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1. Introduction 

1.1. Historical Background of Induction Therapy 

The initial results of kidney transplantation were significantly affected by a high rate of 

acute rejection as well as significant perioperative morbidity. Historically, the 

armamentarium of the transplant physician consisted of glucocorticoids and azathioprine. 

Significant improvements in the science and understanding of kidney transplantation 

immunology have lead to the development of induction therapy agents. Early induction 

therapy agents possessed little specificity and delivered a broad spectrum of effects; 

however, their potent ability to prevent early acute rejection episodes led to their 

widespread use [1]. 

The extensive use of these formulations exposed their flaws. The cross-reactivity with 

hematopoietic cells revealed dose-limiting side effects including thrombocytopenia, anemia, 

and neutropenia [2, 3]. Moreover, the lack of standardized preparation led to variations in 

dosing. In addition, these formulations had significant antigenic properties as a result of 

using horse or rabbit based formulations, which lead to significant side effects, such as 

serum sickness, cytokine release syndrome, or even anaphylaxis [4-6].  

The development of specific, monoclonal antibodies by Kohler and Milstein circumvented 

many of the drawbacks of polyclonal formulations, including lack of specificity and 

variability in preparation [7]. Muromonab, or OKT3, was the first monoclonal antibody 

prepared from mouse specific for cluster of differentiation 3 (CD3) [8]. OKT3 was effective at 

specifically depleting T cells from the circulation, and became widely used as a valuable tool 

to combat acute rejection episodes [9, 10]. Nevertheless, these monoclonal formulations still 

maintained some of the similar side effect profile of the polyclonal formulations, including 

an antigenic response to the protein or cytokine release syndrome, which lead to limited 

dosing in some patients [11]. 
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The 1980’s marked an important era in transplantation with new advances in genetic 

engineering. Monoclonal antibodies became more sophisticated, targeting specific T cell 

populations and allowing blockade of T cell activation, such as the interleukin 2 receptor (IL-2R) 

or CD25 [12]. Moreover, the ability to avoid antigenic proteins by encoding genetic sequences of 

DNA binding sites of animal proteins onto human antibodies led to the development of 

chimeric monoclonal antibodies [13-15]. Using these techniques, soluble fusion proteins can be 

formed by merging nonantibody receptors with the Fc portion of antibodies. 

1.2. Antibodies 

Understanding the structure and function of antibodies is critical to understanding the 

efficacy of antibody induction therapy. Antibodies are composed of two identical heavy 

chains (either µ, γ, α, ε, or δ) and two identical light chains (either κ or λ). The heavy and 

light chain portions create two identical antigen binding sites (Fab fragment) which are held 

together by the common region, termed the Fc portion [16]. The type of heavy chain 

differentiates the immunoglobulin type as IgM, IgG, IgA, IgE, and IgD. In clinical 

transplantation, the IgG molecule is typically utilized, as it’s readily produced and 

structurally feasible to manipulate (Fig. 1). 

 

Figure 1. Basic antibody structure. Depicted is a standard IgG molecule. The heavy chains are colored 

in blue, while the light chains are colored in green. The yellow lines signify the disulfide bonds. 

Antibodies are present on the surface of B cells. Upon secretion into the serum, antibodies 

are able to neutralize circulating antigens. Antibodies maintain their effector functions 

irrespective of species. Antibodies are capable of various functions, including mimicking 

activating ligands of receptors and serving as receptor inhibitors by blocking the ligand 

binding site [17, 18]. In some instances, antibody binding can lead to both activation and 

inhibition by inducing surface molecule internalization, whereby the molecule is removed 

from the surface of the cell [19]. This results in a negligible net effect. A major limitation of 

antibody use is the inability to directly bind intracellular molecules. 

Antibodies have the ability to deplete target cells through two basic mechanisms. First, 

antibodies can activate the complement system resulting in complement-mediated lysis of 

target cells. Second, certain cells with Fc region receptors have the ability to phagocytose 



 
Modern Immunosuppression Regimens in Kidney Transplantation 147 

cells covered with antibodies through a mechanism termed antibody-dependent cellular 

cytotoxicity (ADCC) (Fig.2). The efficacy with which this occurs depends upon the Fab 

fragment and the Fc region [20]. It is important to note that cells which have significantly 

matured, or memory cells, are somewhat resistant to antibody-dependent depletion 

mechanisms, possibly due to increased expression of anti-apoptotic or complement 

regulatory genes [21]. 

 

Figure 2. Antibody-dependent cellular cytotoxicity (ADCC). The Fc receptor on the macrophage is used 

to bind the constant Fc portion of antibodies to facilitate engulfment of cells coated with antibodies. 

1.3. Classifying induction therapy agents 

Induction therapy agents can be classified into two groups: depleting agents and non-

depleting agents (Table 1). This distinction is based on the ability to target specific antigens 

or cells, leading to a decrease in the total expression or cell count. Most depleting agents are 

relatively potent with potential for toxicity with prolonged administration, while non-

depleting agents are generally well-tolerated. In addition, the use of induction therapy 

agents has decreased the rates of acute rejection in the first 6 months compared to no 

induction therapy [22]. Although these short-term benefits appear promising, long-term 

outcomes, including patient and graft survival rates, have not been shown to be altered by 

the use of induction therapy, possibly the effect of long-term maintenance 

immunosuppressive therapy or even patient co-morbidities. 

The overall success of a kidney transplant is contingent on both surgical technique and 

potent immunosuppressive medications. Although induction therapy has not affected 

surgical morbidity, the rate of allograft thrombosis has been shown to be reduced in 

children with the use of induction agents [23, 24]. However, not all medications used are 

FDA-approved for induction therapy. Additionally, these medications are not without risks, 

including infectious complications and the development of post-transplant 

lymphoproliferative disorder (PTLD), which has been well-described with the use of OKT3 

and maintenance immunosuppression [25, 26]. Because of the effects of depleting agents on 

T cells, appropriate infectious prophylaxis should be instituted for all transplant recipients. 

In 1995 induction therapy was used in less than half of all kidney transplants in the United 

States, while 10 years later, approximately 70% of all kidney transplant recipients received 
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Agent Clonality Targets Dosing Halflife Duration of 

effects 

Cytokine 

Release 

Syndrome? 

rATG1 Polyclonal Various immune 

targets, especially 

T cells 

Multiple doses 

(POD2#0-4) 

29.8-37.7 

days 

Months to 

years 

Yes 

Basiliximab Monoclonal CD25 

(predominantly 

activated T cells) 

2 doses 

(POD2#0 & 4) 

7.2 days Weeks No 

Daclizumab Monoclonal CD25 

(predominantly 

activated T cells) 

Multiple doses 

(POD2#0, then 

every 2 weeks) 

20 days Weeks No 

Alemtuzumab Monoclonal CD52 (naïve T 

cells, some B cells, 

and monocytes) 

Typically 1 dose 

(POD2#0) 

12 days Months to 

years 

Yes (less 

than rATG1) 

1rabbit Antithymocyte globulin, 2post operative day 

Table 1. Pharmacological Comparison of Induction Therapy 

induction therapy [27]. Given the availability of various potent, specific induction agents in 

modern transplantation, the clinical dilemma lies in selecting the most appropriate agent for 

a given patient, taking into account co-morbidities, donor quality, immunological status, 

and planned immunosuppression maintenance therapy. 

2. Induction therapy agents 

2.1. Depleting agents 

2.1.1. Rabbit Antithymocyte globulin (rATG) 

2.1.1.1. Mechanism of Action 

Rabbit antithymocyte globulin (rATG) is a polyclonal heterologous antibody produced from 

immunizing rabbits with human thymocytes, which serve as the immunogens (Fig. 3) [28]. The 

rabbit serum is then gathered and purified to remove antibodies with potentially detrimental 

effects and only the IgG isotypes are collected. Despite these purification techniques, it is 

possible that the majority of antibodies in these formulations serve no therapeutic purpose [29, 

30]. When administered to humans, the rATG antibody formulations bind all antigens that the 

rabbits were exposed to during the immunization process. 

rATG binds multiple T cell surface antigens and receptors involved in antigen recognition, 

adhesion and costimulation, including CD2, CD3, CD4, CD5, CD8, CD28, CD45, and CD40L. 

In addition, rATG may also bind non-T cell molecules such as CD16, CD20, CD56, and the 

major histocompatibility molecules (class I and II) [28-30]. The depleting effect of rATG 

occurs within 24 hours of administration and can persist with a prolonged serum half-life of 

several weeks [31, 32]. The effects of lymphocyte depletion are persists for years following 

administration, as evidenced by selectively low CD4+ T cell counts [33, 34]. 
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Figure 3. Polyclonal antibodies. Polyclonal antibodies are non-specific and bind multiple antigens as 

shown in the figure. 

2.1.1.2. Clinical applications 

rATG has been approved for use as an induction agent and for the treatment of acute 

rejection in Europe since 1984 [35]. However, in the United States, it is only indicated for the 

treatment of acute rejection. Nevertheless, it is routinely administered as induction therapy 

in many centers in the United States. Although early studies demonstrated an increased 

infectious risk and post-transplant malignancy when administered in conjunction with 

cyclosporine [36], improvements in infectious prophylaxis and lower doses have 

significantly alleviated these risks. 

rATG administration improves early outcomes in kidney transplantation. Although the exact 

mechanism leading to this is unclear, rATG may minimize ischemia-reperfusion injury and 

potentially prevent the development of delayed graft function, which has been associated with 

poorer outcomes [37]. rATG has been used in patients at higher risk of developing delayed 

graft function, including recipients of donation after cardiac death donors, and recipients of 

extended criteria donors [38-40]. It is also administered in patients at higher immunologic risk, 

such as retransplants. Finally, it may help minimize the need for maintenance 

immunosuppression therapy facilitating early corticosteroid withdrawal [40, 41]. 

2.1.1.3. Adverse effects 

Patients treated with rATG may experience a variety of side effects. It has been associated 

with a syndrome called cytokine release syndrome (Fig. 4), which is common to many 

polyclonal antibody formulations. Patients may experience mild flu-like symptoms, such as 

fever, chills, nausea, urticaria, rash, and headache [32]. This occurs as a result of increased 

production of tumor necrosis factor-α, IL-1, and IL-6 [28, 32, 42]. Premedication with 

corticosteroids, antipyretics, and antihistamines can prevent or treat these flu-like 

symptoms. In some cases, patients may develop more severe shock-like reactions, such as 

dyspnea, severe hypotension, pulmonary edema, or even anaphylaxis. Although patients 

frequently experience the mild flu-like symptoms and not the more severe reactions, 

recipient co-morbid conditions, such as cardiac or pulmonary disease, should be considered 

when selecting rATG as an induction agent. Serum sickness has also been associated with 

rATG administration in up to 7-10% of patients [43, 44]. 
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Figure 4. Antibody activation and cytokine release. Antibodies can bind antigens resulting in activation 

of the cell and cytokine release as illustrated in the figure. 

Hematological adverse events may occur, including leucopenia and thrombocytopenia. It is 

important to monitor white blood cell, lymphocyte, and platelet counts daily. Effectively, these 

adverse events may lead to an increase in infectious complications, including cytomegalovirus 

(CMV), herpes simplex virus, Epstein-Barr virus (EBV), and varicella [45, 46]. 

2.1.2. Alemtuzumab 

2.1.2.1. Mechanism of action 

Alemtuzumab, or Campath-1H, is a monoclonal antibody to rat antihuman CD52 (Fig. 5). It is 

an IgG1 humanized molecule [47]. CD52 is present in high abundance on most lymphocytes, 

including T cell, B cells, and monocytes, but not hematopoietic precursors [48]. It effectively 

depletes T cells, and some B cells and monocytes in the circulation as well as the allograft [49]. 

 

Figure 5. Monoclonal antibodies. Monoclonal antibodies are specific and bind a single antigen as 

shown in the figure. 

2.1.2.2. Clinical applications 

Alemtuzumab has not been approved for use as an induction agent; however, this is a 

common off-label use. At this time, it is only approved to treat lymphogenous malignancies. 
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As an off-label induction agent, it’s been used with various immunosuppression regimens, 

including steroid-sparing regimens. Effectively, it depletes lymphocytes at the time of 

transplantation and last for several months to a year before the immune system is 

reconstituted [50]. Alemtuzumab is given at a dose of 30 mg or 0.3 mg/kg through a 

peripheral line over 3 hours. Sometimes 2 doses are given, although T cells are expectedly 

removed within 1 hour of initial administration [21, 49].  

Alemtuzumab depletes all T cell subsets, but has a predilection for more naïve T cells [21]. 

Memory T cell subsets may not be depleted with this therapy, but these cell types are 

especially susceptible to calcineurin inhibitors. Because of the prompt and intense depletion, 

alemtuzumab is especially appealing to use in patients with delayed graft function, as 

calcineurin inhibitor therapy can be withheld to avoid concomitant calcineurin-induced 

renal insults. 

Early studies of alemtuzumab demonstrated its efficacy as a treatment therapy for acute 

rejection; however, it was associated with significant infectious morbidity and mortality 

[47]. Patients were significantly over-immunosuppressed, especially on a triple maintenance 

therapy. More recent literature has been small studies or anecdotal data [51-53]. Because its 

efficacy is greatest against naïve T cells, its use in sensitized patients may-be limited.  

In a recent study, alemtuzumab was prospectively compared to basiliximab and rATG as an 

induction agent in patients on a steroid-sparing immunosuppressive regimen [54]. 

Alemtuzumab demonstrated lower short-term rates of acute rejection compared to 

basiliximab in patients at low-risk of developing acute rejection. At 3-years, however, the 

rates of acute rejection were no different between alemtuzumab and rATG. Patients 

receiving alemtuzumab did not experience an increased incidence of adverse events. 

2.1.2.3. Adverse effects 

Similar to rATG, alemtuzumab has been associated with cytokine release syndrome, but to a 

lesser extent. With adequate premedication with methylprednisolone, acetaminophen, and 

diphenhydramine, the cytokine release is blunted. Rash is one of the most common 

manifestations, while anaphylaxis and hypotension have been reported. It has been linked 

to the development of autoimmune thyroiditis in patients treated with alemtuzumab for 

multiple sclerosis [55]. This has also been reported in a renal transplant recipient treated 

with alemtuzumab [56]. 

2.2. Non-depleting agents 

2.2.1. Basiliximab 

2.2.1.1. Mechanism of action 

Basiliximab is a chimeric mouse-human monoclonal IgG1 antibody to CD25, the α-subunit 

of the IL-2 receptor. Basiliximab inhibition of IL-2 binding occurs through steric hindrance 

(Fig. 6). Effectively, basiliximab causes prevention of early T cell activation, as opposed to T 

cell depletion [50].  
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2.2.1.2. Clinical applications 

Basiliximab targets naïve T cells, limiting its role to induction therapy. The first dose is 

administered on the day of transplant with the final dose administered on postoperative day 

4 (20 mg per dose) via a peripheral line. Its use has been associated with decreased rates of 

acute cellular rejection compared to no formal induction agent on either triple or double 

drug immunosuppression regimens [57, 58]. Additional studies comparing basiliximab 

induction to polyclonal antibody depleting induction agents in the setting of triple 

maintenance immunosuppression regimens have shown similar outcomes with respect to 

acute rejection rates and delayed graft function [59, 60]. Basiliximab induction therapy has 

been successfully used in steroid avoidance immunosuppression regimens [61]. In the 

setting of monotherapy or calcineurin inhibitor free regimens; however, basiliximab has not 

been shown to be effective in preventing early immunologic events [62, 63]. In cases of 

excellent human leukocyte antigen (HLA)-matching (i.e. 2-haplotype matches), it’s been 

used as an effective induction agent with steroid avoidance immunosuppressive regimens 

[61]. Given the relatively mild side effect profile, basiliximab is well-tolerated in all patients, 

even those with significant cardiac or pulmonary co-morbidities. 

2.2.1.3. Adverse effects 

The side effect profile of basiliximab is relatively mild [57, 58]. Because of the lack of T cell 

activation or stimulation, cytokine release syndrome does not occur. The most serious 

adverse event is hypersensitivity, which is rare (<1%) [50]. There is no increased risk of 

infectious complications or PTLD compared to no induction therapy [64]. 

 

Figure 6. Antibody blockade. In this figure the antibody functions by blocking the antigen from binding 

to the receptor. 

2.2.2. Daclizumab 

2.2.2.1. Mechanism of Action 

Daclizumab, like basiliximab, is a CD25 antagonist; however, it is a humanized IgG1 

antibody. The CD25 molecule was the first humanized monoclonal antibody to be 

successfully targeted in the field of transplantation [65]. The mechanism of action of 

daclizumab essentially duplicates that of basiliximab. 
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2.2.2.2. Clinical applications 

Daclizumab has been shown to decrease the incidence of acute cellular rejection when 

administered as an induction agent [66, 67]. Given the favorable side effect profile, it is well 

tolerated, irrespective of co-morbid conditions. The main disadvantage of daclizumab, as 

compared to basiliximab, is that it is more costly and requires repeated administrations [50]. 

Given the low demand for the medication, it has been discontinued by the manufacturer. 

2.2.2.3. Adverse effects 

The generally favorable side effect profile resembles that of basiliximab. Cytokine release is 

not typically associated with this agent [66, 67]. Like basiliximab, the risk of infectious 

complications or PTLD is not significantly increased with use [64]. 

3. Desensitizing agents 

3.1. Rituximab 

3.1.1. Mechanism 

Rituximab is a monoclonal chimeric antibody to the CD20 molecule. CD20 is a glycoprotein 

on the cell surface of circulating, mature B cells. Rituximab effectively depletes CD20+ cells 

from the circulation by inducing apoptosis [68]. These cells are precursors to antibody-

producing plasma cells, and their role in transplantation is only partially characterized. 

They may play a role in acute rejection, as B cells can act as antigen presenting cells. 

3.1.2. Applications 

Rituximab is approved for use in various lymphomas, leukemias, PTLD, and rheumatoid 

arthritis [50, 69]. Peripheral veins can be used for administration and dosing is dependent on 

the indication. A recent study examining the role of rituximab as an induction agent found 

no benefit compared to placebo [70]. However, it does play a role as a desensitizing agent in 

patients with preformed donor specific antibodies (DSA), in conjunction with total 

plasmapheresis and/or intravenous immunoglobulin (IVIG) [71, 72]. 

Additionally, it has been used to aid in transplanting across blood group barriers in donor 

recipient pairs and in patients with positive crossmatches following antibody elimination. 

Rituximab is increasingly being used to treat episodes of vascular rejection and antibody 

mediated rejections [73, 74]. Finally, rituximab is a proven and effective agent in the 

treatment of PTLD [75]. Administration does not replace immunosuppression reduction or 

chemotherapy, but rather supplements the other modalities. 

3.1.3. Adverse effects 

Rituximab is generally well-tolerated with minimal side effects. Anaphylaxis remains a 

theoretical concern, as is the case with most agents. Reports on infectious complications 
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related to rituximab have been variable [76-78]. In some instances there was no difference in 

bacterial, viral, or fungal infections in kidney transplant recipients treated with rituximab, 

however, this remains controversial. 

3.2. Bortezomib 

3.2.1. Mechanism 

Bortezomib is a proteasomal inhibitor that causes apoptosis of plasma cells. It binds the 26S 

subunit of the proteasome [79]. Proteasome inhibition ultimately leads to apoptosis during 

mitosis. Bortezomib selectively causes apoptosis in CD138+ plasma cells [80]. Additionally, 

Bortezomib may block T cell cycling and decrease the number of circulating B cells by 

reducing bone marrow levels of IL-6 [81]. 

3.2.2 .Applications 

Bortezomib has not been approved for use in kidney transplantation; however, it has been 

used in sensitized patients [80]. Bortezomib has been successfully used to decrease DSA 

levels, which may play a role in acute antibody-mediated rejection (AMR) Induction 

Therapy in Renal Transplant Recipients [82]. Furthermore, in vivo data has demonstrated a 

decrease in the percentage of bone marrow plasma cells, antibody production, and 

allospecificities of plasma cells in bone marrow aspirates of patients treated with bortezomib 

i in the setting of AMR [80]. 

3.2.3. Adverse events 

Bortezomib has been associated with various side effects. Although gastrointestinal side 

effects are the most common, peripheral neuropathy has also been reported, especially in 

patients with a pre-existing history of neuropathy [79]. Moreover, myelosuppression and 

shingles has been reported. 

3.3. Intravenous Immunoglobulin (IVIG) 

3.3.1. Mechanism 

Intravenous immunoglobulin, or IVIG, is pooled polyclonal antibodies from different 

human donors. These are high-dose human IgG fractions with a wide range of specificities. 

These are non-T cell specific formulations and have no specific cell targets [83]. It is able to 

bind activated complement components or even inhibit complement activation [84]. IVIG 

may also modulate the alloimmune response by binding to the Fc receptor of antigen-

presenting cells, effectively quelling the alloimmune response [85]. 

3.3.2. Applications 

Despite the inability to deplete T cells, IVIG is an effective treatment of acute cellular 

rejection. Early studies showed that IVIG was as effective as OKT3 in reversing steroid 
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resistant acute rejection episodes [86]. In the setting of antibody-mediated rejection, IVIG 

has been shown to be beneficial when used in conjunction with plasmapheresis and/or 

rituximab [87-88]. As a desensitization agent alone, no study has demonstrated a clear 

benefit [88, 89]. Definitive reduction of antibody was not shown and a survival advantage 

was not evident. 

3.3.3. Adverse effects 

The side-effect profile of IVIG increases with dosing. High-dose IVIG is associated with 
more infusion-related complications, such as headache, thrombotic incidents, hemolysis, 

bronchospasms, osmotic nephropathy, or even aseptic meningitis [83, 90]. Sucrose-based 

and high osmolality products have a higher risk of developing osmotic nephropathy as 

opposed to other preparation. Nevertheless, it is typically well-tolerated, especially at lower 

doses and most patients report only headache. 

4. Maintenance immunosuppression regimens 

4.1. Historical background 

The initial transplant armamentarium consisted only of azathioprine and steroids for 

maintenance immunosuppression in renal transplantation until the 1980’s, when the first 

calcineurin inhibitor, cyclosporine became available. Over the next 20 years, azathioprine 

had been largely replaced by mycophenolate (MMF), an antiproliferative agent. Standard 

therapy in most modern immunosuppression regimens now consists of a calcineurin 

inhibitor, mycophenolate, with or without steroid maintenance. 

Minimizing global immunosuppression in the modern era of transplantation has become an 

important goal. The use of induction therapy has allowed for steroid avoidance 

immunosuppression regimens. The goal of steroid avoidance immunosuppression is to 

decrease the negative cardiovascular profile associated with long-term administration of 

steroids. Specifically, steroid-free regimens should decrease the negative effects on blood 

pressure control as well serum glucose and lipid metabolism [91]. Moreover, the leading 

cause of death in kidney transplant patients is cardiovascular events [92]. 

4.2. Steroid maintenance versus withdrawal 

Advocates of steroid-maintenance regimens suggest that steroids may allow for lower doses 

of calcineurin inhibitors, such as cyclosporine or tacrolimus. Moreover, steroids may 

decrease the incidence of nephrotoxicity perioperatively. However, there has been 

insufficient data to support either conclusion [93]. 

The effectiveness of steroid-withdrawal and cyclosporine-based therapy has been clearly 

associated with timing. Early studies of cyclosporine-based regimens demonstrated that 

cessation of steroids prior to the 6 month period post-transplantation increased the risk of 

acute rejection [94]. Furthermore, a meta-analysis of seven randomized-controlled trials of 
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steroid avoidance and/or withdrawal demonstrated an increased risk of acute rejection with 

steroid avoidance or early withdrawal (most steroids were withdrawn in the first 3 months 

post-transplant) [95]. However, patient and graft survival were not adversely affected in the 

meta-analysis.  

The ability to withdrawal steroids appears to be better with tacrolimus-based 

immunosuppression regimens. An early report by Shapiro et al. demonstrated that patients 

receiving tacrolimus and steroid-sparing immunosuppression had excellent early and 

intermediate-term patient and graft survival compared to kidney transplant recipients 

receiving standard steroid-maintenance immunosuppression [96]. Later, various 

randomized-controlled trials were undertaken to assess the initial outcomes. A meta-

analysis of six randomized, controlled-trials comparing a calcineurin inhibitor-based 

immunosuppression regimen with MMF demonstrated a slightly increased risk of acute 

rejection once steroids were discontinued; however, this did not affect the incidence of graft 

failure [97]. Shortly thereafter, a randomized trial from Europe assigned low immunologic 

risk patients to receive either triple immunosuppression with tacrolimus, MMF, and 

steroids, a tacrolimus-based steroid withdrawal regimen, or a tacrolimus-based steroid-

maintenance regimen without MMF [98]. At 6 months, the incidence of acute rejection was 

not different between the groups. Furthermore, the steroid withdrawal group benefited 

from an improved lipid profile. Kumar et al. reported on a series of 300 kidney transplant 

recipients receiving basiliximab induction therapy followed by steroid maintenance or 

withdrawal at 2 days post-transplant [99]. Maintenance therapy for all patients consisted of 

a calcineurin inhibitor and MMF or sirolimus. At 3 years, the incidence of biopsy-proven 

acute rejection, patients and graft survival, chronic allograft nephropathy, or graft function 

was not significantly different. Moreover, the steroid withdrawal group benefited from a 

lower rate of new-onset diabetes after transplantation. 

Successful avoidance of steroids is contingent upon the use of calcineurin inhibitors. In 2006 

Gelens and colleagues performed a single-center, randomized, trial of three parallel groups, 

which were: tacrolimus and sirolimus (group one), tacrolimus and MMF (group two), and 

sirolimus and MMF with daclizumab induction [100]. During an interim analysis when 50% 

of the patients were included, group one had a significantly increased rejection free survival 

(82%) compared to group three (34%, P=0.03) and between groups one and two (tacrolimus-

based, 76%) and group three (34%, P=0.04). The study was halted prematurely. Despite the 

current armamentarium of antibody-depleting medications, steroid withdrawal seems 

feasible only with a calcineurin inhibitor-based regimen. 

4.3. Induction therapy and steroid withdrawal 

The possible minimization of maintenance immunosuppression has been studied using 

basiliximab and rATG without compromising allograft outcomes. In the Astellas Steroid 

Withdrawal Study, patients assigned to the steroid-withdrawal arm and treated with rATG 

experienced a lower cumulative incidence of biopsy-proven acute rejection at 5 years 

compared to patients treated with basiliximab [101]. Selection bias; however, may have 

marred this study, given that the investigators selected which antibody induction agent was 
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used. Our transplant center’s experience utilizing induction therapy to enable steroid 

withdrawal has been very successful in a diverse population, using rATG in the majority of 

patients [102] and basiliximab in well-matched living donor recipients [61]. In a study by 

Cantarovich et al., patients administered rATG and steroid-maintenance 

immunosuppression had significantly lower acute rejection rates compared to patients on a 

steroid-free immunosuppression regimen, although the incidence of malignancy, de novo 

diabetes, and hyperlipidemia were higher in steroid-maintenance group [103]. Patient 

survival, graft survival, and infection rates were not significantly different between the two 

groups at 1 year.  

Alemetuzumab and steroid-free regimens have been compared to both basiliximab and 

rATG. In the study by Hanaway et al., acute rejection rates were relatively low in low-risk 

patients receiving alemtuzumab compared to basiliximab, although the reduced 

immunologic risk profile of alemtuzumab was not evident in high risk patients treated with 

rATG [54]. The overall rate of adverse events with alemtuzumab was similar to that of 

basiliximab or rATG over the 3 year study period (53% versus 50%, respectively; p=0.46). 

Moreover, the rate of cardiovascular events of all alemtuzumab treated patients compared 

to basiliximab or rATG was also similar (7% versus 10%, respectively; p=0.26), although the 

similarity was less evident in the high-risk immunologic group treated with rATG 

compared to alemtuzumab (12% versus 3%, respectively; p=0.06). Cai et al. analyzed the 

United Network for Organ Sharing registry and found that recipients of alemtuzumab in 

conjunction with steroid-maintenance therapy had the lowest risk of graft failure, while 

patients administered an interleukin-2 receptor antagonist on a steroid-free 

immunosuppression regimen had the highest risk of graft failure [104]. In a single-center, 

open-label randomized trial of 200 kidney transplant recipients, low dose dual induction 

therapy of rATG and daclizumab was compared to lose dose dual therapy of rATG and 

alemtuzumab in patients maintained on steroid-free maintenance immunosuppression 

[105]. Patient and graft survival rates as well as acute rejection and infectious complication 

rates were not significantly different. In addition, no patient developed post-transplant 

lymphoproliferative disorder. 

5. New and experimental agents 

5.1. Siplizumab (MEDI-507) 

Originally described as BTI-322, siplizumab is a monoclonal humanized antibody to CD2. It is 

an IgG1k molecule derived from rat [106]. CD2, or lymphocyte function-associated antigen-2 

(LFA-2) is an important T cell adhesion molecule that binds to CD58, or LFA-3. This is a 

transmembrane signal transduction molecule that facilitates T cell receptor binding. Early 

studies examined the use of siplizumab as an induction agent and treatment modality for 

acute rejection in solid organ transplantation as well as graft-versus-host disease [106, 107]. 

The first human study of siplizumab demonstrated the safety and feasibility in kidney 

transplantation, as compared to placebo; however, current endeavors are focused on 

investigating its use in nonmyeloablative conditioning regimens to achieve mixed chimerism 

[106, 108, 109]. In addition, it is being investigated for the treatment of plaque psoriasis [110]. 
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5.2. Alefacept 

Alefacept is a dimeric fusion protein (Fig.7) constituted from LFA-3 and the human Fc 

portion of IgG1. Studies have demonstrated inhibition of T cell proliferation and depletion 

of effector memory T cells [111, 112]. Currently, alefacept is approved to treat plaque 

psoriasis. Preclinical studies in nonhuman primates have demonstrated a survival benefit of 

alefacept, when used in conjunction with costimulatory blockade, but not alone; however in 

human trials have never shown a benefit [113]. 

 

Figure 7. Mimicry. In this figure, the antibody is fused with a protein structural similar to the intended 

antigen, which can serve as activating or inhibitory. 

5.3. Costimulatory blockade 

5.3.1. Abatacept 

Abatacept is a recombinant cytotoxic T-lymphocyte antigen 4 (CTLA4) fused with the Fc 

portion of IgG1 [114, 115]. Animal models demonstrated its ability to delay or even prevent 

the onset of allograft rejection, which is comparable to basiliximab and some polyclonal 

antibody therapies [114-116]. It has been approved for treatment of rheumatoid arthritis 

[117, 118]. Further investigations of this medication are not currently under development. 

5.3.2. Belatacept 

Belatacept is the improved version of abatacept, providing selective blockade of T cell 

activation as a fusion protein. Two amino acids have been changed to improve dissociation 

rates when binding to CD80 and CD86 [119, 120]. In the phase II trial comparing belatacept 

to cyclosporine, acute rejection rates were similar, while allograft function was significantly 

improved in patients receiving belatacept [119]. In the phase III trial of kidney 

transplantation, patients receiving belatacept experienced improved allograft function at 12 

months; however, acute rejection rates and severity of acute rejection episodes were 

significantly higher in the belatacept arm of the study. Additionally, the incidence of PTLD 

was greater in patients receiving belatacept [120]. An additional study investigating the 

efficacy of belatacept in kidney transplantation of extended criteria donors demonstrated 
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similar results, with a predilection towards central nervous system (CNS) forms of PTLD 

[121]. The novelty of costimulation blockade is the ability to avoid calcineurin inhibitors, 

especially in allografts at increased risk of delayed graft function. Belatacept has recently 

been approved for the prophylaxis of organ rejection in adult patients receiving a kidney 

transplant, in combination with basiliximab induction, mycophenolate mofetil, and 

corticosteroids [122]. Current recommendations include using it only in patients who are 

EBV seropositive; however, patients should be monitored for an increased risk of infectious 

complications and Progressive Multifocal Leukoencephalopathy. 

5.4. Eculizumab 

Recently, a new medication called eculizumab has emerged as a humanized monoclonal 

antibody to complement component 5 (C5) to mediate complement-mediated injury [123]. 

Blocking complement activation, especially the last step of the complement cascade, has 

important implications in kidney transplantation. However, the role of eculizumab appears 

to be more applicable to cases of clear complement-mediated destruction, such as antibody-

mediated rejection and desensitization protocols [124]. Furthermore, the logistics of 

administration may further hinder its’ use as a maintenance immunosuppression agent, as it 

must be administered biweekly or weekly intravenously at least for the first 1-2 months 

upon initiation of therapy. Currently, it is only approved for the treatment of patients with 

paroxysmal nocturnal hemoglobinuria [123]. 
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