedes the development of human malignant mesotheliomas in a SCID mouse 

xenograft model. Ann. N. Y. Acad. Sci., Vol. 1203, (August 2010), pp. 7-14, ISSN 0077-

8923 

Hirayama, N., Tabata, C., Tabata, R., Maeda, R., Yasumitsu, A., Yamada, S., Kuribayashi, K., 

Fukuoka, K. & Nakano T. (2011). Pleural effusion VEGF levels as a prognostic factor of 

malignant pleural mesothelioma. Respir. Med., Vol. 105, No. 1 (January 2011), pp. 137-

142, ISSN 0954-6111 

Hoffmann, A., Natoli, G. & Baltimore, D. (2003). Genetic analysis of NF-kappaB/Rel 

transcription factor defines functional specificities. EMBO J., Vol. 22, No. 20, (October 

2003), pp. 5530-5539, ISSN 0261-4189 

Hoffmann, A., Natoli, G. & Ghosh, G. (2006). Transcriptional regulation via the NF-kappaB 

signaling module. Oncogene, Vol. 25, No. 51, (October 2006), pp. 6706-6716, ISSN 0950-

9232 

Hoidal, J. R. (2001). Reactive oxygen species and cell signaling. Am. J. Respir. Cell Mol. Biol., 

Vol. 25, No. 6, (December 2001), pp. 661–663, ISSN 1044-1549 

Holmes, D. I. & Zachary, I. (2004). Placental growth factor induces FosB and c-Fos gene 

expression via Flt-1 receptors. FEBS Lett., Vol. 557, No. 1-3, (January 2004), pp. 93-98, 

ISSN 0014-5793 

Homsi, J. & Daud, A. I. (2007). Spectrum of activity and mechanism of action of VEGF/PDGF 

inhibitors. Cancer Control, vol. 14, No. 3, (July 2007), pp. 285-294, ISSN 1073-2748 

Huang, S., Robinson, J. B., Deguzman, A., Bucana, C. D. & Fidler, I. J. (2000). Blockade of 

nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human 

ovarian cancer cells by suppressing expression of vascular endothelial growth factor 

and interleukin 8. Cancer Res., Vol. 60, No. 19, (October 2000), pp. 5334–5539, ISSN 0008-

5472 

Huang, S. X., Jaurand, M. C., Kamp, D. W., Whysner, J. & Hei, T. K. (2011). Role of 

mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. J. Toxicol. 

Environ. Health B. Crit. Rev., Vol. 14, No. 1-4, pp. 179-245, ISSN 1093-7404 

Hussain, S. P., Hofseth, L. J. & Harris, C. C. (2003). Radical causes of cancer. Nat. Rev. 

Cancer., Vol. 3, No. 4, (April 2003), pp. 276-285, ISSN 1474-175X 

Ikuta, K., Yano, S., Trung, V. T., Hanibuchi, M., Goto, H., Li, Q., Wang, W., Yamada, T., 

Ogino, H., Kakiuchi, S., Uehara, H., Sekido, Y., Uenaka, T., Nishioka, Y & Sone, S. 

(2009). E7080, a multi-tyrosine kinase inhibitor, suppresses the progression of malignant 



 
Malignant Mesothelioma 70 

pleural mesothelioma with different proangiogenic cytokine production profiles. Clin. 

Cancer Res., Vol. 15, No. 23, (December 2009), pp. 7229-7237, ISSN 1078-0432 

Izzi, V., Chiurchiù, V., D'Aquilio, F., Palumbo, C., Tresoldi, I., Modesti, A. & Baldini, P. M. 

(2009). Differential effects of malignant mesothelioma cells on THP-1 monocytes and 

macrophages. Int. J. Oncol., Vol. 34, No. 2, (February 2009), pp. 543-550, ISSN 1019-6439 

Janssen-Heininger, Y. M., Macara, I. & Mossman, B. T. (1999). Cooperativity between 

oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-kappaB: 

requirement of Ras/mitogen-activated protein kinases in the activation of NF-kappaB 

by oxidants. Am. J. Respir. Cell. Mol. Biol., Vol. 20, No. 5, (May 1999), pp. 942-952, ISSN 

1044-1549 

Janssen, Y. M., Barchowsky, A., Treadwell, M., Driscoll, K. E. & Mossman, B. T. (1995). 

Asbestos induces nuclear factor-κB (NF-κB) DNA-binding activity and NF-κB-

dependent gene expression in tracheal epithelial cells. Proc. Natl. Acad. Sci. USA, Vol. 92, 

No. 18, (August 1995), pp. 8458–8462, ISSN 0027-8424 

Janssen, Y. M.,  Driscoll, K. E., Howard, B., Quinlan, T. R., Treadwell, M., Barchowsky, A. & 

Mossman, B. T. (1997). Asbestos causes translocation of p65 protein and increases NF-

kappa B DNA binding activity in rat lung epithelial and pleural mesothelial cells. Am. J. 

Pathol., Vol. 151, No. 2, (August 1997), pp. 389–401, ISSN 0002-9440 

Jash, A., Sahoo, A., Kim, G. C., Chae, C. S., Hwang, J. S., Kim, J. E. & Im, S. H. (2012). 

Nuclear factor of activated T cells 1 (NFAT1) induced permissive chromatin 

modification facilitates nuclear Factor-κB (NF-κB) mediated interleukin-9 (IL-9) 

transactivation. J. Biol. Chem., (March 2012), Epub ahead of print, ISSN 1083-351X 

Jochum, W., Passegué, E. & Wagner, E. F. (2001). AP-1 in mouse development and 

tumorigenesis. Oncogene, Vol. 20, No. 19, (April 2001), pp. 2401-2412, ISSN 0950-9232 

Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. & Neckers, L. (2003). IL-1beta-mediated up-

regulation of HIF-1alpha via an NF-kappaB/COX-2 pathway identifies HIF-1 as a 

critical link between inflammation and oncogenesis. FASEB J., Vol. 17, No. 14, 

(November 2003), pp. 2115-2117, ISSN 0892-6638 

Kamp, D. W. & Weitzman, S. A. (1999). The molecular basis of asbestos induced lung injury. 

Thorax, Vol. 54, No. 7, (July 1999), pp. 638-652, ISSN 0040-6376 

Kanwar, J. R., Kamalapuram, S. K. & Kanwar, R. K. (2011). Targeting surviving in cancer: 

the cell-signalling perspective. Drug Discov. Today, Vol. 16, No. 11-12, (June 2011), pp. 

485-494, ISSN 1359-6446 

Kerbel, R. S. (2008). Tumor angiogenesis. N. Engl. J. Med., Vol. 358, No. 19, (May 2008), pp. 

2039-2049, ISSN 0028-4793 

Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M., Kiessling, F., Heil, M., Tchaikovski, V., 

Waltenberger, J., Shibuya, M., Plate, K. H. & Machein, M. R. (2008).Flt-1 signaling in 

macrophages promotes glioma growth in vivo. Cancer Res., Vol. 68, No. 18, (September 

2008), pp. 7342-7351, ISSN 0008-5472 

Khaliq, A., Li, X. F., Shams, M., Sisi, P., Acevedo, C. A., Whittle, M. J., Weich, H. & Ahmed, 

A. (1996). Localization of placenta growth factor (PlGF) in human term placenta. Growth 

Factors, Vol. 13, No. 3-4, pp. 243-250, ISSN 0897-7194 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 71 

Knights, V. & Cook, S. J. (2010). De-regulated FGF receptors as therapeutic targets in cancer. 

Pharmacol. Ther., Vol. 125, No. 1, (January 2010), pp. 105-117, ISSN 0163-7258 

Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. (2011). Signal transduction by 

vascular endothelial growth factor receptors. Biochem J., Vol. 437, No. 2, (July 2011), pp. 

169-183, ISSN 0264, 6021 

Kothmaier, H., Quehenberger, F., Halbewedl, I., Morbini, P., Demirag, F., Zeren, H., Comin, 

C. E., Murer, B., Cagle, P. T., Attanoos, R., Gibbs, A. R., Galateau-Salle, F. & Popper, H. 

H. (2008). EGFR and PDGFR differentially promote growth in malignant epithelioid 

mesothelioma of short and long term survivors. Thorax, Vol. 63, No. 4, (April 2008), pp. 

345-351, ISSN 0040-6376 

Kumar, S., Guleria, R., Singh, V., Bharti, A. C., Mohan, A. & Das, B. C. (2009). Efficacy of 

plasma vascular endothelial growth factor in monitoring first-line chemotherapy in 

patients with advanced non-small cell lung cancer. BMC Cancer, Vol. 9, (December 

2009), p. 421, ISSN 1471-2407 

Kumar-Singh, S., Vermuelen, P. B., Weyler, J., Segers, K., Wejn, B., Van Daele, A., Dirix, L. 

Y., Van Oosterom, A. T. & Van Mark, E. (1997). Evalutation of tumor angiogenesis as a 

prognostic marker in malignant mesothelioma. J. Pathol., Vol. 182, No. 2, (June 1997), 

pp. 211-216, ISSN 0022-3417 

Kumar-Singh, S., Weyler, J., Martin, M. J., Vermeulen, P. B. & Van Marck, E. (1999). 

Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF beta 

expression. J. Pathol., Vol. 189, No. 1, (September 1999), pp. 72-82, ISSN 0022-3417  

Langerak, A. W., van der Linden-van Beurden, C. A. & Versnel, M. A. (1996a). Regulation of 

differential expression of platelet-derived growth factor alpha- and beta-receptor 

mRNA in normal and malignant human mesothelial cell lines. Biochim. Biophys. Acta., 

Vol. 1305, No. 1-2, (February 1996), pp. 63-70, ISSN 0006-3002 

Langerak, A. W., De Laat, P. A., Van Der Linden-Van Beurden, C. A., Delahaye, M., Van Der 

Kwast, T. H., Hoogsteden, H. C., Benner, R. & Versnel, M. A. (1996b). Expression of 

platelet-derived growth factor (PDGF) and PDGF receptors in human malignant 

mesothelioma in vitro and in vivo. J. Pathol., Vol. 178, No. 2, (February 1996), pp. 151-

160, ISSN 0022-3417 

Lawrence, T. (2011). Macrophages and NF-κB in cancer. Curr. Top. Microbiol. Immunol., Vol.  

349, pp. 171-184, ISSN 0070-217X 

Lemaire, I. & Ouellet, S. (1996). Distinctive profile of alveolar macrophage-derived cytokine 

release induced by fibrogenic and nonfibrogenic mineral dusts. J. Toxicol. Environ. 

Health., Vol. 47, No. 5, (April 1996), pp. 465-478, ISSN 0098-4108 

Le Page, C., Koumakpayi, I. H., Lessard, L., Mes-Masson, A. M. & Saad, F. (2005). EGFR and 

Her-2 regulate the constitutive activation of NF-kappaB in PC-3 prostate cancer cells. 

Prostate, Vol. 65, No. 2, (October 2005), pp. 130-140, ISSN 0270-4137 

Li, J., Huang, B., Shi, X., Castranova, V., Vallyathan, V. & Huang, C. (2002). Involvement of 

hydrogen peroxide in asbestos-induced NFAT activation. Mol. Cell. Biochem., Vol. 234–

235, No. 1-2, (May-June 2002), pp. 161–168, ISSN 0300-8177 

Li, Q., Wang,, W., Yamada, T., Matsumoto, K., Sakai, K., Bando, Y., Uehara, H., Nishioka, Y., 

Sone, S., Iwakiri, S., Itoi, K., Utsugi, T., Yasumoto, K. & Yano, S. (2011). Pleural 



 
Malignant Mesothelioma 72 

mesothelioma instigates tumor-associated fibroblasts to promote progression via a 

malignant cytokine network. Am. J. Pathol., Vol. 179, No. 3, (September 2011), pp. 1483-

1493, ISSN 0002-9440 

Lieu, C., Heymach, J., Overman, M., Tran, H. & Kopetz, S. (2011). Beyond VEGF: inhibition 

of the fibroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res., Vol. 17, 

No. 19, (October 2011), pp. 6130-6139, ISSN 1078-0432 

Lin, Y. L., Liang, Y. C. & Chiang, B. L. (2007). Placental growth factor down-regulates type 1 

T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol., 

Vol. 82, No. 6, (December 2007), pp. 1473-1480, ISSN 0741-5400 

Lin, W. W. & Karin, M. (2007). A cytokine-mediated link between inmate immunity, 

inflammation, and cancer. J. Clin. Invest., Vol. 117,  No. 5, (May 2007), pp. 1175–1182, 

ISSN 0021-9738 

Liu, W., Ernst, J. D. & Broaddus, V. C. (2000). Phagocytosis of crocidolite asbestos induces 

oxidative stress, DNA damage, and apoptosis in mesothelial cells. Am. J. Respir. Cell. 

Mol. Biol., vol. 23, No. 3, (September 2000), pp.  371-378, ISSN 1044-1549 

Liu, Z. & Klominek, J. (2003). Regulation of matrix metalloprotease activity in malignant 

mesothelioma cell lines by growth factors. Thorax, Vol. 58, No. 3, (March 2003), pp. 198-

203, ISSN 0040-6376 

Loges, S., Schmidt, T, & Carmeliet, P. (2009). "Antimyeloangiogenic" therapy for cancer by 

inhibiting PlGF. Clin. Cancer Res., Vol. 15, No. 11, (June 2009), pp. 3648-3653, ISSN 1078-

0432 

Luttun, A., Tjwa, M. & Carmeliet, P. (2002). Placenta growth factor (PlGF) and its receptor 

Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann. N. Y. Acad. 

Sci., Vol. 979, (December 2002), pp. 80-93, ISSN 0077-8923 

Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nature 

Rev. Immunol., Vol. 5, No. 6, (June 2005), pp. 472–484, ISSN 1474-1733. 

Macián, F., López-Rodríguez, C., & Rao. A. (2001). Partners in transcription: NFAT and AP-

1. Oncogene, Vol. 20, No. 19, (April 2001), pp. 2476-2489, ISSN 0950-9232      

Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. (1991). Isolation of a 

human placenta cDNA coding for a protein related to the vascular permeability factor. 

Proc. Natl. Acad. Sci. USA, Vol. 88, No. 20, (October 1991), pp. 9267-9271, ISSN 0027-8424 

Mancini, M. & Toker, A. (2009). NFAT proteins: emerging roles in cancer progression. 

Nature Rev. Cancer., Vol. 9, No. 11, (November 2009), pp. 810–820, ISSN 1474-175X 

Manning, C. B., Vallyathan, V. & Mossman, B. T. (2002). Diseases caused by asbestos: 

mechanisms of injury and disease development. Int. Immunopharmacol., Vol. 2, No. 2-3, 

(February 2002), pp.  191-200, ISSN 1567-5769 

Manning, L. S., Davis, M. R. & Robinson, B. W.  (1991). Asbestos fibres inhibit the in vitro 

activity of lymphokine-activated killer (LAK) cells from healthy individuals and 

patients with malignant mesothelioma. Clin. Exp. Immunol., Vol. 83, No. 1, (January 

1991), pp. 85-91, ISSN 0009-9104 

Mantovani, A. (2010). Molecular pathways linking inflammation and cancer. Curr. Mol. 

Med., Vol. 10, No. 4, (June 2010), pp. 369-373, ISSN 1566-5240 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 73 

Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. 

Nature, Vol. 454, No. 7203, (July 2008), pp. 436-444, ISSN 0028-0836 

Marcellini, M., De Luca, N., Riccioni, T., Ciucci, A., Orecchia, A., Lacal, P. M., Ruffini, F., 

Pesce, M., Cianfarani, F., Zambruno, G., Orlandi, A. & Failla, M. C. (2006). Increased 

melanoma growth and metastasis spreading in mice overexpressing placenta growth 

factor. Am. J. Pathol., Vol. 169, No. 2, (August 2006), pp. 643-654, ISSN 0002-9440 

Masood, R., Cai, J., Zheng, T., Smith, D. L., Hinton, D. R. & Gill, P. S. (2001). Vascular 

endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-

positive human tumors. Blood, Vol. 98, No. 6, (September 2001), pp. 1904-1913, ISSN 

0006-4971 

Metheny-Barlow, L. J., Flynn, B., van Gijssel, H.E., Marrogi, A. & Gerwin, B. I. (2001). 

Paradoxical effects of platelet-derived growth factor-A overexpression in malignant 

mesothelioma. Antiproliferative effects in vitro and tumorigenic stimulation in vivo. 

Am. J. Respir. Cell Mol. Biol., Vol. 24, No. 6, (June 2001), pp. 694-702, ISSN 1044-1549 

Micheau, O. & Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two 

sequential signaling complexes. Cell, Vol. 114, No. 2, (July 2003), pp. 181-190, ISSN 0092-

8674 

Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in 

tumourigenesis. Eur. J. Cancer., Vol. 41, No. 16, (November 2005), pp. 2449-2461, ISSN 

0014-2964 

Miura, Y., Nishimura, Y., Katsuyama, H., Maeda, M., Hayashi, H., Dong, M., Hyodoh, F., 

Tomita, M., Matsuo, Y., Uesaka, A., Kuribayashi, K., Nakano, T., Kishimoto, T. & Otsuki 

T. (2006). Involvement of IL-10 and Bcl-2 in resistance against an asbestos-induced 

apoptosis of T cells. Apoptosis, Vol. 11, No. 10, (October 2006), pp. 1825–1835, ISSN 1360-

8185 

Mossman, B. T. & Churg, A. (1998). Mechanisms in the pathogenesis of asbestosis and 

silicosis. Am. J. Respir. Crit. Care Med., Vol. 157, No. 5, (May 1998), pp. 1666-1680, ISSN 

1073-449X 

Müller, M. R. & Rao, A. (2010). NFAT, immunity and cancer: a transcription factor comes of 

age. Nat. Rev. Immunol., Vol. 10, No. 9, (September 2010), pp. 645-656, ISSN 1474-1733 

Mutsaers, S,E. (2002). Mesothelial cells: Their structure, function and role in serosal repair. 

Respirology, Vol. 7, No. 3, (September 2002), pp. 171–191, ISSN 1323-7799 

Mutsaers, S. E. (2004). The mesothelial cell. Int. J. Biochem. Cell Biol., Vol. 36, No. 1, (January 

2004), pp. 9-16, ISSN 1357-2725 

Nymark, P., Lindholm, P. M., Korpela, M. V., Lahti, L., Ruosaari, S., Kaski, S., Hollmén. J., 

Anttila, S., Kinnula, V. L. & Knuutila, S. (2007). Gene expression profiles in asbestos-

exposed epithelial and mesothelial lung cell lines. BMC Genomics,  Vol. 8, (March 2007), 

p. 62, ISSN 1471-2164 

Ohm, J. E. & Carbone, D. P. (2001). VEGF as a mediator of tumor-associated 

immunodeficiency. Immunol. Res., Vol. 23,  No. 2-3, pp. 263-272, ISSN 0257-277X 

Ohta, Y., Shridhar, V., Bright, R. K., Kalemkerian, G. P., Du, W., Carbone, M., Watanabe, Y. 

& Pass, H. I.  (1999). VEGF and VEGF type C play an important role in angiogenesis and 



 
Malignant Mesothelioma 74 

lymphangiogenesis in human malignant mesothelioma tumours. Br. J. Cancer., Vol. 81, 

No. 1, (September 1999), pp. 54–61, ISSN 0007-0920 

Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. (2006). VEGF receptor 

signaling – in control of vascular function. Nat. Rev. Mol. Cell. Biol., Vol. 7, No. 5, (May 

2006), pp. 359-371, ISSN 1471-0072 

Ono, M. (2008). Molecular links between tumor angiogenesis and inflammation: 

inflammatory stimuli of macrophages and cancer cells as targets for therapeutic 

strategy. Cancer Sci., Vol. 99, No. 8, (August 2008), pp. 1501–1506, ISSN 1347-9032 

Ostman, A. (2004). PDGF receptors-mediators of autocrine tumor growth and regulators of 

tumor vasculature and stroma. Cytokine growth Factor Rev., Vol. 15, No. 4, (August 2004), 

pp. 275-286, ISSN 1359-6101 

Oura, H., Bertoncini, J., Velasco, P., Brown, L. F., Carmeliet, P. & Detmar, M. (2003). A 

critical role of placenta growth factor in the induction of inflammation and edema 

formation. Blood, Vol. 101, No. 2, (January 2003), pp. 560-567, ISSN 0006-4971 

Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P. & Gabrilovich, D. I. (1998). 

Vascular endothelial growth factor affects dendritic cell maturation through the 

inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J 

Immunol., Vol. 160, No. 3, (February 1998), pp. 1224-1232, ISSN 0022-1767 

Palumbo, C., Bei, R., Procopio, A. & Modesti A. (2008). Molecular targets and targeted 

therapies for malignant mesothelioma. Curr. Med. Chem., Vol. 15, No. 9, pp. 855-867, 

ISSN 0929-8673 

Parr, C., Watkins, G., Boulton, M., Cai, J. & Jiang, W. G. (2005). Placenta growth factor is 

over-expressed and has prognostic value in human breast cancer. Eur. J. Cancer, Vol. 41, 

No. 18, (December 2005), pp. 2819-2827, ISSN 0014-2964 

Persico, M. G., Vincenti, V. & DiPalma, T. (1999). Structure, expression and receptor-binding 

properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol., Vol. 237, pp. 

31-40, ISSN 0070-217X 

Philip, M., Rowley, D. A. & Schreiber, H. (2004). Inflammation as a tumor promoter in 

cancer induction. Semin. Cancer Biol., Vol. 14, No. 6, (December 2004), pp. 433-439, ISSN 

1044-579X 

Pisick, E. & Salgia, R. (2005). Molecular biology of malignant mesothelioma: a review. 

Hematol. Oncol. Clin. North Am., Vol. 19, No. 6, (December 2005), pp. 997-1023, ISSN 

0889-8588 

Plate, K. H., Breier, G., Millauer, B., Ullrich, A. & Risau, W. (1993). Up-regulation of vascular 

endothelial growth factor and its cognate receptors in a rat glioma model of tumor 

angiogenesis. Cancer Res., Vol. 53, No., 23, (December 1993), pp. 5822-5827, ISSN 0008-

5472 

Pollard, J. W. (2004). Tumor-educated macrophages promote tumor progression and 

metastasis. Nat. Rev. Cancer, Vol. 4, No. 1, (January 2004), pp. 71–78, ISSN 1474, 175X 

Pompeo, E., Albonici, L., Doldo, E., Orlandi, A., Manzari, V., Modesti, A. & Mineo, T. C. 

(2009). Placenta growth factor expression has prognostic value in malignant pleural 

mesothelioma. Ann. Thorac. Surg., Vol. 88, No. 2, pp. 426-431, ISSN 0003-4975 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 75 

Porta, C., Larghi, P., Rimoldi, M., Totaro, M. G., Allavena, P., Mantovani, A. & Sica, A. 

(2009). Cellular and molecular pathways linking inflammation and cancer. 

Immunobiology, Vol. 214,  No. 9-10, pp. 761-777, ISSN 0171-2985 

Rafii, S., Avecilla, S., Shmelkov, S., Shido, K., Tejada, R., Moore, M. A., Heissig, B. & Hattori, 

K. (2003). Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from 

bone marrow microenvironment. Ann. N. Y. Acad. Sci., Vol. 996, (May 2003), pp. 49-60, 

ISSN 0077-8923 

Ramos-Ninos, M., Timblin, C. & Mossman, B. T. (2002). Mesothelial cell transformation 

requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer 

Res., Vol. 62, No. 21, (November 2002), pp. 6065-6069, ISSN 0008-5472 

Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, 

inflammation, and cancer: how are they linked? Free Radic. Biol. Med., Vol. 49, No. 11, 

(December 2010), pp. 1603-1616, ISSN 0891-5849 

Ribatti, D., Nico, B., Crivellato, E., Roccaro, A. M. & Vacca, A. (2007). The history of the 

angiogenic switch concept. Leukemia, Vol. 21, No. 1, (January 2007), pp. 44-52, ISSN 

0887-6924 

Riganti, C., Orecchia, S., Silvagno, F., Pescarmona, G., Betta, P. G., Gazzano, E., Aldieri, E., 

Ghigo, D. & Bosia A. (2007). Asbestos induces nitric oxide synthesis in mesothelioma 

cells via Rho signaling inhibition. Am. J. Respir. Cell. Mol. Biol., Vol. 36, No. 6, (June 

2007), pp. 746-756, ISSN 1044-1549 

Robinson, B. W. & Lake, R. A. (2005). Advances in malignant mesothelioma. N. Engl. J. Med., 

Vol. 353, No. 15, (October 2005), pp. 1591-1603, ISSN 0028-4793 

Robledo, R. & Mossman, B. (1999). Cellular and molecular mechanisms of asbestos-induced 

fibrosis. J. Cell. Physiol., Vol. 180, No. 2, (August 1999), pp. 158-166, ISSN 0021-9541 

Roos, W. P. & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends Mol. 

Med., Vol. 12, No. 9, (September 2006), pp. 440-450, ISSN 1471-4914 

Rose-John, S., Waetzig, G. H., Scheller, J., Grötzinger, J. & Seegert, D. (2007). The IL-6/sIL-6R 

complex as a novel target for therapeutic approaches. Expert Opin. Ther. Targets, Vol. 11, 

No. 5, (May 2007), pp. 613-624, ISSN 1472-8222 

Roskoski, R. Jr. (2007). Vascular endothelial growth factor (VEGF) signaling in tumor 

progression. Crit. Rev. Oncol. Hematol., Vol. 62, No. 3, (June 2007), pp. 179-213, ISSN 

1040-8428 

Royds, J. A., Dower, S. K., Qwarnstrom, E. E. & Lewis, C. E. (1998). Response of tumour cells 

to hypoxia: role of p53 and NFkB. Mol. Pathol., Vol. 51, No. 2, (April 1998), pp. 55-61, 

ISSN 1366-8714 

Saccani, S., Pantano, S. & Natoli, G. (2003) Modulation of NF-kappaB activity by Exchange 

of dimers. Mol. Cell, Vol. 11, No. 6, (June 2003), pp. 1563-1574, ISSN 1097-2765 

Saylor, P, J., Escudier, B. & Michaelson, M. D. (2012). Importance of Fibroblast Growth 

Factor Receptor in Neovascularization and Tumor Escape from Antiangiogenic 

Therapy. Clin. Genitourin. Cancer, (February 2012), Epub ahead of print, ISSN 1558-7673 

Scheidereit, C. (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and 

transcription. Oncogene, Vol. 25, No. 51, (2006), (October 2006), pp. 6685–6705, ISSN 

0950-9232 



 
Malignant Mesothelioma 76 

Shaulian, E. & Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene, Vol. 20, 

No. 19, (April 2001), pp. 2390-2400, ISSN 0950-9232 

Shaulian, E. & Karin, M. (2002). AP-1 as a regulator of cell life and death. Nat. Cell Biol., Vol. 

4, No. 5, (May 2002), pp. E131-E136, ISSN 1465-7392 

Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A. & Crabtree, G. R. (1988). 

Identification of a putative regulator of early T cell activation genes. Science, Vol. 241, 

No. 4862, (July 1988), pp. 202–205, ISSN 0036-8075 

Shibuya, M. (2006). Differential roles of vascular endothelial growth factor receptor-1 and 

receptor-2 in angiogenesis. J. Biochem. Mol. Biol., Vol. 39, No. 5, (September 2006), pp. 

469-478, ISSN 1225-8687 

Schonthaler, H. B., Guinea-Viniegra, J. & Wagner, E. F. (2011). Targeting inflammation by 

modulating the Jun/AP-1 pathway. Ann. Rheum, Dis., Vol. 70, Suppl. 1, (March 2011),  

pp. i109-i112, ISSN 0003-4967 

Shukla, A., Gulumian, M., Hei, T. K., Kamp, D., Rahman, Q. & Mossman, B. T. (2003a). 

Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radical 

Biol. Med., Vol. 34, No. 9, (May 2003), pp. 1117–1129, ISSN 0891-5849 

Shukla, A., Jung, M., Stern, M., Fukagawa, N. K., Taatjes, D. J., Sawyer, D., Van Houte,n B. & 

Mossman B. T. (2003b). Asbestos induces mitochondrial DNA damage and dysfunction 

linked to the development of apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol., Vol. 285, 

No. 5, (November 2003), pp. L1018–L1025, ISSN 1040-0605 

Sica, A. (2010). Role of tumour-associated macrophages in cancer-related inflammation. Exp. 

Oncol., Vol. 32, No. 3, (September 2010), pp. 153-158, ISSN 1812-9269 

Simeonova, P. & Luster, M. (1995). Iron and reactive oxygen species in the asbestos-induced 

tumor necrosis factor-α response from alveolar macrophages. Am. J. Respir. Cell. Mol. 

Biol., Vol. 12, No. 6, (June 1995), pp. 676–683, ISSN 1044-1549 

Simeonova, P. P., Toriumi, W., Kommineni, C., Erkan, M., Munson, A. E., Rom, W. N. & 

Luster, M. I. (1997). Molecular regulation of IL-6 activation by asbestos in lung epithelial 

cells: role of reactive oxygen species. J. Immunol., Vol. 159, No. 8, (October 1997), pp. 

3921-3928, ISSN 0022-1767 

Stapelberg, M., Gellert, N., Swettenham, E., Tomasetti, M., Witting, P. K., Procopio, A. & 

Neuzil, J. (2005). Alpha-tocopheryl succinate inhibits malignant mesothelioma by 

disrupting the fibroblast growth factor autocrine loop: mechanism and the role of 

oxidative stress. J. Biol. Chem., Vol. 280, No. 27, (July 2005), pp. 25369-25376, ISSN 0021-

9258 

Strizzi, L., Catalano, A., Vianale, G., Orecchia, S., Casalini, A., Tassi, G., Puntoni, R., Mutti, L. 

& Procopio, A. (2001a). Vascular endothelial growth factor is an autocrine growth factor 

in human malignant mesothelioma. J. Pathol., Vol. 193, No. 4. (April 2001), pp. 468-475, 

ISSN 0022-3417 

Strizzi, L., Vianale, G., Catalano,. A., Muraro, R., Mutti, L. & Procopio, A. (2001b). Basic 

fibroblast growth factor in mesothelioma pleural effusions: correlation with patient 

survival and angiogenesis. Int. J. Oncol., Vol. 18, No. 5, (May 2001), pp. 1093-1098, ISSN 

1019-6439 



 
Role of Inflammation and Angiogenic Growth Factors in Malignant Mesothelioma 77 

Sun, S. C. (2011). Non-canonical  NF-κB signaling pathway. Cell Res., Vol. 21, No. 1, (January 

2011), pp. 71-85, ISSN 1001-0602 

Takahashi, A., Kono, K., Ichihara, F., Sugai, H., Fuji, H. & Matsumoto, Y. (2004).Vascular 

endothelial growth factor inhibits maturation of dendritic cells induced by 

lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol., 

Immunother., Vol. 53, No. 6, (June 2004), pp. 543-550, ISSN 0340-7004 

Tanaka, S., Choe, N., Hemenway, D. R., Zhu, S., Matalon, S. & Kagan, E. (1998). Asbestos 

inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs 

and pleura of the rat. J. Clin. Invest., Vol. 102, No. 2, (July 1998), pp. 445–454, ISSN 0021-

9738 

Toi, M., Matsumoto, T. & Bando, H. (2001). Vascular endothelial growth factor: its 

prognostic, predictive, and therapeutic implications. Lancet Oncol., Vol. 2, No. 11, 

(November 2001), pp. 667-673, ISSN 1470-2045 

Toyokuni, S. (2009). Mechanisms of asbestos-induced carcinogenesis. Nagoya J. Med. Sci., 

Vol. 71, No. 1-2, (February 2009), pp. 1-10, ISSN 0027-7622 

Toyooka, S., Kishimoto, T. & Date, H. (2008). Advances in the molecular biology of 

malignant mesothelioma. Acta Med., Okayama, Vol. 62, No. 1, (February 2008), pp. 1-7, 

ISSN 0386-300X 

Ullrich, E., Bonmort, M., Mignot, G., Kroemer, G. & Zitvogel, L. (2008). Tumor stress, cell 

death and the ensuing immune response. Cell Death Differ., Vol. 15, No. 1, (January 

2008), pp. 21-28, ISSN 1350-9047 

Valle, M. T., Castagneto, B., Procopio, A., Carbone, M., Giordano, A. & Mutti, L. (1998). 

Immunobiology and immune defense mechanisms of mesothelioma cells. Monaldi Arch. 

Chest Dis., Vol. 53, No. 2, (April 1998), pp. 219-227, ISSN 1122-0643 

Villanova, F., Procopio, A. & Rippo, M. R. (2008). Malignant mesothelioma resistance to 

apoptosis: recent discoveries and their implication for effective therapeutic strategies. 

Curr. Med. Chem., Vol. 15, No. 7, pp. 631-641, ISSN 0929-8673 

Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C. H. (1994). 

Different signal transduction properties of KDR and Flt1, two receptors for vascular 

endothelial growth factor. J. Biol. Chem., Vol. 269, No. 43, (October 1994), pp. 26988-

26995, ISSN 0021-9258 

Wei, S. C., Tsao, P. N., Yu, S. C., Shun, C. T., Tsai-Wu, J. J., Wu, C. H., Su, Y. N., Hsieh, F. J. & 

Wong, J. M. (2005). Placenta growth factor expression is correlated with survival of 

patients with colorectal cancer. Gut, Vol. 54, No. 5, (May 2005), pp. 666-672, ISSN 0017-

5749 

Wu, W. S. (2006). The signaling mechanism of ROS in tumor progression. Cancer Metastasis 

Rev., Vol. 25, No. 4, (December 2006), pp. 695-705, ISSN 0167-7659 

Yang, H., Bocchetta, M., Kroczynska, B., Elmishad, A. G., Chen, Y., Liu, Z., Bubici, C., 

Mossman, B. T., Pass, H. I., Testa, J. R., Franzoso, G. & Carbone, M. (2006). TNF-alpha 

inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible 

mechanism for asbestos-induced oncogenesis. Proc. Natl. Acad. Sci. USA., Vol. 103, No. 

27, (July 2006), pp. 10397–10402, ISSN 0027-8424 



 
Malignant Mesothelioma 78 

Yarborough, C.M. (2007). The risk of mesothelioma from exposure to chrysotile asbestos. 

Curr. Opin. Pulm. Med., Vol. 13, No. 4, (July 2007), pp. 334-338, ISSN 1070-5287 

Yasumitsu, A., Tabata, C., Tabata, R., Hirayama, N., Murakami, A., Yamada, S., Terada, T., 

Iida, S., Tamura, K., Fukuoka, K., Kuribayashi, K. & Nakano, T. (2010). Clinical 

significance of serum vascular endothelial growth factor in malignant pleural 

mesothelioma. J. Thorac. Oncol., Vol. 5, No. 4, (April 2010), pp. 479-483, ISSN 1556-0864 

Yoo, S. A., Kwok, S. K. & Kim W. U. (2008). Proinflammatory role of vascular endothelial 

growth factor in the pathogenesis of rheumatoid arthritid: prospect for therapeutic 

intervention. Mediators Inflamm., Vol. 2008, Article ID 129873, ISSN 0962-9351 

Yoshida, K. & Miki, Y. (2010). The cell death machinery governed by the p53 tumor 

suppressor in response to DNA damage. Cancer Sci., Vol. 101, No. 4, (April 2010), pp. 

831-835, ISSN 1347-9032 

Zebrowski,  B. K., Yano, S., Liu, W., Shaheen, R. M., Hicklin, D. J., Putnam, J. B. & Ellis, L. M. 

(1999). Vascular endothelial growth factor levels and induction of permeability in 

malignant pleural effusions. Clin. Cancer Res., Vol. 5, No. 11, (November 1999), pp. 3364-

3368, ISSN 1078-0432 

Ziogas, A. C., Gavalas, N. G., Tsiatas, M., Tsitsilonis, O., Politi, E., Terpos, E., Rodolakis, A., 

Vlahos, G., Thomakos, N., Haidopoulos, D., Antsaklis, A., Dimopoulos, M. A. & 

Bamias, A. (2012). VEGF directly suppresses activation of T cells from ovarian cancer 

patients and healthy individuals via VEGF receptor Type 2. Int. J. Cancer., Vol. 130, No. 

4, (February 2012), pp. 857-864, ISSN 0020-7136 


