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1. Introduction

On the fixed-point implementation of digital filters, undesirable finite-word-length (FWL)
effects arise due to the coefficient truncation and arithmetic roundoff. These FWL effects
must be reduced as small as possible because such effects may cause serious degradation of
characteristic of digital filters. L2-sensitivity is one of the evaluation functions which evaluate
the coefficient quantization effects of state-space digital filters [1–14]. The L2-sensitivity
minimization is quite beneficial technique for the synthesis of high-accuracy digital filter
structures, which achieves quite low-coefficient quantization error.

To the L2-sensitivity minimization problem, Yan et al. [1] and Hinamoto et al. [2] proposed
solutions using iterative calculations. Both of the solutions in [1] and [2] try to solve
nonlinear equations by successive approximation. Their solutions do not guarantee that the
L2-sensitivity surely converges to the minimum L2-sensitivity since their solutions are not
analytical solutions. It is necessary to derive some analytical solutions to the L2-sensitivity
minimization problem in order to guarantee that their conventional solutions surely derive
the minimum L2-sensitivity.

This chapter presents analytical approach for synthesis of the minimum L2-sensitivity
realizations for state-space digital filters. In Section 3, we derive closed form solutions
to the L2-sensitivity minimization problem for second-order digital filters [12, 13]. This
problem can be converted into the problem to find the solution to fourth-degree polynomial
equation of constant coefficients, which can be algebraically solved in closed form. Next, we
reveal that the L2-sensitivity minimization problem can be solved analytically for arbitrary

© 2013 Yamaki et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1. Block diagram of a state-space digital filter.

filter order if second-order modes are all equal [14] in Section 4. We derive a general
expression of the transfer function of digital filters with all second-order modes equal. We
show that the general expression is obtained by a frequency transformation on a first-order
prototype FIR digital filter. Furthermore, we show the absence of limit cycles of the
minimum L2-sensitivity realizations [11] in Section 5. The minimum L2-sensitivity realization
without limit cycles can be synthesized by selecting an appropriate orthogonal matrix in the
coordinate transformation matrix.

2. Preliminaries

This section gives the preliminaries in order to lay groundwork for the main topics of this
chapter, which appear in later sections. In Subsection 2.1, we begin with introduction
of state-space digital filters. Subsection 2.2 provides the introduction of L2-sensitivity.
Subsection 2.3 explains coordinate transformations, the operation for changing the structures
of state-space digital filters under the transfer function invariant. Subsection 2.4 formulates
the L2-sensitivity minimization problem.

2.1. State-space digital filters

It is beneficial to introduce the state-space representation for the synthesis of high accuracy
digital filters. For a given Nth-order transfer function H(z), a state-space digital filter can be
described by the following state-space equations:

x(n + 1)=Ax(n) + bu(n) (1)

y(n)=cx(n) + du(n) (2)

where x(n) ∈ ℜN×1 is a state variable vector, u(n) ∈ ℜ is a scalar input, y(n) ∈ ℜ is a
scalar output, and A ∈ ℜN×N , b ∈ ℜN×1, c ∈ ℜ1×N , d ∈ ℜ are real constant matrices called
coefficient matrices. The block diagram of the state-space digital filter (A, b, c, d) is shown
in Fig. 1(a). In case of second-order digital filters, the block diagram in Fig. 1(a) can be
rewritten as shown in Fig. 1(b). The transfer function H(z) is described in terms of the
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coefficient matrices (A, b, c, d) as

H(z) = c(zI − A)−1
b + d. (3)

In this chapter, the state-space representation (A, b, c, d) is assumed to be a minimal
realization of H(z), that is, the state-space representation (A, b, c, d) is controllable and
observable. The transfer function H(z) in Eq. (3) can be rewritten as

H(z) = c
adj(zI − A)

det(zI − A)
b + d. (4)

We know from the above equation that the poles of H(z) are the solutions of the characteristic
equation det(zI − A) = 0, that is, the eigenvalues of the coefficient matrix A. Since we
assume that the transfer function H(z) is stable, all absolute values of the eigenvalues of the
coefficient matrix A are less than unity. It follows from Eq. (4) that the absolute values of
poles of H(z) are less than unity.

2.2. L2-sensitivity

The L2-sensitivity is one of the measurements which evaluate coefficient quantization errors
of digital filters. The L2-sensitivity of the filter H(z) with respect to the realization (A, b, c, d)
is defined by

S(A, b, c)=
N

∑
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∥
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(5)

where ‖ · ‖2 denotes the L2-norm. The derivatives of the transfer function H(z) with respect
to the coefficient matrices are described by

∂H(z)

∂A
= G

T(z)F
T(z),

∂H(z)

∂b
= G

T(z),
∂H(z)

∂c
= F

T(z) (6)

where F(z) and G(z) are defined by

F(z) = (zI − A)−1
b (7)

G(z) = c(zI − A)−1 (8)
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respectively. Substituting Eqs. (6) into Eq. (5), the L2-sensitivity can be rewritten as

S(A, b, c)=
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We can express the L2-sensitivity S(A, b, c) by using complex integral as [1]

S(A, b, c)= tr

[

1

2π j

∮

|z|=1
F(z)G(z)(F(z)G(z))† dz

z

]

+tr

[

1

2π j

∮

|z|=1
G

†(z)G(z)
dz

z

]

+ tr

[

1

2π j

∮

|z|=1
F(z)F

†(z)
dz

z

]

. (10)

Applying Parseval’s relation to Eq. (10), Hinamoto et al. expressed the L2-sensitivity in terms

of the general Gramians such as [2]

S(A, b, c) = tr(W0)tr(K0) + tr(W0) + tr(K0) + 2
∞

∑
i=1

tr(W i)tr(Ki). (11)

The general controllability Gramian Ki and the general observability Gramian W i in Eq. (11)

are defined as the solutions to the following Lyapunov equations:

Ki =AKi A
T +

1

2

(

A
i
bb

T + bb
T(A

T)i
)

(12)

W i =A
T

W i A +
1

2

(

c
T

cA
i + (A

T)i
c

T
c

)

(13)

for i = 0, 1, 2, · · · , respectively. The general controllability and observability Gramians are

natural expansions of the controllability and observability Gramians, respectively. Letting

i = 0 in Eqs. (12) and (13), we have the Lyapunov equations for the controllability Gramian

K0 and the observability Gramian W0 as follows:

K0=AK0 A
T + bb

T (14)

W0=A
T

W0 A + c
T

c. (15)

The controllability Gramian K0 and the observability Gramian W0 are positive definite

symmetric, and the eigenvalues θ2
i (i = 1, · · · , N) of the matrix product K0W0 are all positive.
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Second-order modes are defined by the square roots of the eigenvalues θi’s as follows [3, 5]:

(θ1, · · · , θN) =
√

Eigenvalues of K0W0. (16)

In the field of digital signal processing, the controllability and observability Gramians are

also called the covariance and noise matrices of the filter (A, b, c, d), respectively.

2.3. Coordinate transformations

It is well known that the number of state-space realizations of a transfer function is infinite
since choice of the state variable vector x(n) is not unique. We can change the filter structures
of state-space digital filters by the operation called coordinate transformation under the transfer
function invariant.

Let T be a nonsingular N × N real matrix. If a coordinate transformation defined by

x̄(n) = T
−1

x(n) (17)

is applied to a filter structure (A, b, c, d), we obtain a new filter structure which has the
following coefficient matrices:

(A, b, c, d) = (T−1
AT , T

−1
b, cT , d). (18)

It should be noted that the coordinate transformation does not affect the transfer function
H(z), that is,

H(z)=c(zI − A)−1
b + d

=c(zI − A)−1
b + d

=H(z). (19)

It implies that there exist infinite filter structures for a given transfer function H(z) since
nonsingular N × N matrices exist infinitely. Therefore, one can synthesize infinite filter
structures by the coordinate transformation with keeping the transfer function invariant.

Under the coordinate transformation by the nonsingular matrix T , the general controllability
Gramian Ki and the general observability Gramian W i are transformed into Ki and W i given
by

(Ki, W i) = (T−1
KiT

−T , T
T

W iT) (20)

respectively. Letting i = 0 in Eqs. (20) yields
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(K0, W0) = (T−1
K0T

−T , T
T

W0T) (21)

From Eqs. (21), we have

K0W0 = T
−1

K0W0T (22)

which shows that K0W0 has the same eigenvalues of K0W0. Thus, the second order modes
defined by Eq. (16) are invariant under the coordinate transformations. It implies that
second-order modes depends on only the transfer function.

2.4. L2-sensitivity minimization problem

The value of L2-sensitivity depends on not only the transfer function H(z) but also the
coordinate transformation matrix T . The L2-sensitivity of the filter (T−1

AT , T
−1

b, cT , d) can
be expressed in terms of the complex integral as

S(T−1
AT , T

−1
b, cT)

= tr

[

1

2π j

∮

|z|=1
T
−1

F(z)G(z)TT
T(F(z)G(z))†

T
−T dz

z

]

+tr

[

1

2π j

∮

|z|=1
T

T
G

†(z)G(z)T
dz

z

]

+ tr

[

1

2π j

∮

|z|=1
T
−1

F(z)F
†(z)T−T dz

z

]

(23)

or in terms of the general Gramians as

S(T−1
AT , T

−1
b, cT)

= tr(TT
W0T)tr(T−1

K0T
−T) + tr(TT

W0T) + tr(T−1
K0T

−T)

+2
∞

∑
i=1

tr(TT
W iT)tr(T

−1
KiT

−T). (24)

The L2-sensitivity (23) can be expressed as the function of the positive definite symmetric
matrix P as follows [1]:

S(P)= tr

[

1

2π j

∮

|z|=1
F(z)G(z)P(F(z)G(z))†

P
−1 dz

z

]

+tr

[

1

2π j

∮

|z|=1
G

†(z)G(z)P
dz

z

]

+ tr

[

1

2π j

∮

|z|=1
F(z)F

†(z)P−1 dz

z

]

(25)

where P = TT
T . Similarly, the L2-sensitivity (24) can be expressed as the function of the

positive definite symmetric matrix P as follows [2]:
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S(P)= tr(W0P)tr(K0P
−1) + tr(W0P) + tr(K0P

−1)

+2
∞

∑
i=1

tr(W iP)tr(KiP
−1) (26)

where P = TT
T . The problem we consider here is to derive the optimal positive definite

symmetric matrix Popt, which gives the global minimum of S(P) as follows:

∂S(P)

∂P

∣

∣

∣

∣

P=Popt

= 0. (27)

If one can obtain the optimal positive definite symmetric matrix Popt, the optimal coordinate
transformation matrix Topt is given by

Topt = P

1
2
optU (28)

where U is an arbitrary orthogonal matrix. It implies that the minimum L2-sensitivity
realizations exist infinitely for a given digital filter H(z). The minimum L2-sensitivity
realizations have freedom for orthogonal transformations.

3. Analytical solutions to the L2-sensitivity minimization problem for

second-order digital filters

This section proposes analytical synthesis of the minimum L2-sensitivity realizations for
second-order digital filters. We propose closed form solutions to the L2-sensitivity
minimization problem of second-order state-space digital filters. The proposed closed
form solutions can greatly save the computation time and guarantee that the L2-sensitivity
obtained by the iterative algorithm of the conventional method surely converges to the
theoretical minimum. We show that the L2-sensitivity is expressed by a simple linear
combination of exponential functions, and we can obtain the minimum L2-sensitivity
realization by solving a fourth degree polynomial equation of constant coefficients in closed
form without iterative calculations [12, 13].

3.1. Problem formulation

We adopt the balanced realization (Ab, bb, cb, db) as the initial realization to synthesize the
minimum L2-sensitivity realization. The coefficient matrices (Ab, bb, cb, db) satisfy symmetric
properties as follows:

A
T
b = ΣAbΣ, c

T
b = Σbb (29)
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where Σ is a signature matrix defined as follows:

Σ = diag(σ1, · · · , σN), σi = ±1 (i = 1, · · · , N). (30)

We exploit the symmetric properties of the balanced realization in order to simplify
the L2-sensitivity formulation and minimization in the following discussion. Under this
condition, the L2-sensitivity S(P) in Eq. (26) is rewritten as

S(P)= tr(W
(b)
0 P)tr(K

(b)
0 P

−1) + tr(W
(b)
0 P) + tr(K

(b)
0 P

−1)

+2
∞

∑
i=1

tr(W
(b)
i P)tr(K

(b)
i P

−1) (31)

and thus, the L2-sensitivity minimization problem is formulated as follows:

min
P

S(P) in Eq. (31) (32)

where P is an arbitrary positive definite symmetric matrix.

We derive the optimal positive definite symmetric matrix Popt which gives the global
minimum of the L2-sensitivity S(P) in Eq. (31).

3.2. Second-order digital filters

Consider second-order digital filters with complex conjugate poles given by

H(z) =
α

z − λ
+

α∗

z − λ∗ + d (33)

where (λ, λ∗) are complex conjugate poles, α is a complex scalar, and d is a real scalar 1. We
define scalar parameters P, Q, and R as follows:

P=
|α|

1 − |λ|2
(34)

R + jQ=
α

1 − λ2
(35)

which can be calculated directly from the transfer function H(z). The closed form expression
of the balanced realization of the filter H(z) is given as follows [15]:

[

Ab bb

cb db

]

=











λr −
κ − κ−1

2
λi

κ + κ−1

2
λi µ1 + µ2

−
κ + κ−1

2
λi λr +

κ − κ−1

2
λi µ1 − µ2

µ1 + µ2 −(µ1 − µ2) d











(36)

1 For also second-order digital filters, we can derive analytical solutions to the L2-sensitivity minimization problem
[13].
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where















λ = λr + jλi, α = αr + jαi, κ =

√

P + Q

P − Q
,

µ1 =

√

κ(|α| − αi)

2
, µ2 =

√

|α|+ αi

2κ
sign(αr).

(37)

Using the parameters P, Q, and R, the controllability Gramian K
(b)
0 and the observability

Gramian W
(b)
0 of the balanced realization (Ab, bb, cb, db) can be expressed as follows:

K
(b)
0 =W

(b)
0 = Θ (38)

Θ=diag(θ1, θ2)

=diag(
√

P2 − Q2 + R,
√

P2 − Q2 − R). (39)

3.3. Property of the positive definite symmetric matrix P

In this subsection, we consider the property of the positive definite symmetric matrix P. The
following two theorems lead a symmetric property of the optimal positive definite symmetric
matrix Popt [1].

Theorem 1. [9] L2-sensitivity S(P) has the unique global minimum, which is achieved by a positive
definite symmetric matrix Popt satisfying

∂S(P)

∂P

∣

∣

∣

∣

P=Popt

= 0. (40)

✷

Theorem 2. [1] If a positive definite symmetric matrix Popt satisfies

∂S(P)

∂P

∣

∣

∣

∣

P=Popt

= 0 (41)

then the positive definite symmetric matrix ΣP
−1
optΣ also satisfies

∂S(P)

∂P

∣

∣

∣

∣

P=ΣP
−1
optΣ

= 0 (42)

for the signature matrix Σ which satisfies Eq. (29). ✷
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The derivative ∂S(P)/∂P is given by differentiating S(P) in Eq. (31) with respect to P as

∂S(P)

∂P
=(1 + tr(K

(b)
0 P

−1))W
(b)
0 + 2

∞

∑
i=1

tr(K
(b)
i

P
−1)W

(b)
i

−P
−1

(

(1 + tr(W
(b)
0 P))K

(b)
0 + 2

∞

∑
i=1

tr(W
(b)
i

P)K
(b)
i

)

P
−1. (43)

From Theorem 1 and Theorem 2, it is proved that the optimal positive definite symmetric
matrix Popt has the following symmetric property [1]:

Popt = ΣP
−1
optΣ (44)

for the signature matrix Σ which satisfies Eq. (29). We will thus search the optimal positive
definite symmetric matrix Popt among the positive definite symmetric matrices P which
satisfy

P = ΣP
−1

Σ. (45)

3.4. Closed form expression of the positive definite symmetric matrix P

In this subsection, we consider the case of second-order digital filters and give the closed
form expression of the positive definite symmetric matrix P. When we restrict ourselves to
the second-order case of state-space digital filters, we can give an closed form expression of
the positive definite symmetric matrix P which satisfies Eq. (45), considering the form of the
signature matrix Σ classified into the following two cases:

{

Σ = ±diag(1, 1) = ±I

Σ = ±diag(1,−1).
(46)

For each case, we next consider the closed form expression of the positive definite symmetric
matrix P which satisfies Eq. (45).

In case of Σ = ±I, Eq. (44) yields Popt = P
−1
opt, that is, Popt = I. It means that the minimum

L2-sensitivity realization can be synthesized without any coordinate transformation to
the balanced realization, that is, the initial realization. In other words, the minimum
L2-sensitivity realization is the balanced realization as follows:

(Aopt, bopt, copt, dopt) = (Ab, bb, cb, db). (47)

Thus, we need no more discussion on this case since the minimum L2-sensitivity realization
is already achieved as the balanced realization.
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On the other hand, in case of Σ = ±diag(1,−1), the authors have derived the closed form
expression of a positive definite symmetric matrix P which satisfies Eq. (45) as follows:

P =

[

cosh(p) sinh(p)
sinh(p) cosh(p)

]

(48)

where p is a real scalar variable [12, 13].

3.5. Closed form expression of the L2-sensitivity S(P)

In this subsection, the closed form expression of the L2-sensitivity of second-order digital
filters is given. We give the closed form expression of the L2-sensitivity S(P) in Eq. (31). We
first express the general Gramians of the balanced realization (Ab, bb, cb, db) as follows:

K
(b)
i =

1

2

(

A
i
bK

(b)
0 + K

(b)
0 (A

T
b )

i
)

=
1

2

(

A
i
bΘ + Θ(A

T
b )

i
)

(49)

W
(b)
i =

1

2

(

W
(b)
0 A

i
b + (A

T
b )

i
W

(b)
0

)

=
1

2

(

ΘA
i
b + (A

T
b )

i
Θ

)

. (50)

We express the L2-sensitivity S(P) by substituting Eqs. (49) and (50) into Eq. (31) as follows:

S(P) = tr(ΘP)tr(ΘP
−1) + tr(ΘP) + tr(ΘP

−1) + 2
∞

∑
i=1

tr(ΘA
i
bP)tr(Θ(A

T
b )

i
P
−1). (51)

The L2-sensitivity S(P) in Eq. (51) can be expressed more simply. Exploiting the symmetric
property of coefficient matrix Ab and P given in Eqs. (29) and (45) respectively, we can
rewrite the L2-sensitivity S(P) as

S(P)=2tr(ΘP)− (tr(ΘP))2 + 2
∞

∑
i=0

(

tr(ΘA
i
bP)

)2
. (52)

In order to give the closed form expression of the L2-sensitivity S(P) in Eq. (52), it is
necessary to derive the closed form expressions of matrices Ab, Θ, and P. The closed form
expressions of matrices Ab and Θ are given in Eqs. (36) and (39), respectively. The closed
form expression of the positive definite symmetric matrix P is given in Eq. (48). Substituting
the closed form expressions of matrices Ab, Θ, and P into Eq. (52) gives the closed form
expression of the L2-sensitivity S(p) as

S(P) = S(p) =
2

∑
n=−2

snenp. (53)
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It is remarkable that Eq. (53) is a simple linear combination of exponential functions which
does not contain infinite summations. These coefficients sn’s are easily computed directly
from the transfer function H(z) [12, 13].

3.6. Synthesis of minimum L2-sensitivity realizations

The parameter p which minimizes S(p) in Eq. (53) can be derived by solving the following
equation with respect to p:

∂S(p)

∂p
=

2

∑
n=−2

nsnenp = 0. (54)

Letting β = ep gives

2

∑
n=−2

nsnβn = 0. (55)

The above equation is a fourth-degree polynomial equation with respect to β of constant
coefficients. In 1545, G. Cardano states in his book entitled Ars Magna (its translated edition
is [16]) that there exists the formula of solutions for fourth-degree polynomial equations.
Therefore, Eq. (55) can be solved analytically. Eq. (55) has four solutions, from which the
positive real solution βopt = epopt is adopted to derive the optimal positive definite symmetric
matrix Popt as

Popt=

[

cosh(popt) sinh(popt)
sinh(popt) cosh(popt)

]

=
1

2

[

βopt + β−1
opt βopt − β−1

opt

βopt − β−1
opt βopt + β−1

opt

]

. (56)

The diagonalization of the optimal positive definite symmetric matrix Popt = ToptT
T
opt is

given by

Popt=

[

1√
2
− 1√

2
1√
2

1√
2

] [

βopt 0

0 β−1
opt

] [

1√
2

1√
2

− 1√
2

1√
2

]

≡R
T

BoptR. (57)

Once the optimal positive definite symmetric matrix Popt is derived, the optimal coordinate
transformation matrix Topt is calculated as

Topt = P

1
2
optU (58)

Digital Filters and Signal Processing224



where U is an arbitrary orthogonal matrix. We have to note that the optimal coordinate
transformation matrix Topt is not unique because of the non-uniqueness of matrix U. By
letting U = I in Eq. (58), for instance, one of the optimal coordinate transformation matrices

Topt = P
1/2
opt is given by

Topt=P

1
2
opt

=R
T

B

1
2
optR

=

[

1√
2
− 1√

2
1√
2

1√
2

]





β
1
2
opt 0

0 β
− 1

2
opt





[

1√
2

1√
2

− 1√
2

1√
2

]

=
1

2





β
1
2
opt + β

− 1
2

opt β
1
2
opt − β

− 1
2

opt

β
1
2
opt − β

− 1
2

opt β
1
2
opt + β

− 1
2

opt



 . (59)

We can give a geometrical interpretation of the above optimal coordinate transformation
matrix Topt. In Eq. (59), R is an orthogonal matrix, which means π/4[rad] rotation of
the coordinate axes, Bopt is a positive definite diagonal matrix, which means a simple
scaling of each coordinate axis. Eq. (59) shows that the minimum L2-sensitivity realization
is obtained by the following operations for the coordinate axes of the initial balanced
realization; −π/4[rad] rotation, simple scaling, and +π/4[rad] rotation. Finally, the
minimum L2-sensitivity realization (Aopt, bopt, copt, dopt) is synthesized as follows:

[

Aopt bopt

copt dopt

]

=

[

T
−1
opt AbTopt T

−1
optbb

cbTb db

]

(60)

and the minimum L2-sensitivity Smin, which is achieved by popt = log(βopt), is expressed by
substituting popt into Eq. (53) as

Smin =
2

∑
n=2

snβn
opt. (61)

3.7. Numerical examples

We present numerical examples to demonstrate the validity of the proposed method.
Consider a second-order digital filter H(z) with complex conjugate poles, of which transfer
function is given by

H(z)=
α

z − λ
+

α∗

z − λ∗
+ d

=
0.0396 + 0.0793z−1 + 0.0396z−2

1 − 1.3315z−1 + 0.49z−2
(62)
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Figure 2. Frequency responses and zero-pole configurations of H(z).

where λ = 0.7 exp(j0.1π), α = 1.6657 − j6.3055, and d = 1. The frequency responses and
zero-pole configurations of digital filter H(z) are shown in Fig. 2. From the transfer function
H(z), parameters P, Q, and R are calculated as

P = 0.5068, Q = −0.2947, R = 0.25. (63)

The coefficients sn’s are computed as follows:

(s−2, s−1, s0, s1, s2) = (0.3345, 0.8246, 0.8987, 0.8246, 0.7951). (64)

We solve the following fourth-degree polynomial equation to derive the optimal solution
βopt:

2

∑
n=−2

nsnβn = 0. (65)

The fourth-degree polynomial equation above has the following four solutions:

β = 0.8568,−0.6960,−0.3396 ± j0.7682. (66)

We adopt βopt = 0.8568, which is a positive real scalar, to derive the optimal positive
definite symmetric matrix Popt. We can derive the minimum L2-sensitivity realization
(Aopt, bopt, copt, dopt) in closed form as follows:

[

Aopt bopt

copt dopt

]

=





0.7810 0.2451 0.4751
−0.2451 0.5505 0.3061

0.4751 −0.3061 0.0396



 (67)
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Figure 3. Minimum L2-sensitivity and convergence behaviors of L2-sensitivity in conventional methods [1] and [2].

of which L2-sensitivity Smin is

Smin =
2

∑
n=−2

snβn
opt = 3.6070. (68)

Figure 3 shows the comparison of our proposed method with the iterative methods reported
in [1] and [2], where the initial realization is the balanced realization. Our proposed method
achieves the minimum L2-sensitivity by only solving a fourth-degree polynomial equation
without iterative calculations, while both of the methods in [1] and [2] require many iterative
calculations to achieve the minimum L2-sensitivity. Furthermore, our proposed method can
guarantee that the L2-sensitivity surely converges to the theoretical minimum when using
conventional methods in [1] and [2].

4. Analytical solutions to the L2-sensitivity minimization problem for

digital filters with all second-order modes equal

This section reveals that the L2-sensitivity minimization problem can be solved analytically
if second-order modes are all equal. Furthermore, we clarify the general expression of the
transfer functions of digital filters with all second-order modes equal [14].

4.1. Analytical synthesis of the minimum L2-sensitivity realizations

We have discovered that there exist some digital filters whose minimum L2-sensitivity
realization is equal to the balanced realization. Such digital filters satisfy a sufficient
condition summarized in the following theorem:

Theorem 3. If all the second-order modes θi(i = 1, · · · , N) of a digital filter H(z) are equal, then

(Aopt, bopt, copt, dopt) = (Ab, bb, cb, db) (69)

that is, the minimum L2-sensitivity realization is equal to the balanced realization. ✷
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Proof: The general Gramians of the balanced realization are given by Eqs. (49) and (50),
respectively. If all the second-order modes θi(i = 1, · · · , N) satisfies

θi = θ (i = 1, · · · , N) (70)

the controllability and observability Gramians are expressed as

K
(b)
0 = W

(b)
0 = diag(θ, · · · , θ) = θI. (71)

Substituting Eq. (71) into Eqs. (49) and (50), the general Gramians are given by

K
(b)
i = W

(b)
i =

1

2
θ(A

i
b + (A

T
b )

i). (72)

We can express the general Gramians as K
(b)
i = W

(b)
i = Θi, which is defined by

Θi =
1

2
θ(A

i
b + (A

T
b )

i) (i = 0, 1, · · · ). (73)

Substituting K
(b)
i = W

(b)
i = Θi into Eq. (43) yields

∂S(P)

∂P
=(1 + tr(Θ0P

−1))Θ0 + 2
∞

∑
i=1

tr(ΘiP
−1)Θi

−P
−1

(

(1 + tr(Θ0P))Θ0 + 2
∞

∑
i=1

tr(ΘiP)Θi

)

P
−1. (74)

It is obvious that

∂S(P)

∂P

∣

∣

∣

∣

P=I

= 0 (75)

which means that the minimum L2-sensitivity realization can be synthesized without
any coordinate transformation to the balanced realization, that is, the initial realization.
Therefore, it is proved that the minimum L2-sensitivity is equal to the balanced realization.
✷

4.2. Class of digital filters with all second-order modes equal

In the previous subsection, we revealed that the L2-sensitivity minimization problem can be
solved analytically if second-order modes are all equal. We next clarify the class of digital
filters with all second-order modes equal. We have newly derived a general expression of
the transfer function of Nth-order digital filters with all second-order modes equal.
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4.2.1. General expression

In Ref. [14], we have newly derived a general expression of the transfer function of Nth-order
digital filters with all second-order modes equal.

Corollary 1. Let the second-order modes of an Nth-order digital filter H(z) be θi(i = 1, · · · , N).
The second-order modes of the transfer function θH(z) are given by |θ|θi(i = 1, · · · , N), where θ is
a nonzero real scalar.

Theorem 4. The transfer function of an Nth-order digital filter H(z) with all second-order modes
equal such as

θ1 = θ2 = · · · = θN−1 = θN (76)

can be expressed as the following form:

H(z) = θHAP(z) + ρ (77)

where θ is a nonzero real scalar, ρ is a real scalar, and HAP(z) is an Nth-order all-pass digital filter.
The second-order modes of the digital filter H(z) are given by

θi = |θ| (i = 1, · · · , N). (78)

✷

4.2.2. Frequency transformation

Furthermore, it is remarkable that the transfer function H(z) in Eq. (77) is generally obtained
by the frequency transformation on a first-order FIR prototype filter using an Nth-order
all-pass digital filter.

Remark 1. An Nth-order digital filter H(z) in Eq. (77) is obtained by the frequency transformation
such as

H(z) = HP(z)|z−1←HAP(z) (79)

where HP(z) = θz−1 + ρ is a first-order prototype FIR digital filter and HAP(z) is an Nth-order
all-pass digital filter. ✷

The variable substitution in Eq. (79) represents the frequency transformation, where HP(z)
is the prototype digital filter. Block diagrams of the prototype digital filter HP(z) and
transformed digital filter H(z) are shown in Fig. 4. These figures show that a block diagram
of the transformed digital filter H(z) can be obtained by simple substitution of the all-pass
digital filter HAP(z) into the unit delay z−1. Theorem 4 and Remark 1 give us the class of
digital filters with all second-order modes equal.
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Figure 4. Block diagrams of prototype digital filter HP(z) and transformed digital filter H(z).

4.3. Examples of digital filters with all second-order modes equal

There are many types of digital filters with all second-order modes equal. We can design
various digital filters by setting variables θ, ρ, and HAP(z).

4.3.1. The unit delay

The unit delay is the simplest example for digital filter with all second-order modes equal. It
is obvious that letting θ = 1, ρ = 0, and HAP(z) = z−1 in Eq. (77) yields the unit delay z−1.

4.3.2. First-order digital filters

Any first-order digital filter can be expressed in the form of Eq. (77). Consider a first-order
IIR digital filter given by

HI IR(z) =
b0 + b1z−1

1 + a1z−1
(80)

where b0 and b1 are numerator coefficients, a1 is a denominator coefficient. One can easily
show that Eq. (80) can be rewritten as the form of Eq. (77) where

θ =
b1 − a1b0

1 − a2
1

, ρ =
b0 − a1b1

1 − a2
1

, HAP(z)=
a1 + z−1

1 + a1z−1
. (81)

4.3.3. All-pass digital filters

It is obvious that all-pass digital filters are included in the class of digital filters expressed as
Eq. (77). The transfer function H(z) in Eq. (77) is an all-pass digital filter when we let θ = 1
and ρ = 0.

4.3.4. Multi-notch comb digital filters

The transfer function of an Nth-order multi-notch comb digital filter is given by
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HMN(z) =
1 + α

2

1 − z−N

1 − αz−N
. (82)

This filter has N notches at the frequency 2πk/N[rad] for k = 1, · · · , N. One can easily show
that Eq. (82) can be rewritten as the form of Eq. (77) where

θ =
1

2
, ρ =

1

2
, HAP(z) =

α − z−1

1 − αz−1
. (83)

4.4. Numerical examples

This subsection gives numerical examples of synthesis of the minimum L2-sensitivity
realizations for various types of digital filters with all second-order modes equal.

4.4.1. First-order FIR digital filters

Consider a first-order FIR digital filter HFIR(z) given by

HFIR(z) = 0.5 + 0.5z−1 (84)

of which frequency magnitude and phase responses are shown in Fig. 5 (a). The second-order
mode of the digital filter HFIR(z) is θ = 0.5. The balanced realization (Ab, bb, cb, db), which
is equal to the minimum L2-sensitivity realization, of HFIR(z) is derived as

[

Ab bb

cb db

]

=

[

0 0.7071

0.7071 0.5

]

(85)

and controllability Gramian K
(b)
0 and observability Gramians W

(b)
0 are calculated as

K
(b)
0 = W

(b)
0 = 0.5. (86)

4.4.2. First-order IIR digital filters

Consider a first-order IIR digital filter HIIR(z) given by

HIIR(z) =
0.25 + 0.25z−1

1 − 0.5z−1
(87)

of which frequency magnitude and phase responses are shown in Fig. 5 (b). The
second-order mode of the digital filter HIIR(z) is θ = 0.5. The balanced realization
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Figure 5. Frequency magnitude and phase responses of digital filters with all second-order modes equal.

(Ab, bb, cb, db), which is equal to the minimum L2-sensitivity realization, of HIIR(z) is derived
as

[

Ab bb

cb db

]

=

[

0.5 0.6124

0.6124 0.25

]

(88)

and controllability Gramian K
(b)
0 and observability Gramians W

(b)
0 are calculated as

K
(b)
0 = W

(b)
0 = 0.5. (89)
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4.4.3. All-pass digital filters

Consider a fourth-order all-pass digital filter HAP(z) given by

HAP(z) =
0.5184 − 1.9805z−1 + 3.3350z−2

− 2.7507z−3 + z−4

1 − 2.7507z−1 + 3.3350z−2
− 1.9805z−3 + 0.5184z−4

(90)

of which poles λp(p = 1, 2, 3, 4) are given by

{

λ1 = 0.9 exp(j0.2π), λ2 = 0.9 exp(−j0.2π),

λ3 = 0.8 exp(j0.2π), λ4 = 0.8 exp(−j0.2π)
(91)

and of which frequency magnitude and phase responses are shown in Fig. 5 (c). The
second-order modes θi (i = 1, 2, 3, 4) of the all-pass digital filter HAP(z) are given by

(θ1, θ2, θ3, θ4) = (1, 1, 1, 1). (92)

The balanced realization (Ab, bb, cb, db), which is equal to the minimum L2-sensitivity
realization, of HAP(z) is derived as

[

Ab bb

cb db

]

=













0.8144 −0.1106 0.2499 −0.5039 −0.0903
0.1599 0.4698 −0.7114 −0.1105 −0.4853

−0.1616 0.2997 0.6211 0.1062 −0.6978
0.5318 0.0448 0.0006 0.8453 0.0252

0.0481 0.8217 0.2137 −0.0894 0.5184













(93)

and controllability Gramian K
(b)
0 and observability Gramians W

(b)
0 are calculated as

K
(b)
0 = W

(b)
0 = diag(1, 1, 1, 1). (94)

4.4.4. Multi-notch comb digital filters

Consider a fourth-order multi-notch comb digital filter HMN(z) given by

HMN(z) =
0.9073 − 0.9073z−4

1 − 0.8145z−4
(95)

of which poles λp(p = 1, 2, 3, 4) are given by

{

λ1 = 0.95, λ2 = −0.95,

λ3 = j0.95, λ4 = −j0.95
(96)

Analytical Approach for Synthesis of Minimum L2-Sensitivity Realizations for State-Space Digital Filters
http://dx.doi.org/10.5772/52194

233



and of which frequency magnitude and phase responses are shown in Fig. 5 (d). The
second-order modes θi (i = 1, 2, 3, 4) of the multi-notch comb digital filter HMN(z) are given
by

(θ1, θ2, θ3, θ4) = (0.5, 0.5, 0.5, 0.5). (97)

The balanced realization (Ab, bb, cb, db), which is equal to the minimum L2-sensitivity
realization, of HMN(z) is derived as

[

Ab bb

cb db

]

=













0 0 0 0.8145 0.4102
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 −0.4102 0.9073













(98)

and controllability Gramian K
(b)
0 and observability Gramians W

(b)
0 are calculated as

K
(b)
0 = W

(b)
0 = diag(0.5, 0.5, 0.5, 0.5). (99)

5. Absence of limit cycles in the minimum L2-sensitivity realizations

This section proves the absence of limit cycles of the minimum L2-sensitivity realization
from the viewpoint of the controllability and observability Gramians. The minimum
L2-sensitivity realizations have freedom for orthogonal transformations. In other words,
minimum L2-sensitivity realizations are not unique. We select the minimum L2-sensitivity
realization without limit cycles among these minimum L2-sensitivity realizations. The
controllability and observability Gramians of the selected minimum L2-sensitivity realization
satisfy a sufficient condition for the absence of limit cycles [11].

5.1. Theoretical proof of the absence of limit cycles

For high-order digital filters, we synthesize the minimum L2-sensitivity realization by the
successive approximation methods in [1] or [2], for examples. For second-order digital
filters, we can synthesize the minimum L2-sensitivity realization by the closed form solutions
proposed in Section 3. For both cases, we can construct the minimum L2-sensitivity
realization without limit cycles.

We begin by reviewing the procedure to synthesize the minimum L2-sensitivity. We solve the
L2-sensitivity minimization problem in (32) adopting the balanced realization (Ab, bb, cb, db)
as an initial realization. We obtain the optimal positive definite symmetric matrix Popt. In
case of high-order digital filters, we can derive the optimal positive definite symmetric matrix
Popt by successive approximation method in [1] or [2], for example. In case of second-order
digital filters, we can derive the optimal positive definite symmetric matrix Popt analytically
as proposed in Section 3.
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We can give the diagonalization of the matrix Popt as follows:

Popt = R
T

BoptR. (100)

Since the matrix Popt is positive definite symmetric, it can be diagonalized by an orthogonal
matrix R, and Bopt is a positive definite diagonal matrix. The optimal coordinate
transformation matrix Topt is given by

Topt=P

1
2
optU

=R
T

B

1
2
optRU. (101)

In the above expression, U is an arbitrary orthogonal matrix. It means that the minimum
L2-sensitivity realizations exist infinitely for a given digital filter H(z). The minimum
L2-sensitivity realizations have freedom for orthogonal transformations. We show that the
minimum L2-sensitivity realization does not generate limit cycles if we specify the orthogonal
matrix as U = R

T , which yields

T̃opt = R
T

B

1
2
opt. (102)

Theorem 5. The minimum L2-sensitivity realization (Ãopt, b̃opt, c̃opt, d̃opt), obtained by the
coordinate transformation by T̃opt such as

(Ãopt, b̃opt, c̃opt, d̃opt) = (T̃
−1
opt AbT̃opt, T̃

−1
optbb, cbT̃opt, db) (103)

does not generate limit cycles. ✷

Proof: Under the coordinate transformation by T̃opt in Eq. (102), the controllability Gramian

K̃
(opt)
0 and the observability Gramian W̃

(opt)
0 of the minimum L2-sensitivity realization

(Ãopt, b̃opt, c̃opt, d̃opt) are expressed as

K̃
(opt)
0 = T̃

−1
optK

(b)
0 T̃

−T
opt

=B
−

1
2

opt RΘR
T

B
−

1
2

opt (104)

W̃
(opt)
0 = T̃

T
optW

(b)
0 T̃opt

=B

1
2
optRΘR

T
B

1
2
opt (105)

where Θ = diag(θ1, · · · , θN). From Eqs. (104) and (105), we can derive the relation between
the controllability and observability Gramians as follows:
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Figure 6. Synthesis of the minimum L2-sensitivity realization which does not generate limit cycles.

W̃
(opt)
0 =BoptK̃

(opt)
0 Bopt. (106)

Eq. (106) is equivalent to a sufficient condition for the absence of limit cycles proposed in
Ref. [6]. Therefore, the minimum L2-sensitivity realization (Ãopt, b̃opt, c̃opt, d̃opt) does not
generate limit cycles. ✷

Theorem 5 shows that we can synthesize the minimum L2-sensitivity realization without
limit cycles by choosing appropriate orthogonal matrix U. Fig. 6 shows the synthesis
procedure of the minimum L2-sensitivity realization which does not generate limit cycles.
The coefficient matrices of the minimum L2-sensitivity realization without limit cycles
(Ãopt, b̃opt, c̃opt, d̃opt) are given by

[

Ãopt b̃opt

c̃opt d̃opt

]

=





B
−

1
2

opt RAbR
T

B

1
2
opt B

−

1
2

opt Rbb

cbR
T

B

1
2
opt d



 . (107)

5.2. Numerical examples

We present numerical examples to demonstrate the validity of our proposed method. We
synthesize the minimum L2-sensitivity realizations of second-order and fourth-order digital
filters which do not generate limit cycles.
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Figure 8. Zero-input responses of H(z) in Eq. (108).

5.2.1. Second-order digital filters

Consider a second-order narrow-band band-pass digital filter H(z) given by

H(z) =
0.0316 + 0.0602z−1 + 0.0316z−2

1 − 1.4562z−1 + 0.81z−2
. (108)

The poles of the transfer function H(z) in Eq. (108) are 0.9 exp(±j0.2π), which are very close
to the unit circle. The frequency response of the digital filter H(z) in Eq. (108) is shown in
Fig. 7. The coefficient matrices of the minimum L2-sensitivity realization which is free of
limit cycle is derived by Eq. (107) as follows:
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[

Ãopt b̃opt

c̃opt d̃opt

]

=





0.7281 0.5229 0.4146
−0.5351 0.7281 −0.1282

0.1282 −0.4146 0.0316



 . (109)

The controllability Gramian K
(opt)
0 and the observability Gramian W

(opt)
0 are given as follows:

K̃
(opt)
0 =

[

0.5100 −0.0870
−0.0870 0.4901

]

(110)

W̃
(opt)
0 =

[

0.4901 −0.0870
−0.0870 0.5100

]

. (111)

We have to note that the controllability Gramian K̃
(opt)
0 and the observability Gramian W̃

(opt)
0

satisfy the sufficient condition of the absence of limit cycles given in Eq. (106) with

Bopt = diag(0.9803, 1.0201). (112)

Therefore, (Ãopt, b̃opt, c̃opt, d̃opt) is the minimum L2-sensitivity realization without limit
cycles.

We demonstrate the absence of limit cycles in the minimum L2-sensitivity realization by
observing its zero-input response. We calculate the zero-input responses of the minimum
L2-sensitivity realization and the dierct form II, setting the initial state as x(0) = [0.8 − 0.8]T .
We let the dynamic range of signals to be [−1, 1) and adopt two’s complement as the overflow
characteristic. The zero-input responses are shown in Fig. 8(a) and 8(b). We assume that each
filter coefficient and signal have 16[bits] fixed-point representation, of which lower 14[bits]
are fractional bits. In this numerical example, the overflow of the state variables occurs in
both cases. It is desirable that the effect of the overflow is decreasing since the digital filter
H(z) in Eq. (108) is stable. For the minimum L2-sensitivity realization synthesized by our
proposed method, the state variables x1(n) and x2(n) converge to zero after the overflow, as
shown in Fig. 8(a). Therefore, there are no limit cycles. On the other hand, for the direct form
II, a large-amplitude autonomous oscillation is observed as shown in Fig. 8(b). Therefore,
the direct form II generates the limit cycles.

5.2.2. High-order digital filters

We can demonstrate the validity of the proposed method for also high-order digital filters.
Consider a fourth-order band-pass digital filter H(z) given by

H(z) =
0.0178 − 0.0252z−1 + 0.0173z−2

− 0.0252z−3 + 0.0178z−4

1 − 2.6977z−1 + 3.5410z−2
− 2.3340z−3 + 0.7497z−4

(113)

The frequency response of the digital filter H(z) in Eq. (113) is shown in Fig. 9. We obtain
the limit cycle free minimum L2-sensitivity realization (Ãopt, b̃opt, c̃opt, d̃opt) by successive
approximation method:

Digital Filters and Signal Processing238



[

Ãopt b̃opt

c̃opt d̃opt

]

=













0.6028 0.6394 0.1512 0.0655 0.0344
−0.6360 0.7461 −0.0655 −0.0297 −0.0153
−0.0806 −0.0283 0.6028 0.6360 0.3950

0.0283 0.0118 −0.6394 0.7461 −0.1423

0.3950 0.1423 0.0344 0.0153 0.0178













. (114)

The controllability Gramian K̃
(opt)
0 and the observability Gramian W̃

(opt)
0 are given as follows:

K̃
(opt)
0 =









0.3531 −0.0004 0.2470 0.0155
−0.0004 0.3563 −0.0157 0.2470

0.2470 −0.0157 0.5309 0.0006
0.0155 0.2470 0.0006 0.5264









(115)

W̃
(opt)
0 =









0.5309 −0.0006 0.2470 0.0157
−0.0006 0.5264 −0.0155 0.2470

0.2470 −0.0155 0.3531 0.0004
0.0157 0.2470 0.0004 0.3563









. (116)

We have to note that the controllability Gramian K̃
(opt)
0 and the observability Gramian W̃

(opt)
0

satisfy the sufficient condition of the absence of limit cycles given in Eq. (106) with

Bopt = diag(1.2261, 1.2155, 0.8156, 0.8227). (117)

Therefore, (Ãopt, b̃opt, c̃opt, d̃opt) is the minimum L2-sensitivity realization without limit
cycles.

We demonstrate the absence of limit cycles in the minimum L2-sensitivity realization
by observing its zero-input response. We calculate the zero-input responses of the
minimum L2-sensitivity realization and the direct form II, setting the initial state as x(0) =
[0.9 0.9 0.9 0.9]T . We let the dynamic range of signals to be [−1, 1) and adopt two’s
complement as the overflow characteristic. The zero-input responses are shown in Fig.
10(a) and 10(b). We assume that each filter coefficient and signal have 16[bits] fixed-point
representation, of which lower 13[bits] are fractional bits. In this numerical example, the
overflow of the state variables occurs in both cases. Also in this case, we can confirm that
the minimum L2-sensitivity realization does not generate limit cycles. On the other hand, a
large-amplitude autonomous oscillation is observed in the zero-input response of the direct
form II.
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Figure 9. Frequency Response of digital filter H(z) in Eq. (113).
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(a) Minimum L2-sensitivity realization
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Figure 10. Zero-input responses of digital filter H(z) in Eq. (113).

6. Conclusions

This chapter presents analytical approach for synthesis of the minimum L2-sensitivity
realizations for state-space digital filters. The contributions of this chapter are summarized
as follows.

Section 3 presents closed form solutions to the L2-sensitivity minimization problem for
second-order state-space digital filters. We have shown that the L2-sensitivity is expressed
by a linear combination of exponential functions, and we can synthesize the minimum
L2-sensitivity realization by only solving a fourth degree polynomial equation, which can
be solved analytically.

Section 4 reveals that the L2-sensitivity minimization problem can be solved analytically for
arbitrary filter order if second-order modes are all equal. We derive a general expression of
the transfer function of digital filters with all second-order modes equal. We show that the
general expression is obtained by a frequency transformation on a first-order prototype FIR
digital filter.
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Section 5 proves the absence of limit cycles of the minimum L2-sensitivity realization from
the view point of relationship between the controllability and observability Gramians. The
minimum L2-sensitivity realizations were originally known to be low-coefficient sensitivity
filter structures. We have succeeded in discovering the novel property of the minimum
L2-sensitivity realizations.
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