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1. Introduction

Our current cosmological model, backed by a large body of evidence from a variety of
different cosmological probes (for example, see [1, 2]), describes a Universe comprised of
around 5% normal baryonic matter, 22% cold dark matter and 73% dark energy. While many
cosmologists accept this so-called concordance cosmology – the ΛCDM cosmological model
– as accurate, very little is known about the nature and properties of these dark components
of the Universe.

Studies of the cosmic microwave background (CMB), combined with other observational
evidence of big bang nucleosynthesis indicate that dark matter is non-baryonic. This
supports measurements on galaxy and cluster scales, which found evidence of a large
proportion of dark matter. This dark matter appears to be cold and collisionless, apparent
only through its gravitational effects.

While dark matter is largely responsible for the growth of the largest structures in the
Universe, dark energy – dominant at late times – appears to have a negative pressure, and to
be responsible for an accelerated expansion of the Universe [3]. It is usually parameterised
by its equation of state parameter w = p/ρ, where p is the pressure associated with the
dark energy and ρ is its energy density. An equation of state parameter of w = −1 would
indicate a cosmological constant, consistent with general relativistic theory, but deviations
from this value would suggest a rather more exotic dark energy, and might perhaps imply a
modification to our current theory of gravity.

Gravitational lensing – the deflection of light rays by massive objects due to gravitational
effects, which gives rise to distortions in images of galaxies – is an ideal probe of the dark
universe, as it can probe the evolution of the dark matter power spectrum in an unbiased
way, and offers complementary constraints to those obtained from the CMB and other probes
of large-scale structure.

© 2012 Leonard et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Moreover, gravitational lensing probes cosmological perturbations on smaller angular scales
than CMB studies, and is thus sensitive to the non-Gaussianity induced by the late-time
non-linear evolution of structures such as clusters of galaxies, as well as any primordial
non-Gaussianity arising, for example, due to inflation very early in the evolution of the
Universe.

Traditionally, constraints from gravitational lensing are obtained by considering two-point
statistics of the lensing shear field, which encodes the small elliptical distortions applied to
the images of galaxies as a result of the gravitational potential field of structures along the
light’s path. Such two-point statistics are only weakly sensitive to the dark energy density

parameter ΩΛ
1, and depend on a degenerate combination of the amplitude of the matter

power spectrum σ8 and the matter density parameter ΩM. In addition, two-point statistics
probe only the Gaussian part of the shear field, therefore in considering such statistics alone,
information about nonlinear structure evolution and primordial non-Gaussianity is lost.

Similarly, attempts to reconstruct a map of the two-dimensional projected surface mass
density (the convergence κ) and three dimensional density field have often involved the use
of Gaussian priors to constrain the reconstruction (for example, see [4]), thus again having
limited application in studies of non-Gaussianity.

In this chapter, we present a review of recently developed gravitational lensing techniques
that go beyond the standard two-point statistics, both in the arena of map-making in two
and three dimensions and that of higher-order statistics of the shear field or, equivalently,
the convergence field κ.

The methods we present are all based on the concept of sparse recovery, which has been
found to be a very powerful tool in signal processing [5, 6]. Such methods are based on the
assumption that a given image or observation can be represented sparsely in an appropriate
basis (such as a Fourier or wavelet basis). Sparse priors using a wavelet basis have been
used in many areas of signal processing in astronomy; of particular interest in this chapter
will be the areas of denoising and in the reconstruction of the 3D density field from lensing
measurements, but other applications include deconvolution and inpainting.

There is much information to be gained by considering non-Gaussian statistics and nonlinear
signal processing methods, and this is an exciting and active area of research. With new
surveys such as the Euclid satellite [7] coming online within the next decade, a wealth
of high-quality data will soon be available. These new techniques will therefore prove
invaluable in constraining the cosmological model, and allow us to better understand the
nature of the primary constituents of the Universe.

2. Weak gravitational lensing

We begin with a brief overview of weak lensing theory. For a more complete description and
discussion of the subject, see [8, 9]

2.1. Weak lensing theory

The basic idea underlying the theory of gravitational lensing is that massive objects distort
the spacetime around them, and thus bend the path of light in their vicinity. A light ray

1 The energy density parameters are defined by Ωi = ρi/ρc , where ρc is the critical density of the Universe
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originating at angle β is deflected such that it appears to the observer to originate at an
angular position θ, where

β = θ−α(θ) = θ−∇ψ(θ), (1)

where ψ is the two-dimensional deflection potential associated with the lens and α is the
deflection angle.

For extended sources, photons from different angular positions in the source plane are
deflected differently, giving rise to a distortion in the observed galaxy image, which is
described – to first order – by the Jacobian of the lens equation (1):

A =
∂β

∂θ
= δi,j −

∂2ψ

∂θi∂θj
=

(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)

, (2)

where κ = 1
2∇

2ψ is the convergence, or dimensionless surface density, and γ = γ1 + iγ2 =

|γ|e2iφ is the complex shear, which gives rise to an anisotropic elliptical distortion in the
lensed image. The components of the shear are related to the potential via:

γ1 =
1

2

(

∂2
1ψ − ∂2

2ψ
)

, γ2 = ∂1∂2ψ , (3)

where ∂i = ∂/∂θi, and the shear is related to the convergence through the relation:

γ(θ) =
1

π

∫

d2θ′D(θ− θ′)κ(θ′) , (4)

where the convolution kernel D is given by

D(θ) ≡
θ2

2 − θ2
1 − 2iθ1θ2

|θ|4
= −

1

(θ1 − iθ2)2
. (5)

The convergence, in turn, can be related to the 3D density contrast δ(r) ≡ ρ(r)/ρ − 1 by

κ(θ, w) =
3H2

0 ΩM

2c2

∫ w

0
dw′ fK(w

′) fK(w − w′)

fK(w)

δ[ fK(w
′)θ, w′]

a(w′)
,

(6)

where ρ is the mean density of the Universe, H0 is the Hubble parameter, ΩM is the matter
density parameter, c is the speed of light, a(w) is the scale parameter evaluated at comoving
distance w, and

fK(w) =











K−1/2 sin(K1/2w), K > 0

w, K = 0

(−K)−1/2sinh([−K]1/2w) K < 0

, (7)

gives the comoving angular diameter distance as a function of the comoving distance and
the curvature, K, of the Universe.
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2.2. Two-point statistics

The typical gravitational shear applied to a galaxy as a result of lensing by large-scale
structure in the Universe – so-called cosmic shear – is of order |γ| ∼ 0.01. However, galaxies
are intrinsically elliptical in shape, with a typical ellipticity of order |ε| ∼ 0.2 − 0.3, therefore
the gravitational lensing effect can only be measured statistically; under the assumption
that galaxy shapes are intrinsically uncorrelated, the mean ellipticity computed over a large
number of sources will yield the gravitational shear: 〈ε〉 ≃ γ.

The most common method for constraining cosmological parameters in weak lensing studies
is to use two-point statistics of the shear field. The power spectrum of the shear or
convergence, Pκ(ℓ) = Pγ(ℓ), can be related directly to the 3D matter power spectrum of
density fluctuations δ by:

Pκ(ℓ) =
9H4

0 Ω
2
M

4c4

∫

dw
W2(w)

a2(w)
Pδ

(

ℓ

fK(w)
, w

)

, (8)

where

W(w) =
∫

∞

w
dw′ fK(w

′ − w)

fk(w′)
p(z)

[

dz

dw′

]

, (9)

is a weighting function integrated over the probability distribution of sources p(z) in the
sample as a function of redshift z.

When working with real data, it is often more convenient to consider statistics computed
in real space, namely the shear correlation functions, which are defined in terms of the
convergence power spectrum as [10, 11]:

ξ±(θ) = 〈γtγt〉 ± 〈γ×γ×〉 =
∫

∞

0

dℓ ℓ

2π
J0,4(ℓθ)Pκ(ℓ) , (10)

where Jn is an n-th order Bessel function of the first kind, and γt and γ× are the tangential
and cross shear components, respectively, which are defined relative to the vector connecting
the two galaxies separated by angular distance θ.

2.3. Cosmological constraints

The measured two-point statistics described above can, by virtue of their relationship to the
power spectrum of the underlying matter density fluctuations, be used to place constraints
on cosmological parameters. These constraints may be improved if information about the
distances to source galaxies is used to bin the galaxies into redshift slices, and compute the
correlation functions tomographically.

Figure 1 shows cosmological parameter constraints obtained using two state-of-the-art
telescopes: the Canada-France-Hawaii Telescope (CFHT), and the Hubble Space Telescope
(specifically, the Cosmos survey). While the CFHT results were obtained using a 2D analysis
[12], the Cosmos results show constraints obtained by both a 2D and a 3D analysis of
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the shear data [13]. In both cases, a large degeneracy is seen between the matter density
parameter ΩM and σ8, the amplitude of the matter power spectrum. The CFHT results
also show constraints on the dark energy equation of state parameter w. Here, again, a
degeneracy between parameters is seen.

(a) Joint constraints on ΩM and σ8

from a 2D analysis of the combined
CFHT wide and deep surveys [12].

(b) Joint constraints on ΩM and w
from a 2D analysis of the CFHT deep
survey [12].
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(c) Joint constraints on ΩM and σ8 from
a 2D and 3D analysis of the Cosmos
survey data [13].

Figure 1. Cosmological parameter constraints from recent weak lensing surveys. Contours are plotted at the 68% (cyan), 95%

(blue) and 99.9% (green) confidence levels for the CFHT data, and at the 68% (inner) and 95% (outer) confidence levels for the

Cosmos data.

While it is clear from the figures that two-point shear statistics hold a wealth of information,
it is also evident that these statistics depend on degenerate combinations of the cosmological
model parameters. In order to break these degeneracies, and thus more tightly constrain
our cosmological model, we must therefore consider higher-order statistics of the shear
or convergence. Such higher-order statistics will enable us to capture information about
the non-Gaussian part of the lensing spectrum due to a combination of primordial
non-Gaussianity and late-time nonlinear evolution of structures, which two-point statistics
are unable to probe.

3. Scalar fields associated with the shear

The shear γ is a spin-2 field, therefore while the two-point correlations of the shear field
can be reduced to a scalar quantity for parity reasons, this is not the case for higher-order
moments of the shear field [14–16]. For this reason, it is useful to compute a scalar quantity
from the shear field before computing higher-order statistics.

3.1. The aperture mass statistic

For this purpose, the aperture mass statistic Map [17, 18] is widely-used. The Map statistic
is defined as the convolution of the convergence κ with a radially symmetrical filter function
U(|ϑ|) of width θ:

Map(θ) =
∫

d2
ϑ κ(ϑ)U(|ϑ|) . (11)

Exploring the Components of the Universe Through Higher-Order Weak Lensing Statistics
http://dx.doi.org/10.5772/51871

35



By considering the relationship between the shear, γ, and the convergence, one can
reformulate equation (11) in terms of the measured shear as

Map(θ) =
∫

d2
ϑ γt(ϑ)Q(|ϑ|) , (12)

where γt(ϑ) is the tangential component of the shear at position ϑ relative to the centre of
the aperture, Q(|ϑ|) is a second radially-symmetric function, related to U(|ϑ|) by:

Q(ϑ) ≡ 2

ϑ2

∫ ϑ

0
ϑ′U(ϑ′)dϑ′ − U(ϑ) , (13)

and U(ϑ) is required to be compensated, i.e.

∫ ϑcut

0
ϑ U(ϑ) dϑ = 0 , (14)

with ϑcut often taken to be the radius of the aperture, θ. Furthermore, Q(ϑ) and U(ϑ) are
required to go to zero smoothly at ϑcut. It is also preferable that the power spectrum of U(ϑ)
is local in the frequency domain, and shows no oscillatory behaviour. This ensures that the
filter function acts as a band-pass filter, allowing detection of structures at the scale of interest
only.

Several authors [19, 20] have advocated a filter function of the form:

U(ϑ) =
A

θ2

(

1 − bϑ2

θ2

)

exp

(

− bϑ2

θ2

)

,

Q(ϑ) =
A

θ2

bϑ2

θ2
exp

(

− bϑ2

θ2

)

, (15)

where various choices for the constant b and the overall normalisation A have been used in
the literature [20–22]. Of specific interest is the form used in [20] and [22], where b = 1/2 is
chosen.2 This form is considered to be optimal for higher-order weak lensing statistics, such
as the skewness of the aperture mass statistic [19, 22].

Note that the Q(ϑ) filter function described in equation (15) shows a peak at ϑ =
√

2θ, and
tends to zero as ϑ → ∞. In practice, any algorithm used to generate an aperture mass map
will need to truncate this filter function at some finite radius. This will involve a trade-off
between accuracy and algorithm speed, and truncation may affect the effective width of the
filter.

One advantage of this method is that the aperture mass statistic can be computed directly
from the shear catalogue. Moreover, as the filter acts as a band-pass filter, it is possible to
boost the signal relative to the noise by considering a filter with a scale substantially larger

2 This form is analogous to the Mexican Hat wavelet function
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than the typical scale of the noise (which is typically dominant on pixel scales, depending
on the binning chosen for the shear data). Indeed, optimal signal-to-noise is obtained when
the filter is chosen such that its angular scale matches that of the structures we aim to detect,
and its shape matches closely the expected profile of these structures.

3.2. The wavelet transform

The wavelet transform is a multiscale transform, where the wavelet coefficients of an image
are computed at each position in the image at various different scales simultaneously. In one
dimension, the wavelet coefficient of a function f (x), evaluated at position b and scale a is
defined as [23, 24]:

W(a, b) =
1
√

a

∫

f (x)ψ∗

(

x − b

a

)

dx , (16)

where ψ(x) is the analysing wavelet. The analysis is analogous in 2 dimensions, with
ψ(x, y) = ψ(x)ψ(y).

By definition, wavelets are compensated functions; i.e. the wavelet function ψ(x) is
constrained such that

∫

R1 ψ(x)dx = 0 and hence, by extension

∫∫

R2
ψ(x, y)dx dy = 0. (17)

According to the definition in equation (16), the continuous wavelet transform of an image is
therefore nothing more than the convolution of that image with compensated filter functions
of various characteristic scales. If the image f (x, y) is taken to be the convergence κ(x, y),
then for an appropriate choice of (radially-symmetric, local) wavelet, the wavelet transform
is formally identical to the aperture mass statistic at the corresponding scales, the only
difference being the choice of filter functions.

In practice in application, we use the starlet transform algorithm [6, 23–25], which
simultaneously computes the wavelet transform on dyadic scales corresponding to 2j pixels.
This algorithm decomposes the convergence map of size N × N into J = jmax + 1 sub-arrays
of size N × N as follows:

κ(x, y) = cJ(x, y) +
jmax

∑
j=1

wj(x, y) , (18)

where jmax represents the number of wavelet bands (or, equivalently, aperture mass maps)
considered, cJ represents a smooth (or continuum) version of the original image κ, and wj

represents the input map filtered at scale 2j (i.e. the aperture mass map at θ = 2j pixels).

Using the wavelet formalism to derive the aperture mass statistic presents a number of
advantages. Many families of wavelet functions have been studied in the statistical literature,
and all these wavelet functions could be applied to the aperture mass statistic. This allows us
to tune our filter function to optimise the signal-to-noise in the resulting maps. In addition,
for some specific wavelet functions, discrete and very fast algorithms exist, allowing us to
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compute a set of wavelet scales through the use of a filter bank with a very limited number
of operations. See [6] for a full review of the different wavelet transform algorithms.

In the starlet transform algorithm, the wavelet ψ(x, y) is separable and can be defined by:

ψ
( x

2
,

y

2

)

= 4

[

ϕ(x, y)−
1

4
ϕ
( x

2
,

y

2

)

]

, (19)

where ϕ(x, y) = ϕ(x)ϕ(y) and ϕ(x) is a scaling function from which the wavelet is generated.
In the case of the starlet wavelet, ϕ(x) is a B3-spline:

ϕ(x) =
1

12
(|x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3), (20)

which is a compact function that is identically zero for |x| > 2.

This wavelet function has a compact support in real space, is well localized in Fourier
domain, and the wavelet decomposition of an image can be obtained with a very fast
algorithm (see [24] for a full description).

Figure 2 shows the starlet wavelet and aperture mass filters defined above in both real and
Fourier space. Notice that the two filters presented have very similar shapes in real space,
but different widths. While the starlet filter function goes to zero identically at ϑ = 2θ,
and remains zero beyond this value, the Map filter function goes to zero as ϑ → ∞, and
must therefore be truncated when applied in practice. Clearly at ϑ = 5θ, the Map filters are
sufficiently close to zero, so that this is an appropriate truncation radius; however this will
impact the computation time of the Map statistic.

In Fourier space, we show the response of the Map filter for truncation radii of ϑcut = θ

and 5θ. Notice that the shape of the response curves in Fourier space for both the Map and
wavelet filter functions are similar, but that the peak of the response curve for the Map filter
function shifts when ϑcut is varied. This is because the effective scale of the filter function
is being changed. Also notice that in the case of ϑcut = θ, high-frequency oscillations are
present in the response curve. This is a direct result of the truncation of the filter function,
and will occur whenever such truncation is applied. Indeed, imperceptibly small oscillations
are still present in the response curve for the filter truncated at ϑcut = 5θ.

Such oscillations are not present at all with the starlet filter function, as no truncation is
applied to this function whatsoever. This gives the starlet transform the distinct advantage
of being directly applicable, without any consideration needed regarding truncation radii
and the associated impact on the Fourier-space response of the filter functions.

3.3. Advantages of the wavelet formalism

The aperture mass formalism tends to be the preferred method for weak lensing studies for a
number of reasons. Firstly, the filter functions can be simply expressed analytically, and any
associated statistics of the aperture mass can therefore be straightforwardly computed from
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(a) Map and wavelet filter functions in real space (b) Filter response curves in Fourier space

Figure 2. A comparison of the Map and starlet wavelet filters in real and Fourier space.

the shear catalogue directly. This avoids the need to generate an aperture mass map, which
can be computationally intensive, and furthermore does not require the computation of the
convergence, κ.

Computing the convergence from the shear measurements can be tricky for a number of
reasons. Equation (4) describes a convolution over all 2D space. Given that we aim to invert
this equation for an image of a finite size, a direct inversion in Fourier space will give rise
to significant edge effects, and a leakage of power into so-called B-modes, which effectively
imply a spurious (non-lensing) cross-component to the shear field γ, and usually only arise
due to systematic effects in the lensing measurements.

Several methods have been devised to invert equation (4) whilst minimising these
undesirable effects [26–29]. Most recently, the authors in [30] have presented a method
based on a wavelet-Helmholtz decomposition, with which they demonstrate a reconstruction
error at the few percent level, as compared to an error of ∼ 30% seen with Fourier-based
methods. This implies that there is little advantage to the shear catalogue as opposed to
the convergence map. Indeed, working on the convergence map and under the wavelet
framework may offer some distinct advantages.

The first advantage comes directly from the nature of the wavelet transform. The aperture
mass filter is a bandpass filter. Because the Map reconstruction is only computed for a
discrete set of aperture scales, information on intermediate scales may be lost, particularly
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at both the small and large frequency extremes. In contrast, the wavelet transform retains
information on all scales. The first wavelet scale is effectively a high-pass filter, retaining
all the high-frequency information in the image, while the remaining wavelet scales are
bandpass filtered as with the Map-filtered images. Finally, the wavelet transform retains cJ ,
which encodes the large-scale information in the image, and therefore consists of a smoothed
version of the image (or an image with a low-pass filter applied). Figure 3(a) demonstrates
this point for a wavelet transform with J = 5, showing the Fourier-space response of the
wavelet filter as a function of scale j.

(a) The filter response of each of 5 scales of the wavelet
transform

(b) Comparison of a the processing time of a
brute-force aperture mass algorithm and the starlet
transform algorithm

Figure 3. Illustration of the various advantages offered by the wavelet transform in terms of (a) retention of information on all

scales and (b) algorithm processing time.

In addition, from a mapping perspective, the starlet wavelet transform algorithm is
substantially faster than a brute-force computation of the aperture mass statistic in real space.
Such a naive implementation has complexity ∝ O(N2

ϑ
2
cut), where N × N is the dimension

of the image, and ϑcut is the chosen truncation radius. This scaling means that for large
apertures or, equivalently, for high-resolution images, the algorithm may prove to be very
time-consuming. The starlet wavelet transform algorithm is of complexity ∝ O(N2 J), where
J is the number of scales considered, and is limited by N ≥ 2J . This means that the processing
time for the wavelet transform algorithm is sensitive only to the number of scales considered,
rather than the size of the filter functions involved, and depends linearly on this number.

In Figure 3(b), we compare the processing time for the aperture mass algorithm and the
starlet transform algorithm, both programmed in C++, to analyse an image of 1024 × 1024
pixels on a 2 × 2.66GHz Intel Xeon Dual-Core processor. We consider aperture scales θ =
[2, 4, 8, 16, 32, 64], which correspond to J = jmax + 1 = [2, 3, 4, 5, 6, 7] wavelet scales in the
wavelet transform. In the aperture mass algorithm, the filters are truncated at a radius
of ϑcut = θ. For the application of filters which necessitate truncation at a much larger
radius, we expect the computation time to be roughly an order of magnitude longer. Even
at the smallest aperture radius, the wavelet transform is ∼ 5× faster than the aperture mass
algorithm. At θ = 64 pixels, the wavelet transform is ∼ 1200× faster than the aperture mass
algorithm. Note that the wavelet transform for a given value of J simultaneously computes

the wavelet transform at all scales 2j, 0 < j ≤ J − 1, in addition to the smoothed continuum
map cJ , whilst the aperture mass algorithm computes the transform at a single scale θ. We
note further that the computational time for the wavelet transform for J = 7 wavelet scales
is still a factor of ∼ 2× less than the computational time for the aperture mass algorithm at
θ = 2 pixels.
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As discussed in [31], this time advantage further extends to higher-order statistics of the

Map, which are typically related directly to n-point correlation functions of the shear. In

recent years, tree codes have been employed to speed up computation of n-point correlation

functions. Typical tree codes to compute n-point correlation functions are O(Ngal log(Ngal))

[32] on a shear catalogue. For a single Euclid exposure of 0.5 deg2, we can expect Ngal ∼

54, 000 (30 galaxies/arcmin2) - 180, 000 (100 galaxies/arcmin2). Tree codes exist that act on

pixelated data [33] which run at O(N2
pixnbin) where N2

pix is the total number of pixels and

nbin is the number of bins in the correlation function. For a Euclid exposure, assuming pixels

of 1 arcminute, we have N2
pix = 1800, and nbin will be dependent on the required resolution

of the correlation function.

The wavelet method acts on pixellated data, and is O(N2 J) in computation time, so our

algorithm will be comparable for computation of 2-point statistics, if the 2-point correlation

function is computed on pixellated data, but if a shear catalogue is used, we will have a

faster algorithm by at least an order of magnitude. For higher-order statistics, this advantage

is even more pronounced. Furthermore, while optimised software is freely and publicly

available to compute the wavelet transform, such optimised software is not available for

n-point correlation functions.

Another advantage of the wavelet formalism is that it is possible to carry out an explicit

denoising of the convergence field using thresholding based on a False Discovery Rate

method. For details on this method, see [34], where the MRLens software package encoding

this method is presented3. This allows one to derive robust detection levels in wavelet space,

and to produce high-fidelity denoised mass maps.

In addition, wavelet-based methods offer more flexibility than aperture mass filters. Whilst

we have thus far discussed only the starlet wavelet function, many other wavelet dictionaries

may be used. The starlet filter seems ideal for lensing studies, due to its similarity to the

aperture mass filter presented here, which was deemed to be optimal in [22]. However,

different dictionaries may be optimal in different applications; for example, if one were

attempting to study filamentary structure, ridgelets or curvelets might be a more appropriate

basis. The vastness of the wavelet libraries and the public availability of fast algorithms to

compute these transforms are major strengths of wavelet-based approaches.

4. Weak lensing beyond two-point shear statistics

As noted previously, the optimality of second-order statistics to constrain cosmological

parameters depends heavily on the assumption of Gaussianity of the field. However the

weak lensing field is composed, at small scales, of non-Gaussian features such as clusters

of galaxies. These non-Gaussian signatures carry additional information that cannot be

extracted with second-order statistics. Many studies [35–39] have shown that combining

second-order statistics with higher-order statistics tightens the constraints on cosmological

parameters. We now consider the higher-order statistics most commonly used in weak

lensing studies aimed at detecting and constraining non-Gaussianity in the lensing field.

3 The MRLens software, along with many other software packages for astronomical applications, is freely available
here: http://cosmostat.org/software.html
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4.1. Higher-order lensing statistics

As we have already noted, it is more convenient to consider higher-order statistics of the
Map or wavelet transform of the convergence field, as opposed to statistics of the shear field
directly. The obvious first extension to two-point statistics is to consider the three-point
correlation function or, equivalently, the bispectrum, usually considered as a function of
aperture or wavelet scale.

Interesting analytical results relative to the shear three-point correlation function or the
convergence bispectrum have been reported (for example, see [40–43]). However, it has
been shown that in using only the equilateral configuration of the bispectrum, the ability to
discriminate between cosmological models is relatively poor [38]. An analytical comparison
has been performed in [39] between the full bispectrum and an optimal match-filter peak
count for a Euclid-like survey, and both approaches were found to provide similar results.
However, as the full bispectrum calculation has a much higher complexity than other
statistics, and no public software exists to compute it, we will not consider the full bispectrum
here. Rather, we will restrict ourselves to statistics that are more straightforward to compute
from the Map or wavelet transform maps.

4.1.1. The Skewness

The skewness of the aperture mass map, 〈M3
ap〉, is the third-order moment of the aperture

mass Map(θ) and can be computed directly from shear maps filtered with different aperture
mass. The skewness is a measure of the asymmetry of the probability distribution function.
The probability distribution function will be more or less skewed positively depending on the
abundance of dark matter haloes at the θ scale. The formalism exists to predict the skewness
of the aperture mass map for a given cosmological model, which is related to the three-point
correlation function or the bispectrum of density fluctuations δ [20, 37].

In [37], it is argued that the skewness as a function of scale is a preferable statistic to
three-point correlation functions of the shear, as the integral relations between 〈M3

ap〉 and the
bispectrum are much easier and faster to compute than the three-point correlation function.
This is because the skewness is a local measure of the bispectrum, whereas the integral kernel
for the three-point correlation function is a highly oscillating function with infinite support.

This statistic can equivalently be computed from the wavelet transform of the convergence
map as the skewness 〈w3

j 〉 of the wavelet band j corresponding to the aperture scale θ. This

can be computed either on the noisy convergence map estimated, for example, by the Fourier
space relationship between the shear and convergence – in which case the results should be
comparable to the Map results – or on a denoised convergence map using the method of [34],
which should provide improved results.

4.1.2. The Kurtosis

The kurtosis of the aperture mass map, 〈M4
ap〉, is the fourth-order moment of the aperture

mass Map(θ) and can be computed directly from the different aperture mass maps. The
kurtosis is a measure of the peakedness of the probability distribution function. The presence
of dark matter haloes at a given θ scale will flatten the probability distribution function and
widen its shoulders leading to a larger kurtosis. The formalism exists to predict the kurtosis
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of the aperture mass map for a given cosmological model, which is related to the four-point
correlation function or trispectrum of the 3D density contrast [20].

Again, this statistic can be computed from the wavelet transform of the convergence map
as the kurtosis 〈w4

j 〉 of the wavelet band j corresponding to the aperture scale θ. This can

be computed either on a noisy or a denoised convergence map, the latter expected to yield
improved constraints.

4.1.3. Peak Counts

We define a peak as set of connected pixels above a detection threshold T , and denote the

peak count in the Map and wavelet maps by PT
Map

and PT
wj

, respectively. If peak counting

is carried out on a denoised map, the detection threshold T is automatically set by the

denoising algorithm, and a small threshold ǫ is used when identifying peaks in the denoised

maps, in order to reject spurious detections in these denoised maps.

We consider all pixels that are connected via the sides or the corners of a pixel as one

structure. In a two-dimensional projected map of the convergence, we are therefore unable to

discriminate between peaks due to massive halos and peaks due to projections of large-scale

structures such as filaments.

While theory exists to predict cluster counts from the halo model and a cosmological

model encoding the growth and evolution of structures in the Universe, there is no analytic

formalism to predict the fraction of spurious detections in lensing maps arising from

projections of large-scale structure. In [44], an attempt is made to derive an analytic

formalism for predicting peak counts in projected maps. However, this method is based

on an assumption of Gaussianity in the lensing field and, predictably, underestimates counts

at the high end of the mass function, where clusters of galaxies are dominant. This means

that predicting peak counts for a given cosmological model relies on considering N-body

simulations generated under a range of cosmological parameters (for example, see [45]).

4.2. Optimal capture of non-Gaussianity

The question now arises: which of these statistics provides the most information about

the underlying cosmology and – specifically – non-Gaussianity in the density field? In

order to asses the performance of these statistics, we consider the ability of each statistic

to discriminate between cosmological models using N-body simulations under a range of

different cosmologies [38, 46].

To this end, we consider N-body simulations carried out for 5 different cosmological models

along the ΩM − σ8 degeneracy, the parameters of which are summarised in Table 1 below

[46]. These simulations were carried out using the RAMSES N-body code [47], and full details

of the models considered are given in [38]. For each model, 100 realizations of weak lensing

maps were generated for a field of 3.95◦ × 3.95◦, downsampled to 1024 × 1024 pixels (0.23′

per pixel). Noise was added to the simulations at a level consistent with predictions for deep

space-based observations, with a number density of galaxies of ng = 100 gal/arcmin2. This

is somewhat optimistic; however, as seen in [46], increasing the noise level in the simulations

does not change the conclusions of the comparison test between the higher-order statistics.
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Model Box Length
(h−1Mpc)

ΩM ΩΛ h σ8

m1 165.8 0.23 0.77 0.594 1

m2 159.5 0.3 0.7 0.7 0.9

m3 152.8 0.36 0.64 0.798 0.8

m4 145.7 0.47 0.53 0.894 0.7

m5 137.5 0.64 0.36 0.982 0.6

Table 1. Parameters of the five cosmological models that have been chosen along the ΩM − σ8 degeneracy. The simulations

have 2563 particles, h is equal to H0/100 km s−1Mpc−1, where H0 is the Hubble constant.

To find the best statistic, we need to characterise quantitatively for each statistic the
discrimination between two different models m1 and m2. To do this, we consider the
distribution functions for the different statistics estimated on the 100 realisations of each
model. These distributions are expected to overlap, so False Discovery Rate (FDR) method
is used to determine the threshold τ1 in the distribution function of model m1, such that the
distribution function of model m2 accounts for fewer than a fraction α = 0.05 of the total
counts. A similar threshold τ2 is defined for the distribution function of model m2. This
is illustrated in Figure 4. The discrimination efficiency is then defined as the percentage of
counts remaining under the hatched area for each model.

Figure 4. Illustration of the discrimination efficiency criterion. τ1 and τ2 are defined such that the yellow area under the curve

represents 0.05 of the total area under the curves for models m2 and m1, respectively. The discrimination efficiency is defined

as the area under the mi curve delimited by the threshold τi , as a percentage of the total area under the model mi curve.

In Table 2 below, we show the mean discrimination efficiency obtained considering all pairs
of models for the higher-order statistics of interest. These are presented as a function of
Map or wavelet scale, and shown for statistics computed on the aperture mass map and the
wavelet transform of the noisy convergence map. The results overall are comparable, with the
wavelet transform statistics appearing to offer a slight improvement over the Map statistics
in all cases. This is perhaps related to the fact that, when computing the Map statistics, we
truncate the filter at ϑcut = θ, which may give rise to some small systematics in the resulting
maps. Furthermore, it is clear that, in all cases, the peak statistics are much more efficient at
discriminating between cosmological models than either the skewness or the kurtosis.
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θi 〈M3
ap〉 〈M4

ap〉 P2σ

Map
P3σ

Map

0.46’ 04.60 % 02.30 % 39.70 % 54.95 %

0.92’ 33.40 % 03.70 % 79.30 % 76.40 %

1.85’ 03.45 % 01.45 % 91.25 % 89.20 %

3.70’ 15.15 % 23.00 % 69.40 % 86.70 %

7.40’ 26.95 % 24.30 % 4.90 % 60.50 %

(a) Mean discrimination efficiency of Map statistics

Scale 〈w3
j 〉 〈w4

j 〉 P2σ
wj

P3σ
wj

0.46’ 02.00 % 01.15 % 12.05% 00.70 %

0.92’ 37.95 % 04.75 % 86.30 % 73.05 %

1.85’ 03.55 % 02.10 % 94.40 % 93.85 %

3.70’ 18.25 % 25.65 % 84.05 % 87.05 %

7.40’ 36.40 % 30.90 % 24.60 % 66.35 %

(b) Mean discrimination efficiency of wavelet statistics

Table 2. Mean discrimination efficiency (in percent) from noisy Map reconstructions of the shear field, compared with that

obtained on the wavelet transform of the noisy convergence maps.

In Table 3 below, we present the mean discrimination efficiency of statistics computed
on the denoised convergence maps, as well as the peak discrimination efficiency between
each pair of models in our sample. There is a clear improvement on the discrimination
efficiency of all the higher-order statistics when denoising is applied to the convergence
maps. This is unsurprising, as the presence of Gaussian (or near-Gaussian) noise within the
shear and convergence maps will make the whole field appear more Gaussian, masking the
non-Gaussian features in the map and pushing the skewness and kurtosis values closer to
zero. The more noise that is present in the maps, the stronger this effect will be. It is for
this reason that such a dramatic improvement is seen in these statistics when denoising is
applied to the convergence maps before the statistics are computed.

The improvement seen in the discrimination efficiency of the peak statistics is also significant,
and this arises due to the fact that while the peak counts in the noisy maps involve application
of a simple nσ detection threshold to the maps, the denoising algorithm involves a more
sophisticated discriminant between signal and noise, again making use of the FDR method.
This technique is more effective and distinguishing between signal and noise, and therefore
more information about the true peaks in the map is retained using this denoising method
as compared to the nσ thresholding applied previously.

It is clear that peak statistics are much more efficient at capturing non-Gaussianity in the
shear field than other higher-order statistics, and that it is advantageous to measure this
statistic on denoised convergence maps. However, in order to combine constraints from
peak counting with other probes, such as two-point statistics, in order to better constrain
the cosmological model, it is important to be able to predict peak statistics as a function
of cosmology in order to be able to compute the likelihood function for all models within
the parameter space. As we have discussed, this is not possible to do analytically, due to
contamination by projections of large scale structures, and it is too computationally-intensive
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Scale 〈w̃3
j 〉 〈w̃4

j 〉 Pw̃j

0.46’ 53.40 % 43.20 % 68.35 %

0.92’ 47.90 % 41.15 % 92.45 %

1.85’ 58.80 % 44.70 % 96.75 %

3.70’ 63.30 % 48.05 % 90.40 %

7.40’ 54.90 % 40.45 % 63.45 %

(a) Mean discrimination efficiency

m1 m2 m3 m4 m5

m1 x 85 % 100 % 100 % 100 %

m2 89 % x 92 % 100 % 100 %

m3 100 % 92 % x 89 % 100 %

m4 100 % 100 % 92 % x 98 %

m5 100 % 100 % 100 % 98 % x

(b) Discrimination efficiency for all models obtained using peak statistics

Table 3. Discrimination efficiency for statistics computed on denoised convergence maps.

to consider obtaining the predictions, and associated covariances, from N-body simulations
if we wish to sample the parameter space completely and at high resolution.

As the quality of data available to astronomers continues to improve, it has recently become
possible to consider the shear field in three dimensions, using the colours of galaxies to
determine their redshifts and, therefore, distances from us. If this information may be used
to deproject the lensing signal, and thus recover information about the full three-dimensional
density field, it should then be possible offer predictions for peak statistics as a function of
cosmology, uncontaminated by projection effects which will, in turn, allow us to improve our
constraints on our cosmological model.

5. Reconstructing the density contrast in 3D

The measured shear can be related to the 2D convergence via a simple linear relationship
(equation (4)), and the convergence is related to the density contrast by another linear
mapping (equation (6)). We can express these relationships conveniently in matrix notation
as

κ(θ, z) = Qδ(θ, z) , (21)

γ(θ, z) = PγκQδ(θ, z) . (22)

The 3D lensing problem is therefore one of finding an estimator to invert equation (21)
or (22) in the presence of noise. For simplicity, in what follows we assume the shear
measurement noise is Gaussian and uncorrelated between redshift bins. In practice, errors
in the photometric estimates of the redshifts of galaxies will introduce correlations between
redshift bins. Methods have been developed to account for such errors, however, and the
problem is therefore readily tractable [48].
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Therefore the 3D lensing problem is effectively one of observing the density contrast
convolved with the linear operator R, and contaminated by noise, which is assumed to be
Gaussian. Formally, we can write

d = Rs+ ε, ε ∼ N (0, σ
2) , (23)

where d is the observation, s the real density and ε the Gaussian noise.

5.1. Linear approaches to 3D map-making

The general idea behind linear inversion methods is to find a linear operator H that acts on
the data vector to yield a solution that minimises some functional, such as the variance of
the residual between the estimated signal and the true signal, subject to some regularisation
or prior-based constraints. Two different linear approaches have been described in recent
literature [4, 49].

The most competitive method is that proposed in [4], in which the authors propose a
Saskatoon filter [50, 51], which combines a Wiener filter and an inverse variance filter, with
a tuning parameter α introduced that allows switching between the two. This gives rise to a
minimum variance filter, expressed as

ŝMV = [α1 + SR†
Σ
−1R]−1SR†

Σ
−1

d , (24)

where S ≡
〈

ss
†
〉

encodes prior information about the signal covariance, Σ ≡
〈

nn
†
〉

gives
the covariance matrix of the noise, and 1 is the identity matrix.

This switching is designed to allow a balance between the increased constraining power
offered by the Wiener filter over the inverse variance filter – which yields an improved
signal-to-noise in the reconstruction – and the biasing that the Wiener filter imposes on the
solution.

As discussed extensively in [4] and [49], linear methods give rise to a significant bias in the
location of detected peaks, damping of the peak signal, and a substantial smearing of the
density along the line of sight. Furthermore, the resolution attainable in the reconstructions
obtained using linear methods is limited to the resolution of the data. In other words, we
cannot reconstruct the density contrast field at higher resolution than the resolution of our
input data which, in turn, is limited by the noise properties of the data.

Figure 5 shows the 3D reconstruction obtained in this way for a simulated cluster of
galaxies at a redshift of zcl = 0.25. The tuning parameter used for this reconstruction was
α = 0.05. The cluster was simulated according to an NFW halo with M = 1015h−1 M⊙

and c = 3, and the shear data were assumed to come from a galaxy distribution given by

p(z) ∝ z2e−(1.4z)1.5
[52, 53], with a maximum redshift of zmax = 2.0 and a galaxy density

of ng = 100 galaxies/arcmin2. The simulation covers a 1◦ × 1◦ field binned into 60 × 60
angular pixels, and 20 redshift bins. Shown in the figure are both the 3D rendering of the
reconstruction, and a 1D plot showing the four central lines of sight through the cluster as a
function of redshift. The smearing, damping and redshift bias effects are all clearly visible in
the 1D plot, where the amplitude of the cluster density contrast should be δ ∼ 36.
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(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 5. The reconstruction of a simulated cluster of galaxies using the method of [4]. Coloured broken lines in the 1D plot

show the reconstruction of the four central lines of sight, while the solid line shows the true cluster density contrast.

5.2. Compressive sensing

We consider some data Yi ( i ∈ [1, .., m]) acquired through the linear system

Y = ΘX , (25)

where Θ is an m × n matrix. Compressed sensing [54, 55] is a sampling/compression theory
based on the sparsity of the observed signal, which shows that, under certain conditions, one
can exactly recover a k-sparse signal (a signal for which only k pixels have values different
from zero, out of n total pixels, where k < n) from m < n measurements.

This recovery is possible from undersampled data only if the sensing matrix Θ verifies
the restricted isometry property (RIP) [see 54, for more details]. This property has the effect
that each measurement Yi contains some information about the entire pixels of X; in other
words, the sensing operator Θ acts to spread the information contained in X across many
measurements Yi.

Under these two constraints – sparsity and a transformation meeting the RIP criterion – a
signal can be recovered exactly even if the number of measurements m is much smaller than
the number of unknown n. This means that, using CS methods, we will be able to outperform
the well-known Shannon sampling criterion by far.

The solution X of (25) is obtained by minimizing

min
X

‖X‖1 s.t. Y = ΘX , (26)

where the ℓ1 norm is defined by ‖X‖1 = ∑i | Xi |. The ℓ1 norm is well-known to be a
sparsity-promoting function; i.e. minimisation of the ℓ1 norm yields the most sparse solution
to the inverse problem. Many optimisation methods have been proposed in recent years to
minimise this equation. More details about CS and ℓ1 minimisation algorithms can be found
in [6].
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In real life, signals are generally not “strictly" sparse, but are compressible; i.e. we can
represent the signal in a basis or frame (Fourier, Wavelets, Curvelets, etc.) in which the curve
obtained by plotting the obtained coefficients, sorted by their decreasing absolute values,
exhibits a polynomial decay. Note that most natural signals and images are compressible in
an appropriate basis.

We can therefore reformulate the CS equation above (Equation (26)) to include the data
transformation matrix Φ:

min
α

‖α‖1 s.t. Y = ΘΦα , (27)

where X = Φ
∗α, and α are the coefficients of the transformed solution X in Φ, which

is generally referred to as the dictionary. Each column represents a vector (also called an
atom), which ideally should be chosen to match the features contained in X. If Φ admits a
fast implicit transform (e.g. Fourier transform, Wavelet transform), fast algorithms exist to
minimise Equation (27).

One problem we face when considering CS in a given application is that very few matrices
meet the RIP criterion. However, it has been shown that accurate recovery can be obtained

as long the mutual coherence between Θ and Φ, µΘ,Φ = maxi,k

∣

∣

〈

Θi, Φk,
〉

∣

∣, is low [56].

The mutual coherence measures the degree of similarity between the sparsifying basis and
the sensing operator. Hence, in its relaxed definition, we consider a linear inverse problem
Y = ΘΦX as being an instance of CS when

1. the problem is underdetermined,

2. the signal is compressible in a given dictionary Φ,

3. the mutual coherence µΘ,Φ is low. This will happen every time the matrix A = ΘΦ has
the effect of spreading out the coefficients αj of the sparse signal on all measurements Yi.

Most CS applications described in the literature are based on such a soft CS definition.
Compressed sensing was introduced for the first time in astronomy for data compression
[57, 58], and a direct link between CS and radio-interferometric image reconstruction was
recently established in [59], leading to dramatic improvement thanks to the sparse ℓ1 recovery
[60].

The 3D weak lensing reconstruction problem can be seen to completely meet the soft-CS
criteria above. The problem is underdetermined, as we seek a higher resolution than can
be attained in the noise-limited observations, the matter density in the Universe is sparsely
distributed, and the lensing operator spreads out the underlying density in a compressed
sensing way.

In particular, for the reconstruction of clusters of galaxies, we are in a perfect situation for
sparse recovery because clusters are localised in the angular domain, and are not resolved
along the line of sight owing to the bin size. They can therefore be modelled as Dirac
δ−functions along the line of sight, while an isotropic wavelet basis can be used in the
angular domain.
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5.3. Results and future prospects

In [61], we present an algorithm to solve the 3D lensing problem. In this method, the 3D
lensing problem is reduced to a one-dimensional problem, by taking as the data vector the
(noisy) lensing convergence along each line of sight, which is related to the density contrast
through Equation (21). Each line of sight can therefore be considered independently.

Clearly, a one-dimensional implementation throws away information, because we do not
account at all for the correlation between neighbouring lines of sight that will arise in
the presence of a large structure in the image; however, reducing the problem to a single
dimension is fast and easy to implement, and allows us to test the efficacy of the algorithm
using a particularly simple basis function through which we impose sparsity.

In Figure 6, we show the reconstruction obtained in this way for the simulated cluster
described in section 5.1. The line of sight plot shows a clear improvement in all the
target areas, reducing the bias, smearing and damping effects seen using linear methods.
Small-scale noise is present, particularly at high redshifts, but this is likely due to overfitting
in the algorithm used, and may be reduced by considering the whole 3D field, rather than
each line of sight independently (for a full discussion of this issue, see [61]).

(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 6. The reconstruction of a simulated cluster of galaxies using the method of [61]. Coloured broken lines in the 1D plot

show the reconstruction of the four central lines of sight, while the solid line shows the true cluster density contrast.

This reconstruction was undertaken using the same resolution on the reconstruction as on the
input data. However, we know that the CS approach is particularly well-adapted to dealing
with ill-posed inversion problems. In order to test this, we consider a cluster at a redshifts
of zcl = 0.2, simulated as before. We use Nsp = 20 redshift bins in our data, but now aim to
reconstruct our density contrast with a redshift resolution of Nlp = 25. The results are shown
in Figure 7. Here, again, we see small scale noise at high-redshift, but the overall smearing
and redshift bias issues seen in the linear reconstructions is absent.

As noted previously, the one-dimensional solver employed here throws away a wealth
of information about the angular correlation of the lensing signal, and is thus not
optimal. Indeed, a simple algorithm based on this CS approach, but implemented as
a full three-dimensional treatment, offers marked improvements in the quality of the
reconstructions [62].
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(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 7. The reconstruction of a simulated cluster of galaxies at a redshift of zcl = 0.2, and with improved resolution on the
reconstruction as compared to the input data.

This is demonstrated in Figure 8, which shows reconstructions of the cluster at redshift
zcl = 0.2, with the same improved resolution in the reconstruction as before, but this time
using the three-dimensional CS approach. Dramatic improvement is seen on all fronts, with
the reconstructions showing no bias or redshift smearing, and very little amplitude damping,
and with none of the small-scale false detections seen in the 1D CS approach.

(a) 3D plot of the cluster reconstruction. (b) The four central lines of sight
through the cluster.

Figure 8. The reconstruction of a simulated cluster of galaxies at a redshift of zcl = 0.2 using a 3D CS approach, and with
improved resolution on the reconstruction as compared to the input data.

This marked improvement in the cluster reconstruction seen in the 3D CS approach
represents a definite step in the right direction for weak lensing studies. There is much
work to be done, however. The application of this CS approach to the 3D lensing problem is
a very recent development, and many questions remain: the choice of algorithm, for example;
how best to control the noise in the reconstruction; how to deal with photometric redshift
errors; by what factor the reconstruction resolution might be improved as compared to the
data.
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Yet it is clear that this approach opens up the possibility of being able to generate accurate
reconstructions of the density contrast using weak lensing measurements, and perhaps using
information such as the 3D peak count – in combination with constraints from other probes –
to place ever-tighter constraints on our cosmological model. This, in turn, will offer a unique
insight into the nature and properties of the dark components of the Universe.
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