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1. Introduction 

Elevated sympathetic activation, as assessed using a variety of indices, has been observed in 

lean hypertensive and diabetic patients, and obese individuals [Huggett et al. 2006; Masuo et 

al. 2000]. Similarly, many epidemiological studies have shown that hypertensive patients, 

even those without increased adiposity, display a higher prevalence of insulin resistance, 

thereby indicating the possible association between sympathetic activation and insulin 

resistance in the pathogenesis of hypertension [Esler et al. 2006; Masuo et al. 2002; de Silva et 

al. 2009]. Overweight and obesity is a growing problem across the globe and has reached 

“epidemic” proportions. The prevalence of diabetes, especially type 2 diabetes, and 

hypertension are significantly increased with the prevalence of obesity. Obesity, itself, and 

type 2 diabetes and hypertension associated with obesity are known to be more closely 

linked with insulin resistance and elevated sympathetic nervous activity. It has been well 

documented that obesity, hypertension, and diabetes are risk factors for subsequent 

cardiovascular and renal complications. Many patients are both diabetic and hypertensive 

while they are obese, but not all diabetic patients have hypertension, indicating that insulin 

resistance is not the only mechanism for blood pressure elevation in diabetic-hypertensive 

patients. Several investigators have reported that sympathetic nervous activation plays an 

important role in cardiovascular complications in patients with hypertension, diabetes, and 

obesity. 

Sympathetic nervous activation accompanying insulin resistance is closely linked with left 

ventricular hypertrophy in otherwise healthy subjects [Masuo, et al. 2008]. In addition, 
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sympathetic activation may predict the development of renal injury in healthy normotensive 

subjects [Masuo, et al. 2010]. Weight loss associated suppression of sympathetic nervous 

activity is associated with improvement of insulin sensitivity and resultant improvement in 

renal function in obese patients [Masuo, et al. 2011b; Straznicky, et al. 2009b & 2011]. 

Furthermore, weight loss improved the prevalence of left ventricular hypertrophy [Masuo, 

et al. 2008], which is one of the predictors for future cardiac complications, renal 

complications (injury) [Masuo, et al. 2007] and hyperuricacidemia [Straznicky, et al. 

2011].These findings suggest that elevated sympathetic nerve activity associated with 

insulin resistance may contribute to the onset and maintenance of cardiovascular and renal 

complications in diabetes, and hypertension in obesity.  

Furthermore, genetic polymorphisms of the β2- and β3-adrenoceptor gene have been 

associated with obesity [Masuo, et al. 2005 & 2011a; Kawaguchi, et al. 2006], hypertension 

[Masuo, et al. 2005b & 2010b; Kawaguchi, et al. 2006], type-2 diabetes and insulin resistance 

[Masuo, et al. 2005 & 2010} in epidemiological studies and may also be implicit in the close 

relationship between insulin resistance and sympathetic nerve activation. Recently, Masuo 

et al. reported that β2-adrenoceptor polymorphisms (Arg16Gly) accompanying high plasma 

norepinephrine levels may contribute to the prevalence of left ventricular hypertrophy and 

renal dysfunction [Masuo, et al. 2010a, b & 2011b]. These investigations suggest that β2-

adrenoceptor polymorphisms are related to sympathetic activation and insulin resistance 

and may contribute to cardiovascular- and renal complications in obesity and obesity-

related hypertension or type 2 diabetes. 

This chapter will provide a synthesis of the current findings on the mechanisms of the onset 

and maintenance of cardiovascular and renal complications in obesity, hypertension and 

type 2 diabetes, with a particular focus on sympathetic nervous activity and insulin 

resistance. A better understanding of the relationships between sympathetic nervous 

activity and insulin resistance in these important clinical conditions might help with the 

clinical treatment of diabetes and hypertension in obesity and prevent further 

cardiovascular and renal complications in this at risk group.  

2. Prevalence of type 2 diabetes and hypertension in obesity 

The clustering of cardiovascular risk factors associated with obesity, in particular abdominal 

obesity, is well established [Athyrus, et al. 2011]. The prevalence of obesity and overweight 

increased in the United States between 1978 and 1991 [Mokdad, et al. 2001], and recent 

reports have suggested continuing increases [Ogden, et al. 2004]. The National Health and 

Nutrition Examination Survey (NHANES) I (1971-1974), NHANES II (1976-1980), and 

NAHNES III (1988-1994) were conducted by the National Center for Health Statistics, 

Centers for Disease Control and Prevention (CDC). These data from the continuous 

NHANES studies have  showed that the prevalence of obesity and overweight people 

increased significantly in the United States between 1960 and 2003 [Preis, et al. 2009; Ogden, 

et al. 2004; Flegal, et al. 2012]. Evidence from several studies indicates that obesity and 

weight gain are associated with an increased risk of hypertension [Masuo, et al. 2000 & 
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2005a, b, c] and diabetes [Resnick, et al. 2000; Ford, et al. 1997], and that intentional weight 

loss reduces the risk that overweight individuals will develop hypertension [Masuo, et al. 

2001b; Straznicky, et al. 2009b] or diabetes [Will, et al. 2002].  

Recent large cohort studies have showed an increasing prevalence of obesity in children 

and, importantly, obesity in children is strongly associated with several major health risk 

factors, including type 2 diabetes mellitus and hypertension [Hedley, et al. 2004]. 

Focusing on the close associations between obesity, hypertension and diabetes, the 

NHANES and the Behavioural Risk Factor Surveillance System (BRFSS) investigations 

[Mokdad, et al. 2003] showed very close relationships between the prevalence of obesity, 

hypertension, and diabetes. Further, the Framingham Heart Study [Preis, et al. 2009] 

showed that diabetic subjects had a 2-fold higher mortality risk consisting of cardiovascular 

and non-cardiovascular mortality.  

3. Sympathetic nervous activity in obesity, hypertension and diabetes 

The sympathetic nervous system represents a major pathophysiological hallmark of both 

hypertension and renal failure, and is an important target of the therapeutic intervention 

[Grassi, et al. 2012; Schlaich, et al. 2009]. The sympathetic nervous system participates in 

regulating the energy balance through thermogenesis. Reduced energy expenditure and 

resting metabolic rate are predictive of weight gain (obesity). It is also widely recognized that 

insulin resistance or hyperinsulinemia relates to obesity [Minicardi, et al. 1996; Farrannini, et al. 

1995; Ward, et al. 1996]. Many epidemiological and clinical studies have shown a close 

relationship between sympathetic nervous system activity and insulin levels in obesity 

[Masuo. et al. 2002]. Several studies of longitudinal design have examined the effect of body 

weight changes (weight loss or weight gain) on sympathetic nervous system activity and 

insulin sensitivity (fasting plasma insulin levels and the (homeostasis model assessment of 

insulin resistance,   HOMA-IR). Elevations of sympathetic nervous system activity and insulin 

levels during weight gain [Masuo, et al. 2000; Gentale, et al. 2007; Barms, et al. 2003], and 

reductions of sympathetic activity and insulin levels during weight loss [Anderson, et al. 1991; 

Straznicky, et al. 2009], are typically observed. While these longitudinal studies have clearly 

shown that heightened sympathetic nerve activity and insulin resistance are closely linked to 

obesity (weight gain), the onset of obesity and the maintenance of obesity, it remains to be 

elucidated, whether sympathetic hyperactivity or insulin resistance is the prime mover.  

The response of the sympathetic nervous system to change in plasma insulin levels after oral 

glucose loading (oral glucose tolerance test) are different between subjects with and without 

insulin resistance [Masuo, et al. 2005], between nonobese and obese subjects [Straznicky, et al. 

2009a], and between subjects with and without the metabolic syndrome [Straznicky. 2009b]. 

Recently, changes in the sympathetic nerve firing pattern were observed with sympatho-

inhibition during weight loss [Lambert, et al. 2011].  In addition, different regulation by insulin 

of regional (i.e. hind limb, kidney and brown adipose tissue) sympathetic outflow to 

peripheral tissue was observed in agouti obese mice compared to lean control mice [Morgani, 



 
Insulin Resistance 162 

et al. 2010]. These observations provide the evidence of a strong linkage between the activity of 

the sympathetic nervous system and insulin levels. Huggett et al. [Huggett, et al. 2003] 

examined muscle sympathetic nerve activity (MSNA) in four groups of subjects, patients with 

essential hypertension and type 2 diabetes, patients with type 2 diabetes alone, patients with 

essential hypertension alone, and healthy normotensive controls. They found higher MSNA in 

the hypertensive-type 2 diabetic patients as compared with hypertensive alone patients or type 

2 diabetic alone patients, and higher MSNA in hypertensive alone patients or type 2 diabetic 

alone patients as compared with healthy normotensive controls. Fasting insulin levels were 

greater in hypertensive-type 2 diabetic patients and type 2 diabetic patients compared to 

hypertensive patients or healthy normotensive subjects. These findings, although obtained in 

patients still under medication, provided evidence that type 2 diabetic patients had elevated 

sympathetic nerve activity regardless of the prevailing blood pressure levels, and that the 

combination of hypertension and type 2 diabetes resulted in an augmentation in sympathetic 

nerve activity and levels of plasma insulin.  

Several investigations on the contributions of β2- and β3-adrenoceptor polymorphisms to 

type 2 diabetes also support a strong relationship between sympathetic nerve hyperactivity 

and insulin resistance in type 2 diabetes [Masuo, et al. 2004 & 2005a, b; Ikarashi, et al. 2004]. 

Figure 1 summarizes the relationships between sympathetic nerve activity and insulin 

resistance in obesity and type 2 diabetes mellitus (Figure 1). 

 

Obesity causes both insulin resistance/hyperinsulinemia and sympathetic nervous activation, and both link closely 

each other. Many investigations have shown that insulin resistance, sympathetic nervous activation, and adrenoceptor 

polymorphisms play important roles in the onset and maintenance of obesity, type 2 diabetes and hypertension.  

T2DM, type 2 diabetes, RAA, renin-angiotensin-aldosterone system; ADRB polymorphisms, adrenoceptor 

polymorphisms; SNS, sympathetic nervous system.  

Figure 1. Potential pathophysiological mechanisms in obesity, hypertension and type2diabetes (T2DM) 
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4. Insulin resistance in obesity, hypertension and type 2 diabetes 

Insulin resistance [Ferrannini, et al. 1998] is one of the criteria underpinning the 

development of the metabolic syndrome. The clinical evaluation of insulin resistance is 

growing interest because it is a strong predictor and plays an important role in the 

development of the metabolic syndrome, type 2 diabetes mellitus and hypertension. 

Table 1 shows the criteria for metabolic syndrome characterisation, as can be seen 

insulin resistance is prominent [Alberti, et al. 1998; Grundy, et al. 2004] (Table 1). 

Measuring insulin sensitivity is important to define insulin resistance. Table 2 

summarizes the methods usually used in clinical and epidemiological studies (Table 2). 

The hyperinsulinemic-euglycemic glucose clamp method is the gold standard and may 

be suitable for research investigations in specialized laboratories, but the homeostasis 

model assessment of insulin resistance (HOMA-IR) or fasting plasma insulin 

concentrations is more practical for epidemiological studies comprising a large number 

of subjects.   

4.1. Hyperinsulinemia as a marker of insulin resistance 

Insulin is an exceptional hormone in that its action is regulated not only by changes in 

concentration but also by changes in the sensitivity of target tissues. Inadequate insulin 

action can be the consequence of: (i) insufficient insulin concentration at the site of action, (ii) 

decreased tissue (effectors) responses to insulin, or (iii) a combination of low concentration 

and a decreased response. Regulation of circulating insulin levels is mainly (but not 

exclusively) achieved by changes in secretory rates. Nevertheless, the major determinant of 

insulin secretion, and therefore of plasma insulin concentration, is glucose. Any change in 

glucose concentration from the narrow normal range results in an insulin response 

appropriate to restore homeostasis. Thus, changes in insulin sensitivity occur in various 

physiological states and pathological conditions. 

For any amount of insulin secreted by the pancreas, the biological response of a given 

effector is dependent on its insulin sensitivity. The term insulin resistance customarily refers 

to glucose metabolism. Any decrease in insulin sensitivity (insulin resistance) is 

immediately translated into minute increases in blood glucose concentrations that will in 

turn act on the β-cell to produce a compensatory stimulus of insulin secretion, leading to a 

degree of hyperinsulinemia that is approximately proportional to the degree of effector 

resistance. Therefore, hyperinsulinemia may be responsible for insulin resistance. In steady-

state conditions, this compensatory hyperinsulinemia prevents a more exaggerated 

hyperglycaemia. The inability of β-cells to enhance insulin secretion means that blood 

glucose will keep increasing until the level of hyperglycaemia produces an adequate β-cell 

stimulus to attain the required insulin response. When the β-cell is unable to compensate for 

the prevalent insulin resistant state by further augmenting insulin secretion, hyperglycaemia 

continues to increase, producing impaired fasting glucose, impaired glucose tolerance and 

diabetes mellitus development.  
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BMI, body mass index; EGIR, European Group of the study of Insulin Resistance; NCEP ATPIII, 3rd Recommendations of the Adult Treatment Panel of the National 

Cholesterol Education Program; HDL-cholesterol, high-density lipoprotein cholesterol. Values in NECP definition and American Heart Association/Updated NCEP are 

approximations of values in mg/dL. 

Table 1. Criteria for Metabolic Syndrome including Insulin Resistance (50) 
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IR, insulin resistance; AUS, the area under the curve; ISI, insulin sensitivity index  

Table 2. Methods for Measuring Insulin Sensitivity 
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4.2. Relationships between sympathetic nervous activity and insulin resistance 

in obesity, hypertension, and type 2 diabetes 

It is widely recognized that insulin resistance or hyperinsulinemia relates to obesity 

[Ferrannini, et al. 1991 & 1995; Ward, et al. 1996], but the precise relationships linking those 

factors remain controversial. Many epidemiological and clinical studies have shown a close 

relationship between sympathetic nervous system activity and insulin levels in obesity 

[Anderson, et al. 1991; Ward, et al. 1996; Masuo, et al. 2002]. Several studies of longitudinal 

design have examined the effect of body weight changes (weight loss or weight gain) on 

sympathetic nervous system activity and insulin sensitivity (fasting plasma insulin levels 

and HOMA-IR). Elevations of sympathetic nervous system activity and insulin levels during 

weight gain [Masuo, et al. 2000; Bernes, et al. 2003; Gentle, et al. 2007} and reductions of 

sympathetic nerve activity and insulin levels during weight loss [Masuo, et al. 2001; 

Andersson, et al. 1991; Straznicky, et al, 2010] have been observed. These longitudinal studies 

have shown that heightened sympathetic nerve activity and insulin resistance are closely 

linked to obesity (weight gain), the onset of obesity and the maintenance of obesity.  In 

addition, a calorie restricted diet and exercise may have different mechanism on weight 

loss-induced blood pressure reduction.  Figure 2 shows changes in neurohormonal 

parameters over a 24-week period weight loss regimens  with a mild calorie restricted diet 

alone, mild exercise alone, or a combination with a mild calorie restricted diet and mild 

exercise. This study showed that a calorie restricted diet contributed strongly to 

normalization/suppression of sympathetic activation, and exercise related to insulin 

resistance.  In addition, calorie restricted diet and exercise may have different mechanisms 

on weight loss-induced blood pressure reduction [Masuo, et al. 2012a].  

Reduced energy expenditure and resting metabolic rate are predictive of weight gain and 

obesity development. The sympathetic nervous system participates in regulating energy 

balance through thermogenesis (Figure 1). Landsberg and other investigators hypothesized 

that energy intake stimulates hyperinsulinemia and sympathetic nerve activity resulting in 

blood pressure elevations in a cycle in order to inhibit thermogenesis. Insulin-mediated 

sympathetic nerve stimulation in obese subjects is therefore considered part of a 

compensatory mechanism aimed at restoring the energy balance by increasing the metabolic 

rate [Landsberg. 2001]. Hyperinsulinemia and insulin resistance in obese subjects are all part 

of a response to limit further weight gain via stimulating sympathetic nerve activity and 

thermogenesis [Landsberg, 2001].  

On the other hand, Julius and Masuo generated a hypothesis based on data from their 

longitudinal studies that increased sympathetic nerve activity in skeletal muscle causes 

neurogenic vasoconstriction, thereby reducing blood flow to muscle and consequently 

inducing a state of insulin resistance by lowering glucose delivery and uptake in 

hypertension and obesity. Both blood pressure elevations and weight gain may reflect a 

primary increase in sympathetic nervous tone. Masuo et al. [Masuo, et al. 1997, 2000, and 

2003] demonstrated that high plasma norepinephrine could predict future blood pressure 

elevations accompanying deterioration in insulin resistance. This was observed in HOMA-



 
Insulin Resistance 168 

IR (homeostasis model assessments of insulin resistance) in nonobese, normotensive 

subjects using longitudinal studies. Rocchini et al. [Rocchini, et al. 1990] reported that 

clonidine prevented insulin resistance development in obese dogs over a 6-week period, 

suggesting that sympathetic nervous activity might play a major role in the development of 

insulin resistance accompanying blood pressure elevation. The longitudinal studies 

[Straznicky, et al. 2005, 2009b & 2012. Masuo, et al. 2000, 2001b, 2003, 2005a, 2012] might 

provide strong evidence for a close linkage of high sympathetic nervous activity 

accompanying insulin resistance with the onset of hypertension. Heightened sympathetic 

nerve activity might play a major role in blood pressure elevations, and insulin resistance 

might play an ancillary mechanism for blood pressure elevation and genesis of 

hypertension. In hypertensive patients who already have heightened sympathetic nerve 

activity and insulin resistance, both heightened sympathetic nerve activity and insulin 

resistance are related to further blood pressure elevations.  

 

During weight loss with a mild calorie restricted diet, normalization of sympathetic activation measured by plasma 

norepinephrine was observed following significant weight loss and normalization of insulin resistance (HOMA-IR). 

On the other hand, in exercise alone group, normalization of insulin resistance was observed, and then weight loss and 

suppression of sympathetic activation. A low caloric diet and exercise may exert different effects on weight loss. NE, 

plasma norepinephrine levels; Fat, total body fat-mass; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

HOMA, homeostasis model of assessment of insulin resistance. [Masuo, et al. 2012] 

Figure 2. When significant changes were observed comparisons between a calorie restricted diet vs. 

mild exercise alone vs. combination with diet + exercise over 24 weeks 

Very recently, Masuo et al. [Masuo, et al. 2012} showed the differences in mechanisms of 

weight loss-induced blood pressure reductions with neurohormonal parameters changes 

over 24 weeks with loss regimens (Figure 2). A calorie restricted diet caused 
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suppression/normalization of sympathetic activation measured with plasma norepinephrine 

levels followed by improvements of insulin resistance, whereas exercise improved insulin 

resistance followed by normalization of norepinephrine levels. BMI and blood pressure 

decreased after significant reductions in both plasma norepinephrine and HOMA-IR (Figure 

2).  Their investigations may help to explain why discordant results have been observed.  

However, at least their hypotheses showed a strong linkage between sympathetic activation, 

insulin resistance, obesity and hypertension.  

Valentine et al. [Valentine, et al. 2004] reported attenuation of hemodynamic and energy 

expenditure responses to isoproterenol infusion in hypertensive patients. Their findings that 

a generalized decrease of β-adrenergic responsiveness in hypertension supports the 

hypothesis that heightened sympathetic nerve activity through down-regulation of β-

adrenoceptor-mediated thermogenesis, may facilitate the development of obesity in 

hypertension. Their results suggested that sympathetic nerve activity-induced hypertension 

may subsequently lead to the development of obesity.  

Hoffmann et al. [Hoffmann, et al. 1999] investigated the effects of the acute induction of 

hyperglycemia on sympathetic nervous activity and vascular function in eight young 

normal control subjects. Muscle sympathetic nerve activity (MSNA) and forearm vascular 

resistance were measured before and during systemic infusion of 20% dextrose with low 

dose insulin with 60 min of hyperglycemia. Acute hyperglycemia caused sympathetic 

activation and peripheral vasodilation. Moreover, both acute and chronic hyperglycemia 

and hyperinsulinemia may enhance adrenergic vasoconstriction and decrease vasodilation 

in animal models (pithed rats) [Takatori, et al. 2006; Zamai, et al. 2008]. Insulin causes 

forearm vasoconstriction in obese, insulin resistant hypertensive humans [Gudbjornsdotti, et 

al. 1998]. On the other hand, van Veen et al. [van Veen, et al. 1999] found that hyperglycemia 

induced vasodilation in the forearm, but this vasodilation was not modified by 

hyperinsulinemia.  

4.3. Sympathetic nervous activity and leptin in obesity and the metabolic 

syndrome 

Interactions between the sympathetic nervous system and leptin are widely acknowledged 

with each being able to influence the other. Indeed, the leptin system mediates some of its 

action through the sympathetic nervous system [Haynes, et al. 1997; Kuo, et al. 2003]. 

Trayhurn et al. [Trayhurn, et al. 1995; Hardie, et al. 1996] investigated the effect of acute 

sympathetic nerve activation caused by exposure to cold on the expression of the leptin gene 

in white adipose tissue of lean mice, but not in obese mice. In addition, Masuo et al. reported 

the blunted linkage between the sympathetic nervous system and leptin in obese subjects 

[Masuo, et al. 2006; Kawaguchi, et al. 2006]. These studies, together with others, indicate that 

both insulin resistance and leptin may be regulated by the sympathetic nervous system. 

Masuo et al. [Masuo, et al. 2008] showed during oral glucose loading that plasma insulin and 

plasma norepinephrine increased in both insulin-sensitive and insulin-resistant subjects, but 
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plasma leptin levels decreased in insulin-sensitive nonobese subjects and increased in 

insulin- resistant nonobese subjects. Straznicky et al. [Straznicky, et al. 2005] also reported 

the blunted responses of whole-body norepinephrine spillover, insulin, and plasma leptin 

during oral glucose loading in obese subjects with insulin resistance as compared to insulin 

sensitive subjects. In subjects with the metabolic syndrome, weight loss with a low caloric 

diet diminished the whole-body and regional sympathetic nerve activity, as indicated by 

determinants of the whole-body norepinephrine spillover to plasma and muscle 

sympathetic nerve activity. Of interest, the decrease in norepinephrine spillover to plasma 

after weight loss was positively and independently associated with the decrease in plasma 

leptin, but not with insulin sensitivity in overweight insulin resistant subjects, while in 

overweight subjects without insulin resistance, the decrease in plasma norepinephrine after 

weight loss correlated with the improvement of insulin sensitivity. 

4.4. Sympathetic nervous activity and insulin resistance in the metabolic 

syndrome 

The metabolic syndrome is a cluster of abnormalities with basic characteristics being insulin 

resistance and visceral obesity. The criteria/definitions of metabolic syndrome are shown in 

Table 1. Importantly, obesity and the metabolic syndrome are associated with significant co-

morbidities, such as type 2 diabetes, cardiovascular disease, stroke, and certain types of cancers.  

Huggett et al. [Huggett, et al. 2003 % 2004] demonstrated in a series of studies using 

microneurography (muscle sympathetic nerve activity, MSNA) that type 2 diabetic patients 

had elevated sympathetic nerve activity regardless of the prevailing level of blood pressure, 

and that the combination of hypertension and type 2 diabetes resulted in an augmentation 

in sympathetic nerve activity and levels of plasma insulin. They also compared MSNA and 

insulin levels in 23 non-diabetic offspring of type 2 diabetic patients and 23 normal control 

individuals [Huggett, et al. 2006]. In non-diabetic offspring of type 2 diabetic patients, the 

fasting plasma levels of insulin and MSNA were greater (p<0.009 and p<0.003) than control 

subjects. Sympathetic nerve activity was significantly correlated to insulin levels (p<0.0002) 

and resistance (p<0.0001) in offspring of type 2 diabetic patients, but not in control subjects. 

Sympathetic activation occurred in not only subjects with the metabolic syndrome, diabetic 

patients, but also in normotensive non-diabetic offspring of patients with type 2 diabetes 

with the degree of activation being in proportion to their plasma insulin levels. This series of 

studies indicates the presence of a mechanistic link between hyperinsulinemia and 

sympathetic activation, both of which could play a role in the subsequent development of 

cardiovascular risk factors. 

5. Cardiovascular and  renal complications in obesity, obesity-related 

hypertension and diabetes 

It has been documented that patients with obesity, hypertension and type 2 diabetes 

frequently have cardiovascular and renal complications. Obesity was closely associated with 
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an increase in blood pressure, left ventricular mass, and with early signs of disturbed left 

ventricular diastolic function [Wikstrand, et al. 1993], and changes in left ventricular 

morphology and diastolic function [Alpert, et al. 2012].  It is well known that sudden cardiac 

death is the most common cause of death in dialysis patients and is usually preceded by 

sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation [Alpert, et al. 

2011]. Left ventricular (LV) mass and loading conditions that may affect LV mass are 

important determinants of corrected QT intervals (QTc) in normotensive severely obese 

subjects [Mukergi, et al. 2011]. The RICARHD study (Cardiovascular risk in patients with 

arterial hypertension and type 2 diabetes study), was a multicenter and cross-sectional 

study, conducted in Spain and included 2,339 patients who were 55 years or more with 

hypertension and type 2 diabetes of greater than 6 months duration. Left ventricular 

hypertrophy (LVH) or renal damage (GFR<60 ml/min/1.73 m2 and/or albumin/creatinine 

ratio ≥0 mg/g or an urinary albumin excretion ≥30 mg/24 hours) were compared between 

these hypertensive and type 2 diabetes patients and healthy controls. The combined 

presence of both hypertension and type 2 diabetes were associated with an increased 

prevalence of established cardiovascular diseases. Similarly, the presence of both cardiac 

and renal damage was associated to the higher prevalence of cardiovascular diseases [Cea-

Calvo, et al. 2006].  

The Lifestyle Interventions and Independence for Elders (LIFE) study in 8,029 patients with 

stage II-III hypertension with LVH on ECG showed high prevalence of co-existence of LVH 

and albuminuria [Wachtell, et al. 2002]. In patients with moderately severe hypertension, 

LVH on two consecutive ECGs is associated with increased prevalence of micro- and macro-

albuminuria compared to patients without persistent LVH on ECG. High albumin excretion 

was related to LVH independent of age, blood pressure, diabetes, race, serum creatinine or 

smoking, suggesting parallel cardiac damage and albuminuria. 

5.1. Hyperglycemia and insulin resistance as risk factors of cardiovascular 

complications in type 2 diabetes 

Hyperglycemia and hyperinsulinemia or insulin resistance that is a characteristic of type 2 

diabetes and obesity play major roles in the cardiovascular complications of type 2 diabetes 

mellitus and obesity. Hyperglycemia is the major risk factor for microvascular complications 

(retinopathy, neuropathy, and nephropathy) in type 2 diabetes, however 70% or 80% of 

patients with type 2 diabetes die of macrovascular disease. Atherogenic dyslipidemia 

(elevated triglyceride levels, low HDL-cholesterol levels, high LDL-cholesterol levels) is the 

major cause of atherosclerosis in patients with type 2 diabetes [Reasner, et al. 2008]. 

Several investigators have demonstrated that insulin resistance could predict future type 2 

diabetes even in nonobese individuals [Morrison, et al. 2008], and even in children [Koska, et 

al. 2007; Morrison, et al. 2008] Insulin resistance accompanying sympathetic nerve activation 

may also predict future hypertension development [Masuo, et al. 1997, 1998, 2003, & 2005]. 

Insulin resistance coexisting with inflammation may predict cardiac disease but, 

interestingly, not stroke in the Japanese diabetic population [Matsumoto, et al. 2006]. 



 
Insulin Resistance 172 

Hyperglycemia (i.e. elevated plasma glucose levels) can also predict hospitalization for 

congestive heart failure in patients at high cardiovascular risk [Held, et al. 2007]. 

Hyperglycemia and insulin resistance are risk factors of cardiovascular complications. 

5.2. Sympathetic nervous activity as a risk factor for cardiovascular 

complications and renal complications 

Heightened sympathetic nerve activity plays an important role in cardiovascular 

complications and cardiac risk in humans [Esler, et al. 2000]. There is consistent evidence 

that high plasma norepinephrine level, as an index of heightened sympathetic nerve 

activity, predicts mortality in cardiovascular diseases such as chronic congestive heart 

failure [Cohn et al. 1984; Brum, et al. 2006], left ventricular dysfunction [Grassi, et al. 2009], 

remodelling [Abel, et al. 2010], structural changes in obesity {Benedict, 1996}, and end-stage 

renal disease (ESRD) [Masuo, et al. 2007; Grassi, et al. 2012; Benedict, et al. 1996; Ksiazck, et al.  

2008]. Renal injury also predicts the development of cardiovascular disease [Masuo, et al. 

2007; Joles, et al. 2009].  

Hogarth et al. [Hogarth, et al. 2001] reported that acute myocardial infarction (AMI) in 

hypertensive patients resulted in greater sympathetic nervous activity, persisting for at least 

6 months longer than in normotensive subjects, indicating that AMI further augmented the 

sympathetic nerve hyperactivity of hypertension. Sympathetic nerve hyperactivity could be 

one mechanism involved in the reported worse prognosis in AMI in hypertensive patients 

[Hogarth, et al. 2001]. The sympathetic activation that follows AMI has been associated with 

increased morbidity and mortality in both anterior-AMI and inferior-AMI, with a similar 

magnitude of sympathetic nerve hyperactivity [Graham, et al. 2004]. Patients with 

congenital long-QT syndrome are susceptible to life-threatening arrhythmias, and the 

sympathetic nervous system may have an important triggering role for cardiovascular 

events this condition [Shamsuzzaman, et al. 2001]. 

Changes in heart rates during exercise and recovery from exercise are mediated by the 

balance between sympathetic and vagal activity, and changes in heart rates were evaluated 

in a total of 5,713 asymptomatic working men cohort (between the ages of 42 and 53 years) 

in whom there was no evidence of the presence or history of cardiac disease over the 

preceding 23 years. Baseline heart rates, changes in heart rates during exercise and recovery 

were strongly related to an increased risk of sudden death from myocardial infarction 

[Jeuven, et al. 2005].   

Zoccali et al. [Zoccali, et al. 2002 & 2004] examined the relationships between sympathetic 

nerve activity (plasma norepinephrine levels) and mortality and cardiovascular events in 

228 patients undergoing chronic hemodialysis originally without heart failure. They 

found 45% of dialysis subjects had significantly high plasma norepinephrine levels 

located in the upper limit of the normal range. One-hundred and twenty four (124) fatal 

and nonfatal cardiovascular events occurred in 85 patients during the follow-up period 

(34±15 months). Plasma norepinephrine levels proved to be an independent predictor of 
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fatal and nonfatal cardiovascular events in a multivariate Cox regression model.  

Recently, Joles et al. reported that sympathetic nerve stimulation contributes to the 

progression of renal disease [Joles, et al. 2004]. Masuo et al. reported that plasma 

norepinephrine levels predicted future renal injury in normotensive healthy subjects over 

a 5-year follow up study in a Japanese cohort [Masuo, et al. 2007]. They also found that 

plasma norepinephrine levels were associated with concentric left ventricular 

hypertrophy in these patients [Zoccali, et al. 2002 a & 2002b]. 

Petersson et al. [Petersson, et al. 2002] showed that increased cardiac sympathetic nervous 

activity in renovascular hypertension might lead to high cardiovascular mortality and 

morbidity. Prolonged sympathetic nerve stimulation and elevated circulating 

norepinephrine levels can induce changes in intra-renal blood vessels. Catecholamines 

can induce proliferation of smooth muscle cells and adventitial fibroblasts in vascular 

wall. 

The association between hypertension, obesity and chronic kidney disease (CKD) is well 

recognized [White, et al. 2005; Hall, et al. 2001; Zoccali, et al. 2002].  Obesity and hypertension 

also leads to an increase in the incidence of metabolic diseases such a type 2 diabetes 

mellitus, which is frequently associated with renal injury (proteinuria/microalbuminuria). In 

the majority of cases, ESRD occurs as a result of complication of diabetes or hypertension 

[WHO. 1995]. Obesity, hypertension and type 2 diabetes are characterized as stimulated 

sympathetic nervous activity and insulin resistance states, indicating renal injury and ESRD 

are strongly related to sympathetic nervous activity and insulin resistance. Masuo et al. 

reported that significant weight loss resulted in significant amelioration on renal function 

following suppression on sympathetic activation and hyperinsulinemia (insulin resistance) 

[Masuo, et al. 2012].  The findings suggest that strong linkage between sympathetic nervous 

activity, insulin resistance and renal function.  

Joles et al. reported that sympathetic nerve stimulation contributes to the progression of 

renal disease [Joles, et al. 2004]. The 40-minute infusion of NE into the renal artery of dogs 

produced a reversible ischemic model of acute renal failure [Bulger, et al. 1982]. Another 

study demonstrated renal protection by β-adrenergic receptor blockade in a 

nephrectomized rat experiment without any BP changes [Amam, et al. 2001]. There is 

consistent evidence that high plasma norepinephrine levels, as an index of heightened 

sympathetic nervous activity, predicts mortality in cardiovascular disease, such as chronic 

congestive heart failure [Cohn, et al. 1984; Brum, et al. 2006], left ventricular dysfunction 

[Benedict, et al. 1996] and end-stage renal disease (ESRD) [Masuo, et al. 2007; Ksiazek, et al. 

2008]. Renal injury also predicts the development of cardiovascular disease [Joles, et al. 

2004; Masuo, et al. 2007].  

These investigations have shown strong associations between sympathetic nervous 

activation, cardiovascular complications and renal complications. Given these observations 

it may be of importance to aim antihypertensive treatments or anti-diabetic treatment not 

only at the reduction of raised blood pressure or blood glucose but also at the excessive 

sympathetic activation and insulin resistance that may underpin these effects. 
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5.3. Sympathetic nerve hyperactivity in patients with ESRD 

Evidence now strongly indicates a role for the sympathetic nervous system in the 

pathogenesis of hypertension in renal failure (ESRD) [Hausberg, et al. 2002; Schlaich, et al. 

2009; Masuo, et al. 2010a].  Hypertension occurs commonly and early in renal disease and is 

paralleled by increases in sympathetic nerve activity, as indicated by increased muscle 

sympathetic nerve activity and circulating norepinephrine. This appears to be driven by the 

diseased kidneys, because nephrectomy or denervation has been shown to correct blood 

pressure and sympathetic nerve activity both in human and animal studies [Jacob, et al. 

2003].  

Masuo et al. [Masuo, et al. 1995 & 2010] showed that plasma norepinephrine levels  were 

significantly higher in patients with ESRD regardless of hemodialysis compared with those 

in blood pressure- and body mass index-matched hypertensive patients or healthy 

normotensive subjects (Figure 3). Further, this was recognized significantly in subjects with 

a shorter duration of ESRD with hemodialysis compared with those with longer duration, 

suggesting that sympathetic nerve hyperactivity may be of particular importance in the 

onset or the early development of ESRD or, alternatively, be influenced by long-term renal 

replacement therapy (hemodialysis). In the normal state, interactions between the kidney 

and sympathetic nervous system serve to maintain blood pressure and glomerular filtration 

rate within tightly controlled levels, but in renal failure, a defect in renal sodium excretory 

function leads to an abnormal pressure natriuresis relationship and activation of the renin-

angiotensin system (RAS), contributing to the development of hypertension and progression 

of kidney disease [Hall, et al. 1997; Lohmeier, et al. 2001]. Another mechanism could involve 

the sympathetic nervous modulation of baroreflex regulation and vasculature tone through 

the central nervous system and angiotensin II [Burke, et al. 2008]. Afferent signals from the 

kidney, detected by chemoreceptors and mechanoreceptors, feed directly into central nuclei 

regulating sympathetic nerve activity by circulating and brain-derived angiotensin II 

[Philips, et al. 2005]. Therefore, the pathogenesis of hypertension in renal failure (ESRD) is 

complex and arises most likely from the interaction of hemodynamic and neuroendocrine 

factors. Sympathetic nerve activity has strong relationships with regards to increased risk of 

cardiovascular disease including hypertension [Zoccali, et al. 2002a & 2002b] in patients with 

ESRD and the mortality and morbidity of cardiovascular disease, suggesting that we have to 

pay much attention to sympathetic nerve activation in our attempts to adequately treat 

patients with ESRD. 

Sympathetic nerve activity is consistently elevated in patients with ESRD, and in obese 

subjects and hypertensive patients in cross-sectional studies [Masuo, et al. 1995, 2011a & 

2011b).  The sympathetic nerve hyperactivity is at least in part independent of increased 

blood pressure levels or obesity. Further, patients with early-ESRD without hemodialysis 

had already significantly higher plasma norepinephrine levels compared with hypertensive 

subjects as well as normotensive subjects. Therefore, sympathetic nervous activation in 

ESRD patients may be independent from obesity or hypertension.  
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ESRD, end-stage renal disease; *P<0.05 versus healthy controls; **P<0.01 versus healthy controls;  

#P<0.05 versus hypertensive patients with normal renal function; ##P<0.01 versus hypertensive patients with normal 

renal function. [Masuo, et al. 2010a] 

Figure 3. Figure 3. Comparisons of plasma norepinephrine levels between patients with patients with 

ESRD, hypertensive patients with normal renal function and normal healthy controls.  

The amount of norepinephrine in plasma is only a fraction of the amount released into the 

synaptic cleft, and plasma norepinephrine levels are affected by dialysis therapy, so it is 

difficult to discount that the elevated plasma norepinephrine levels did not derive in part 

from reduced plasma norepinephrine clearance rather than solely from elevated 

sympathetic nerve activity. Grassi et al. [Grassi, et al. 2009] however, reported similar results 

using microneurography. In addition, plasma norepinephrine levels did not change between 

before- and after-hemodialysis therapy (data was not shown), and between after-

hemodialysis therapy and before-next hemodialysis therapy. Thus, one could speculate that 

plasma norepinephrine levels in ESRD patients are reflective of the degree of sympathetic 

nerve activity.   

5.4. β2-adrenoceptor polymorphisms accompanying sympathetic nervous 

activation may relate to renal injury  

Rao et al. [Rao, et al. 2007] and Masuo et al. [Masuo, et al. 2007] have shown strong 

associations between β2-adrenoceptor polymorphisms, elevated plasma norepinephrine 

levels and elevated HOMA-IR (insulin resistance) or future renal injury, suggesting that 

stimulated sympathetic nerve activity associated with insulin resistance, may independently 

play a major role in the onset and development of ESRD without obesity or hypertension. 

However, the precise mechanisms underlying sympathetic activation in CKD and ESRD 

have not been clarified. 
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Furthermore, Masuo et al. [Masuo, et al. 2011b] measured renal function (creatinine, BUN 

and creatinine clearance), plasma norepinephrine levels and HOMA-IR (insulin 

sensitivity) annually over a 5-year period in nonobese, normotensive men with normal 

renal function. Subjects who had a significant deterioration of renal function (more than 

10% increases from baseline of creatinine and BUN or decrease in creatinine clearance) 

over a 5-year period had higher plasma norepinephrine at the entry period, and greater 

increases in plasma norepinephrine over 5 years [Masuo, et al. 2011b]. In this study, 

subjects who had significant changes in body weight or blood pressure were excluded, 

indicating the contributions of obesity or hypertension might be excluded. Further, 

subjects who had significantly higher levels of plasma norepinephrine had a higher 

frequency of the Gly16 allele of the β2-adrenoceptor polymorphism [Masuo, et al. 2007] 

(Figure 4). The Gly16 allele of the β2-adrenoceptor polymorphism has been shown to be 

related to obesity [Masuo, et al. 2005, 2005a, 2005b], hypertension [Masuo, et al. 2005a, 

2005b, 2010b, 2011c] and metabolic syndrome development [Masuo, et al. 2005b]. Thus, 

high plasma norepinephrine levels appear to be a predictor that is determined genetically 

by the β2-adrenoceptor polymorphism (Arg16Gly) for renal injury, obesity, hypertension 

and metabolic syndrome. 

 

In 154 nonobese, normotensive subjects, renal function (creatinine clearance) was measured over a 5-year period.  

The deterioration of renal function was defined as >10% decreases in creatinine clearance over a 5-year period.  

Subjects with deterioration of renal function had higher frequency of Gly allele or Gly homozygous compared to those 

without changes in renal function. [Masuo, et al. 2011b] 

Figure 4. Subjects with deteriorations of renal function (creatinine clearance) carried higher frequency 

of the Gly16 allele of Arg16Gly, the β2-adrenoceptor polymorphisms  

These observations show that plasma norepinephrine levels associated with insulin 

resistance are strongly linked with the onset and development of renal injury. 
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6. Other medical conditions in obesity  

6.1. Obstructive sleep apnea in obesity is a risk factor for cardiovascular diseases 

Vozoris [Vozoris. 2012] investigated the relationships between prevalence of obstructive 

sleep apnea (OSA), obesity, and hypertension, diabetes, congestive heart failure, myocardial 

infarction, and stroke using a population-based multi-year cross-sectional study design 

including 12,593 individuals with data from the 2005-2008 United States National Health 

and Nutrition Examination Surveys (NHANES). They found individuals with OSA had 

elevated rates of cardiovascular diseases compared to the general population [Vozoris. 

2012]. OSA is a common disorder that has been associated with many cardiovascular disease 

processes, including hypertension and arrhythmias. OSA has also been identified as an 

independent risk factor for stroke and all-cause mortality. OSA is highly prevalent in 

patients with transient ischemic attacks and stroke [Das, et al. 2012]. Indeed, the majority of 

patients with OSA suffer from hypertension [Ziegler, et al. 2011].  The mechanisms 

underlying the link between OSA and cardiovascular disease are not completely 

established. However, there is increasing evidence that autonomic mechanisms are 

implicated. A number of studies have consistently shown that patients with OSA have high 

levels of sympathetic nerve traffic [Narkiewicz, et al. 2003]. In animal studies, intermittent 

hypoxia that simulates changes seen in OSA leads to chemoreceptor and chromaffin cell 

stimulation of sympathetic nerve activity, endothelial damage and impaired blood pressure 

modulation. Human studies reveal activation of sympathetic nerves, endothelial damage 

and exaggerated pressor responses to sympathetic neurotransmitters and endothelin 

[Ziegler, et al. 2011]. OSA is also frequently observed in obese individuals [Dos, et al. 201].2  

6.2. Gout and hyperuricacidemia in obesity 

Gout is a growing worldwide health problem, and is associated with increased prevalence 

of obesity. Gout and hyperuricacidemia are associated with the metabolic syndrome, 

diabetes mellitus, obesity and hypertension. Masuo et al. observed the importance of serum 

uric acid levels as a predictor for future obesity and hypertension [Masuo, et al. 2003]. 

Several epidemiological studies have shown the close linkage between hyperuricemia, 

obesity and hypertension [Robinson, et al. 2012]. Recently Robinson, et al. [Robinson, et al. 

2012] reviewed prevalence of hyperuricemia in Australia in 25 articles and 5 reports using a 

systematic journal search method. From 1968 to 1995/6, the prevalence of gout increased 

from 0.5% to 1.7% of the population. Especially in the Australian indigenous population a 

significant rise in the prevalence of gout from 0% in 1965 to 9.7% in 2002 in males, and 0% to 

2.9% in females were observed. Those elevations were strongly synchronized with the 

prevalence of obesity [Chang, et al. 2001]. Similar result has been reported in Taiwanese 

populations that, using a multivariate analysis, showed that BMI (obesity) was an important 

factor associated with hyperuricemia in both males and females, whereas age was associated 

with hyperuricemia only in males. In addition, the associations of basic and repeated 

measures of uric acid level with treatments for uric acid over a 11-year period, and risk of 

coronary heart disease (CHD) and stroke events were assessed  in Taiwanese populations 
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[Chien, et al. 2005]. The study showed that uric acid had significant risk only in hypertension 

and metabolic syndrome subgroups, but not in their counterparts. They also observed that 

uric acid, in the baseline and time-dependent variables, could predict cardiovascular events 

in the community of relatively low CHD but high stroke risk.  

Straznicky et al. examined the effects of weight loss on serum uric acid levels, and showed 

that it had ameliorative effects on uric acid levels in the obese subjects with the metabolic 

syndrome [Straznicky, et al. 2011]. Furthermore, they compared these effects between a mild 

calorie restricted diet alone, combination with a low calorie diet and exercise and control 

groups.  Interestingly, moderate weight loss in obese patients with metabolic syndrome is 

associated with a reduction in serum uric acid levels, albuminuria and an improvement in 

eGFR which is augmented by exercise co-intervention [Straznicky, et al. 2011]. Improvement 

of insulin resistance and sympathetic activation were synchronized with a reduction in 

serum uric acid levels.   

7. Conclusion 

The role of the sympathetic nervous activity and insulin resistance plays important roles in 

the etiology of obesity, hypertension, and type 2 diabetes. Several investigations have 

demonstrated that the sympathetic nervous activation and insulin resistance are strongly 

related to cardiovascular complication (i.e. LVH, congestive heart failure) and the onset and 

development of ESRD (renal injury).  Interestingly, relevant investigations of sympathetic 

nervous activity and β2-adrenoceptor polymorphisms indicate their contribution to the 

onset and maintenance of renal injury and LVH in healthy subjects and in patients with 

chronic renal failure and cardiovascular events in ESRD patients. Interestingly, the 

prevalence of OSA and hyperuricemia (gout) are significantly linked with increases in 

obesity, and both states are connected with the cardiovascular risks associated with 

sympathetic nervous activation. Serum uric acid, which may be affected strongly by 

sympathetic nervous activity, may be a predictor for future hypertension and renal injury 

(ESRD) development.   

Recently, it has been demonstrated that renal sympathetic nerve denervation provides 

promising results in patients with refractory hypertension [Krum, et al. 2009; Symplicity 

HTN-1 Investigators. 2011]. Besides the demonstrable effect on reducing blood pressure, 

renal denervation significantly and favourably influences LV mass and improves diastolic 

function, which might have important prognostic implications in patients with resistant 

hypertension at high cardiovascular risk [Brandt, et al. 2012]. Further, renal denervations 

showed an accompanying improvements in insulin resistance [Mahfoud, et al. 2011,:  

Witkowski, et al. 2012] and OSA [Brandt, et al. 2011]. Renal sympathetic denervation may 

conceivably be a potentially useful option for patients with co-morbid refractory 

hypertension, glucose intolerance, and obstructive sleep apnea. 

A better understanding of the relationships between sympathetic nervous activity, insulin 

resistance, cardiovascular complications, and renal complications, will help to develop 
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appropriate treatment strategies targeting renal injury or cardiac risk in hypertensive and 

diabetes patients with and without ESRD or LVH.  
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