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1. Introduction 

The metabolic syndrome is an agglomeration of interrelated risk factors that is associated 

with nearly 5-fold increased risk for type 2 diabetes mellitus (DM) and a 2-fold increased 

risk of coronary artery disease (CAD) [1]. Reaven first suggested this cluster of metabolic 

abnormalities in 1988. It is characterized by insulin resistance, visceral adiposity, 

dyslipidemia and a systemic pro-inflammatory and pro-coagulant state [2]. Insulin 

resistance is defined as reduced insulin action in metabolic and vascular target tissues, 

hence higher than normal concentration of insulin is required to maintain normoglycemia. 

On a cellular level, it indicates an inadequate strength of insulin signaling from the insulin 

receptor downstream to the final substrates of insulin action involved in multiple metabolic 

and mitogenic aspects of cellular function [3]. 

The development of insulin resistance leads to many of the metabolic abnormalities 

associated with this syndrome. Patients with insulin resistance tend to have impaired 

fasting plasma glucose levels, which increase the prevalence of more atherogenic, small 

dense low-density lipoprotein (LDL) particles. The growing incidence of insulin resistance 

and metabolic syndrome (MS) is seriously threatening human health globally.  Individuals 

with MS have a 30%–40% probability of developing diabetes and/or CVD within 20 years, 

depending on the number of components present [4]. 

In the United States (US), the prevalence of the MS in the adult population was estimated to 

be more than 25%. Similarly, the prevalence of MS in seven European countries was 

approximately 23%. It was estimated that 20%–25% of South Asians have developed MS and 

many more may be prone to it [5,6]. The main reason why MS is attracting scientific and 

commercial interest is that the factors defining the syndrome are all factors associated with 

increased morbidity and mortality in general and from CVD in particular [7].  
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Though, Insulin resistance has been recognized as a basis of CVD and diabetes type II, its 

etiology still remains elusive. Recent studies have contributed to a deeper understanding of 

the underlying molecular mechanisms of Insulin resistance. This review provides a detailed 

understanding of these basic pathophysiological mechanisms which may be critical for the 

development of novel therapeutic strategies to treat/ prevent metabolic syndrome. 

2. Signalling through Insulin receptor and its downstream Pathways 

Insulin action is initiated by an interaction of insulin with its cell surface receptor [8]. The 

insulin receptor (IR) is a heterotetramer consisting of two α subunits and two β subunits that 

are linked by disulphide bonds. Insulin binds to the extracellular α subunit of the insulin 

receptor and activates the tyrosine kinase in the β subunit {figure 1). Binding of insulin to IR 

effects a series of intramolecular transphosphorylation reactions, where one β subunit 

phosphorylates its adjacent partner on a specific tyrosine residue. Once the tyrosine kinase 

of insulin receptor is activated, it promotes autophosphorylation of the β subunit itself, 

where phosphorylation of three tyrosine residues (Tyr-1158, Tyr-1162, and Tyr-1163) is 

required for amplification of the kinase activity [9].  It then recruits different substrate 

adaptors such as the Insulin Receptor Substrate (IRS) family of proteins. Although IRs are 

present on the surface of virtually all cells, their expression in classical insulin target tissues, 

i.e. muscle, liver and fat, is extremely high [10]. Tyrosine phosphorylated IRS then displays 

binding sites for numerous signaling partners. Phosphorylated IRS proteins serve as 

multisite docking proteins for various effector molecules possessing src homology 2 (SH2) 

domains, including phosphatidylinositol 3-kinase (PI 3-kinase) regulatory subunits (p85, 

p55 p50, p85, and p55PIK), the tyrosine kinases Fyn and Csk, the tyrosine protein 

phosphatase SHP-2/Syp, as well as several smaller adapter molecules such as the growth 

factor receptor binding proteins Grb-2, Crk, and Nck [11]. Activation of these SH2 domain 

proteins initiates signaling cascades, leading to the activation of multiple downstream 

effectors that ultimately transmit the insulin signal to a branching series of intracellular 

pathways that regulate cell differentiation, growth, survival, and metabolism. Four 

members of the IRS family have been identified that are considerably similar in their general 

architecture [12-15]. IRS proteins share a similar structure characterized by the presence of 

an NH2-terminal pleckstrin homology (PH) domain adjacent to a phosphotyrosine-binding 

(PTB) domain followed by a variable-length COOH-terminal tail that contains a number of 

Tyr and Ser phosphorylation sites. The PH domain is critical for IR-IRS interactions. Plasma 

membrane phospholipids, cytoskeletal elements, and protein ligands mediate these 

interactions [16, 17]. In contrast, the PTB domain interacts directly with the juxtamembrane 

(JM) domain of the insulin and IGF-I receptors [18, 19], and hindrance of these interactions 

(by Ser/Thr phosphorylation) negatively affects insulin signaling [19]. A third domain, the 

kinase regulatory loop binding (KRLB) is found only in IRS-2 [20, 21]. This domain interacts 

with the phosphorylated regulatory loop of the IR, whereas the phosphorylation of two Tyr 

residues within the KRLB are crucial for this interaction [22]. 

PI3 kinase is a target of the IRS proteins (IRS-1 and IRS-2) which phosphorylates specific 

phosphoinositides to form phosphatidylinositol 4,5 bisphosphate (PIP2) to 
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phosphatidylinositol 3,4,5 triphosphate; in turn, this activates ser/thr kinase, i.e. 

phosphoinositide-dependent kinase-1 (PDK1) [23, 24]. Known substrates of the PDKs are the 

protein kinase B (PKB) and also atypical forms of protein kinase C (PKC) [25]. 

Downstream from PI 3-kinase, the serine/threonine kinase Akt (also called PKB) triggers 

insulin effects on the liver. Phosphatidylinositol-dependent kinase (PDK) and PKB/Akt have 

a pleckstrin homology domain that enables these molecules to migrate toward the plasma 

membrane [26]. Activated Akt induces glycogen synthesis, through inhibition of GSK-3; 

protein synthesis via mTOR and downstream elements; and cell survival, through inhibition 

of several pro-apoptotic agents (Bad, Forkhead family transcription factors, GSK-3). Insulin 

stimulates glucose uptake in muscle and adipocytes via translocation of GLUT4 vesicles to 

the plasma membrane [27- 29]. This suggests that the impairment of insulin activity leading 

to insulin resistance is linked to insulin signalling defects. 

Recently, an alternative PI 3-kinase independent mechanism to enhance GLUT4 

translocation and glucose uptake was described. According to this model, binding of insulin 

to its receptor finally activates the small G-protein TC10 via the scaffolding protein CAP 

(Cbl-associated protein) resulting in GLUT4 translocation and enhanced glucose uptake [30]. 

Insulin signaling also has growth and mitogenic effects, which are mostly mediated by the 

Akt cascade as well as by activation of the Ras/MAPK pathway. A negative feedback signal 

emanating from Akt/PKB, PKCΖ, p70 S6K and the MAPK cascades results in serine 

phosphorylation and inactivation of IRS signaling [31, 32]. Insulin signalling molecules 

involved in metabolic and mitogenic action have been demonstrated to play a role in 

cellular insulin resistance. A few recent reports indicate that some PKC isoforms may have a 

regulatory effect on insulin signalling. The expression levels and activity of a few PKC 

isoforms are found to be associated with insulin resistance [33-35]. 

Recent data from PKB knockout animal models provide an insight into the role of PKB in 

normal glucose homeostasis. While disruption of PKB/Akt1 isoform in mice have not shown 

to cause any significant perturbations in metabolism, mice with a knock out of the 

PKB(Akt2) isoform show insulin resistance ending up with a phenotype closely resembling 

Type 2 diabetes in humans [36-37]. Subsequent studies [38- 40] in insulin-resistant animal 

models and humans have consistently demonstrated a reduced strength of insulin signaling 

via the IRS-1/PI 3-kinase pathway, resulting in diminished glucose uptake and utilization in 

insulin target tissues. Recent studies on inherited insulin post-receptor mutations in humans 

have detected a missense mutation in the kinase domain of PKB (Akt2) in a family of 

severely insulin resistant patients. The mutant PKB was unable to phosphorylate 

downstream targets and to mediate inhibition of phosphoenolpyruvate carboxykinase 

(PEPCK), a gluconeogenic key enzyme [41]. Another recent study, involving the stimulation 

of PI3K and Akt-1, -2, and -3 by insulin and epidermal growth factors (EGFs) in skeletal 

muscles from lean and obese insulin-resistant humans showed that Insulin activated all Akt 

isoforms in lean muscles, whereas only Akt-1 was activated in obese muscles. Insulin 

receptor substrate (IRS)-1 expression was reduced in obese muscles, and this was 

accompanied by decreased Akt-2 and -3 stimulation. In contrast, insulin- or EGF-stimulated 

phosphotyrosine-associated PI3K activity was not different between lean and obese muscles. 
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These results showed that a defect in the ability of insulin to activate Akt-2 and -3 may 

explain the impaired insulin-stimulated glucose transport in insulin resistance [42]. 

This suggests that the impairment of insulin activity leading to insulin resistance is linked to 

insulin signalling defects. These insulin signalling pathways are shown in figure1. 

3. Mechanisms related to Insulin resistance 

Two separate, but likely, complementary mechanisms have recently emerged as a potential 

explanations for Insulin resistance. First, changes in IRS-1 either due to mutations or serine 

phosphorylation of IRS proteins can reduce their ability to attract PI 3-kinase, thereby 

minimizing its activation. A number of serine kinases that phosphorylate serine residues of 

IRS-1 and weaken insulin signal transduction have been identified. Additionally, 

mitochondrial dysfunction has been suggested to trigger activation of several serine kinases, 

leading to a serine phosphorylation of IRS-1. Second, a distinct mechanism involving 

increased expression of p85α has also been found to play an important role in the 

pathogenesis of insulin resistance. Conceivably, a combination of both increased expression 

of p85α and increased serine phosphorylation of IRS-1 is needed to induce clinically 

apparent insulin resistance. 

4. Mutations of IRS as a cause of Insulin resistance 

IRS-1 protein is a gene product of IRS-1 gene. In humans, rare mutations of the IRS-1 protein 

are associated with insulin resistance [43] and disruption of the IRS-1 gene in mice results in 

insulin resistance mainly of muscle and fat [44]. The genetic analysis of the IRS-1 gene has 

revealed several base-pair changes that result in amino acid substitutions [45-47]. The most 

common amino acid change is a glycine to arginine substitution at codon 972 (G972R), 

which has an overall frequency of ≈6% in the general population [48], with a carrier 

prevalence of 9% among Caucasians [49]. This mutation has been reported to significantly 

impair IRS-1 function in experimental models [50], and clinical studies have shown that this 

genetic variant is associated with reduced insulin sensitivity [51]. Expression of this variant 

in 32-D cells is associated with a significant (20-30%) impairment of insulin-stimulated PI3-

kinase activity, as well as reduced binding of IRS-1 to the p85 regulatory subunit of PI3-

kinase. Genotype/phenotype studies stratified according to body mass index (BMI) indicate 

that obese subjects who are heterozygous for the mutant allele have a 50% decrease in 

insulin sensitivity, compared with wild-type obese subjects. This suggests that there may be 

an interaction between the mutant allele and obesity, such that, in the presence of obesity, 

the mutant variant may aggravate the obesity-associated insulin resistance [49]. Moreover, 

earlier observations have indicated that the presence of a mutated IRS-1 gene is associated 

with dyslipidemia, further suggesting that this gene variant may have a significant effect on 

several risk factors for CAD [48, 50-52]. 

Interestingly, IRS-2 knockout mice not only show insulin resistance of muscle, fat and liver, 

but also manifest diabetes as a result of cell failure [53]. This phenotype with severe 
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hyperglycemia as a consequence of peripheral insulin resistance and insufficient insulin 

secretion due to a significantly reduced β-cell mass reveals many similarities to type 2 

diabetes in man and outlines the role of IRS proteins for the development of cellular insulin 

resistance. Homozygous knockout mice lacking a single allele of IRS-1 gene lack any 

significant phenotype, whereas homozygous disruption of the IRS-1 gene results in a mild 

form of insulin resistance [54]. IRS-1 homozygous null mice (IRS-1-/-) do not show a clear 

diabetic phenotypic expression, presumably because of pancreatic β cell compensation. IRS-

2−/− mice, on the other hand, developed diabetes as a result of severe insulin resistance 

paired with β-cell failure [55, 56]. Even though β cell mass was reduced in IRS-2−/− mice, 

individual β cell showed normal or increased insulin secretion in response to glucose [55]. 

In regard to insulin signaling, experiments in immortalized neonatal hepatocytes show that 

the lack of IRS-2 is not compensated for by an elevation of IRS-1 protein content or an 

increase in tyrosine phosphorylation [57]. Previous experiments performed in peripheral 

tissues of IRS-1−/− mice by Yamauchi et al. [44] suggested that IRS-2 could be a major player 

in hepatic insulin action. However, to what extent reduced IRS-2 contributes to insulin 

resistance in the liver remains uncertain. In humans, a number of polymorphisms have been 

identified in the IRS-2 gene. Among those, the amino acid substitution Gly1057Asp has been 

found in various populations with a prevalence sufficiently high to modulate a population’s 

risk of type 2 diabetes. In Caucasians, Finns, and Chinese, however, this variant has not 

shown an associated with type 2 diabetes [58, 59]. Although the polymorphism was 

associated with decreased insulin sensitivity and impaired glucose tolerance in women with 

polycystic ovary syndrome [60], it showed no association with insulin sensitivity in other 

studies [59, 61, 62]. In contrast, another study in women with polycystic ovary syndrome 

found that homozygous carriers of the Gly1057 allele had higher 2-h plasma glucose 

concentrations during an oral glucose tolerance test (OGTT) [63]. Decreased serum insulin 

and C-peptide concentrations during an OGTT were reported in middle-aged glucose-

tolerant Danish males carrying the Asp1057 allele [62]. However, using formal β-cell 

function tests, associations with insulin secretion were not reproduced in German, Finnish, 

and Swedish populations [59, 61, 62]. 

5. Serine phosphorylation of IRS as a cause of Insulin resistance 

IRS-1 contains 21 putative tyrosine phosphorylation sites, several of which are located in 

amino acid sequence motifs that bind to SH-2 domain proteins, including the p85 regulatory 

subunit of PI 3-kinase, Grb-2, Nck, Crk, Fyn, Csk, phospholipase Cγ, and SHP-2 [64]. IRS-1 

contains also > 30 potential serine/threonine phosphorylation sites in motifs recognized by 

various kinases such as casein kinase II, protein kinase C, protein kinase B/Akt, and 

mitogen-activated protein (MAP) kinases [12, 64]. 

Human IRS-2 contains 22 potential tyrosine phosphorylation sites, but only 13 are conserved 

in IRS-1. The amino acid sequence identity between IRS-1 and IRS-2 is 43%, with some 

domains such as the PH and PTB domains exhibiting higher degrees of identity (65 and 

75%, respectively). The COOH-terminal domains of IRS-1 and IRS-2 are poorly conserved, 
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displaying only 35% identity, which arises largely from similar tyrosine phosphorylation 

motifs surrounded by variable stretches of amino acid sequence. The middle of IRS-2 

possesses a unique region comprising amino acids 591–786 that interacts specifically with 

the kinase regulatory loop binding (KRLB) domain of the insulin receptor β subunit [65]. 

Since this region is absent in IRS-1, this domain may contribute to the signaling specificity of 

IRS-2. In addition, IRS-1 and IRS-2 may regulate unique signaling pathways because of 

different tissue distribution, subcellular localization, kinetics of activation/deactivation, or 

specificity of interaction with downstream effectors [66-68]. For example, it has been shown 

that IRS-1 and IRS-2 differ in their subcellular localization since IRS-1 is twofold more 

concentrated in the intracellular membrane compartment than in cytosol, whereas IRS-2 is 

twofold more concentrated in cytosol than in the intracellular membrane compartment [69]. 

Further studies have shown that IRS-2 is dephosphorylated more rapidly and activates PI 3-

kinase more transiently than IRS-1, thus indicating that differences in kinetics of activation 

may contribute to the diversity of the insulin signaling transduced by IRS-1 and IRS-2 

[69,70]. 

Since, IRS-1 and IRS-2 have the longest tails, which contain ∼20 potential Tyr 

phosphorylation sites. Many of the Tyr residues gather into common Tyr-phosphorylated 

consensus motifs (YMXM or YXXM) that bind SH2 domains of their effector proteins. 

Spatial matching is required for successful protein-protein interaction. Ser/Thr 

phosphorylation of IRS proteins in close proximity to their PTB (receptor-binding) region 

impedes the binding of the SH2 domains of these effectors, thus inhibiting insulin signaling 

[71]. 

Serine phosphorylation of IRS proteins can occur in response to a number of intracellular 

serine kinases [72].The causes of IRS-1 serine phosphorylation are- 

1. mTOR- p70S6 kinase, Amino acids, Hyperinsulinemia 

2. JNK-  Stress, Hyperlipidemia, Inflammation 

3. IKK- Inflammation 

4. TNFα- Obesity, Inflammation 

5. Mitochondrial dysfunction 

6. PKC θ- Hyperglycemia, Diacylglycerol, Inflammation 

Recent studies have demonstrated hyper-serine phosphorylation of IRS-1 on Ser302, Ser307, 

Ser612, and Ser632 in several insulin-resistant rodent models [73- 76] as well as in lean insulin-

resistant offspring of type 2 diabetic parents [77]. Further evidence for this hypothesis stems 

from recent studies in a muscle-specific triple serine to alanine mutant mouse (IRS-1 Ser → 

Ala302, Ser → Ala307, and Ser → Ala612), which has been shown to be protected from high-fat 

diet–induced insulin resistance in vivo [78]. Based on in vitro studies, serine 

phosphorylation may lead to dissociation between insulin receptor/IRS-1 and/or IRS-1/PI 3-

kinase, preventing PI 3-kinase activation [79, 80] or increasing degradation of IRS-1 [81].  

Ser318 of IRS-1 is a potential target for PKCζ [82], JNK, and kinases along the PI3K-mTOR 

pathway [83]. It is located in close proximity to the PTB domain. Therefore, its 

phosphorylation presumably disrupts the interaction between IR and IRS-1. 
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Phosphorylation of Ser318 is not restricted to insulin stimulation. Elevated plasma levels of 

leptin, an adipokine produced by adipocytes [84], also stimulates the phosphorylation of 

Ser318. This down regulates insulin-stimulated Tyr phosphorylation of IRS-1 and glucose 

uptake. 

In a recent study using skeletal muscle biopsies from 11 humans, the mTOR-S6K pathway 

was shown to negatively modulate glucose metabolism under nutrient abundance [151]. In 

agreement with previous studies, phosphorylation of Ser312 and Ser636 of IRS-1 was 

implicated as part of this negative regulation [85, 86]. Increased phosphorylation of Ser636 of 

IRS-1 was observed in myotubes of patients with type 2 diabetes. Inhibition of ERK1/2 with 

PD-98059 reduced this phosphorylation, thereby implicating ERK1/2 in the phosphorylation 

of Ser636 in human muscle [87].  

To unveil the importance of phosphorylated Ser/Thr residues of human IRS-1, Yi et al. [88] 

adopted a mass spectrometry approach. More than 20 Ser residues of IRS-1 were found to 

undergo insulin-stimulated phosphorylation in human muscle biopsies, three of which were 

newly identified sites: Thr495, Ser527, and Ser1005. This report validates previous in vitro and in 

vivo studies in animal models and suggests that the same strategy could be employed to 

identify phosphorylated Ser/Thr sites under conditions of insulin resistance, obesity, or type 

2 diabetes. 

Impaired hepatic glycogen storage and glycogen synthase activity is a common finding in 

insulin resistance [89] and polymorphisms in the glycogen synthase gene have been 

described in insulin resistant patients. The most frequent mutations are the so-called XbaI 

mutations and Met416Val within intron 14 and exon 10, respectively. Currently, there are 

conflicting data on the correlation of these polymorphisms with insulin resistance and Type 

2diabetes mellitus [90-92]. 

Recently, a hypothesis that mitochondrial dysfunction or reduced mitochondrial content 

accompanied by a decreased mitochondrial fatty acid oxidation and accumulation of fatty 

acid acyl CoA and diacylglycerol can cause insulin resistance has gained substantial 

experimental support [93- 95]. The mechanism of insulin resistance in these cases has been 

suggested to involve activation of a novel PKC that either by itself or via IKKβ or JNK-1 

could lead to increased serine phosphorylation of IRS-1. Severe mitochondrial dysfunction 

can result in diabetes that is typically associated with severe β-cell dysfunction and 

neurological abnormalities [96]. In a study ,using 13C/31P MRS, it was found that in the 

healthy lean elderly volunteers with severe muscle insulin resistance, there is∼40% 

reduction in rates of oxidative phosphorylation activity associated with increased 

intramyocellular and intrahepatic lipid content [94]. This study suggests that an acquired 

loss of mitochondrial function associated with aging predisposes elderly subjects to 

intramyocellular lipid accumulation, which results in insulin resistance [78]. Further, it  

was found that mitochondrial density was reduced by 38% in the insulin-resistant offspring 

[77].  

[This topic has been dealt in details in subsequent chapter by Wang etal.] 
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The proinflammatory novel PKCθ has been found to cause serine phosphorylation of IRS-1 

[97, 98], while PKCθ knockout mice have been shown to be protected from fat-induced 

insulin resistance [75]. Increased activity of PKCθ, along with increased activity of JNK, has 

also been found in skeletal muscle of obese and type 2 diabetic subjects [99, 100], supporting 

a potential role of these serine kinases in the pathogenesis of insulin resistance. 

 

Figure 1. Insulin signaling pathway showing that the binding of insulin with Insulin receptor (IR) leads 

to phosphorylation of tyrosine residues followed by activation of downstream signalling pathways 

which result in recruitment in recruitment of GLUT-4 transporter to the plasma membrane and entry of 

glucose molecules within the cell. Serine phosphorylation of IRS protein has an inhibitory effect on 

downstream pathways resulting in insulin Resistance. 

6. Increased expression of p85 

A molecular mechanism that can potentially lead to insulin resistance is a disruption in the 

balance between the amounts of the PI 3-kinase subunits [101]. PI 3-kinase belongs to the 

class 1a 3-kinases [102], which exist as heterodimers, consisting of a regulatory subunit p85, 

which is tightly associated with a catalytic subunit, p110.  Most tissues express two forms of 

regulatory subunit, p85α and p85β, and two forms of catalytic subunit, p110α and p110β 

[102]. p85α and p85β share the highest degree of homology in the C-terminal half of the 

molecules, which contains two SH2 domains that bind to tyrosine-phosphorylated proteins 

and an inter-SH2 domain that interacts with the catalytic subunit. The N-terminal halves of 

p85α and p85β contain an SH3 domain, a BCR homology region, and two proline-rich 

domains, but these domains are less well conserved between the two molecules. Two 
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isoforms of p85α truncated in the N-terminal region, identified as AS53 (or p55α) [103, 104] 

and p50α [105, 106], as well as p85α itself, are derived from a single gene (Pik3r1). p85β and 

another short isoform with limited tissue distribution termed p55γ/p55PIK are encoded by 

separate genes [107]. Normally, the regulatory subunit exists in stoichiometric excess to the 

catalytic one, resulting in a pool of freep85 monomers not associated with the p110 catalytic 

subunit. However, there exists a balance between the free p85 monomer and the p85-p110 

heterodimer, with the latter being responsible for the PI 3-kinase activity [108-110]. Because 

the p85 monomer and the p85-p110 heterodimer compete for the same binding sites on the 

tyrosine-phosphorylated IRS proteins, an imbalance could cause either increased or 

decreased PI 3-kinase activity [111]. Increase or decrease in expression of p 85 would result 

in a shift in the balance either in the favour of free p85 or p85-p110 complexes [108-110].  

One of the first indications that an imbalance between the abundance of p85 and p110 can 

alter PI 3-kinase activity came from experiments with l-6 cultured skeletal muscle cells 

treated with dexamethazone [111]. This treatment significantly reduced PI 3-kinase activity, 

despite an almost fourfold increase in expression of p85α (no change in p85β) and only a 

minimal increase in p110. The authors concluded that p85α competes with the p85-p110 

heterodimer, thus, reducing PI 3-kinase activity. 

Subsequently, animals with a targeted disruption of p85α (p85+/− heterozygous mice) have 

been found to have a higher ratio of p85-p110 dimer to free p85 and to be more sensitive to 

insulin [101, 111-114].  

The possibility of mismatch between free p85 and p85-p110 complexes has been recently 

supported by studies in insulin-resistant states induced by human placental growth 

hormone [115], obesity, and type 2 diabetes [100] and by short-term overfeeding of lean non-

diabetic women [116]. Barbour etal [117] have demonstrated that insulin resistance of 

pregnancy is likely due to increased expression of skeletal muscle p85 in response to 

increasing concentrations of human placental growth hormone. Furthermore, women 

remaining insulin resistant postpartum have been found to display higher levels of p85 in 

the muscle [118].  

Another small study of eight healthy lean women without a family history of diabetes, by 

Cornier et al showed that 3 days of overfeeding (50% above usual caloric intake) led to a 

significant increase in expression of p85α, ratio of p85α to p110, and a decline in insulin 

sensitivity. Within this experimental time frame, overfeeding did not cause any change in 

serine phosphorylation of either IRS-1 or S6K1, suggesting that increased expression of p85α 

may be an early molecular step in the pathogenesis of the nutritionally induced insulin 

resistance [116]. 

7. Role of the adipose tissue in insulin resistance  

Insulin has 3 major target tissues—skeletal muscle, liver and adipose tissue. It has been 

postulated that the insulin receptor (IR) is overexpressed in the cells of these tissues. Also only 

these three organs in the body are capable of glucose deposition and storage; no other cells can 
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store glucose. Removal of excess postprandial glucose by insulin occurs due to glucose uptake 

and storage in insulin sensitive target cells. About 75% of insulin-dependent postprandial 

glucose disposal occurs into the skeletal muscle [119]; therefore, it is the major target cell. 

While insulin-stimulated glucose disposal in adipose tissue is of little quantitative importance 

compared with that in muscle, regulation of lipolysis with subsequent release of glycerol and 

FFA into the circulation by insulin has major implications for glucose homeostasis. 

It is widely accepted that increased availability and utilization of FFA contribute to the 

development of skeletal muscle insulin resistance [120-122]. Moreover, FFA have been 

shown to increase endogenous glucose production both by stimulating key enzymes and by 

providing energy for gluconeogenesis [123]. Finally, the glycerol released during 

triglyceride hydrolysis serves as a gluconeogenic substrate [124]. Consequently, resistance to 

the antilipolytic action of insulin in adipose tissue resulting in excessive release of FFA and 

glycerol would have deleterious effects on glucose homeostasis. 

Patients suffering from insulin resistance and type 2 diabetes frequently display signs of 

abnormal lipid metabolism, increased circulatory concentration and elevated deposition of 

lipids in the skeletal muscle [125]. Increase in plasma FFA reduces insulin-stimulated 

glucose uptake, whereas a decrease in lipid content improves insulin activity in the skeletal 

muscle cells, adipocytes and liver [126]. Lipid-associated insulin resistance has also been 

shown to be linked to Glut4 translocation defects [27]. Studies have shown that raising 

plasma fatty acids in both rodents [75] and humans [127] abolishes insulin activation of IRS-

1–associated PI 3-kinase activity in skeletal muscle where IRS-1 is most prevalent. 

Adipose tissue can modulate whole body glucose metabolism by regulating levels of 

circulating free fatty acids (FFA) and also by secreting adipokines, thereby acting as an 

endocrine organ. However, the underlying mechanism of FFA-induced impairment of 

insulin signals is still unclear. The molecular mechanism underlying defective insulin-

stimulated glucose transport activity can be attributed to increases in intramyocellular lipid 

metabolites such as fatty acyl CoAs and diacylglycerol, which in turn activate a 

serine/threonine kinase cascade, thus leading to defects in insulin signaling through Ser/Thr 

phosphorylation of insulin receptor substrate-1 [78]. 

Some of the PKC isoforms represent such signalling molecules. PKC isoforms are classified 

as classical (cPKCα, βI, βII, γ), novel (nPKCδ, ε, θ, η) and atypical (aPKCζ, λ). cPKCs are 

activated by Ca+2 and diacylglycerol (DAG), nPKCs are activated by only DAG and aPKCs 

respond to neither Ca+2 nor DAG [128]. Among all these PKC isoforms, nPKCs are said to 

have a modulatory role in insulin signalling. Recent reports also demonstrate a link between 

nPKCs and FFA induced insulin resistance. 

Diacylglycerol is an attractive trigger for fat-induced insulin resistance in skeletal muscle, 

since it has been shown to increase in muscle during both lipid infusions and fat feeding and 

it is a known activator of novel protein kinase C (PKC) isoforms [78].  

Recent studies have revealed that accumulation of intracellular lipid metabolites activate a 

serine kinase cascade involving PKC-ε, leading to decreased insulin receptor kinase activity 
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resulting in 1) lower insulin-stimulated IRS-2 tyrosine phosphorylation, 2) lower IRS-2–

associated PI 3-kinase activity, and 3) lower AKT2 activity [129] . These fat-induced defects 

in insulin signalling in turn result in reduced insulin stimulation of glycogen synthase 

activity, resulting in decreased insulin-stimulated hepatic glucose uptake and reduced 

insulin stimulation of hepatic glucose production. Furthermore, reduced activity of AKT2 

results in decreased phosphorylation of forkhead box protein O (FOXO), allowing it to enter 

the nucleus and activate the transcription of the rate-controlling enzymes of 

gluconeogenesis (phosphoenolpyruvate carboxykinase, glucose-6-phosphate phosphatase). 

Increased gluconeogenesis further exacerbates hepatic insulin resistance and results in 

fasting hyperglycemia [129- 131]. Mitochondrial glycerol-3-phosphate acyltransferase 

(mtGPAT) is a key enzyme in de novo fat synthesis in liver, and recent studies in mtGPAT 

knockout mice have clearly implicated intracellular accumulation of diacylglycerol in 

triggering fat-induced insulin resistance in liver through activation of PKC-ε [132]. These 

data have important implications for the development of novel therapeutic agents to reverse 

and prevent hepatic insulin resistance associated with non-alcoholic fatty liver and type 2 

diabetes [133]. 

Lipid infusion in rats and humans impaired insulin-stimulated glucose disposal into the 

muscle and concomitant activation of PKCθ and PKCδ [134, 135]. PKCδ has been shown to 

be a possible candidate for phosphorylation of the IR on serine residues [136]. These result 

in defects in the insulin signalling pathway imposing insulin resistance.  

Recently, the PPARγ co-activator-1 (PGC-1) has been recognized as playing a major role in 

glucose homeostasis of the organism. Work mainly by Spiegelman’s group demonstrated a 

crucial role of PGC-1 in the regulation of GLUT4 in muscle cells [137]. (PGC)-1α and PGC-1 

β are transcriptional factor co-activators that regulate mitochondrial biogenesis. In addition 

AMP kinase, which is activated during exercise and ischemia by a reduction in the 

ATP/AMP ratio, has been shown to be an important regulator of mitochondrial biogenesis, 

mediating its effects through MEF2- and CREB-mediated increased PGC-1α expression [138-

141]. Extracellular stimuli such as cold, thyroid hormone, and exercise stimulate 

mitochondrial biogenesis through PGC-1 in brown fat and skeletal muscle. Increased PGC-1 

protein expression leads to increases in the target genes, including nuclear respiratory factor 

(NRF)-1. NRF-1 is a transcription factor stimulating many nuclear-encoded mitochondrial 

genes such as OXPHOS genes and also mitochondrial transcription factor A (mtTFA), a key 

transcriptional factor for the mitochondrial genome. mtTFA can bind to the D-loop of the 

mitochondrial genome and increase transcription of mitochondrial genes and replication of 

mitochondrial DNA [142]. 

A recent study by Ling et al. [143] demonstrated an age dependent decrease in muscle gene 

expression of PGC-1 α and PGC-1 β in young and elderly dizygotic and monozygotic twins 

without known diabetes  

Adipose tissue also acts as an endocrine organ producing adipokines which modulate 

glucose homeostasis [144]. Currently, those most intensely discussed are tumor necrosis 

factor-α (TNF α), leptin, adiponectin and resistin. At a molecular level, TNF α increases 
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serine phosphorylation of IRS-1 and down-regulates GLUT4 expression, thereby 

contributing to insulin resistance [38]. Furthermore, mice lacking TNF α function were 

protected from obesity-induced insulin resistance [145]. The role of leptin in regulating food 

intake and energy expenditure is well established. Humans with leptin deficiency or leptin 

receptor mutations are severely obese [146,147]. The adiponectin has insulin-sensitizing 

effects as it enhances inhibition of hepatic glucose output as well as glucose uptake and 

utilization in fat and muscle. The expression of adiponectin is decreased in obese humans 

and mice [148]. Thus, in humans, adiponectin levels correlate with insulin sensitivity. 

Because of its insulin-antagonistic effects, the adipocytokine resistin has attracted a lot of 

research interest. This is mainly based on data obtained in-vitro and from some animal 

models. Resistin decreases insulin-dependent glucose transport in-vitro and increases fasting 

blood glucose concentrations and hepatic glucose production in-vivo [149, 150]. 

8. Insulin resistance and Forkhead box protein O (FOXO) 

The fasting hyperglycaemia in patients with Type 2 diabetes is the clinical correlate of the 

increased glucose production by the liver because of insulin resistance. This is as a result of 

the lack of inhibition of the two key gluconeogenic enzymes, phospho-enolpyruvate 

carboxykinase (PEPCK) and the glucose-6- phosphatase (G6Pase) catalytic subunit. Studies 

in hepatoma cells [151,152] suggest that Foxo1 and -3 regulate the transcription of reporter 

genes containing insulin response elements from the PEPCK and G6Pase promoters. 

Furthermore, Foxo1 is phosphorylated in an insulin-responsive manner by PIP3-dependent 

kinases, such as Akt. Reduced activity of AKT2 results in decreased phosphorylation of 

Foxo protein, allowing it to enter the nucleus and activate the transcription of these rate-

controlling enzymes of gluconeogenesis [151,153]. There is increasing evidence that Foxo-

proteins are critically involved in the insulin dependent regulation of gluconeogenic gene 

expression and insulin-resistancein-vivo [154, 155]. In addition, the PPARγco-activator-1 

(PGC-1), a factor integrating the effects of glucocorticoids and cAMP on gluconeogenic 

geneexpression in the liver [156, 157] is also regulated by PKB and Foxo1 [158].  

9. FFA induced Inhibition of Insulin receptor (IR) gene expression by 

PKCε 

Clearly, the IR is one of the major targets in FFA-induced impairment of insulin activity. 

Recent studies performed in-vivo suggested that glucose uptake rather than intracellular 

glucose metabolism is the rate-limiting step for fatty acid induced insulin resistance in 

humans [159]. This indicates a mechanism in which accumulation of intracellular fatty acids 

or their metabolites results in an impairment of signaling through IRS/PI 3-kinase. 

Recent evidence has shown that PDK1 can directly phosphorylate all PKCs including nPKCs 

[160]. The PKCε isotype has recently been shown to be related to insulin resistance. Insulin 

stimulation of PDK1 phosphorylation is inhibited by an FFA, i.e. palmitate. PKCε 

phosphorylation is dependent on PDK1; FFA incubation of skeletal muscle cells and 

adipocytes inhibited PDK1 phosphorylation but surprisingly increased PKCε 
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phosphorylation. Inhibition of PDK1 by FFA is reflected in Akt phosphorylation as Akt 

phosphorylation is also dependent on PDK1 [161]. It has been shown that myristic acid 

incubation of HEPG2 cells causes myristoylation of PKCε which results in constitutive 

phosphorylation of PKCεat thr566/ser729 in the kinase domain required for PKCε activity. 

This phosphorylation was totally independent of PDK1, which the workers demonstrated 

by using PDK1 knockout cells. In the same way, addition of palmitate to skeletal muscle 

cells or adipocytes may affect palmitoylation of PKCε resulting in constitutive 

phosphorylation of PKCε [162, 163]. Taken together, it is clear that FFA causes PDK1-

independent phosphorylation of PKCε which in turn translocates to the nucleus, and its 

time of entry into the nucleus coincides with inhibition of IR gene transcription.  

10. Conclusion 

In this review, current developments contributing to understanding of insulin resistance 

and to the pathogenesis of metabolic syndrome has been discussed. Among the many 

molecules involved in the intracellular processing of the signal provided by insulin, IRS-2, 

PKB, Foxo protein and p85 regulatory subunit of PI-3 kinase have attracted particular 

interest, because their dysfunction results in insulin resistance in-vivo. It has been well 

established that FFA are responsible for insulin resistance. This review focuses on the 

current trends in research in this important domain and throws light on certain possibilities 

regarding the manner in which FFA inhibits insulin activity. 
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