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1. Introduction

Plate motion and associated tectonics explain the location of magmatic systems along plate
boundaries [1], however, they cannot give satisfactory explanations of the origin of intra‐
plate volcanism. Intraplate magmatism such as that which created the Hawaiian Islands
(Figure 1, hereafter for the location of geographical places the reader is referred to Figure 1)
far from plate boundaries is conventionally explained as a result of a large, deep-sourced,
mantle-plume [2-4]. Less volumetric magmatic-systems also occur far from plate margins in
typical intraplate settings with no evidence of a mantle-plume [5-7]. Intraplate volcanic sys‐
tems are characterized by small-volume volcanoes with dispersed magmatic plumbing sys‐
tems that erupt predominantly basaltic magmas [8-10] derived usually from the mantle with
just sufficient residence time in the crust to allow minor fractional crystallization or wall-
rock assimilation to occur [e.g. 11]. However, there are some examples for monogenetic
eruptions that have been fed by crustal contaminated or stalled magma from possible shal‐
lower depths [12-19]. The volumetric dimensions of such magmatic systems are often com‐
parable with other, potentially smaller, focused magmatic systems feeding polygenetic
volcanoes [20-21]. These volcanic fields occur in every known tectonic setting [1, 10, 22-28]
and also on other planetary bodies such as Mars [29-33]. Due to the abundance of monogen‐
etic volcanic fields in every tectonic environment, this form of volcanism represents a local‐
ized, unpredictable volcanic hazard to the increasing human populations of cities located
close to these volcanic fields such as Auckland in New Zealand [34-35] or Mexico City in
Mexico [36-37].

Importantly, research on monogenetic volcanoes and volcanic fields is focused on their
“source to surface” nature, i.e. once the melt is extracted from the source it tends to ascend
to the surface [11, 16-17, 38]. The rapid melt generation and short eruptive history of volca‐
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noes fed by these magmas mean they can be used as ‘probes’ of various processes, particu‐
larly to detect short- and long-term changes occurring during emplacement of a single vent
and/or a volcanic field. They also provide evidence of the evolution of magmatic systems
that fed numerous individual small-volume volcanoes over time spans of millions of years
[39-44]. This research has led to an understanding of the processes of melt extraction [17,
45-46], interactions in the lithospheric mantle [47-49], ascent within the lower to middle
crust [16, 50] and in the shallow crust region [10, 51-54]. Other studies have elucidated
plumbing and feeder systems of monogenetic volcanoes [8-9, 55-57], eruption mechanisms
[58-61] and associated volcanic hazards [34, 62-67] as well as surface processes [68-71] and
long-term landscape evolution [72-74].

Figure 1. Overview map of the location of the volcanic field and zones mentioned in the text. The detailed location of
specific volcanic edifices mentioned in the text can be downloaded as a Google Earth extension (.KMZ file format)
from http://www.intechopen.com/.

Eruption of magma on the surface can be interpreted as the result of the dominance of magma
pressure over lithostatic pressure [50, 75-76]. On the other hand, freezing of magma en route to
the surface are commonly due to insufficient magma buoyancy, where the lithostatic pressure
is larger than the magma pressure, or insufficient channelling/focusing of the magma [50,
76-78]. Once these small-volume magmas (0.001 to 0.1 km3) intrude into the shallow-crust, they
are vulnerable to external influences such as interactions with groundwater at shallow depth
[79-82]. In many cases, the eruption style is not just determined by internal magma properties,
but also by the external environmental conditions to which it has been exposed. Consequent‐
ly, the eruption style becomes an actual balance between magmatic and environmental factors
at a given time slice of the eruption. However, a combination of eruption styles is responsible
for the formation of monogenetic volcanoes with wide range of morphologies, e.g. from coni‐
cal-shaped to crater-shaped volcanoes. The morphology that results from the eruption is often
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connected to the dominant eruptive mechanisms, and therefore, it is an important criterion in
volcano classifications. Diverse sources of information regarding eruption mechanism, edifice
growth and hazards of monogenetic volcanism can be extracted during various stages of the
degradation when the internal architecture of a volcano is exposed. Additionally, the rate and
style of degradation may also help to understand the erosion and sedimentary processes act‐
ing on the flanks of a monogenetic volcano. The duration of the construction is of the orders of
days to decades [83-84]. In contrast, complete degradation is several orders of magnitude slow‐
er process, from ka to Ma [68, 71, 73]. Every stage of degradation of a monogenetic volcano
could uncover important information about external and internal processes operating at the
time of the formation of the volcanic edifice. This information is usually extracted through
stratigraphic, sedimentary, geomorphic and quantitative geometric data from erosion land‐
forms. In this chapter, an overview is presented about the dominant eruption mechanism as‐
sociated with subaerial monogenetic volcanism with the aim of understanding the syn- and
post-eruptive geomorphic and morphometric development of monogenetic volcanoes from
regional to local scales.

2. Monogenetic magmatic systems

Melt production from the source region in the mantle is triggered by global tectonic process‐
es such as converging plate margins, e.g. Taupo Volcanic Zone in New Zealand [85-88] and
in the Carpathian-Pannonian region in Central Europe [89-93] or diverging plate margins,
for example sea-floor spreading along mid-oceanic ridges [94-95]. Melting also occurs in
sensu stricto “convection plumes” or “hot spots” [2, 4, 96], which could alternatively result
from small-scale, mantle wedge-driven convection cells [97]. This is often a passive effect of
topographic differences between thick, cratonic and thin, oceanic lithosphere, as suspected
by numerical modelling studies [97-101].

Typical ascent of the magma feeding eruptions through a monogenetic volcano starts in the
source region by magma extraction from melt-rich bands. These melt-rich bands are com‐
monly situated in a low angle (about 15–25°) to the plane of principal shear direction intro‐
duced by deformation of partially molten aggregates [95, 102-103]. The degree of efficiency
of melt extraction is dependent on the interconnectivity, surface tension and capillary effect
of the solid grain-like media in the mantle, which are commonly characterized by the dihe‐
dral angle between solid grains [104-105]. When deformation-induced strain takes place in a
partially molten media, it increases the porosity between grains and triggers small-scale fo‐
cusing and migration of the melt [104]. With the continuation of local shear in the mantle,
the total volume of melt increases and enhances the magma pressure and buoyancy until it
reaches the critical volume for ascent depending on favourable tectonic stress setting, depth
of melt extraction and overlying rock (sediment) properties [16, 42]. The initiation of magma
(crystals + melt) ascent starts as porous flow in deformable media and later transforms into
channel flow (or a dyke) if the physical properties such as porosity/permeability of the host
rock are high enough in elastic or brittle rocks in the crust [50, 75, 106-107]. The critical vol‐
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ume of melt essential for dyke injections is in the range of a few tens of m3 [76], a volume
which is several orders of magnitude less than magma batches feeding eruptions on the sur‐
face, usually ≥0.0001 km3 [39, 108]. An increase in melt propagation distance is possible if
small, pocket-fed initial dykes interact with each other [50, 76], which is strongly dependent
on the direction of maximum (σ1) and least principal stresses (σ3), both in local and regional
scales [109] and the vertical and horizontal separation of dykes [50, 76, 110]. These dykes
move in the crust as self-propagating fractures controlled by the density contrast between
the melt and the host rock from the over-pressured source zone [50]. The dykes could re‐
main connected with the source region or propagate as a pocket of melt in the crust
[111-112]. The geometry of such dykes is usually perpendicular to the least principal stress
directions [108, 111]. The lateral migration of the magma en route is minimal in comparison
with its vertical migration. This implies the vent location at the surface is a good approxima‐
tion to the location of melt extraction at depth, i.e. the magma footprint [42, 54, 108]. The
important implication of this behaviour is that interactions between magma and pre-existing
structures are expected within the magma footprint area [54, 108]. Correlation between pre-
existing faults and dykes are often recognized in volcanic fields [10, 53, 108, 113-115]. The
likelihood of channelization of magma by a pre-existing fracture such as a fault, is preferable
in the case of high-angle faults, i.e. 70–80°, and shallow depths [53] when the magma pres‐
sure is less than the tectonic strain taken up by faulting [42, 53].

These monogenetic eruptions have a wide variation in eruptive volumes. Volumetrically,
two end-members types of volcanoes have been recognized [5, 109, 116]. Large-volume (≥1
km3 or polygenetic) volcanoes are formed by multiple ascent of magmas that use more or
less the same conduit system over a long period of time usually ka to Ma and have complex
phases of construction and destruction [86, 117-119]. The spatial concentration of melt as‐
cents, and temporally the longevity of such systems are usually caused by the formation of
magma storage systems at various levels of the crust beneath the volcanic edifices [120-122].
In this magma chamber stalled magma can evolve by differentiation and crystallization in
ka time scales [123]. On the other hand, a small-volume (≤1 km3 or monogenetic) volcano is
referred to as “[it] erupts only once” [e.g. 116]. The relationship between large and small vol‐
ume magmatic systems and their volcanoes is poorly understood [1, 5, 109, 124-127]. Never‐
theless, there is a wide volumetric spectrum between small and large (monogenetic and
polygenetic) volcanoes and these two end-members naturally offer the potential for transi‐
tion types of volcanoes to exist. An ascent event is not always associated with a single batch
of magma, but commonly involves multiple tapping events (i.e. multiple magma batches),
creating a diverse geochemical evolution over even a single eruption [9, 11, 16-17, 45, 128].
Multiple melt batches involved in a single event may be derived from the mantle directly or
from some stalling magma ponds around high density contrast zones in the lithosphere
such as the upper-mantle/crust boundary [9, 128] and/or around the ductile/brittle boundary
zone in the crust [16].

A volcanic eruption on the surface is considered to be a result of a successful coupling mech‐
anism between internal processes, such as melt extraction rate and dyke interaction en-route
to the surface [50, 76, 110], and external processes, such as local and regional stress fields in
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the crust [42, 109]. Therefore, the spatial and temporal location of a volcanic event represents
the configuration of the magmatic system at the time of the eruption. However, mantle-de‐
rived, usually primitive magmas feeding monogenetic magmatic systems are uncommon
and rarely erupt individually. They tend to concentrate in space forming groups of individ‐
ual volcanoes or clusters [7, 24, 129-130], and in time constitute volcanic cycles [39, 42,
131-132]. The spatial component of volcanism is dependent on the susceptibility of magma
to be captured by pre-existing structures such as faults [10, 53-54], and the regional stress
field at the time of the melt ascent [7, 43, 109, 133]. Temporal controls are also significantly
influenced by internal and external forces. The monogenetic magmatic systems can be classi‐
fied into two groups [131, 134]. The volume-predictable systems [134-135] are internally-
controlled, i.e. it is magmatically-controlled [42]. In this system, an eruption on the surface is
a direct result of successful separation of melt from a heterogeneous mantle, which is inde‐
pendent from the tectonics. Therefore, the total volume of magma erupting at the surface is
usually a function of magma production rates of the system and repose time since the previ‐
ous eruption [42]. These magmatic systems are usually characterized by high magma flux,
promoting frequent dyke injections and high magmatic contribution to local extensional
strain accumulation. These could trigger earthquakes, faulting and surface deformations,
such as ruptures, associated with the high rates of magma intrusions [111, 136] similar to the
intrusion at tensional rift zones [e.g. 137-138]. Magma ascent is often dominated by the re‐
gional-scale direction of stress rather than the location of pre-existing faults and topography
[111]. In contrast, the time-predictable magmatic system [131, 139] is a passive by-product of
tectonic shear-triggered melt extraction [42, 95, 103, 131]. Without tectonic forces, the melt
would not be able to be extracted from partially molten aggregates [42]. Consequently, this
magma generation process is externally- or tectonically-controlled [42]. The overall magma
supply of these volcanic fields is generally low. Magmatic pressure generated by the magma
injections are commonly suppressed by lithostatic pressure, resulting in a greater chance of
interaction between magma and pre-existing structures in the shallow crust [53, 111, 140].
Dyke capturing commonly takes place if the orientation of the dyke plane is not parallel
with the direction of maximum principal stress, causing vent alignments and fissure orienta‐
tion to not always be perpendicular with the least principal stress direction [42, 54].

Restriction of magma ascent to a small area usually results in monogenetic volcanoes form‐
ing volcanic fields in a well-defined geographic area. These eruptions normally take place
from hours to decades resulting in the accumulation of small-volume eruptive products on
the surface predominantly from basaltic magmas. However, a monogenetic volcanic field
could experience monogenetic eruptions over time scales of Ma [5, 39, 141-142] and the life‐
span is characterized by waxing and waning stages of volcanism and cyclic behaviour [39,
108]. In a single monogenetic volcanic field, tens to thousands of individual volcanoes may
occur [143] with predominantly low SiO2 content eruptive products ranging from ca. 40 wt%
up to 60 wt% [16, 40, 128, 144-146]. However, monogenetic volcanism does not depend on
the chemical composition because there are similar small-volume monogenetic volcanoes
that have been erupted from predominantly silica-rich melt such as Tepexitl tuff ring, Ser‐
dán-Oriental Basin, Mexican Volcanic Belt, Mexico [147] or the Puketarata tuff ring, Taupo
Volcanic Zone, New Zealand [148].
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3. Construction of monogenetic volcanoes

The ascent of magma from source to surface usually involves thousands of interactions be‐
tween external and internal processes, thus the pre-eruptive phase works like an open sys‐
tem. Once single or multiple batch(es) of magma start their ascent to the surface, there is
continuous degassing and interactions with the environment at various levels en route. On
the surface, the ascending magma ascent can feed a volcanic eruption that can be explosive
or effusive. Important characteristics of the volcanic explosion are determined at shallow
depth (≤1–2 km) by the balance between external and internal factors such as chemical com‐
position or availability of external water. The volcanic eruptions are usually characterised by
discrete eruptive and sedimentary processes that are important entities of the formation and
emplacement of a monogenetic vent itself.

3.1. Internal versus external-driven eruptive styles

The current classification of volcanic eruptions is based mainly on characteristics such as
magma composition, magma/water mass ratio, volcanic edifice size and geometry, tephra
dispersal, dominant grain-size of pyroclasts and (usually eye-witnessed) column height [e.g.
149]. If the ascending melt or batches of melts reach the near-surface or surface region, it will
either behave explosively or intrusively/effusively. Explosive magma fragmentation is trig‐
gered either by the dissolved magmatic volatile-content [150] or by the thermal energy to
kinetic energy conversion and expansion during magma/water interactions [151-152], pro‐
ducing distinctive eruption styles. These eruption styles can be classified on the basis of the
dominance of internal or external processes.

Internally-driven eruptions are promoted by dissolved volatiles within the melt that exsolve
into a gas-phase during decompression of magma [153-155]. The volatiles are mainly H2O
with minor CO2, the latter exsolving at higher pressure and therefore greater depths than
H2O [e.g. 156]. Expansion of these exsolved gases to form bubbles in the magma suddenly
lowers the density of the rising fluid, causing rapid upward magma acceleration and even‐
tually fragmentation along bubble margins [150, 155, 157-159]. The growth of gas bubbles by
diffusion and decompression in the melt occurs during magma rise, until the volume faction
exceeds 70–80% of the melt, at which point magma fragmentation occurs [160-161]. Magmas
with low SiO2 contents, such as basalts and undersaturated magmas have low viscosity, al‐
lowing bubbles to expand easily in comparison to andesitic and rhyolitic magmas. Thus
these low-silica magmas generate mild to moderate explosive types of eruptions such as Ha‐
waiian [e.g. 162], Strombolian [e.g. 153], violent Strombolian [e.g. 163] and in very rare in‐
stances sub-Plinian types [e.g. 164, 165]. There is a conceptual difference between Hawaiian
and Strombolian-style eruptions because in the former case magmatic gases rise together
with the melt [154], whereas in Strombolian-style eruptions an essentially stagnant magma
has gas slugs that rise and bubble through it – generating large gas slug bursts and foam-
collapse at the boundary of the conduit [153, 166]. According to the rise speed-dependent
model, bubbles form during magma ascent [150], while in the case of the foam collapse
model, bubbles up to 2 m in diameter are generated deeper, in the upper part of a shallow
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magma chamber, based on acoustic measurements at the persistently active Stromboli volca‐
no in the Aeolian Islands, Italy [153].

Figure 2. Schematic cross-section through a spatter cone showing the typical volcano-sedimentary processes and ge‐
omorphologic features.

A Hawaiian eruption results from one of the lowest energy magma fragmentation that are
driven mostly by the dissolved gas content of the melt, which produces lava fountaining
along fissures or focussed fountains up to 500 m in height [150, 162, 167-168]. The lava foun‐
taining activity ejects highly deformable lava ‘rags’ at about 200–300 m/s exit velocity with
an exit angle that typically ranges between 30–45° from vertical [169-170]. The nature and
the distribution of the deposits associated with lava fountaining depend on the magma flux
and the magma volatile content [162, 171-172]. Magmatic discharge rates during lava foun‐
tain activity range typically between 10 and 105 kg/s [162, 166]. The duration of typical lava
fountaining activity may last only days or up to decades. An example for the former is Ki‐
lauea Iki, which erupted in 1959 [167, 170], while an example for the latter is Pu‘u ‘O‘o-Ku‐
paianaha, which began to erupt in 1983 [173]. Both are located on the Kilauea volcano in the
Big Island of Hawaii, USA. Pyroclasts generated by lava fountaining are coarsely fragment‐
ed clots of magma which do not travel far from and above the vent [170-171]. They com‐
monly land close to the vent and weld (i.e. mechanical compaction of fluid pyroclasts due to
overburden pressure), agglutinate (i.e. flattening and deformation of fluid pyroclasts) or co‐
alesce (i.e. homogenously mixed melt formed by individual fluidal clots) due to the high
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emplacement temperature of fragmented lava lumps on the depositional surface and/or the
fast burial of lava fragments, which can retain heat effectively for a long time [171-172, 174].
The degree of welding and agglutinating of lava spatter is dependent on the [170-172,
174-175]:

1. accumulation rate and thickness of the deposit,

2. duration of eruption,

3. lava fountain height,

4. initial temperature determined by the magma composition,

5. heat loss rate, as well as

6. the grain size.

As a result of the limited energy involved in this type of magma fragmentation, the coarsely
fragmented lava clots are transported ballistically, while the fines are transported by a low
eruption column, as in the case of Plinian eruptions [162, 176]. The fragments tend to accu‐
mulate in proximal position, forming a cone-shaped pile, a spatter cone (Figure 2), which is
built up by alternation of lava spatter and lava fountain-fed flows <100 m in diameter and a
few tens of meters in height [170-172, 177-179].

Based on the grain size and the limited areal dispersion of tephra associated with typical
Strombolian-style eruptions, it is considered a result of a mild magma fragmentation [149,
155]. However, larger volumes of tephra are produced than Hawaiian-style eruptions [159,
180]. Tephra production is derived from relatively low, non-sustained eruption columns
[111, 153, 158, 181]. Individual explosions last <1 min and eject 0.01 to 100 m3 of pyroclasts to
<200 m in height with an exit velocity of particles of 3–100 m/s [180]. The magma discharge
rate of 103 to 105 kg/s is based on historical examples of volcanoes erupted from water-rich,
subduction-related magma [156]. The near surface fragmentation mechanism and limited
energy released in a single eruption results in coarse lapilli-to-block-sized pyroclasts, pre‐
dominantly between 1 and 10 cm in diameter, accumulating in close proximity to the vent
[84, 182-183]. The exit velocity and angle of ballistic trajectories of particles of 20–25° deter‐
mines the maximum height of the edifice and produces a limited size range of clasts in these
volcanic edifices [184-185]. The repetition of eruptions produces individual, moderately-to-
highly vesicular pyroclasts, called scoria or cinder, that do not agglutinate in most situa‐
tions, but tend to avalanche downward forming talus deposits on the flanks of the growing
cone [185-187]. Due to the mildly explosive nature of the eruptions, and the relatively stable
pyroclast exit angles and velocity, a well-defined, conical-shaped volcano is constructed and
is commonly referred to as a scoria or cinder cone (Figure 3). These cones have a typical bas‐
al diameter of 0.3 to 2.5 km, and they are up to 200 m high [153, 179, 182, 185, 188-189].

A more energetic magma fragmentation than is normally associated with Strombolian-activ‐
ity cause violent Strombolian eruptions [163, 190]. In the ‘normal’ Strombolian-style erup‐
tions, the magma is separated by gas pockets, which rise periodically in the magma through
the conduit forming a coalescence of gas pockets, or a slug flow regime [153]. When the gas
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segregation increases, the eruptions become more explosive due to episodic rupture of liq‐
uid films of large bubbles, causing alternation of the flow regime from slug flow to churn
flow, which is a typical characteristic of the violent Strombolian activity [163]. Based on nu‐
merical simulations, the increases in the gas flux, which creates the “churn flow”, is caused
by factors such as an increased length of conduit, the change in magma flux from 104 to 105

kg/s, the gas content, and/or the ascent speed variations that allow magma to vesiculate var‐
iably within the conduit [156, 163, 191]. Larger energy release during more explosive erup‐
tions produces a higher degree of fragmentation, and hence finer-grained, ash-lapilli
dominated beds [191], as well as higher eruption columns (<10 km) that disperse tephra effi‐
ciently over longer distances [83, 163].

Figure 3. Schematic cross-section through a typical scoria cone showing the typical volcano-sedimentary processes
and geomorphologic features. Abbreviations: PDC – pyroclastic density current, ph – phreatomagmatic eruption.

Externally-driven fragmentation occurs when the melt interacts with external water leading to
phreatomagmatic or Surtseyan-style eruptions [152, 192-195]. These explosive interactions
take place when magma is in contact with porous- or fracture-controlled groundwater aqui‐
fers or surface water [151, 194, 196-202]. In special cases when explosive interactions take
place between lava and lake, sea water or water-saturated sediments, littoral cone [203-204]
and rootless cone [205-208] are generated. Processes and eruption mechanisms associated
with these eruptions are not discussed in the present chapter. The evidences of the role of
water in the formation of tuff rings and maar have been proofed by many studies [e.g. 152,
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201, 209]. However, there are similar eruptive processes and eruption styles have been de‐
scribed from eruptions of silica-undersaturated magmas (e.g. foidite, melilitite and carbona‐
tite) in environments, where the role of external water on the eruptive style is limited [e.g.
210-212].

Figure 4. Schematic cross-sections through a maar-diatreme (top figure) and a tuff ring (bottom figure) showing the
typical volcano-sedimentary processes and geomorphologic features. Note that the left-hand side represents the char‐
acteristics of a maar-diatreme volcano formed in a hard-substrate environment, while the right-hand side is the soft
rock environment. Abbreviations: PDC – pyroclastic density current.
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Phreatomagmatic eruptions (rarely called Taalian eruptions) are defined by some as being in
subaerial environments [194]. These eruptions may produce a series of volcanic craters
which vary in size between 0.1 km and 2.5 km in diameter [213]. The largest ones are very
likely to be generated by multiple eruptions forming amalgamated craters such as Lake Cor‐
agulac maar, Newer Volcanics Province, south‐eastern Australia [214] and/or formed in spe‐
cific environment such as Devil Mountain maar, Seward Peninsula, Alaska [215]. The
fragmentation itself is triggered by a molten fuel-coolant interaction (MFCI) processes re‐
quiring conversion of magmatic heat to mechanical energy [151, 193-194, 216-220]. The
MFCI proceeds as follows [151, 220]:

1. coarse premixing of magma and water producing a vapour film between fuel and cool‐
ant,

2. collapse of the vapour film, generating fragmentation of magma and producing shock
waves,

3. rapid expansion of superheated steam to generate thermohydraulic explosions, as well
as

4. post-eruption (re)fragmentation of molten particles.

In some cases the MFCI process is self-driven and, after the initial interactions, the fragmen‐
tation does not involve any other processes [194, 196, 217, 221-222]. The series of eruptions
may excavate a crater that cuts into the pre-existing topography, forming a hole-in-the-
ground structure called a maar (Figure 4) [152]. If the explosion locus stays at shallow
depths, the resulting volcano is tuff ring, which has a crater floor normally near the pre-
eruptive surface (Figure 4) [223]. Both eruptions result in a surface accumulation of tephra
by fallout and pyroclastic density currents, mostly base surges, forming a usually circular
ejecta ring around the crater [51, 58, 195, 200, 202, 224-228]. These eruptions produce pyro‐
clastic deposits that have a diversity of juvenile pyroclasts (e.g. various shape, grain-size, ve‐
sicularity and microlite content) and variety of accidental lithic clasts derived from the
underlying strata [52, 79, 229-231]. Pyroclastic successions of phreatomagmatic volcanoes
can form coarse grained, chaotic breccias related to vent construction, conduit wall collapse
or migration, as well as well-stratified, lapilli and ash-dominated beds with various degrees
of sorting and large ballistically ejected, fluidal-shaped juvenile bombs or angular to heavily
milled accidental lithic blocks [41, 59, 81, 223, 232-237]. Due to density current transportation
of pyroclasts, the accumulating deposits are stratified and are commonly cross- or dune-
bedded [81, 229-230, 238-240]. The craters of most of these phreatomagmatic volcanoes are
filled by either post-maar eruptive products such as solidified lava lakes commonly show‐
ing columnar jointing and/or intra-crater scoria/spatter cones [81, 241-244], or non-volcanic
sediments, such as lacustrine alginate, volcaniclastic turbidite deposits [195, 245-250].

Surtseyan-style eruptions occur when the external water is ‘technically’ unlimited during the
course of the eruption when eruptions occur through a lake or the sea [222, 251-254]. In con‐
trast with phreatomagmatic eruptions, Surtseyan-style eruptions require a sustained bulk
mixing of melt and coolant, which generates more abrupt and periodic eruptions [194, 196].
During Surtseyan-style eruptions, water is flashed to steam which tears apart large fragments
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of the rising magma tip [222, 252, 254-256]. This process is far less efficient than self-sustained
typical MFCI and causes a near continuous ejection of tephra [194]. This tephra feeds subaqu‐
eous pyroclastic density currents, which build up a subaqueous volcanic pile that may emerge
to become an island in the course of the eruption [222, 253-254, 257-259], as was the case dur‐
ing the well-documented eruption of Surtsey tuff cone, Vestmannaeyjar Islands, Iceland in
1963–1967 AD [260-261]. After emergence, a conical volcano can cap the edifice and build a
typical steep-sided tuff cone (Figure 5). The tuff cone gradually grows by rapidly expelled and
frequent (every few seconds) tephra-laden jets that eject muddy, water-rich debris, which may
initiate mass flows later on in the inner-crater wall and on the outer, steepening flank of the
growing cone [253, 260, 262-265]. These shallow explosions eventually produce a cone form, al‐
though it often has irregular geometry with a breached or filled crater by late-stage lava flows
or asymmetric crater rim [223, 234, 259, 264]. The diameters of craters of these tuff cones are
comparable to the tuff rings and maars, but the elevation of the crater rims are higher, reach‐
ing up to 300 m [223]. Monogenetic volcanoes that formed by Surtseyan-eruptions typically
have no diatreme below their crater, however, some recent research suggested that diatremes
may exist beneath a few tuff cones, such as Saefell tuff cone, south Iceland [266] or Costa Giar‐
dini diatreme, Iblean Mountains, Sicily [267].

Figure 5. Schematic cross-section through a tuff cone showing the typical volcano-sedimentary processes and geo‐
morphologic features. Abbreviations: PDC – pyroclastic density current, SEDC – subaqueous eruption-fed density cur‐
rent, SETC – subaqueous eruption-fed turbidity current, LFDC – lava flow-fed density current
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3.2. Spectrum of basaltic monogenetic volcanoes

As documented above, five types of monogenetic volcanoes are conventionally recognized
[177, 179, 223]:

1. lava spatter cones,

2. scoria or cinder cones,

3. maars or maar-diatremes,

4. tuff rings and

5. tuff cones.

This classification is primarily based on the morphological aspects and dominant eruption
styles of these volcanoes. Furthermore, there is a strong suggestion that a given eruption style
results in a given type of volcanic edifice, e.g. Strombolian-style eruptions create scoria cones
[e.g. 111, 182]. The conventional classification also fails to account for the widely recognized di‐
versity or transitions in eruption styles that may form ‘hybrid’ edifices, e.g. intra-maar scoria
cones with lava flows or scoria cones truncation by late stage phreatomagmatism [229, 244,
268-271]. The variability in the way a monogenetic volcano could be constructed also means
that the conventional classification hides important details of complexity that may be impor‐
tant from volcanic hazard perspective (e.g. a volcano built up by initial phreatomagmatic erup‐
tions and later less dangerous Strombolian eruptions). The diversity of pyroclastic successions
relates to fluctuation of eruption styles that may be triggered by changing conduit conditions,
such as geometry, compositional change, and variations in both magma and/or ground water
supply [41, 52, 150, 163, 272-273]. Due to the abundance of intermediate volcanoes, a classifica‐
tion scheme is needed, where the entire eruptive history can be parameterized numerically.

In the present study, the construction of a small-volume volcano is based on two physical
properties (Figure 6):

1. eruption style and associated sedimentary environment during an eruption and

2. number of eruption phases.

A given eruption style is a complex interplay between internal and external controlling param‐
eters at the time of magma fragmentation. The internally-driven eruption styles are, for exam‐
ple, controlled by the ascent speed, composition, crystallization, magma degassing, number of
magma batches involved, rate of cooling, dyke and conduit wall interactions, depth of gas seg‐
regation and volatile content such as H2O, CO2 or S [9, 11, 17, 111, 128, 150, 154-156, 163, 188,
191, 274-276]. These processes give rise to eruption styles in basaltic magmas that are equiva‐
lent to the Hawaiian, Strombolian and violent Strombolian eruption styles. However, due to
the small-volume of the ascending melt, the controls on magma fragmentation are dominated
by external parameters, including conduit geometry, substrate geology, vent stability/migra‐
tion, climatic settings, and the physical characteristics of the underlying aquifers [39, 82, 234,
277-279]. Another important parameter in the construction of a monogenetic volcanic edifice is
the number of eruptive phases contributing to its eruption history (Figure 6). The complexity
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of a monogenetic landform increases with increasing number or combination of eruptive phas‐
es. These can be described as “single”, “compound” and “complex” volcanic edifices or land‐
forms [280-281]. In this classification, the volcano is the outcome of combinations of eruption
styles repeated by m phases. For example, a one-phase volcano requires only one dominant
eruption mechanism during its construction. Due the single eruption style, the resulting volca‐
no is considered to be a simple landform with possibly simple morphology. However, mono‐
genetic  volcanoes  tend to  involve  two or  multiple  phases  (Figure  6).  Their  construction
requires two or more eruption styles and the result is a compound or complex landforms re‐
spectively, e.g. maar-like scoria cones truncated by late stage phreatomagmatic eruptions [e.g.
82, 270, 282] or a tuff cone with late-stage intra-crater scoria cone(s) [e.g. 265, 283]. These phas‐
es may occur at many scales from a single explosion (e.g. a few m3) to an eruptive unit compris‐
ing products of multiple explosions from the same eruption style.

Figure 6. Eruption history (E) defined by a spectrum of eruptive processes determined by internal and external param‐
eters at a given time. The initial magma (in the centre of the graph in red) is fragmented by the help of internal and
external processes which determine the magma fragmentation mechanism and eruption style (phase 1). If a change
(e.g. sudden or gradual exhaustion of groundwater, shift in vent position or arrival of new magma batch) occurs, it will
trigger a new phase (phase 2, 3, 4,…, n); moving away from the pole of the diagram) until the eruption ceases. Note
that black circles with white “L” mean lava effusion. If the eruption magma is dominantly basaltic in composition, the
colours correspond to Surtseyan (dark blue), phreatomagmatic (light blue), Strombolian (light orange), violent Strom‐
bolian (dark orange) and Hawaiian (red) eruption styles.
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To put this into a quantitative context, this genetic diversity can be expressed as set of matri‐
ces, similar to Bishop [280]. In Bishop [280], the quantitative taxonomy is represented by ma‐
trices of volcanic landforms that were based on surface morphologic complexity and
eruption sequences. The role of geomorphic signatures is reduced due to the fact that in the
case of an eruption centre built up by multiple styles of eruptions, not all eruption styles
contribute to the geomorphology. For example, a scoria cone constructed by tephra from a
Strombolian-style eruption, might be destroyed by a late stage phreatomagmatic eruption,
as documented from Pinacate volcanic field in Sonora, Mexico [82, 284] and Al Haruj in Lib‐
ya [282]. In these cases, the final geomorphologies resemble to maar craters, but the forma‐
tion such volcanoes are more complex than a classical, simple maar volcano. In the proposed
classification scheme, the smallest genetic entity (i.e. eruption style and their order) was con‐
sidered to define the eruption history of a monogenetic volcano quantitatively. Considering
only the typical, primitive basaltic composition range (SiO2 ≤52% w.t.), internally-driven
eruption styles are the Hawaiian, Strombolian and violent Strombolian eruption styles [111].
At the other end of the spectrum, externally-driven eruption styles are the phreatomagmatic
and Surtseyan-types [81, 285]. In addition, the effusive activity can also be involved in this
genetic classification. The abovementioned eruption/effusion styles can build up a volcano
in the following combination: 6×1, 6×6, 6×62 or 6×m (or n×m) matrices, depending on the
number of volcanic phases involved in the course of the eruption. This means that an erup‐
tion history (E) of a simple volcano (Esimple) could be written as:

Esimple = 1 2 3 4 5 6 (1)

where the elements 1, 2, 3, 4 and 5 corresponds to explosive eruptions such as Hawaiian,
Strombolian, violent Strombolian, Taalian (or phreatomagmatic) and Surtseyan-type erup‐
tions, respectively, while the 6 is the effusive eruption. For a more complex eruption history
involving two (Ecompound) and multiple (Ecomplex) eruption styles can be written as:

Ecompound =

11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66

(2)

For instance, a monogenetic volcano with an eruption history of fire-fountain activity associ‐
ated with a Hawaiian-type eruption and effusive activity could be described as having a
compound eruption history (or E16 in Figure 6). While an example of a monogenetic volcano
with a complex eruption history could be a volcanic edifice with a wide, ‘maar-crater-like’
morphology, but built up from variously welded or agglutinated scoriaceous pyroclastic
rock units (e.g. E1264 in Figure 6), similar to Crater Elegante in Pinacate volcanic field, Sonora,
Mexico [284]. In some cases, gaps, paucity of eruptions or opening of a new vent site after
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vent migration between eruptive phases is observed/expected based on reconstructed strat‐
igraphy [e.g. 52, 279] and geochemistry [e.g. 9, 286]. In this classification system, the recently
recognized polymagmatic or polycyclic behaviour of monogenetic volcanoes, e.g. an erup‐
tion fed by more than one batch of magma with distinct geochemical signatures [17, 23, 287],
can be integrated. For example, the volcano could be E44 if the controls on eruption style re‐
mained the same or E42 if that chemical change is associated with changes in eruption style.
The number of rows and columns in these matrices could be increased until all types of
eruption style are described numerically, thus an n×m matrix is created. Increasing the num‐
ber of volcanic phases will increase the range of volcanoes that could possibly be created. Of
course, the likelihood of various eruptive combinations described by these matrices is not
the same because there are ‘unlikely’ (e.g. E665) and ‘common’ eruptive scenarios (e.g. E412).

complex

111 112 113 114 115 116
. .

E . .
. .

661 662 663 664 665 666

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê ú
ë û

(3)

In summary, a volcano from monogenetic to polygenetic can be described as a matrix with
elements corresponding to discrete volcanic phases occurring through its evolution. The ma‐
jor advantage of these matrices is that their size is infinite (n×m), thus an infinite number of
combinations of eruption styles could be described (Figure 6). In this system each volcano
has a unique eruptive history, in other words, each volcano is a unique combination of n
number of eruption styles through m number of volcanic phases (Figure 6). This matrix-
based classification scheme helps to solve terminological problems and to describe volcanic
landforms numerically. For example, the diversity of scoria cones from spatter-dominated to
ash-dominated end-members [68, 288] cannot be easily expressed within the previous classi‐
fication scheme. This completely quantitative coding of volcanic eruption styles into matri‐
ces could be used for numerical modelling or volcanic hazard models, e.g. spatial intensity
of a given eruption style.

4. Geomorphology of monogenetic volcanoes

4.1. Historical perspective

The combination of eruption styles (listed above) and related sedimentary processes are of‐
ten considered to be the major controlling conditions on a monogenetic volcano’s geomor‐
phic evolution [84]. Thus, the quantitative topographic parameterization of volcanoes is an
important source of information that helps to reveal details about their growth, eruptive
processes and associated volcanic hazards and its applicable to both conical [119, 190,
289-292] and non-conical volcanoes [199, 293]. These methods are commonly applied to both
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polygenetic [119, 289, 294-297] and monogenetic volcanic landforms [68-69, 298-299]. Mor‐
phometric measurements on monogenetic volcanoes began with the pioneering work of
Colton [300], who noticed a systematic change in the morphology of volcanic edifices over
time due to erosional processes such as surface wash and gullying. A surge of research in
volcanic morphometry, focused mostly on scoria cones, occurred from the 1970s to 1990s,
when the majority of morphometric formulae were established and tested [70-71, 84, 179,
185, 199, 213, 223, 293, 301-304]. This intense period of research was initiated by National
Aeronautics and Space Administration (NASA) in the 1960s and 1970s due to an increasing
interest in extraterrestrial surfaces that could be expected to be encountered during landings
on extraterrestrial bodies such as the Moon or Mars [e.g. 33]. Additional interests were to
understand magma ascent, the lithospheric settings of extraterrestrial bodies, the evolution
of volcanic eruptions, the geometry of volcanoes in different atmospheric conditions, surface
processes and seeking H2O in extraterrestrial bodies [30, 33, 305-308]. Given the lack of field
data from extraterrestrial bodies, many parameters that were able to be measured remotely,
such as edifice height (Hco), basal (Wco) and crater diameters (Wcr) were introduced. There
were measured manually from images captured by Mariner and Viking orbiter missions
[e.g. 33] and Luna or Apollo missions for the Moon [e.g 309] in order to compare these data
with the geometry of volcanic landforms on the Earth [e.g. 179, 293]. Dimensions, such as
crater diameter, were measured directly from these images, while the elevation of the vol‐
canic edifices was estimated from photoclinometry (i.e. from shadow dimensions of the
studied landform) [33, 309-310]. Because elevation measurements were indirect, the horizon‐
tal dimensions such as Wco and Wcr were preferred in the first morphometric parameteriza‐
tion studies [179]. The increased need for Earth analogues led to intense and systematic
study of terrestrial small-volume volcanoes [179, 185, 189, 293]. The terrestrial input sources,
such as topographic/geologic maps and field measurements, were more accurate than the
extraterrestrial input resources; however, they were still below the accuracy required (i.e.
the contour line intervals of ≥20 m were not dense enough to capture the topography of a
monogenetic volcano having an average size of ≤1500–2000 m horizontally and of ≤100–150
m vertically). The extensive research on monogenetic volcanoes identified general trends re‐
garding edifice growth, eruption mechanism and subsequent degradation [71, 84, 185, 293].
In addition, morphometric signatures were recognized that associated a certain type of mon‐
ogenetic volcanic landform with the discrete eruption style that formed it. The morphomet‐
ric signatures of Earth examples were then widely used to describe and identify
monogenetic volcanoes on extraterrestrial bodies such as the Moon and Mars [179]. Basic
morphometric parameters were calculated and geometrically averaged to get morphometric
signatures for four types of terrestrial, monogenetic volcanoes [179], including spatter cones
(Wco = 0.08 km, Wcr/Wco = 0.36 km and Hco/Wco = 0.22 km), scoria cones (Wco = 0.8 km, Wcr/Wco

= 0.4 km and Hco/Wco = 0.18 km), as well as maars and tuff rings (Wco = 1.38 km, Wcr/Wco = 0.6
km and Hco/Wco = 0.02 km). These morphometric signatures are still used in landform recog‐
nition [e.g. 31, 311].

In terrestrial settings, the morphometric studies of monogenetic volcanoes in volcanic fields
and on polygenetic volcanoes have targeted
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1. the characterization of the long-term and short-term evolution of magmatic systems [39,
42, 131, 134],

2. understanding of eruption mechanisms and processes [84, 182, 185, 312-314],

3. expression of tectonic influences on edifice growth [298, 315-316],

4. dating of conical landforms such as scoria or cinder cones [189, 304, 317-320],

5. examination of erosion processes [69-70, 290, 299, 321-327] and landscape evolution [39,
68, 73, 328],

6. reconstruction of the original size, geometry and facies architecture of polygenetic
[329-332] and monogenetic edifices [291, 333-336], as well as

7. detection of climate and climate change influences on degradation [71, 324-325, 337].

Morphology quantified via morphometric parameters could be a useful tool to address
some of these questions in volcanology, geology and geomorphology. The morphology of a
volcanic edifice contains useful information from every stage of its evolution, including
eruptive processes, edifice growth and degradation phases. However, the geomorphic infor‐
mation extracted through morphometric parameters often show bi- or even multi-modality,
i.e. the morphometry is a mixture of primary and secondary attributes [e.g. 338]. The follow‐
ing section explores the dominant volcanological processes that influence the geomorpholo‐
gy of a monogenetic volcano.

4.2. Syn-eruptive process-control on morphology

The eruption styles shaping the volcanic edifices may undergo many changes during the
eruption history of a monogenetic volcano (Figure 6). A given volcano’s morphology and
the grain size distribution of its eruptive products are generally viewed as the primary indi‐
cator of the eruption style that forms a well-definable volcanic edifice (i.e. “Strombolian-
type scoria cones”). This oversimplification of monogenetic volcanoes, together with the
widely used definition that “they erupts only once” [116], suggest a simplicity in terms of
magma generation, eruption mechanism and sedimentary architecture. This supposedly
simple and homogenous inner architecture of each classical volcanic edifice, such as spatter
cones, scoria cones, tuff rings and maars, led to the identification of a “morphometric signa‐
ture”. The morphometric signature of monogenetic volcanoes was used in the terrestrial en‐
vironment, e.g. to ascribe a relationship between morphometry and “geodynamic setting”
[337], as well as extraterrestrial environments, e.g. for volcanic edifice recognition [31, 179,
339-341]. Certain types of volcanoes could be discriminated from each other based on their
morphometric signature, but some general assumptions need to be made. For example,

1. the morphometric signature concept is entirely based on the assumption that a volcanic
landform directly relates to a certain well-defined eruption style,

2. thus the pyroclast diversity within the edifice is minimal (i.e. homogenous), as well as
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3. the resultant volcanic landform is emplaced in a closed-system with no transitions be‐
tween eruption styles, especially from externally to internally-driven eruption styles
and vice versa.

Consequently, the edifice studied was believed to have a relatively simple eruption history,
which is a classical definition of a “monogenetic volcano”. As demonstrated above, mono‐
genetic volcanoes develop in an open-system. This section explores the volcanological/
geological constrains of geomorphic processes responsible for the final volcanic edifice and
the morphometric development of two end-member types of monogenetic volcanoes such as
crater-type (4.2.1.) and cone-type edifices (4.2.2).

4.2.1. Crater-type monogenetic volcanoes

Crater-type monogenetic volcanoes such as tuff rings and maar volcanoes (Figure 4), are
characterized by a wide crater with the floor above or below the syn-eruptive surface, re‐
spectively [81, 152, 223, 234]. Their primary morphometric signature parameters are major/
minor crater diameter and depth, crater elongation and breaching direction, volume of ejec‐
ta ring, and crater or slope angle of the crater wall [313, 342-345]. Of these morphometric
parameters, the crater diameters were used widely for interpreting crater growth during the
formation of a phreatomagmatic volcano. For the genetic integration of crater growth and,
consequently, the interpretation of crater diameter values of terrestrial, dominantly phreato‐
magmatic volcanoes, there are fundamentally two end-member models.

The first model is the incremental growth model (Figure 7A). In this model, the crater’s for‐
mation is related to many small-volume eruptions and subsequent mass wasting, shaping
the crater and underlying diatreme [81, 151, 199-200, 209, 221, 285, 346-347]. Growth initiates
when the magma first interacts with external water, possibly groundwater along the margin
of the dyke intrusions, triggering molten-fuel-coolant interactions (MFCI) [192-193, 220,
348]. These initial interactions excavate a crater on the surface, while the explosion loci along
the dyke gradually deepen the conduit beneath the volcano towards the water source, re‐
sulting in a widening crater diameter [199]. This excavation mechanism initiates some gravi‐
tational instability of the conduit walls, triggering slumping and wall rock wasting,
contributing to the growing crater [81, 195, 199, 223, 229-230, 349]. This classical model sug‐
gests that

1. crater evolution is related to diatreme growth underneath, and

2. the crater’s growth is primarily a function of the deep-seated eruption at the root zone.

However, it is more likely that the pyroclastic succession created at the rim of the crater pre‐
serves only a certain stage of the evolution of whole volcanic edifice. For instance, the possi‐
bility of juvenile and lithic fragments being erupted and deposited within the ejecta ring
from a deep explosion (i.e. at the depth of a typical diatreme, about 2 km) is highly unlikely.
Rather than being dominated by the deep-seated eruptions, explosions can occur at variable
depths within the diatreme [347]. The individual phreatomagmatic eruptions from various
levels of the volcanic conduit create debris jets (solids + liquid + magmatic gases and steam),
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which are responsible for the transportation of tephra [285, 347, 350]. Every small-volume
explosion causes upward transportation of fragmented sediment in the debris jet, giving rise
to small and continuous subsidence/deepening of the crater floor [198-199]. This is in agree‐
ment with stratigraphic evidence from eroded diatremes, such as Coombs Hills, Victoria
Land, Antarctica [285, 350] and Black Butte diatreme, Missouri River Breaks, Montana [351].

The second model is where the crater geomorphology is dominated by largest explosion
event during the eruption sequence. Thus, the crater size directly represents the ‘peak’ (or
maximum) energy released during the largest possible shallow explosion [202, 313, 343-344,
352]. This model of crater growth (Figure 7B) for phreatomagmatic volcanoes is proposed on
the basis of analogues from phreatic eruption, such as Uso craters, Hokkaido, Japan in 2000
[352], and experiments on chemical and nuclear explosions [344]. In this model, the crater
diameter (D) is a function of the total amount of ejected tephra (Vejecta) [313]:

D =  0.97V ejecta
0.36 (4)

which can further be converted into explosion energy (E) as:

E = 4.45x106D3.05 (5)

Figure 7. Crater growth envisaged by the incremental growth (A) and largest explosion models (B). In the top figure,
the crater grows by each explosion and the subsequent mass wasting processes (e.g. slumping of wall rock). This re‐
sults in the gradual growth of the crater and the underlying diatreme (if any). On the other hand, in the bottom figure
the crater can reach its final size in the middle of the eruption history by the largest near-surface explosion and the
further explosions make no contribution to its size, geometry and morphology. Abbreviations: PDC – pyroclastic densi‐
ty current.
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which approximates the largest energy released during the eruptions. This relationship be‐
tween crater size and ejected volume was based on historical examples of phreatomagmatic
eruptions [313]. These historical eruptions are, however, associated with usually polygenetic
volcanoes, such as Taupo or Krakatau, and not with classical monogenetic volcanoes, except
the Ukinrek maars, near Peulik volcano, Alaska. In this model, the largest phreatomagmatic
explosion governs the final morphology of the crater, so the crater size correlates with the
peak energy of the maar-forming eruption directly [343]. Scaled experiments showed that
there is a correlation between the energy and the crater depth and diameter [353] if the ex‐
plosions take place on the surface [344]. Most of the explosions modelled in Goto et al. [344]
were single explosions, only a few cratering experiments involved multiple explosions at the
same point [344], which is more realistic for monogenetic eruptions. In these multiple explo‐
sions, the crater did not grow by subsequent smaller explosions, possibly because the blast
pressure was lower than the rock strength when it reached the previously formed crater rim
[344]. As noted by Goto et al. [344], such experimental explosions on cratering are not appli‐
cable to underground eruptions; therefore, they do not express the energy released by deep-
seated eruptions generating three-phase (solid, gas and fluid) debris jets during diatreme
formation [e.g. 350]. Morphologically, these deep-seated eruptions have a minor effect on
crater morphology and diameter, and their deposits rarely appear within the ejecta ring
around the crater.

Theoretically, both emplacement models are possible because both mechanisms can contrib‐
ute significantly to the morphology of the resulting landform. The incremental growth mod‐
el is based on statigraphy, eye-witnessed historical eruptions and experiments [81, 152,
198-199, 346-347], while the largest explosion model is based on analogues of chemical or
nuclear explosion experiments, phreatic eruptions and impact cratering [313, 344, 353-354].
Based on eye-witnessed eruptions and geological records, the crater diameter as a morpho‐
metric signature for maar-diatreme and tuff ring volcanoes is the result of complex interplay
between the eruptions and the substrate. The dominant processes, such as many, small-vol‐
ume explosions with various energies migrating within the conduit system vertically and
horizontally, as well as gradual mass wasting depending on the physical properties of rock
strength, are what control the final crater diameter. On the other hand, the substrate beneath
the volcano also plays an important role in defining crater morphology, as highlighted for
terrestrial volcanic craters [209, 229, 355], as well as extraterrestrial impact craters [356]. In
different substrates, different types of processes are responsible for the mass wasting. For
example, an unconsolidated substrate tends to be less stable due to explosion shock waves
that may liquefy water-rich sediments, and induce grain flow and slumping, enlarging the
crater [229]. On the other hand, in a hard rock environment, the explosions and associated
shock waves tend to fracture the country rock, depending on its strength, leading to rock
falls and sliding of large chucks from the crater rim [229]. The crater walls in these two con‐
trasting environments show different slope angles [229, 345]. These differences in the behav‐
iour of the substrate in volcanic explosions may cause some morphological variations in the
ejecta distribution and the final morphology of the crater (Figure 8).
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Figure 8. Morphology of volcanic crater and diatreme generated by phreatomagmatic eruptions in soft and hard sub‐
strate environments. The parameters (β – wall rock angle, H – ejecta ring height over the surrounding topography, W –
flank width of the ejecta ring) for crater morphologies have the following possible relationships: βhard> βsoft; while the
Hhard> Hsoft (?) and Whard> Wsoft (?).

The crater diameter is an important morphometric parameter in volcanic landform recogni‐
tion; however, the final value of the crater diameter is the result of a complex series of proc‐
esses, usually involving syn-eruptive, mass wasting processes of the crater walls, e.g. the
1977 formation of the Ukinrek maars in Alaska [357-358]. This makes the direct interpreta‐
tion of crater diameter values more complicated than predicted by simple chemical and nu‐
clear cratering experiments [313, 344]. Thus, the incremental growth (multiple eruptions +
mass wasting) model seems to be a better explanation of the growth of a crater during
phreatomagmatic eruptions [198-200, 267, 346, 359] and kimberlite volcanism [360-361].
Thus, the morphometric data of a fresh maar or tuff ring volcano contain cumulative infor‐
mation about the eruption energy, the location and depth of (shallow) explosion loci, as well
as the stability of the country rock and associated mass wasting. The largest eruption domi‐
nated model may only be suitable to express energy relationships without the effects of
mass wasting from the crater walls. This probably exists in only a few limited sites. For ex‐
ample, these eruptions should take place from a small-volume of magma, limiting the dura‐
tion of volcanic activity and reducing the possibility of development of a diatreme
underneath (Figure 8). Additionally, these eruptions should be in a consolidated hard rock
environment, with high rock strength and stability. The following model for the interpreta‐
tion of crater diameter and morphology data can be applied for phreatomagmatic volcanoes
(Figure 8). This model integrates both conceptual models for crater and edifice growth, but
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the majority of craters experience complex development instead of the dominance of the
largest explosion event. The likelihood of the largest explosion event dominated morpholo‐
gy is limited to simple, short-lived eruptions due to limited magma supply or vent migra‐
tion in a hard rock environment (Figure 8). If the magma supply lasts, the development of a
diatreme underneath starts that has a further effect on the size, geometry and morphology
of the crater of the resultant volcano.

The crater diameter is often a function of basal edifice diameter (Wco) or height (Hco), creat‐
ing ratios which are commonly used in landform recognition in extraterrestrial environ‐
ments [177, 179, 340]. Wco is often difficult to measure because of the subjectivity in
boundary delimitation [293]. This high uncertainty in delimitation of the crater boundary is
a result of the gradual thinning of tephra with distance from the crater, with usually a lack
of a distinct break in slope between the ejecta ring’s flanks and the surrounding tephra
sheet, e.g. the Ukinrek maars, Alaska [357-358]. Any break in slope could also be smoothed
away by post-eruptive erosional processes. The crater height estimates vary greatly for
maar-diatreme and tuff ring volcanoes, but they are usually ≤50 m [199, 223, 293]. This small
elevation difference from the surrounding landscape gives rise to some accuracy issues, par‐
ticularly regarding the establishment of the edifice height.

To demonstrate the limitations (e.g. input data accuracy, data type, and genetic oversimplifi‐
cation) of morphometric signature parameters on phreatomagmatic volcanoes, two exam‐
ples (Pukaki and Crater Hill) were selected from the Quaternary Auckland volcanic field in
New Zealand. Both volcanoes above were used to establish the average morphometric sig‐
nature of an Earth analogue phreatomagmatic volcano [e.g. 293]. The early morphometric
parameters were measured from topographic maps having coarse contour line intervals (e.g.
20–30 m), which cannot capture the details of the topography accurately. Some cross-checks
were made on the basic morphometric parameters established from topographic maps and
Digital Elevation Models (DEMs) derived from airborne Light Detection And Ranging (Li‐
DAR) survey. The results showed that the differences in each parameter could be as high as
±40%. In addition, both the Pukaki and the Crater Hill volcanoes from Auckland were listed
as “tuff rings” [293], due to the oversimplified view of monogenetic volcanism in the 1970s
and 80s. Their eruption history, including volume, facies architecture and morphology, are
completely different. The present crater floor of Pukaki volcano is well under the syn-erup‐
tive surface, thus it is a maar volcano sensu stricto following Lorenz [199]. This was formed
by a magma-water interaction driven phreatomagmatic eruption from a small volume of
magma of 0.01 km3 estimated from a DEM and corrected to Dense Rock Equivalent (DRE)
volume [362-363]. The present facies architecture of this volcano seems quite simple (e.g. like
an E4 volcano in Figure 6). On the other hand, Crater Hill has a larger eruptive volume of
0.03 km3 [362-363] and experienced multiple stages of phreatomagmatism (at least 3) and
multiple stages of magmatic eruptions (at least 5) with many transitional layers between
them, forming an initial tuff ring and an intra-crater scoria cone [80]. Later eruption formed
an additional scoria cone and associated lava flow that filled the crater with lava up to 120 m
in thickness [80, 364]. Consequently, Crater Hill is an architecturally complex volcano with
complex eruption history, i.e. at least an E4226. The important implication of the examples
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above and the usual complex pattern and processed involved on the establishment of the fi‐
nal geomorphology (e.g. incremental crater growth) are that morphometric signature (if it
exists) can be only used for phreatomagmatic volcanoes if the eruption history of the volca‐
no is reconstructed. In other words, parameters to express morphometric signature cannot
be compared between volcanoes with different eruption histories (i.e. they are characterized
by different phases with different eruption styles). Comparison without knowledge of the
detailed eruption history could be misleading. Furthermore, the morphometric signature
properties used in extraterrestrial volcano recognition for crater-type volcanoes should be
reviewed, using a volcanological constraint on the reference volcano selection.

4.2.2. Cone-type monogenetic volcanoes

Cone-type monogenetic volcanoes, such as spatter- (Figure 2), scoria (or cinder; Figure 3)
and tuff cones (Figure 5), are typically built up by proximal accumulation of tephra from
low to medium (0.1–10 km in height) eruption columns and associated turbulent jets, as well
as block/bombs that follow ballistic trajectories [188, 223, 288, 365-367]. Deposition from lo‐
calized pyroclastic density currents is possible, mostly in the case of tuff cones [223, 265, 283]
and rarely in the case of scoria cones from violent Strombolian eruptions [188]. The primary
morphology of cone-type monogenetic volcanoes could be expressed by various morpho‐
metric parameters, including height (Hco), basal (Wco) and crater diameter (Wcr) and their ra‐
tios (Hco/Wco or Wcr/Wco), inner and outer slope angle or elongation. On a fresh edifice,
where no post-eruptive surface modification has taken place, these morphometric parame‐
ters are related to the primary attributes of eruption dynamics and syn-eruptive sedimenta‐
ry processes. However, there are potentially two valid models to explain their dominant
construction mechanisms, including a ballistic emplacement with drag forces and fallout
from turbulent, momentum-driven jets at the gas-thrust region [84, 182, 185, 368-369]. In
both models, the angle of repose requires loose, dry media. This criterion is rarely fulfilled
in the case of a tuff cone [e.g. 223, 234] and littoral cones that form during explosive interac‐
tions between lava and water [e.g. 203, 204]. In these cases the ejected fragments have high
water-contents that block the free avalanching of particles upon landing [223, 252, 259, 283,
286]. This is inconsistent with other magmatic cone-type volcanoes; the growth processes of
tuff and littoral cones are not discussed in further detail here.

The ballistics model with and without drag for scoria cone growth was proposed as a result
of eye-witness accounts of eruptions of the NE crater at Mt. Etna in Sicily, Italy [185]. This
model is based on the assumption that the majority of the ejecta of a volcanic cone is coarse
lapilli and block/bombs (≥8–10 cm in diameter), thus they follow a (near) ballistic trajectory
after exiting the vent (Figure 9A). Consequently, the particle transport is momentum-driven,
as documented for the bomb/block fraction during bursting of large bubbles in the upper
conduit during Strombolian style explosive eruptions [180, 183, 370]. The particle velocity of
such bomb/blocks was up to 70–80 m/s for a sensu stricto Strombolian style eruption meas‐
ured from photoballistic data [371-372]. However, recent studies found that the typical exit
velocities are about 100–120 m/s [180, 183] and they could reach as high as 400 m/s [373].
These studies also showed that the typical particle diameter is cm-scale or less instead of
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dm-scale [180, 183], which cannot be derived purely from impact breakage of clasts upon
landing [182, 368]. Especially during paroxysmal activity at Stromboli [374] or more energet‐
ic violent Strombolian activity [83, 163], the dominance of fine particles in the depositional
records contradicts the ballistics emplacement model for the cones.

To solve the debate about cone growth, the jet fallout model was proposed [182], based on
the fact that there is a considerably high proportion of fines in cone-building pyroclastic de‐
posits [60, 182, 288]. This proposed behaviour is similar to the proximal sedimentation from
convective plumes, forming cones with similar geometry to scoria cones, e.g. the 1886 erup‐
tion of Tarawera, Taupo Volcanic Zone, New Zealand [375] or the 1986 eruption of Izu-Osh‐
ima volcano, Japan [368]. The fines content does not fulfil the criteria of pure ballistic
trajectory, thus turbulent, momentum-driven eruption jets (Figure 9A) should be part of the
cone growth mechanisms [182, 368, 376]. As documented above, scoria cones demonstrate a
wider range of granulometric characteristics [182] than previously thought [185]. These
slight or abrupt changes of grain size within an edifice imply that the term “scoria cone” is
not as narrow and well-defined as proposed in earlier studies [71, 185, 189, 301]. Conse‐
quently, there should be a spectrum of characteristics within the “scoria cones” indicating
the existence of spatter-, lapilli- and ash-dominated varieties [68, 288]. Such switching from
classical lapilli-dominated to ash- or block-dominated cone architectures reflects syn-erup‐
tive reorganization of conduit-scale processes, including

1. multiple particle recycling and re-fragmentation during conduit cleaning [180, 377] or

2. changes in magma ascent velocity (i.e. increase or decrease in the efficiency of gas seg‐
regation) that in turn effect the viscosity of the magma [150, 163, 378].

The latter case may or may not cause a change in eruption style (e.g. a shift from normal
Strombolian-style to violent Strombolian-style eruption) that could effectively lead to
changes in the grain size distribution of the ejecta by possible skewing towards finer frac‐
tions (≤1–2 cm). This switching has significant consequences on pyroclast transport as well.
The higher efficiency of magma fragmentation and production of finer pyroclasts (e.g. ash)
causes more effective pyroclast-to-gas heat transfer in the gas-thrust region. A buoyant
eruption column is created when the time of heat transfer is shorter than the residence time
of fragments in the lowermost gas-thrust region [111, 182, 379]. Thus, particle transport
shifts from momentum- to buoyancy-driven modes [182-183]. Based on numerical simula‐
tions, these changes in the way pyroclasts are transported are consistent with modelled sedi‐
mentation trends from jet fallout as a function of vent distance [182]. Once the eruption has
produced medium (Mdϕ ≤ 10–20 mm) and coarse fragments (Mdϕ ≤ 50–100 mm), pyroclasts
show an exponential decrease in sedimentation rates away from the vent [182]. This is in
agreement with the trend predicted by the ballistic emplacement model [185]. However,
once the overall fragment size is dominated by fines (Mdϕ ≤ 2–3 mm), the maximum sedi‐
mentation rate departs further towards the crater rim [182]. The threshold particle launching
velocity is about ≥50 m/s [182]. The fragment diameter of Mdϕ ≤ 2–3 mm is consistent with
the calculated threshold for formation of buoyant, eruptive columns during violent Strom‐
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bolian activity [111], but is significantly finer than fragments (Mdϕ ≤10–12 mm) generated
during some paroxysmal events recorded at Stromboli in Italy [374].

In the case of scoria cone growth the final morphology is not only dependent on the mode of
pyroclast transportation via air, but also on significant post-emplacement redeposition. If
particles are sufficiently molten and hot, their post-emplacement sedimentation processes
usually involve some degree of welding/agglutination and rootless lava flows may form
[171-172]. In this case, high irregularity in the flank morphology is expected due to the vari‐
ously coalescent large lava clots and spatter [171-172, 380]. If the particles are brittle and
cool, as well as having enough kinetic energy to keep moving, they tend to avalanche on the
inclined syn-eruptive depositional surface [84, 141, 172, 185, 234, 288]. The avalanching grain
flows often give rise to inversely-graded horizons or segregated lenses within the overall
homogenous, clast-supported successions of the accumulating pyroclast pile, while the hot
particles cause spatter-horizons in the statigraphy (Figure 10). In the earlier case, the criteri‐
on to sustain efficient grain flow processes on the initial flank of a pyroclastic construct is
that the particles have to be granular media (i.e. loose and sufficiently chilled). The proper‐
ties such as grain size, shape and surface roughness determine the angle of repose, which is
a material constant [381]. These are all together responsible for the formation of usually
smooth cone flank morphologies.

Classically, scoria cones are referred to as being formed by Strombolian-style eruptions, in
spite of the fact that Stromboli volcano, Aeolian Islands, is not a scoria cone. In reality, scoria
cones are formed by “scoria cone-forming” eruptions. Thus, the term scoria cone includes
every sort of small-volume volcano with a conical shape and basaltic to andesitic composi‐
tion. Additionally, during scoria cone growth, three major styles of internally-driven erup‐
tion types can be distinguished, Hawaiian, Strombolian and violent Strombolian, and an
additional externally-driven eruption style, such as phreatomagmatism-dominated, is also
expected (e.g. Figure 6). From the eruption styles listed above, at least the first three could
individually form a “scoria cone”, or similar looking volcano, which is rarely or never taken
into account during interpretation of geomorphic data of a monogenetic volcano. The cone
growth mechanism is, here, considered to be a complex interplay between many contrasting
modes of sedimentation of primary pyroclastic materials, including transport via air (by tur‐
bulent jets and as ballistics) and subsequent redistribution by particle avalanching (Figure
9A). It is also important to note that cone growth is not only a constructive process; there
could also be destructive phases. These processes (e.g. flank failure or crater breaching) alter
the morphology in a short period of time. Consequently, the edifice growth is not a straight‐
forward process (e.g. a simple piling up of pyroclastic fragments close to the vent), but rath‐
er a combination of constructive and destructive phases at various scales. The spatial and
temporal contexts of such constructive and destructive processes are important factors from
a morphometric stand point. In this chapter, two modes of cone growth mechanisms are rec‐
ognized (Figures 9B and C) cones formed by:

1. a distinct and stable eruption style (e.g. Esimple) and by

2. various magma eruption styles with transitions between them (e.g. Ecompound or Ecomplex),
during the eruption histories.
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The simple cone growth model is applicable to cone growth from a single and stable eruption
style, e.g. Strombolian, Hawaiian or violent Strombolian styles only (Figure 9B). Theoretically,
if an edifice is formed by a repetition of one of these well-defined and stable eruption style with‐
out fluctuation of in efficiency or any changes, the crater excavation and diameter, as well as the
mode of pyroclast transport, should vary in a narrow range, i.e. fragmentation mechanism ‘con‐
stant’ (Figure 9B). The first explosions when the gas bubbles manage to escape from the mag‐
ma leading to the explosive fragmentation of the melt, usually take place on the pre-eruptive
surface or at a few tens of meters deep [57, 84, 185, 382-383]. After the first eruption, there is a time
involved to either excavate the crater or pile up ejecta around the vent, which is in turn depend‐
ent on the eruption style and the tephra accumulation rate. Once the threshold crater rim height
is reached, the height and its position are attached to properties of certain eruption dynamics
(Figure 9B). In other words, the eruption style and related pyroclast transport distribute tephra
to limited vertical and horizontal directions. Due to the steadiness of eruption style, particle fall‐
out from the near-vent, dilute jets at the gas-thrust region and ballistics have an ‘average’ verti‐
cal distance that they travel. This ‘average’ will determine the width and relative offset of the
crater rim above the crater floor, which grows rapidly during the initial establishment of the cra‐
ter morphology (first cartoon in Figure 9B) and then slows down (second and third cartoons in
Figure 9B). Of course the location, morphology of the crater rim and floor are not just depend‐
ent on the efficiency of the magma fragmentation, but the subsequent wall rock failure, as docu‐
mented by Gutmann [369], similar to the development of maar-diatreme volcanoes (Figure 7).
Due to the stability of the conduit and a single eruption style, the role of such failures in the con‐
trol of morphology is minimal in comparison with complex modes of edifice growth (see later).

This growth model is applicable to simple eruptions, with steady eruption styles and possibly
steady magma discharge rates, such as the violent-Strombolian eruptions during the Great
Tolbachik fissure eruptions in Kamchatka, Russia [84, 382] or the Strombolian-style eruption
during the growth of the NE crater at Mt. Etna [185]. During the Tolbachik fissure eruptions,
the rim-to-rim crater diameter of Cone 1 grew rapidly from 56 m to 127 m during the first 5
days, and later slowed and stayed in a narrow range around 230–280 m during the rest of the
eruptions [84, 382-385]. This is similar to certain stages of growth of the NE crater at Mt. Etna
[84, 185]. This means the crater widens initially until a threshold width is reached, which cor‐
responds to the maximum strength of the pyroclastic pile and the limits of the eruption style
(Figure 9B). This trend seems to be consistent with an exponential growth of crater width over
time until the occurrence of lava flows, as documented at Cone 1 and 2 of the Tolbachik fissure
eruptions [e.g. 383]. The maximum range of the crater width appeared to be reached once the
lava outflowed from the foot of the cones. This can be interpreted as an actual decrease in mag‐
ma flux fuelling the explosion, and therefore the pyroclast supply for flank growth. Assuming
that the magma is torn apart into small particles and are launched with sufficiently high initial
velocity to the air, e.g. Strombolian eruptions, the particles have enough time to cool down,
thus upon landing they initiate avalanching due to their kinetic energy. These processes will
smooth the syn-eruptive surface to the angle of repose of the ejected pyroclasts if the pyroclast-
supply is high enough to cover the entire flank of the growing edifice. If the angle of repose of
the tephra, θ, depending on granulometric characteristics, and the height of the crater rim, H,
are known at every stage of the eruption (i = 1,2,..., n), the flank width (Wi) would indicate at a
certain stage of growth (Figure 9B):
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Figure 9. Growth of cone-type volcanoes (e.g. scoria cones) through ballistics’ emplacement and jet fallout models.
After the initialization of the volcanism (A), there are two different types of cone growth: simple and complex. The
simple cone growth model (B) supposes a steady fragmentation mechanism and associated eruptive style and sedi‐
mentary processes, thus the angle of repose is near constant, θ1=θ2=θ3 over the eruption history. The variation of the
relative height of the crater rim (H) above the location of the explosion locus and the radius of the crater (R) is ‘fixed’
or varies in a narrow range (H1≤H2=H3 and R1≤R2=R3), after the initial rapid growth of rim height and crater width. The
simple cone growth model implies that constructional and flank morphologies are the results of a major pyroclast-
transport mechanism (e.g. grain flows in the case of a scoria cone or welding, formation of rootless lava flows in the
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case of spatter cones). On the other hand, the complex cone growth model (C) involves gradual or abrupt changes in
eruption style, triggering multiple modes of pyroclast transport, and possible changes in the relative height and diam‐
eters of the crater rim (H1≠H2≠H3). The granulometric diversity allows for post-emplacement pyroclast interactions
which permits or blocks the free-avalanching of the particle on the outer flanks. Therefore, the angle of repose is con‐
stant and may not always be reached (θ1≠θ2≠θ3), especially when clast accumulation rate and temperature is higher,
causing welded and agglutinated spatter horizons.

Wi = Hi / tan θi (6)

When the eruption style is constant during the eruption and produces pyroclasts of the
same characteristics, the pyroclasts behave as granular media (i.e. they are controlled by the
angle of repose); the aspect ratio between the height and flank width should be in a narrow
range until the ‘tandem’ relationship is established between the crater rim and explosion lo‐
ci. Once the eruption is in progress, the explosion locus stay either at the same depth (e.g. at
the pre-eruptive ground level) or migrates upwards if enough material is piled up within
the crater resulting in a relative up-migration of the crater floor over time (Figure 9B). Con‐
sequently, this upward migration of the explosion locus should result in an elevation in‐
crease of the crater rim, if the eruption style remains the same. Once the crater rim rises, the
majority of the pyroclasts avalanche downward from higher position, which creates a wider
flank and increases the overall basal width of the edifice. The repetition of such crater rim
growth and flank formation takes place until the magma supply is exhausted. Due to the
dominance of loose and brittle scoria in the edifice, the Hco/Wco ratio is in a narrow range in
accordance with Eq. 3. Although, there is a slight difference between Hco/Wco and Hi/Wi, be‐
cause the former contains the crater. The crater is possibly the most sensitive volcanic fea‐
ture of a cone that could be modified easily (e.g. shifting in eruption style in the course of
the eruptions and/or vent migration). Finally, this growing process is in agreement with the
earlier documented narrow ranges of the Hco/Wco ratio that are governed by the angle of re‐
pose of the ejecta [84, 301].

The complex cone growth model assumes the cone is the result of many distinctive eruption
styles and changes between them, which trigger a complex cone growth mechanism from
various eruptive and sedimentary processes (Figure 9C). Such changes usually relate to
changes from one eruption style to another, which have consequences for the morphological
evolution of the growing cone. The switching in efficiency of magma fragmentation can be
triggered by the relative influence of externally and internally-governed processes or reor‐
ganization of internal or external controls without shifting from one to the other. An exam‐
ple for the first change is a gradual alteration in the abundance of ground water and
consequent shift from phreatomagmatism to magmatic eruption styles. On the other hand,
the reorganization of processes in either in the internally- or externally-driven eruption
styles could be related to the changes in degree of vesiculation and efficiency of gas segrega‐
tion in the conduit system. Each of these changes could modify the dominant eruption style
that determines the grain size, pyroclast transport and in turn edifice growth processes. An
internal gas-driven magma fragmentation leading to a Hawaiian eruption produces larger
(up to a few meters) magma clots that are emplaced ballistically, while fines are deposited
from turbulent jets and a low-eruption column, in agreement with the processes observed at
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Kilauea Iki in Hawaii [e.g. 176]. In this eruption style, the dominance of coarse particles (e.g.
lava clots up to 1–2 m in diameter) are common. These large lava clots cannot solidify dur‐
ing their ballistic transport, and therefore after landing they could deform plastically, weld
and/or agglutinate together or with other smaller pyroclasts [171, 380], depending on the ac‐
cumulation rate and the clast temperature [172]. As a result of the efficient welding process‐
es, the landing is not usually followed by free-avalanching, unlike loose, sufficiently cooled,
brittle particles from other eruption styles, e.g. normal Strombolian styles. At the other end
of the spectrum, energetic eruptions styles, such as violent Strombolian or phreatomagmatic
eruptions, tend to generate localized sedimentation from pyroclastic density currents such
as base surges. Similar to spatter generation, pyroclasts from pyroclastic density currents do
not conform to the angle of repose. In contrast, the pyroclasts from sensu stricto Stromboli‐
an-eruptions are sufficiently fragmented to suffer rapid cooling during transport either as
ballistics or fallout from turbulent jets and eruption columns (Figure 9C). Thus, the particle
with sufficient kinetic energy post-emplacement can fuel grain avalanches on the outer
flanks of a growing pyroclastic pile. The active grain flows deposit pyroclasts on flanks in
accordance with the syn-eruptive depositional surface properties and granulometric charac‐
teristics that provide the kinetic and static angle of repose of the granular pile. This is sus‐
tained until the ejected material is characterized by the same granulometric characteristics.
With increasing degree of magma fragmentation, the dominant grain size of the tephra de‐
creases. The increased efficiency of the magma fragmentation (e.g. violent Strombolian erup‐
tions) commonly results in a higher eruption column, and therefore broader dispersion of
tephra. The high variability and fluctuating eruption styles form a wide range of textural va‐
rieties of edifice such as Lathrop Wells in Southwest Nevada Volcanic Field, Nevada [60,
188], Pelagatos in Sierra Chichinautzin, Mexico [14, 378] or Los Morados, Payún Matru, Ar‐
gentina [273]. Due to the variability in eruption styles, particles have different surfaces or
granulometric characteristics. These differences induce some fine-scale post-emplacement
pyroclast interactions. The effect of these syn-eruptive pyroclast interactions could prevent
effective grain flow processes, ‘reset’ or delay (previous) sedimentary processes on the
flanks of a growing conical volcano. Thus it could be a key control to determine the flank
morphology of the resultant volcanic edifice. Examples for syn-eruptive granulometric dif‐
ferences can be found in the pyroclastic succession of the Holocene Rangitoto scoria cone in
Auckland, New Zealand (Figure 10). During deposition of beds with contrasting dominant
particle sizes, the angle of repose is not always a function of granulometric properties, but
can be a result of the mode of pyroclast interactions with the syn-eruptive depositional sur‐
face. There is wide range of combinations of pyroclast interactions among ash, lapilli, block
and spatter (Figure 10). Such transitions in eruption style and resulting pyroclast character‐
istics are important due to their blocking of freshly landed granular particles conforming
(immediately) to the angle of repose expected if they were circular, dry and hard grains. For
instance, the deposition of an ash horizon on a lapilli-dominated syn-eruptive surface must
fill the inter-particle void, causing ash ‘intrusions’ into the lapilli media (Figure 10). These
pyroclast interactions possibly slow the important cone growing mechanisms (e.g. grain
flow efficiency) down, creating a sedimentary delay when the angle of repose is established
on the syn-eruptive surface. In the complex cone growth model, the changes of eruptions
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style have an effect on the relative position of the crater rim shifting the position of the maxi‐
mum sedimentation and the mode of pyroclast transport [182]. For example, switching from
normal Strombolian to violent Strombolian style eruptions could increase the initial exit ve‐
locity from the usual 60–80 m/s [180, 183, 372, 386] to higher values, ≥150–200 m/s [111, 382,
387-388]. This shift in eruption style causes further decrease in the grain size of the ejecta
[163, 367, 389]. This change could altogether cause migration of the location of the maximum
sedimentation point further towards the crater rim if the tephra is transported by jet instead
of pure ballistic trajectories [182]. Such changes in eruption styles introduce significant hori‐
zontal and vertical crater rim wandering during the eruption history of a monogenetic vol‐
cano (Figure 9C). This wandering modifies, in turn, the sedimentary environment leading
the formation of cones with complex inner facies architectures, which may or may not be
reflected by the morphology. Consequently, the major control in this cone growth model is
on the eruption styles and their fluctuations over the eruption history.

In both cone growth models, lava flows can occur as a passive by-product of the explosive
eruptions ‘draining’ the degassed magma away from the vent. Once the magma reaches the
crater without major fragmentation it can either form lava lakes and/or (later) intrude into
the flanks, increasing the stress [111, 298, 369]. When the magma pressure exceeds the
strength of the crater walls, the crater wall may collapse or be rafted outwards [111, 369].
Sometimes, the magma flows out from foot of the cone, possibly fed from dykes [188, 273,
367, 369, 388, 390-391]. In this case the flank collapse is initiated by the inflation of the lava
flow by discrete pulsation of magma injected beneath the cooler dyke margins [392-393] be‐
neath a certain flank sector of a cone [111]. If the lava yield strength is reached and overtakes
the pressure generated by the total weight of a certain flanks sector, flank collapse and sub‐
sequent rafting of remnants are common [111, 273, 390], leading to complex morphologies
with breached craters and overall horse-shoe shape [322, 394]. The direction of crater breach‐
ing of scoria cones may not always be the consequence of effusion activity, but may coincide
with regional/local principal stress orientations or fault directions [298, 315, 395-396]. If the
magma supply is sufficient, the edifice that has been (partially) truncated by slope failure
could be (partially) rebuilt or ‘reheal’ as documented from Los Morados scoria cone in
Payun Matru, Argentina [273] or Red Mountain, San Francisco Volcanic Field, Arizona [397].
The direction of lava outflow from a cone commonly overlaps with the overall direction of
background syn-eruptive surface inclination. This overall terrain tilt could cause differences
in the tension in the downhill flank sector [82, 298, 391, 398]. Any kinds of changes during
basaltic monogenetic eruptions could cause sudden decompression of the conduit system,
leading to a change in the eruption style [273, 399]. Consequently, these destructive process‐
es are more likely to occur during complex edifice growth, instead of simple cone growth.
These changes could account for the fine-scale morphometric variability and architectural
diversity observed in granular pile experiments and field observations [68, 182, 298, 314,
398]. Evidence of fine-scale morphometric variability due to lava outflow and crater breach‐
ing is observed through systematic morphometric analysis on young (≤4 ka) scoria cones in
Tenerife [398]. Two types of morphometric variability were found: intra-cone and inter-cone
variability. Intra-cone variability was characterised among individual flank facets. The slope
angle variability was calculated to be as high as 12° between flanks sectors along (±45°) and
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perpendicular (±45°) to the main axis of the tilt direction of the syn-eruptive terrain [398].
This is about a third of the entire range of the natural spectrum of angles of repose of loose,
granular material, i.e. scoria-dominated flanks [84, 182]. Inter-cone variability was detected
on cones of the same age. According to Wood [71], these fresh cones should be in a narrow
morphometric range (e.g. slope angle of 30.8±3.9°) based on fresh and pristine scoria cones
analysed from the San Francisco Volcanic Field, Arizona [71, 324]. In contrast to this expect‐
ed high value, the average slope angles of the studied cones from Tenerife turned out to
vary from 22° to 30°, which has significant impact on many traditionally used interpreta‐
tions of morphometric data including morphometric-based dating [e.g. 338], the morpho‐
metric signature concepts and erosion rate calculations. Both inter- and intra-cone variability
were interpreted as a sign of differences in syn-eruptive processes coupled between internal,
such as changes in efficiency of fragmentation, magma flux, effusive activity and associated
crater breaching [398], and external controlling factors, such as interaction between pre-ex‐
isting topography and the eruption processes [398]. All of these diverse eruptive and sedi‐
mentary processes are somehow integrated into the fresh morphology that is the subject of
morphometric parameterization. A few of these processes could be detected while others
could not, using morphometric parameters at one or multiple scales. For instance, some of
this morphometric variability is usually undetectable using topographic maps and manual
geomorphic analysis. This narrow variability, possibly associated with syn-eruptive differ‐
ences in cone growth rates and trends, is in some instances in the range of the accuracy of
the morphometric parameterization technique. For example, a manual calculation of slope
angle from a 1:50 000 topographic maps with contour intervals of 20 m is ±5° [e.g. 312]. The
fine-scale morphometric variability cannot be assessed accurately with this high analytical
error range. On a DEM (either contour-based or airborne-based) with high vertical and hori‐
zontal accuracies (e.g. Root Mean Square Error under a few meters), this small-scale varia‐
bility can be detected [e.g. 398]. An important consequence of this variability is that the
initial geometry of the cone-type volcanoes, such as scoria cones, is not in a narrow range as
previously expected [e.g. 71]. In other words, the morphometric signature of cone-type vol‐
canoes are wider than described before, limiting the possibility of morphometric compari‐
sons of individual edifices (especially eroded edifices) due to the lack of control on their
initial geometries. It seems on the basis of the presented eruptive diversity, comparative
morphologic studies should be focused on comparing cones that have similar processes in‐
volved in their formation (i.e. Esimple, Ecompound or Ecomplex) and limited post-eruptive surface
modifications (i.e. younger than a few ka in age). The morphology of a fresh (≤ a few ka)
cone-type volcano is the result of primary eruptive processes; therefore, the morphometric
parameters should be interpreted as the numerical integration of such eruptive diversity
and mode of edifice growth. As stated by Wood [84], only fresh cones must be used for de‐
tecting causes and consequences of changes in morphology. When cone-type volcanoes
from a larger age spectrum, e.g. up to a few Ma [e.g. 312, 337], are studied, the primary, vol‐
canic morphometric signatures are modified by post-eruptive processes. Thus, they contain
a mixture of syn- and post-eruptive morphometric signatures. Hence, interpretation of large
morphometric datasets should be handled with care. Furthermore, it is also evident that not
all geomorphic changes experienced by the edifice during the eruption history are preserved
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in the final volcano morphology. This could be due to, for instance, rehealing of the edifice
after a collapse event, or changing eruption style, reflecting the complex nature of cone
growth. Future research should focus on finding the link between the eruptive processes
and morphology, as well as finding out how syn-eruptive constructive and destructive proc‐
esses can be discriminated from each other on an ‘unmodified’, fresh cone.

Figure 10. Stratigraphic log (A) of Rangitoto scoria cone, Auckland Volcanic Field, New Zealand showing the typical
alteration of scoriaceous lapilli (SL1) and scoriaceous ash (ST1-2). Some examples are for syn-eruptive pyroclast inter‐
actions during growth of cone-type volcanoes such as scoria cones (B).

5. Degradation of monogenetic volcanoes

Once the eruption ceases, a bare volcanic surface is created with all of the primary mor‐
phologic attributes that have been determined by the temporal and spatial organization
of the internally- and externally-controlled eruptive and sedimentary processes during the
eruption history (Figure 6). The fresh surface is usually ‘unstabilized’ and highly perme‐
able due to the unconsolidated pyroclasts, but there is often some degree of welding/agglu‐
tination, the presence of compacted ash, or lava flow cover. The degradation processes of
a volcanic landform have a significant effect on the alteration of primary, volcanic geomor‐
phic attributes (e.g. lowering of Hco/Wco  or slope angle values). The significant transition

Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation
http://dx.doi.org/10.5772/51387

35



from primary (pristine) volcanic to erosion landforms fundamentally starts when, for ex‐
ample, soil is formed, vegetation succession is developed or the surface is dissected over
the primary eruptive products. However, modification of the pristine, eruption-control‐
led morphology could happen by non-erosion processes. For example, rapid, post-erup‐
tive subsidence of the crater of a phreatomagmatic volcano due to diagenetic compaction,
or lithification of the underlying diatreme infill  during and immediately after the erup‐
tions [400-401]. This usually leads to deepening of the crater or thickening of the sedi‐
ments accumulated within the crater. Some compaction and post-eruptive surface fracturing,
due to the gradual cooling down of the conduit and fissure system, is also expected at
cone-type volcanoes, such as after the formation of Laghetto scoria cones at Mt. Etna, Ita‐
ly [184] or Pu'u 'O'o spatter/scoria cone in Hawaii [173]. These processes could cause some
geomorphic modification that may affect the morphometric parameters. On the other hand,
the long-term surface modification of a monogenetic volcanic landform is related to deg‐
radation and aggradation processes over the erosion history. The structure of the degrada‐
tion processes that operate on volcanic surfaces can be classified into two groups based
on their frequency of occurrence and efficiency:

1. long-term (ka to Ma), slow mass movements, called ‘normal degradation’, as well as

2. short-term (hours to days), rapid mass movements, called ‘event degradation’.

In the following section a few common degradation and aggradation processes are dis‐
cussed briefly.

5.1. Long-term, normal degradation of monogenetic volcanoes

Normal degradation is a long-term (ka to Ma) mass wasting process that occurs by a combi‐
nation of various sediment transport mechanisms and erosion processes such as rill and gul‐
ly erosion, raindrop splash erosion, abrasion or deflation. Normal degradation requires
initiation of the erosion agent that is usually the ‘product’ of the actual balance between
many internal and external degradation controls at various levels, such as the climate or in‐
ner architecture (Figure 11). The external environment (e.g. annual precipitation, tempera‐
ture or dominant wind direction etc.) is recognized as a major control on degradation [68,
71, 324-325, 337-338], influencing the chemical weathering and rates of CO2 consumption
[e.g. 402]. However, there is no single control on chemical weathering rates; the actual
weathering rates are often a function of many controlling conditions [e.g. 403]. Important
controls on weathering rate could be the climatic settings (e.g. surface runoff, moisture
availability, temperature, atmospheric CO2 level, rates of evaporation [e.g. 404]), the tecton‐
ics (e.g. the post-orogenic increase in chemical weathering that decreases the atmospheric
CO2 concentration [e.g. 405]), the geomorphology (e.g. age of the surface, surface drainage
system, rates of sediment transport, relief, soil cover, sediment composition [e.g. 406]) or the
biology (e.g. microorganism, plant cover, animal activity [e.g. 407]).

A combination of the abovementioned controls and processes on chemical weathering inter‐
acts in many ways depending on the internal composition and characteristics of the volcan‐
ics exposed to the environment (Figure 11). The importance of internal controls on
degradation seems to be neglected by earlier studies on monogenetic volcanic edifices [e.g.
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71] in contrast with recent studies [e.g. 68]. The facies architecture and granulometric charac‐
teristics of a volcanic surface govern how the edifice reacts to the environmental impacts,
e.g. the flanks drain the rainwater ‘overground’ leading to the formation of rills and gullies
or allow infiltration [71, 408-412]. The pyroclast-scale properties are determined by fluctua‐
tion of eruption styles during the eruption history, leading to accumulation of pyroclasts
with contrasting geochemical, textural and granulometric characteristics. This pyroclast di‐
versity will be responsible for the various rates of chemical weathering. Additionally, this
diversity has an effect on the mode and efficiency of sediment transport during the course of
degradation. For instance, the ‘stability’ (or amount of loose particles on the flanks) causes
slight differences in rates, styles and susceptibility for erosion. The stability could increase
with the formation of mature/immature soil, thick accumulation of weathering products, de‐
nudation of a lava-spatter horizon and/or heavy vegetation cover, which altogether help to
stabilize the landscape. These changes on the mineral- to pyroclast-scales lead to transitions
from ‘unstabilized’ to ‘stabilized’ stages. The duration of the transition depends on many
factors (e.g. Figures 12A and B), such as the initial surface morphology, granulometric char‐
acteristics, volcanic environment and climatic settings [408-410, 413-417]. The transition
could be as short as a couple of years if the volcanic surface is characterized by the domi‐
nance of fines, e.g. ejecta ring around a tuff ring, and typically exposed to a humid, tropical
climate [408]. In arid climates the lag time between soil formation is significantly longer (if it
takes place at all), up to 0.1–0.2 Ma [188, 413]. There are extreme environments where the
soil/vegetation cover can barely be developed due to the high rates of volcanic degassing
and acid rain, e.g. the intra-caldera environment in Ambrym, Vanuatu [e.g. 408] or cold po‐
lar regions, e.g. Deception Island, Antarctica [e.g. 418, 419]. Changes in surface stability
could be governed by gradual denudation of inner, texturally compacted (e.g. welded or ag‐
glutinated spatter horizons or zones) pyroclastic units. This leads to rock selective erosion
and higher preservation potential of an edifice in the long-term [e.g. 68]. Consequently, the
degradation processes cannot be separated from the architecture of the degrading volcanic
edifice, and therefore the erosion history is strongly attached to the eruption history. In this
respect, the erosion history and rates seem to be governed (at least on one hand) by the
time-lagged denudation of pyroclastic beds with varying susceptibility to erosion. In other
words, the rate and style of degradation are theoretically the ‘inverse’ of the eruption history
if the external controls are steady over the erosion history.

The actual balance between the internal and external controls determines the dominant rates
and mode of sediment transport mechanism at a given point on the flanks of a monogenetic
volcano (Figure 11). The mode and style of erosion of monogenetic volcanic landforms can
be subdivided into ‘overground’ and ‘underground’ erosion. The long-term, overground
degradation of volcanic surfaces can be accounted for through water-gravity (including
rainfall, sea or freshwater, underground water or ice or various lateral movements of sedi‐
ment/soil cover due to gravitation and water), and wind erosion agents. The sediment trans‐
port fluxes of such erosion agents and their time-scales are highly variable. The most
significant, normal degradation processes on bare unstable (volcanic) surfaces are possibly
triggered by the presence of water. Rainfall erosion causes small-scale movement of parti‐
cles up to a couple of cm in diameter or chunks of soil when the rain drops impact on the
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surface [e.g. 420]. Besides the impact-triggered (or raindrop splash) sediment detachments,
there are associated processes such as minor raindrop-induced surface wash [420-421]. On
volcanic surfaces, the raindrop introduced and/or wind-driven rain splash erosion and relat‐
ed downward sediment transport on steep flanks (20–25°) is about 15.8 cm/yr for pyroclasts
with diameter of 1.7 cm [323]. The regional-scale lowering of the landscape (over a 100 m
length with 10° of slope angle) associated with rain-splash could be in the range of 0.1–1
mm/yr [e.g. 422]. This equivalent to a long-term erosion rates of 0.1 t/km/yr, calculating with
2.5 mm median rain drop diameter on a flank with 10° of slope angle [422]. If rainfall inten‐
sity exceeds the soil’s infiltration capacity at any time during a rainfall event, overground
flow, such as unchannelized sheet flow can be generated [e.g. 423]. The erosion capacity of
sheet flow is higher than the rain-splash, but it is significantly lower than mass-wasting once
the rill and gully network is developed (e.g. Figures 12E and F). Drainage system develop‐
ment on the flanks of monogenetic volcanoes is found to correlate with the age of the vol‐
canic edifice [70, 321, 324, 424]. Although, the required time for their formation could be as
short as a couple of months or years and it could develop on the gentle flanks (e.g. a tuff
ring with slope angle of 5–10° in Figures 12E and F) which anomalously short period of time
could introduce error in the relative morphology-based dating [425]. The fluvial erosion
could remove sediment in a range of 10–100 000 t/km2/yr [e.g. 426]. These overground sur‐

Figure 11. Conceptualized model for the configuration of internal and external degradation controls on determining
erosion agents and sediment transport processes at a given point on ‘unstabilized’ and ‘stabilized’ volcanic surfaces
over the erosion history. Degradation of a monogenetic volcano takes place by both long-term (ka to Ma; dark and
light yellow boxes) and short-term, event-degradation processes (hours to years; green boxes) with different rates
over the erosion history. The effects of such degradation processes take place both ‘overground’ and ‘underground’.

Updates in Volcanology - New Advances in Understanding Volcanic Systems38



face processes, such as rill and gullies, and various soil/sediment creep [70-71, 323, 408, 425]
have been accounted as a major mass wasting mechanism over the degradation history of a
monogenetic volcanoes. The effect of these overground degradation processes were model‐
led mostly on scoria cones [324-325, 327, 337].

All varieties of soil and sediment creep and solifluction processes, such as soil and frost
creep and gelifluction, are usually slow processes [e.g. 427], in comparison with surface run‐
off. Thus, these processes modify the volcano flanks’ morphology constantly and over a lon‐
ger period of time. The rates of erosion vary depending on the topography (e.g. slope
gradient), sediment/soil properties (e.g. proportion of fines, moist content) and predominant
climate (e.g. amount and type of precipitation, annual temperature), but rarely exceed the
downhill movement rates of 1 m/yr and the volumetric velocity of between 1×10-10–1×10-8

km3/km/yr [e.g. 427]. The sediment transport rates introduced by solifluction are many or‐
ders of magnitude smaller than the erosion loss of a volcano by fluvial processes. In cold
semi-arid and arid regions, the ice plays the major role on the sediment transport [e.g. 428].
Consequently, the surface modification and movements are related to diurnal and annual
frost-activity, such as ground freezing and thawing cycles. On scoria cones at the periglacial
Marion Island, South Indian Ocean, dominant sediment transportation processes on scoria
cone flanks are the needle-ice-induced frost creep related to the diurnal and possibly annual
frost cycles [428]. The frost creep rates are 53.2 cm/yr for ash (≥70% of grains ≤2 mm), 16.1
cm/yr for lapilli (≥30% of grains between 2–60 mm), and 2.6 cm/yr for bomb/blocks (≥70% of
grains ≤60 mm), based on measurements on painted rocks [428]. The rates are primarily con‐
trolled by the predominant grain-size of the sediment, the slope angle of the underlying ter‐
rain and altitude [428]. Based on the transportation rates, the processes are the same or an
order of magnitude faster than rain-splash-induced pyroclast transport in a semi-arid envi‐
ronment, such as San Francisco volcanic field in Arizona [323].

Probably the most effective overground degradation process on a freshly created volcanic
surface is the wave-cut erosion. In rocky, coastal regions, the wave cut notch moving back
and sideward removes mass by hydraulic action and abrasion [e.g. 429]. Wave-cut erosion
mostly affects tuff cones that are located on or offshore (Figures 12C, D, E and F). In this en‐
vironment abrasion is a common syn-eruptive [430] or post-eruptive erosion process, e.g.
Surtsey [431-432] or the early formation Jeju Island, Korea [433]. For instance, post-eruptive
coastal modification through abrasion generated an area-loss of about 0.2 km2 between 1975
and 1980 on Surtsey island in Iceland [431]. The rate of volume-loss of non-volcanic coastal
regions is in the range of 10 000 to 100 000 t/km/yr [e.g. 434]. This enhanced rate of mass-
removal is in agreement with advanced states of erosion on a recently formed tuff cone
within Lake Vui in the caldera of Ambae volcano, Vanuatu, which formed in 2005 [263]. The
initial surface has been intensively modified by wave-cut erosion and slumping from the
crater walls, leading to an enormous enlargement of the crater and crater breaching over 10
months (Figures 12C and D).

The effect of wind deflation is often limited, especially in humid climates. However, there
are examples in volcanic environments where, in spite of the high annual precipitation, the
sediment transport rates are still significantly high due to wind action, e.g. in some parts of
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south Iceland, around 600 t/km/yr [435]. Expressing the long-term effect and rate of sedi‐
ment transport by wind is complicated due the high variability of wind intensities (i.e. storm
events versus normal background intensities) and directions [e.g. 436]. Sediment transport
fluxes can vary in a wide range as a function of wind energy and surface characteristics (e.g.
sediment availability, vegetation cover or water saturation). Long-term sediment transport
by wind in volcanic areas (e.g. Iceland) is in the range of 100 to 1000 t/km/yr [435-436]. How‐
ever, this sediment transport rate is in relation, but it is not equivalent to the erosion rates.
Furthermore, efficient wind transportation as bed load by creep and saltation, and suspend‐
ed load, is limited to particles generally ≤8 mm in diameter [e.g. 436]. This granulometric
limit is crucial for the long-term erosion of volcanic landforms that built up from coarser py‐
roclasts, such as coarse lapilli-dominated scoria cones. Significant increase is observed dur‐
ing storm events, when these sediment transport rates could reach as high as a couple of
percentage of the annual fluxes within an hour [435]. Thus, the long-term approximation of
the sediment transport rates could be interpreted as cumulative values of normal, back‐
ground and increased, storm/related erosion rates [e.g. 435]. In addition, there are a few ex‐
amples such as Surtsey, where the wind deflation is considerable. In Surtsey, the strong
wind is responsible for the polishing of palagonitized tephra surfaces and transporting and
redistributing unconsolidated tephra on the freshly created island [431]. Direct observation
of short-term volumetric change of a young scoria cones (e.g. Laghetto or Monte Barbagallo,
ca. 2700–2800 m asl) is through deflation by wind in the summit region of Mt. Etna, Sicily
[326]. Surface modification is inferred to occur on the windward side of the Monte Barbagal‐
lo cones [326]. The wind likely induces some minor pyroclast disequilibrium on the flanks
that may lead to minor rock fall events or initiate grain flows [326]. In real semi-arid areas,
wind-erosion is an important transport agent and surface modificator over unstabilized vol‐
canic surfaces such as the Carapacho tuff ring in the Llancanelo Volcanic Field, Mendoza,
Argentina (Figure 12A). The layer-by-layer stripping of the volcanic edifice is completely
visible on the windward side of the erosion remnant facing the Andes. On the other hand,
the wind-blown sediments can accumulate over time leading to sometimes expressible ag‐
gradation on volcanic surfaces (Figure 13A). Accumulation of aeolian addition could signifi‐
cantly contribute to the soil formation by gaining excess material, e.g. quartz or mica [415,
437]. Due to the generally high roughness of pyroclast- or lava rock-dominated surfaces (e.g.
highly vesicular scoria or a’a lava flow), the wind slows down, leading to sedimentation and
later accumulation of wind-transported particles [415-416, 437-438]. The wind-induced ag‐
gradation helps to reduce the transition time between an ‘unstabilized’ to a ‘stabilized’ sur‐
face by developing desert pavement in semi-arid/arid desert environments [415-416].

The previously mentioned, generally long-term overground degradation processes often ac‐
count for most of the volumetric loss and surface modification of monogenetic volcanoes [e.g.
71]. In the case of the underground degradation, the surface water leaves the system through
the groundwater if the actual soil infiltration capacity exceeds the rainfall intensity [423]. This
underground water can remove weathering products (e.g. leaching of cations from the rego‐
lith) as dissolved sediment fluxes [e.g. 439]. The rate of chemical weathering could be extreme‐
ly high in humid [e.g. 439] and lower in moderate climates [e.g. 440], based on chemical and
solute-derived weathering data from rivers draining mafic to intermediate igneous rocks. The
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rates of underground chemical weathering could be in the range of 10 to 1000 t/km2/year in a
humid climate [e.g. 439], which is in the same order of magnitude as the erosion rate by sur‐
face runoff. This efficient removal of weathering products by infiltrating rainwater and subse‐
quent underground flow has an important, previously unaccounted for effect on degradation
of monogenetic volcanic landforms. It is also worth noting that volcanoes with conical geome‐
try are suspected to have different weathering regimes in accordance with microclimatic and
topographic conditions [e.g. 437]. Taking the Rangitoto scoria cone (Auckland, New Zealand)
as an example, the area of the cone is about 0.41 km2, while the bulk DEM-based volume is
about 0.022 km3 above 140 m asl [363, 441]. The edifice has a basal diameter of about 600 m and
a crater diameter of 200 m. Considering the abovementioned ranges of subsurface weather‐

Figure 12. A) Contrasting rates of wind erosion on Pleistocene Carapacho tuff ring [61] under a semi-arid climate in
the Llancanelo Volcanic Field, Mendoza, Argentina. It is interesting to note that the wind-erosion is strongly controlled
by the resistance of individual beds to wind deflation. Lack of vegetation cover helps to maintain the long-term, slow
erosion on the windward side of the volcanic edifice. (B) Contrasting style and rates of revegetation of volcanic surfa‐
ces on the flanks of maar/tuff ring and scoria cones. Lake Pocura (Ranco Province, Chile) is a few ka old maar crater
and is characterised by the same degree of vegetation cover as the recently formed Carran maar (1955). The Mirador
scoria cone (1979) lacks of vegetation cover. In comparison with Carapacho tuff ring (in A), and, the surface stabiliza‐
tion in semi-arid/arid climates, the time for vegetation to develop is much shorter, in a few decade time-scales. (C and
D) Rapid syn- and post-eruptive erosion is observed on a freshly formed tuff cone in the caldera of Ambae, Vanuatu in
2006. (E) A tuff cone (≤2 ka old) located along the coastal region in Ambrym, Vanuatu. Note the geomorphic similari‐
ties of this tuff cone with scoria cones. (F) Cross-section through a post-eruptive, well-developed, gully exposed by in‐
tensive wave-cut erosion since 1913. The gully developed on the gentle-flanks of a tuff ring formed in the
phreatomagmatic eruption in Ambrym, Vanuatu [425].
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ing and erosion rates, the time scales of complete erosion of the scoria cone can be calculated.
Assuming a 1200 kg/m3 average density for moderately to highly vesiculated scoria deposits
(i.e. 3.4 to 341.6 m3/yr volume loss rates), the time scale of complete degradation would be be‐
tween 6.4 Ma and 0.06 Ma, using the constant degradation rates mentioned above. Of course,
the rates of chemical weathering tend to slow down when the soil coverage becomes thicker
and the weatherable parental rocks are reduced [e.g. 442]. Apart from this, the underground
erosion of volcanic edifices by infiltrating surface water (e.g. initial stages of scoria cone deg‐
radation) and groundwater flow could be very important and effective long-term degrada‐
tion process that should have some influence on the morphology of monogenetic volcanoes,
especially for volcanic areas with strong chemical weathering rates (e.g. humid, tropical areas
with high annual temperature).

In summary, the degradation of a monogenetic volcano is many orders of magnitude longer
(≥100 ka to ≤ 50 000 ka) than their formation (≤0.01 ka). For example, the degradation of a
small-volume (≤0.1 km3) volcanic edifice usually takes place in a couple or 10s of Ma for
welded and/or spatter-dominated edifices, such as in the Bakony-Balaton Highland Volcanic
Field in Hungary [68] or in Sośnica hill volcano is Lower Silesia, Poland [335]. Phreatomag‐
matic volcanoes, especially those with diatremes, could degrade over a longer period of time
due to their significant vertical extent, e.g. the Oligocene Kleinsaubernitz maar–diatreme
volcano in Eastern Saxony, Germany [401]. During such a long degradation time, the rates
and style of post-eruptive surface modification of monogenetic volcanic landforms are gen‐
erally vulnerable to changes in the configuration and balance between internal and external
degradation controls (Figure 11). These could be triggered internally, e.g. denudation of a
spatter-dominated or a fine ash horizon (e.g. Figure 13B), or externally, such as long-term
climate change or climate oscillation [39], initializing a gradual shift in the dominant mode
of sediment transport. Each of these gradual changes (e.g. soil formation, granulometric and
climatic changes etc.) causes a partial or complete reorganization of the controls on degrada‐
tion. This adjustment of erosion settings could result in a change in erosion agent that may
or may not increase or decrease sediment yield on the flanks of a volcano. All of these
changes over the long erosion history open systemically new potential ‘pathways’ for ero‐
sion, leading to diverse erosion scenarios. The long-term degradation seems to be an itera‐
tive process, repeating a constant erosion agent adjustment that is triggered by many
gradual changes over the erosion history of a volcano. In many previous erosion studies, the
edifices are usually treated as individuals sharing the same internal (i.e. configuration of py‐
roclastic successions) and initial geometry [e.g. 71] and degrading in accordance with the cli‐
mate of the volcanic field [324-325, 337]. Of course the climate is in general a important
control on degradation, but the climatic forces are in continuous interactions with the vol‐
canic surface, promoting the importance of architecture and granulometric characteristics of
the exposed pyroclasts and lava rocks in the volcanic edifice. In extreme cases such as Pu‐
keonake scoria cone (having typical monogenetic edifice dimensions of 150 m in height and
900 m in basal width) in the Tongariro Volcanic Complex in New Zealand, there is an un‐
usual wide granulometric contrast within the pyroclastic succession (Figure 13B). Addition‐
ally, the trends and processes in degradation are in close relationship with the exposed
pyroclast characteristics which determine the rates of chemical weathering, soil characteris‐
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tics, surface permeability and, in turn, the mode of sediment transport on the flanks (e.g.
Figures 13C and D).

5.2. Short-term, event degradation of monogenetic volcanoes

The event degradation processes take place in a short time frame (hours to days), but they
could cause sudden disequilibrium in the degradation and sedimentary system. A mono‐
genetic magmatic system tends to operate inhomogeneously both spatially, forming volcan‐
ic clusters, and temporally, forming volcanic cycles. Additionally, there are monogenetic
volcanoes that can be found as parasitic or satellite vents on the flanks of larger, polygenetic
volcanoes, such as Mt. Etna in Sicily [317] or Mauna Kea in Hawaii [314]. The spatial and
temporal closeness of volcanic events, however, pose a generally overlooked problem relat‐
ed to the degradation of monogenetic volcanic landforms, such as tephra mantling or geo‐
morphic truncation by eruptive processes of a surrounding volcano. Tephra mantling is
considered to be an important process for the degradation of volcanic edifices as stated by
Wood [71] and White [412]. The average distance between neighbouring volcanoes in intra‐
plate settings, such as Auckland in New Zealand, is about 1340 m (i.e. 5.6 km2), while on the
flank of a polygenetic volcanic/volcanic island, such as Tenerife in Canary Islands, that aver‐
age is about 970 m (i.e. 2.9 km2). On the other hand, the typical area of a tephra blanket 1–2
cm thick ranges from 10 km2 for Hawaiian eruptions [162] to 103 km2 for violent Strombolian
eruptions [163, 443-444] and for phreatomagmatic eruptions [358]. Consequently, the indi‐
vidual edifices commonly overlap each other’s eruption footprint (i.e. area affected by the
primary sedimentation from the eruptions), showing the importance of tephra mantling.
Furthermore, there are monogenetic volcanic edifices that are developed on flanks of larger
polygenetic volcanoes where the mantling by tephra could be more frequent and more sig‐
nificant than in intraplate volcanic fields (e.g. Mt. Roja in the southern edge of Tenerife in
the Canary Islands, Figure 13E). A few cm thick tephra cover could cause complete or parti‐
al damage to the vegetation canopy [411, 445-447]. Mantling could reset all dominant sur‐
face processes, including sediment transport systems, erosion agents, vegetation cover or
soil formation processes. This leads to similar reorganization of the degradation controls to
those seen with the long-term gradual changes of external or internal factors during normal
degradation, but in much shorter time-scales (hours to years). The sedimentary responses to
mantling could occur instantly or with a slight delay. Increased erosion rates of older cones
were documented instantly after the tephra mantling by fine/coarse ash from Paricutin, Mi‐
choacán-Guanajuato, Mexico between 1943 and 1952 [411]. The tephra that mantled the top‐
ography was fine (Mdϕ = 0.1–0.5 mm) and relatively impermeable, which led to the
formation of new, extensive incisions by rill channels and significant deepening of older gul‐
lies by the increased sediment yield [411]. In contrast, the sedimentary response for the Tar‐
awera eruption in New Zealand was delayed by the well-sorted, coarse and high
permeability of the tephra accumulated over the landscape [448]. The mantling may have an
effect on vegetation coverage (e.g. cover or burn the vegetation) and the erosional agent re‐
sponsible for shaping the morphology of the volcano. The long-term effect of this may be
the longer preservation of the landform, or increased dissection which temporarily enhances
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the overall rates of erosion. These changes will have an important influence on the majority
of the morphometric parameters and their pattern of changes over the erosion history.

Surface modification of an already formed monogenetic volcanic edifice could also be trig‐
gered by the formation of another monogenetic vent close by [52, 412, 449]. The amalgamat‐
ed or nested volcanic complexes that have some time delay between their formation are
common in volcanic fields, for example Tihany in the Bakony-Balaton Highland, Hungary
[41], Rockeskyllerkopf volcanic complex in the Eifel, Germany [450] or Songaksan in Jeju Is‐
land, Korea [9, 278]. The eruption of nearby volcano(es) seems to be a common process that
may lead to the minor truncation of surfaces, bomb/block-dominated horizons and discor‐
dances in the stratigraphic log. This type of ‘event’ degradation by monogenetic eruption
could modify the previously formed topography instantly.

On pyroclast surfaces with limited permeability (e.g. fine ash, lava spatter horizon or lava
flows), the rain water tends to simply runoff depending on the actual infiltration rate and
the rain fall intensity rate [409-410, 447, 451-452]. On this fine ash surface, the infiltration
rates are an order of magnitude lower than on a loose, lapilli-covered flank. This is visible
on the flank of La Fossa cone in Vulcano, Aeolian Islands (Figure 13C). The La Fossa cone is
not a typical monogenetic volcano, but it has similar geometry and size to a typical mono‐
genetic volcanic edifice. Erosion on the La Fossa cone is characterized by surface runoff on
the upper steeper flanks (≥30°) built up by fine indurated ash (Mdϕ = 100 µm), while the
erosion of the lower flanks (≥28° and Mdϕ = 1–2 mm) is usually due to debris flows forming
levees and terminal lobes [410]. The strikingly different style of mass wasting mechanism is
interpreted to be the result of the lack of vegetation cover and strong contrast in permeabili‐
ty and induration of the underlying pyroclastic deposits [410]. Erosion by debris flows
forms deep and wide gullies even on a flank built up by permeable rocks, e.g. La Fossa in
Vulcano [410] or Benbow tuff cone in Ambrym, Vanuatu [408]. The triggering mechanism
for a volcaniclastic debris flow is limited to a period of intense, heavy rainfall [408, 410, 451,
453]. Thus it operates infrequently and it tends to typically redistribute a pocket of a few
tens of m3 of sediments [410].

Similarly to the volcaniclastic debris flows, landslides could also be part of the event degra‐
dation processes, especially on steep flanks (e.g. cone-type morphology). The susceptibility
for landslides that remove large chunks from the original volcanic edifice, increases by di‐
versity of the pyroclast in the succession. In other words, the layer-cake, usually bedded, in‐
ner architecture of either the ejecta ring around a phreatomagmatic volcano or a scoria cone,
is extremely susceptible to landsliding triggered, for instance by heavy rain, earthquake, ani‐
mal activity or surface instability of freshly deposited mantling tephra [e.g. 411].

Another event degradation process is the wild fire that is responsible for the temporal in‐
crease (by 100 000 times the ‘background’ sediment yield) in erosion rates and sediment
yields on steep flanks [e.g. 456, 457]. The major effects on a surface by a wild-fire include
accumulation of ash, partial or complete damage of vegetation, and organic matter in the
soil, and modification of soil structure, if any, and its nutrient content [e.g. 456]. These
changes of the surface properties lead to modifications of porosity, bulk density and infiltra‐
tion rates of the surface, promoting overground flow which is able to carry the increased
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sediment yield [e.g. 456]. The overground flow removes the fine sediment (e.g. volcanic ash
and lapilli and non-volcanic ash) and the topsoil, causing enrichment of coarser sediment on
the surface.

Animal activity is a commonly recognized erosion type due to its effect on the compaction
of the uppermost soil [e.g. 458, 459] and/or linear dissection of the surface by trampling [e.g.
460, 461]. As a result of compaction, the rainwater cannot penetrate through the soil cover
easily, leading to overground flow that increases the erosion rate and sediment yield [e.g.
458]. Wild animal tramping could be a source of rill and gully formation on flanks, mostly in
semi-arid and arid environments [e.g. 460], particularly in, the crater-type volcanoes that
commonly host post-eruptive lakes within the crater basins, such as Laguna Potrok Aike in
Pali Aike Volcanic Field, Patagonia, Argentina [462] or Pula maar, Bakony-Balaton High‐
land, Western Hungary [195, 463]. These maar lakes create special habitats that could in‐
crease animal activity, creating more opportunity for animal activity-induced erosion.

The event degradation processes, such as heavy rain-induced debris flow, tephra mantling,
landslide, post-wild fire runoff or animal activity, could individually trigger rapid geomor‐
phic modifications that affect the long-term degradation rates of the volcanic edifices (Figure

Figure 13. A) Degradation/aggradation on the outer flanks of Mt. Cascajo volcano (a few ka old?) in the NW rift zone,
Tenerife, Canary Island. (B) Textural and granulometric inhomogeneity of the Pukeonake scoria cone, at the foot of
the Tongariro Volcanic Complex in New Zealand. It is important to note that each of these units has different erosion
resistance that may have an effect on the trends and patterns in the erosion history. (C) Contrasting granulometry and
permeability caused difference in erosion surface modification on the flanks of La Fossa cone at Vulcano, Aeolian Is‐
lands. (D) Spatter accumulated on the crater rim feeds a small-volume rootless lava flow at the Mt. Cascajo volcano in
Tenerife, Canary Island. The spatter is relatively impermeable in comparison with its environment (e.g. loose, scoria
lapilli), thus will have an influence on the subsequent erosion patterns. (E) View of Mt. Roja in the southern edge of
Tenerife, Canary Island. The Mt. Roja edifice was partly or completely covered by the El Ambrigo Ignimbrite (0.18 Ma)
sourced from the former Las Cañadas edifice [454-455]. This mantling resulted in development of a rill and gully sys‐
tem on the flanks facing toward north.

Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation
http://dx.doi.org/10.5772/51387

45



11). The rates of sediment yield could be a thousand times larger in response to event degra‐
dation than in the case of normal degradation. These events are usually randomly or inho‐
mogeneously distributed over the erosion history of a volcanic landform, making the
quantification to the total erosion-loss complicated. Due to significant surface modification,
their effect on the morphometric parameters could be large and difficult to quantify.

5.3. Post-eruptive erosion of monogenetic volcanoes by normal and event degradation
processes

The geomorphic state of (monogenetic) volcanoes is commonly expressed by various morpho‐
metric parameters, including edifice height, slope angle or Hco/Wco ratios. The values of these
morphometric parameters usually show a decreasing trend over the course of the erosion his‐
tory [70-71, 290, 299, 317, 320, 464-465]. Consequently, the morphometric parameters show
strong time-dependence. This systematic change in morphology was observed mostly on sco‐
ria cones in many classical volcanic fields, such as San Francisco volcanic field in Arizona [71]
or Cima Volcanic Field in California [70]. This recognition led to the most obvious interpreta‐
tion: the morphology is dependent on the degree of erosion, which is a function of time and the
climate [e.g. 71]. Therefore, morphometric parameters may be used as a dating tool for volcan‐
ic edifices if the final geometry and internal architecture are similar among the volcanic edifi‐
ces being compared [e.g. 71, 324]. These fundamental assumptions (regardless if stated or not)
are valid for all comparative morphometric studies targeted volcanoes.

The concept outlined above is, however, sometimes oversimplified and the assumptions are
not always fulfilled. The concern about the classical interpretation of morphometric parame‐
ters and their change over time is derived from various sources.

• The architecture of a single monogenetic edifice is commonly inhomogeneous in terms of
internal facies characteristics. This architectural diversity usually results in diversity in ero‐
sion-resistance and susceptibility to chemical weathering of the pyroclastic rocks exposed to
the external environment (e.g. Figures 10 and 13B or [e.g. 68]. Due to the continuous denu‐
dation of internal beds, the internal architectural irregularities could cause different rates of
weathering and erosion leading to hardly predictable trends in degradation.

• The previous concept of monogenetic volcanism implied that the morphology of a volcan‐
ic landform is linked only to the specific eruption styles (i.e. Strombolian-type scoria
cone). However, this is an oversimplification and belies the complex pattern in edifice
growth (e.g. Figures 6–9).

• The final, pristine edifice morphology is mostly controlled by syn-eruptive processes (e.g.
explosion energy, substrate stability, mass wasting and mode of pyroclast transport, e.g.
Figures 7–9). Any change in either the internal or external controls during the course of an
eruption could modify the final morphology of the edifice partially or dramatically. This
is in agreement with the measured high variability of slope angle [e.g. 398] or aspect ra‐
tios [e.g. 314] on relatively fresh edifices. This supposedly eruptive process-related mor‐
phometric variability is observed on both the intra-edifice scale (e.g. between various
parts of an edifice) and inter-edifice scale [398].
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• There is a large difference in the rates and mode of chemical weathering and sediment
transport operating on different types of pyroclastic deposits or lava rock surfaces (e.g.
Figures 12 and 13). For instance, there is a contrast between mass wasting rates by under-
and overground flow processes, e.g. spatter or a higher degree of welding/agglutination
could cause asymmetric patterns in the permeability and, therefore, the subsequent initi‐
alization of the erosion on a freshly created surface.

• One theoretical concern about morphometric parameters, such as edifice height, aspect ra‐
tio or slope angle, is that they are intra-edifice, ‘static’ descriptors. Thus, they only express
the current geomorphic state of the volcano. In contrast, they are often used to reveal and
describe ‘dynamic’ processes, such as erosion patterns over time. It is obvious that trends
in erosion processes cannot be seen based on these intra-edifice, ‘static’ parameters unless
they are compared with other edifice parameters, or measure direct geomorphic modifi‐
cation by erosion processes over short periods of time (e.g. Figures 12C and D or [e.g.
464]). The first seems an ‘extrapolation’ due to the assumption of that all volcanic edifices
in the comparison have similar eruptive- and erosion histories. The second is more suita‐
ble, because it is the direct observation of erosion loss and surface modification [e.g. 326].

• Comparative morphometric studies often lack or have limited age constraints (e.g. a few
% of the total population of the studied edifices are dated) on the morphology, or inverse‐
ly in special cases, the dating is the purpose of the comparison. There are just a few stud‐
ies with complete age constraint [e.g. 68, 70, 326].

• The long-term surface modification is often believed as a result of the climate forces and
climate-induced erosion processes. Wood [71] stated the importance of tephra mantling as
a possible source of acceleration of erosion rates, but such event-degradation (e.g. tephra
mantling, edifice truncation by eruption nearby, landsliding, wild fire, animal activity
etc.), are usually neglected. They occur infrequently, but they could cause rapid and sig‐
nificant modification that may influence the patterns of future degradation.

Due to the concerns and arguments listed above, the morphometric parameters and their
classical interpretations should be revised. Referring back to the complexity of construction
of monogenetic volcanoes (Figure 6) and their primary geomorphic development (Figures
7–9), it is obvious that on a fresh volcanic landform the geomorphic feature is determined by
syn-eruptive processes, which in turn are governed by the internally and externally-driven
processes during the eruption history. Once the eruption ceases, the ‘input’ configuration of
a monogenetic volcano in terms of architecture, pyroclast granulometric characteristics, ge‐
ometry and geomorphology is given. The erosion agents at the start of the erosion history
are determined by the interactions between the internal (e.g. pyroclastic rocks on the sur‐
face) and external processes (e.g. climate; Figure 11). The results of such series of interac‐
tions between these properties lead to surface and subsurface weathering, soil formation
and development of vegetation succession over time. Each of these developments on the
flanks of a monogenetic volcano has a feedback to the original controls modifying the actual
balance towards one side. This leads to disequilibrium in the system and subsequent adjust‐
ing mechanism. These processes are called normal degradation, operating at a longer-time
scale (ka to Ma). However, the degradation mechanism sometimes does not function as ‘nor‐
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mal’. During the erosion history of a monogenetic volcano, there are some environmental
effects called ‘events’ such as tephra mantling or heavy-rain-induced grain flows. These
‘events’ are documented to cause orders of magnitude larger surface modification and pos‐
sibly initialize new rates and trends in the dominant sediment-transport system and in‐
crease the sediment yield [e.g. 411-412, 447-448, 457]. Consequently, the erosion history of a
monogenetic volcano comprises both normal (‘background’) and event degradation process‐
es (Figure 11). The cumulative result of many interactions, reorganization of erosion agents,
and effects of event degradation processes over the erosion history, are integrated into the
geomorphic state at the time of examination.

The degradation of the volcanic edifice leads to aggradation at the foot of the edifice and the
development of a debris apron (Figure 13A). Based on the behaviour and changes of intensi‐
ty of the abovementioned major sediment transport processes, it is evident that the individ‐
ual contribution of such erosion processes is not constant over time. It is more likely that
they are enhanced or eased by each other at certain stages of the degradation. The gradual
changes in style, rate and mode of sediment transport on the flank of a monogenetic volcan‐
ic edifice are likely triggered by the shifting of dominant external (e.g. climate change) and
internal environments (e.g. variability of erosion resistant layer within the edifice as ob‐
served in Figure 14A). Consequently, the degradation of the monogenetic edifice as a whole
cannot be linear (or maybe just certain parts of the erosion history) and must erode faster at
the beginning and slower at the end of the degradation [71, 324] in accordance with the wide
range of rates and time-scales of sediment transport processes. Consequently, a single geo‐
morphic agent cannot account for a volcano’s degradation. Instead, it seems to be the result
from the overall contribution of all processes with complex temporal distribution. Without
event degradation processes, given the fact that the erosion history lasts at least over a time-
scale of a couple of ka for a typical monogenetic volcanoes, this increases the likelihood of
some changes in the external environment that could modify the degradation trend.

These surface modifications and degradation processes should be in correlation with the
values of morphometric parameters, but their interpretation is possibly not a straightfor‐
ward process. The pristine unmodified geomorphic stage of a monogenetic volcano is pre‐
dominantly controlled by the processes that occurred in the eruption history. Once the
degradation proceeds (e.g. erosion surface modification, soil formation or development of
vegetation cover), these primary geomorphic attributes are gradually replaced by excess
‘signatures’ of the various post-eruptive processes. This will result in ‘noise’ in the original
syn-eruptive state of morphometric parameters extracted from the topographic attributes.
The soil cover on the surface creates a buffer zone between the pyroclastic deposits and the
environment. In this buffer zone, most of the weathering and erosion processes take place
(e.g. overground flow). During the degradation the actual erosion surface, regardless of
whether it is ‘unstabilized’ or ‘stabilized’, could contain pyroclasts with contrasting granulo‐
metric and textural characteristics (e.g. Figure 13B). For instance, the rates of weathering,
weathering product transport and soil formation could be different at the base of a volcanic
cone than at the crater rim, due to the differences in flank morphology, aspect or microcli‐
mate. These differences are demonstrated for various sectors of a cone-type volcano by the
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variation in microclimatic setting, e.g. insolation, freeze-thaw cycles or snow cover [437]. If
there are a couple of meter difference in sediment accumulation/loss, chemical weathering
and soil formations, it could cause a variation of a few degrees in the slope angle values. In
extreme cases, these differences could cause misinterpretation of the morphometric parame‐
ters, thus these should be taken into account or stated as an assumption of the interpreta‐
tion. The increase of post-eruptive ‘noise’ of the morphometric parameters will possibly
increase over the erosion history, and possibly the largest in the late stage degradation of the
edifice (e.g. Ma after its formation). In the case of older scoria cones, the architectural control
could increase, as the well-compacted and welded units are exposed, leading to rock-selec‐
tive erosion styles and longer preservation potential for a volcanic landform. This is found
to be important to the good preservation of the Pliocene (2.5–3.8 Ma) scoria cones such as
Agár-tető or Bondoró at the Bakony-Balaton Highland in Hungary [68]. For instance, these
scoria cones are old but they resemble considerably younger cone morphologies, due to
their higher morphometric values (e.g. height about 40–80 m, slope angle of 10–15°). These
parameters could be similar to the degradation signatures of a much younger cone, e.g. Ear‐
ly Pleistocene cones (slope angle of 13±3.8°) from Springerville volcanic field, Arizona [324].

Many lines of evidence suggest that the neglected internal architecture, initial variability in
geomorphic state or effect of ‘event’ degradation processes play an important role on edifice
degradation rates and trends. Once the degradation histories for various edifices are charac‐
terized by

1. different ‘input’ morphometric conditions (e.g. Figure 14B), and

2. large variability of rates and trends in mass wasting processes in accordance with the
susceptibility of chemical weathering of the underlying volcanic rocks and the total ca‐
pacity of sediment transport, it is possible that the same geomorphic state can be
reached not only by ageing of the edifice, but via a combination of other processes.

This further implies that the monogenetic volcanic edifice has a unique eruptive (e.g. Figure
6) and erosion history (e.g. Figures 12–14). As a result of the eruptive diversity, the erosion
history is not independent from the eruption history (i.e. the complexity of the monogenetic
edifices). In this interpretation, there is a chance to have edifices showing the same ‘geomor‐
phic state’ (in terms of the basic geometric parameters) reached through different ‘degrada‐
tion paths’. An example for this could be the case of the two scoria cones in Figures 14C and
D. In Figure 14C, the geometry of the edifice is strongly attached to the erosion-resistance
and to the position of the spatter-dominated collar along the crater rim. In this eruptive his‐
tory and subsequent erosion, the slope angle can be increased due to the undermining of the
flanks. Consequently, the morphology of the cone is becoming ‘younger’ over time, that is
the slope angle or Hco/Wco ratio will increase rather than decrease. On the other hand, a clas‐
sical-looking cone (Figure 14D) that has a homogenous inner architecture, experiences dif‐
ferent rates and degrees of erosion over different time scales. Therefore, both cones degrade
through different patterns and rates. To confidently say that the decreasing trend in mor‐
phometric parameters is associated with age, it is important to reconstruct the likely envi‐
ronment where the edifice degradation has taken place, including the number of ‘event’ and
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major changes in the degradation controls. This includes understanding the combination
and diversity of facies architecture [68, 468], the stratigraphic position of the edifice within
the stratigraphic record of the volcanic field [412, 469], the approximate likelihood of aggra‐
dation by, for example, tephra mantling [411], and spatial and temporal combination and
fluctuation of ‘normal’ and ‘event’ degradation processes over the erosion history.

Figure 14. A) Difference in mode of erosion (rock fall or surface runoff) due to spatter accumulation on the crater rim
of a 1–3 Ma old scoria cone in the Al Haruj Volcanic Field in Libya [288, 466]. (B) Variability in slope angle on the flanks
of spatter-dominated and lapilli-dominated cones (1256 AD) in the last eruptions at the Harrat Al-Madinah Volcanic
Field, Saudi Arabia [467]. Due to the young ages, these differences could be the results of differences in syn-eruptive
processes (e.g. fragmentation mechanism, degree of welding and granulometric properties). These different ‘input’
geomorphic states alone can also lead to the large variability of degradation paths of monogenetic volcanic land‐
forms. (C and D) Architecturally-controlled erosion pattern on Pleistocene scoria cones in the Harrat Al-Madinah Vol‐
canic Field, Saudi Arabia. The ages are between 1.2 and 0.9 Ma for the cone in Figure C, and only a couple of ka for the
cone in Figure D [467]. The geomorphic contrast between the edifices is striking in the slope angles, θ, calculated as θ
= arctan(Hmax/Wflank) from basic morphometric data. The erosion resistant collar on the crater rim changes the erosion
patterns by keeping the crater rim at the same level over even Ma. This results in the ‘undermining’ of the flanks (small
black arrows at the foot of the cones represented by a dashed line in Figure D) leading to a gradual increase of the
slope angles in contrast to all previously proposed erosion models for cone-type monogenetic volcanoes. The white
arrow near the rim (Figure C) indicates the significant surface modification by event degradation (e.g. mass wasting of
the erosion-resistant spatter collar). It is speculative, but the consequence of this irreversible and possibly ‘random’
event may have initialized the formation of a deeper gully (white dashed lines) leading to crater breaching over a lon‐
ger time-scale.
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6. Conclusions: towards understanding the complexity of monogenetic
volcanoes

A typical monogenetic volcanic event begins at the magma source region, usually in the
mantle, and ends when the volcanics have been fully removed by, for example, erosion
processes. Within this conceptualized life cycle of a monogenetic volcano, there is an active
stage (e.g. propagation of the magma towards the surface feeding a monogenetic eruption;
Figure 15) and a passive stage (e.g. post-eruptive degradation until the feeder system is ex‐
posed; Figure 15). The active stage of evolution is dependent on many interactions between
internally- or externally-driven factors. The magma (left hand side on Figure 15) intrudes in‐
to shallow parts of the crust that can be fragmented in accordance with the actual balance
between the magmatic and external conditions at the time of the fragmentations. This could
result in 6 varieties of volcanic eruptions if the composition is dominantly basaltic, which is
responsible for the construction of a monogenetic volcanic edifice with a simple eruption
history (Esimple, that is 61 combinations of eruption styles). Once there is some disequilibrium
in the system during the course of the eruption that will result in changing eruption styles
adjusting the balance in the system, forming compound eruption histories (Ecompound that is 62

combinations of eruption styles). Each number of shifts in dominant eruption style opens a
new phase of edifice growth and therefore increases the complexity of the eruption history
towards Ecomplex (that is 63 or more combinations of eruption styles). There could be even
thousands of theoretical combinations of eruption styles if the volcano is built up by more
than 4 phases with different eruption styles, until the magma supply is completely exhaust‐
ed or new vent is established by migration of the magma focus. With increasing complexity
of the eruption history, the complexity of the facies architecture of the volcanic edifice in‐
creases. Conceptually, these eruption histories can be numerically described by matrices,
based on spatial and temporal characteristics of eruption styles (e.g. Figure 6). The coding of
eruption styles could be

1. Hawaiian,

2. Strombolian,

3. violent Strombolian,

4. phreatomagmatic,

5. Surtseyan and

6. effusive activity

, if the erupting melt is characterised by basaltic to basaltic andesitic in composition. This sys‐
tems can be modified by adding further eruption styles such as sub-Plinian. The syn-eruptive
geomorphology of a volcano is, however, not only the result of the eruption style and associat‐
ed pyroclast transport mechanism, but there are stages of destructive processes, such as flank
collapse during scoria cone growth (e.g. Figure 3) or wall rock mass wasting during excava‐
tion of a maar crater (e.g. Figure 4). These common syn-eruptive processes (constructive and
destructive phases during the eruption history) have an important role on the resulting mor‐
phology, but they are not always visible/detectable in the morphology of the edifice.
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Figure 15. Conceptualized model to understand causes and consequences in the life cycle of crater- and cone-type
monogenetic volcanoes. See the text for a detailed explanation. Note that the colour coding in the bottom graph cor‐
responds the conceptualized degradation paths for the three cone-type volcanoes in the top graph. The double-head‐
ed arrows (top graph) and black circles (bottom graph) show the time slices when geomorphic states of the edifices
are similar, expressed by the morphometric parameters.

On the other hand, after the eruption ceases a passive stage of surface modification takes
place (right hand side on Figure 15). In the passive stage, the erosion history is also gov‐
erned significantly by a series of interactions between the exposed pyroclastic deposits and
lava rocks (and their textural and granulometric characteristics determining permeability)
and external influences such as climate, location or hydrology of the area. These interactions
determine the long-term (ka to Ma) degradation processes and rates. However, it is impor‐
tant to note that the erosion history is often a function of ‘normal’ and ‘event’ degradation.
The effect of event degradation is expected to be larger, in some cases, than the cumulative
surface modification by normal degradation processes. The relationship between event and
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normal degradation should be a subject for future studies. Due to the large number of com‐
binations of eruption styles that can generate edifices with different pyroclastic successions
and different initial geometries (at least a broader range than previously thought), volcanoes
can have very different susceptibilities for erosion. This implies that degradation trends and
patterns of monogenetic volcanoes should be individual volcano-specific (right hand side on
Figure 15). In addition, the combination of erosion path of individual monogenetic volca‐
noes is an order of magnitude larger than during the eruption history due to the larger num‐
ber of controlling factors (6 eruption styles versus varieties of ‘normal’ and ‘event’ mass
wasting processes) and the longer time-scale of degradation (<<ka versus >Ma). This has an
important practical conclusion: there are certain stages during the degradation when some
morphometric irregularity occurs if two or more volcanic edifices are compared. The mor‐
phometric irregularity refers to the state when two volcanoes appear similar through mor‐
phometric parameters such as Hco/Wco ratio or slope angle, but they have different absolute
ages (black double-headed arrows of the top graph and black circles on the bottom graph in
Figure 15). An important practical application of the volcano-specific degradation is that the
correlation between the morphology of the edifice is not always a function of the time
elapsed since formation of the volcanic edifice. As a consequence of the diverse active and
passive evolution of a volcanic edifice, age grouping based on geomorphic parameters, such
as Hco/Wco ratio or average or maximum cone slope angle, should be avoided. In terms of
interpretation of the morphometric data, the post-eruptive surface modification causes un‐
fortunate ‘noise’ in the primary morphometric signatures, which can be only reduced by us‐
ing edifices with absolute age constraints. Due to the long-lived evolution of monogenetic
volcanic fields (Ma-scale), there are usually volcanoes that are freshly formed, sometimes
close to volcanoes with no primary morphological features at the time of the examination.
The large contrasting and dynamic geological environment of such monogenetic volcanoes
makes the interpretation of available topographic information more complicated than previ‐
ously thought. Future studies should target this particular issue and define the meaning of
morphology of these monogenetic volcanic edifices at many scales.
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