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1. Introduction

The concepts of non-integer derivative and integral are the foundation of the fractional
calculus [1–4]. Non-integer derivative has become nowadays a precious tool, currently used
in the study of the behavior of real systems in diverse fields of science and engineering.

Starting from the sixties, the research in this domain of interest has progressively put to light
important concepts associated with formulations using non-integer order derivative. Indeed,
non-integer order derivative revealed to be a more adequate tool for the understanding of
interesting properties shown by various types of physical phenomena, that is, fractality,
recursivity, diffusion and/or relaxation phenomena. [5–14].

This tool has enabled substantial advances in the accuracy of description and analysis of
these phenomena, namely in the domain of electrochemistry, electromagnetism and electrical
machines, thermal systems and heat conduction, transmission, acoustics, viscoelastic
materials and robotics. At its turn, the community of system identification and automatic
control early benefited from this tool. The corresponding system representations are of
the types of infinite-dimensional or distributed-parameter systems, enriched by diverse
approximating non-integer-order models, indifferently called fractional-order models. There
are abundant successful examples in the literature and one can see some for example in
[15–30].

An important feature of fractional-order systems (FOS) is that they exhibit hereditarily
properties and long memory transients. This aspect is taken into account in modeling,
namely with state-space representation, in parameter estimation, identification, and
controller design. Besides, these issues can be viewed either in the scope of a continuous
time, or a discrete time representation. In this Chapter, we focus on some issues of
modeling and stability of LTI FOS in discrete time. The extension of the results obtained
with continuous-time representations to the discrete-time case is evidently motivated by
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the general trend to use digital computer-aided simulations and implementations in control
engineering and signal processing. In the particular case of FOS, the discretization methods
lead to new models and enlarge the possibilities of representation and simulation of such
systems.

More specifically, the familiar state-space representation and its well-established results in the
integer-order case receive here an extension to the non-integer case. This extension induces
noticeable changes: there appears a neccessity of interpretation of the initial conditions [31]
and a neccesity to take into account the history (or memory) of the system from the initial
instant, since we have to deal, instead of the classical state, with a so-called "‘pseudo state"’,
that is an expanded state [32, 33]. This infinite-dimensional system, as we expose it in the
following sections, has been studied, from the point of view of its structural properties, i.e.,
controllability, observability [34, 35] and, to some extent, of its stability [36].

2. LTI continuous-time fractional-order modeling

In the beginning, most of the works consecrated to the study of FOS focused on
continuous-time representations. The continuous-time state-space FOS representation was
introduced in [24, 37–40]. It has been employed in analysis of system performances. The
solution of the state-space equation was derived by using the Mittag-Lefller function [41].
Next, the stability of FOS was investigated [42] and a condition based on the argument
principle was established to guarantee the asymptotic stability of the fractional-order system.
Further, the controllability and the observability properties have been defined and some
algebraic criteria of these two properties have been derived in [43]. Another contribution to
the analysis of the controllability and the observability with commensurate FOS modeled by
fractional state-space equations is brought in [44].

2.1. Definitions of non-integer derivatives

There are different definitions of the non-integer derivatives [1–3, 45]. Let us consider a
function f (t) of the real variable t, continuous and integrable on [a,+∞[, where a is the
origin of t. Indeed, we usually deal with dynamic systems and f (t) is let to be a causal
function of t, with t ≥ a. Thus f (t) = 0 if t < a.

Let us introduce the positive integer number m such that (m − 1) < α < m. We obtain the
definition due to A.V. Letnikov

L
a Dα

t f (t) =
1

Γ(m − α + 1)

∫ t

a
(t − τ)m−α f (m+1)(τ)dτ +

m

∑
k=0

f (k)(a)(t − a)k−α

Γ(k − α + 1)
, for t < a. (1)

The definition given by (1) assumes that function f is sufficiently differentiable and that

f (k)(a) < ∞, k = 0, 1, ..., m. Γ is the Euler gamma function

Γ(β) =
∫ ∞

0
zβ−1e−zdz (2)

in which z is a complex variable. A new version is the Letnikov-Riemann-Liouville definition
(LRL) given by
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L
a Dα

t f (t) =
dm

dtm
{

1

Γ(m − α)

∫ t

a

f (τ)

(t − τ)α−m+1
dτ} (3)

Naturally, as physical systems are modeled by differential equations containing eventually
fractional derivatives, it is necessary to give to these equations initial conditions that must
be physically interpretable. Unfortunately, the LRL definition leads to initial conditions
containing the value of the fractional derivative at the initial conditions. To overcome this
difficulty, Caputo proposed another definition given by

C
a Dα

t f (t) =
1

Γ(m − α)

∫ t

a

f (m)(τ)

(t − τ)α−m+1
dτ (4)

Note the remarkable fact that the LRL fractional derivative of a constant function f (t) = C is
not zero

L
a Dα

t C =
Ct−α

Γ(1 − α)
(5)

whereas Caputo’s fractional derivative of a constant is identically zero.

2.2. FOS differential equation

Let us now consider a SISO LTI FOS. By means of its dynamic input-output relation and
using (4), we can derive its continuous-time models. In all what follows, we use Caputo’s
definition of a fractional derivative with initial time t = 0, i.e., a = 0. The derived differential
equation is then expressed by [45]

na

∑
i=1

aiD
αi y(t) =

nb

∑
j=1

bjD
β j u(t) (6)

where ai, bj ∈ R, αi, β j ∈ R
+, u(t) ∈ R is the input of the system and y(t) ∈ R its output. na

and nb ∈ N are the number of terms of each side of the differential equation. The differential
equation is said with commensurate order if all the differentiation orders αi , β j are multiple
integers of a same base order α. In this case, it can be expressed by

na

∑
i=1

aiD
iαy(t) =

nb

∑
j=1

bjD
jαu(t) (7)

2.3. State-space model derived from a non-integer-order transfer function

By using Laplace transform, assuming null initial conditions, from (6) we derive the
following transfer function

G(s) =
Y(s)

U(s)
=

∑
nb

j=0 bjs
β j

∑
na

i=0 aisαi
(8)
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To facilitate the development of the so-called construction procedure, (8) is rewritten with
coefficients ai and bj denoted differently by a′2k+1 and a′2k respectively [35]. This gives

G(s) =
Y(s)

U(s)
=

a′0 + a′2sα2 + a′4sα4 + . . . + a′2nsα2n

1 + a′1sα1 + a′3sα3 + . . . + a′2n+1sα2n+1
, (9)

in which αi are the fractional orders that can be either commensurate or non-commensurate,
with

α1 ≤ α2 ≤ α3 ≤ . . . ≤ α2n ≤ α2n+1.

The procedure for obtaining a state-space representation from (9) is as follows: firstly, let us
introduce an intermediate variable X (s) such that

G(s) =
Y(s)

X (s)

X (s)

U(s)

Next, we can write

G(s) =
Y(s)

X (s)

X (s)

U(s)
=

(a′0 + a′2sα2 + a′4sα4 + . . . + a′2nsα2n )X (s)

(1 + a′1sα1 + a′3sα3 + . . . + a′2n+1sα2n+1 )X (s)
(10)

Let us put successively

X1(s) = X (s)

X2(s) = sα1X (s) = sα1X1(s)

X3(s) = sα2X (s) = s(α2−α1)X2(s)

... (11)

X2n+1(s) = sα2nX (s) = s(α2n−α2n−1)X2n(s).

With (10) and relations (11), it is easy to build the following group of equations

sα1X1(s) = X2(s)

s(α2−α1)X2(s) = X3(s)

... (12)

s(αi−αi−1)Xi(s) = Xi+1(s)

...

s(α2n+1−α2n)X2n+1(s) =
1

a′2n+1

[U(s)−X1(s)− a′1X2(s)− . . . − a′2n−1X2n(s)]
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The transposition in the time domain yields a state-space representation of System (9), with
xi(t), u(t) and y(t) the respective inverse Laplace transforms of Xi(s), U(s) and Y(s)

Dα1 x1(t) = x2

D(α2−α1)x2(t) = x3
...

D(αi−αi−1)xi(t) = xi+1
...

D(α2n−α2n−1)x2n(t) = x2n+1

D(α2n+1−α2n)x2n+1(t) =
1

a′2n+1
[u(t)− x1(t)− a′1x2(t)− . . . − a′2n−1x2n(t)],

(13)

the expression of the system output being

y(t) = a′0x1(t) + 0x2(t) + a′2x3(t) + . . . + 0x2n + a′2nx2n+1(t). (14)

The corresponding state-space group of equations is then derived

D[γ]x(t) = Ax(t) + Bu(t) x(0) = x0, (15)

where x(t) = [x1(t) x2(t) . . . x2n+1(t)]
T ∈ R

2n+1 is the column state vector and x(0) its
initial value. Note that here x(0) can be assumed non null, instead of the assumption of null
initial conditions necessary to define the transfer function model. Besides, we have

D[γ]x(t) =







Dγ1 x1(t)
...

Dγ2n+1 x2n+1(t)






,

in which γi ∈ R
⋆+, γ1 = α1 for i = 1 and γi = (αi − αi−1) for i = 2, . . . , 2n + 1.

The output equation takes the form

y(t) = Cx(t) + Du(t), (16)

Matrices A, B, C and D are given by

A =

















0 1 0 0 0 . . . 0
0 0 1 0 . . . . . . 0
...

...
...

...
...

...
...

0 0 0 0 . . . . . . 1

−
1

a′2n+1

−a′1
a′2n+1

0
−a′3

a′2n+1
0 . . .

−a′2n−1

a′2n+1

















, B =











0
0
...
1

a′2n+1











,

C = [ a′0 0 a′2 0 . . . 0 a′2n ] .
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As for direct transmission matrix D, we have

D = [
a′2n

a′2n+1

] if α2n = α2n+1, otherwise D = [0].

The symbol D here should not be confused with the derivation operator D[.].

Remark 1. The dimension of the model, i.e., its number of state variables 2n + 1 is equal to the total
number of non-null terms a′ls

αl present in the numerator and denominator of G(s). In the following,
2n + 1 is denoted nd.

The controllability and observability properties as well as the stability have been well studied
when the differentiation fractional-orders γi are all equal to a unique value, say α ([43], [42]).
In this case, (15) becomes

D[α]x(t) =









Dαx1
Dαx2

...
Dαxnd









= Ax(t) + Bu(t), x(0) = x0 (17)

Applying the Laplace transform to (17), we have

X(s) = [sα
I − A]−1[BU(s) + x(0)],

Defining Φ(t) = L−1[sα
I − A]−1 as the corresponding state transition matrix, we obtain the

state response given by

x(t) = Φ(t)x(0) +
∫ t

0
Φ(t − τ)Bu(τ)dτ (18)

It can be shown that Φ(t) can be expressed by

Φ(t) =
∞

∑
k=0

Aktkα

Γ(1 + kα)
(19)

The left side term of this latter equation represents the Mittag-Leffler function [41] :

Eα(t) ,
∞

∑
k=0

Aktkα

Γ(1 + kα)
(20)

It has been established in [43] that the controllability and observability conditions of the
continuous-time state-space representation of commensurate fractional-order systems are
the same as in the integer-order case. Thus, System (17) is controllable if the rank of the
controllability matrix

C = [B AB A2B ...And−1B] (21)
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is equal to nd. Besides, this system is observable if the rank of the observability matrix

O =















C
CA
CA2

...
CAnd−1















(22)

is equal to nd. To our knowledge, no such results have been brought in the literature up
to now for FOS with non commensurate fractional-order systems in continuous time. The
next section of this chapter constitutes a contribution to the study of structural properties of
non-commensurate FOS, using a different approach, that is discrete-time representation [34].

3. LTI discrete-time fractional-order modeling

The development of a discrete-time model is based on the Grünwald-Letnikov’s definition
of fractional-order operators. This definition is another expression of (1), based on the
generalization of the backward difference. The generalization of the integer-order difference
to a non-integer-order (or fractional-order) difference is addressed in [33, 47].

3.1. The discrete-time fractional-order difference operator

In what follows, we present a discretized representation of the continuous fractional-order
state-space model of Equations (15) and (16), in which the fractional order can be
commensurate or non-commensurate.

Let us consider the state-space model with integer-order derivatives

D1x(t) = Ax(t) + Bu(t) (23)

where x(t) = [x1(t) x2(t) . . . xnd
(t)]T ∈ R

nd is the state vector. This latter model can be
represented in discrete-time using a forward difference approximation of the derivative of
order one of x(t) [32, 33]. For this purpose let us consider a sampling period h. Then for
kh ≤ t < (k + 1)h the integer order first derivative D1x(t) can be approximated by

D1x(t) ≈ ∆1x((k + 1)h) =
x((k + 1)h)− x(kh)

h
. (24)

We can then write

∆1(x(k + 1)h) = Ax(kh) + Bu(kh) (25)

We start with applying a discretization of (17) with identical fractional orders. The fractional

derivatives D[α]x(t) can be approximated by using the definition due to K. Grünwald

D[α]x(t) ≈ ∆
[α]
h x((k + 1)h) =

1

hα

k+1

∑
j=0

(−1)j

(

α

j

)

x(k + 1 − j)h) (26)
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In this equation, α ∈ R
⋆+ is the fractional order, t is the current time, h ∈ R

⋆+ is the sampling
period or time increment. The term (α

j) is calculated by the relation

(

α

j

)

=

{

1 for j = 0
α(α−1)...(α−j+1)

j! for j > 0
(27)

If we drop h (i.e., making h = 1), we find the discrete fractional-order difference operator
∆α as defined and used in [32, 33, 46]. Indeed, the choice of the sampling period h is very
important when elaborating the discretized model of a given process. h is not necessarily
small. It corresponds to an appropriate sampling rate, deduced from the dynamics (or
frequency bandwidth) of the process, by using rules of thumbs and criteria, as exposed
for example in [48, 49].

3.2. The discrete-time fractional-order state-space model

The previous results conduct to the linear discrete-time fractional-order state-space model

∆[α]x(k + 1) = Ax(k) + Bu(k); x(0) = x0 (28)

In this model, the differentiation order α is taken the same for all the state variables xi(k),
i = 1, . . . , nd. Besides, from (27) we have

hα∆[α]x(k + 1) = x(k + 1) +
k+1

∑
j=1

(−1)j

(

α

j

)

x(k − j + 1) (29)

Substituting (30) into (29) yields

x(k + 1) = Ãx(k)−
k+1

∑
j=1

(−1)j

(

α

j

)

x(k − j + 1) + B̃u(k) (30)

with Ã = hα A and B̃ = hαB. By setting cj = (−1)j(α

j), (31) can be rewritten as follows

x(k + 1) = (Ã − c1 Ind
)x(k)−

k+1

∑
j=2

cjx(k − j + 1) + B̃u(k) (31)

Let us put now

A0 = (Ã − c1 Ind
) (32)

and, for all j > 0 :

Aj = −cj+1 Ind
(33)
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This leads to

x(k + 1) = A0x(k) + A1x(k − 1) + A2x(k − 2) + ... + Akx(0) + B̃u(k) (34)

This description can be extended to FOS with different (commensurate or
non-commensurate) orders [53]

∆
[γ]
h x(k + 1) = Ax(k) + Bu(k)

x(k + 1) = ∆
[γ]
h x(k + 1) +

k+1

∑
j=1

Ajx(k − j + 1)

where

∆
[γ]
h x(k + 1) =







hγ1 ∆γ1 x1(k + 1)
...

hγnd ∆γnd xnd
(k + 1)







in which γi ∈ R
⋆+, i = 1, 2, . . . denote any fractional orders. Here, we can write

A0 = Ã + diag{

(

γi

1

)

, i = 1, . . . , nd , (35)

Aj = diag{−(−1)j+1

(

γi

j + 1

)

, i = 1, . . . , nd}, j = 1, 2, . . . (36)

Using (35), we obtain the state equation

x(k + 1) =
k

∑
j=0

Ajx(k − j) + B̃u(k); x(0) = x0 (37)

In this case, Ã and B̃ are calculated as follows Ãi = hγi Ai ; B̃i = hγi Bi where Ai and Bi

denote the rows of A and B respectively. The corresponding output equation is

y(k) = Cx(k) (38)

In this resulting discrete time state-space model, Aj is given by (32) and (33), in the case
of a unique fractional-order while it is given by (35) and (36) in the case of different,
commensurate or non-commensurate fractional-orders.

Remark 2. The model defined by (37) and (38) can be viewed as a discrete-time model with time-delay
in state. It has a varying number of steps of time-delays, equal to k, i.e., increasing with time. Instead,
the models addressed in [50–52] consider a finite constant number of steps of time-delays.
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Define Gk such that

Gk =

{

Ind
for k = 0,

∑
k−1
j=0 AjGk−1−j for k ≥ 1

(39)

Theorem 1. The solution of (37) is given by

x(k) = Gkx(0) +
k−1

∑
j=0

Gk−1−jBu(j) (40)

This theorem can be proved by induction [34]. The first part of the solution of (40) represents
the free response of the system and the last part takes the role of the convolution sum
corresponding to the forced response.
The corresponding transition matrix can be defined as

Φ(k, 0) = Gk, Φ(0, 0) = G0 = Ind
(41)

Remark 3. - Φ(k, 0) exhibits the particularity of being time-varying, in the sense that it is composed
of a number of terms Aj which grows along with k. This is due to the fractional-order feature of the
model which takes into account all the past values of the states.

By virtue of Equations (37) and (38), the discretization of this state-space realization is

x(k + 1) =
k

∑
j=0

Ajx(k − j) + Bu(k); x(0) = x0

y(k) = Cx(k)

Here we have

A0 = A + diag{

(

αi

1

)

, i = 1, . . . , nd} (42)

Aj = diag{−(−1)j+1

(

αi

j + 1

)

, i = 1, . . . , nd}, j = 1, 2, . . . (43)

The output response for a given input sequence and initial conditions is given by

y(k) = CGkx(0) +
k−1

∑
j=0

CGk−1−jBu(j) (44)
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4. Structural properties of LTI discrete-time FOS

4.1. Reachability and controllability

We discuss here a fundamental question for dynamic systems modeled by (37) in the case
of a non-commensurate fractional-order. This question is to determine whether it is possible
to transfer the state of the system from a given initial state to any other state. We search
below to extend two concepts of state reachability (or controllability from the origin) and
controllability (or controllability to the origin) to the present case. We are interested in
completely state reachable and controllable systems.

Definition 1. The linear discrete-time fractional-order system modeled by (37) is reachable if it is
possible to find a control sequence such that an arbitrary state can be reached from the origin in a finite
time.

Definition 2. The linear discrete-time fractional-order system modeled by (37) is controllable if it is
possible to find a control sequence such that the origin can be reached from any initial state in a finite
time.

Definition 3. For the linear discrete-time fractional-order system modeled by (37) we define the
following

1. The controllability matrix

Ck =
[

G0B G1B G2B · · · Gk−1B
]

(45)

2. The reachability Gramian

Wr(0, k) =
k−1

∑
j=0

GjBBTGT
j , k ≥ 1 (46)

It is easy to show that Wr(0, k) = CkC
T
k .

3. The controllability Gramian, provided that A0 is non-singular

Wc(0, k) = G−1
k Wr(0, k)G−T

k , k ≥ 1 (47)

Note that G1 = A0 and the existence of Wr(0, 1) imposes A0 to be non-singular. However,
this is not that restrictive condition because a discrete model is often obtained by sampling a
continuous one. Thus, in the remainder of this paper we assume that A0 is non-singular.

Theorem 2. The linear discrete-time fractional-order system modeled by (37) is reachable if and
only if there exists a finite time K such that rank(CK) = n or, equivalently, rank(Wr(0, K)) = n.
Furthermore, the input sequence

UK = [uT(K − 1) uT(K − 2) . . . uT(0)]T

that transfers x0 = 0 at k = 0 to x f 6= 0 at k = K is given by

UK = CT
KW−1

r (0, K)x f . (48)
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Remark 4. In the case of an integer order, it is well known that the rank of Ck cannot increase for
any k ≥ n. This results from the Cayley-Hamilton theorem. On the contrary, in the case of the linear
discrete-time non-commensurate fractional-order system (37), the rank of Ck can increase for values
of k ≥ n. In other words, it is possible to reach the final state x f in a number of steps greater than n.
This is due to the nature of the elements Gk which build up the controllability matrix Ck and which
exhibit the particularity of being time-varying, in the sense that they are composed of a number of
terms Aj that grows with k, as already mentioned in Remark 2. The full rank of (Ck) can be reached
in some Step k = K equal to, or greater than n.

Theorem 3. The linear discrete-time fractional-order system modeled by (37) is controllable if and
only if there exists a finite time K such that rank(Wc(0, K)) = n. Furthermore, an input sequence
UK = [uT(K − 1) uT(K − 2) . . . uT(0)]T that transfers x0 6= 0 at k = 0 to x f = 0 at k = K
is given by

UK = −CT
KG−T

K W−1
c (0, K)x0. (49)

4.2. Observability

In this section we aim at extending the concept of observability to the system of Equations
(37) and (38), in the case of a non-commensurate fractional-order. We are interested in
completely state observable systems.

Definition 4. The linear discrete-time fractional-order system modeled by Equations (37) and (38)
is observable at time k = 0 if and only if there exits some K > 0 such that the state x0 at time k = 0
can be uniquely determined from the knowledge of uk, yk, k ∈ [0, K].

Definition 5. For the linear discrete-time fractional-order system modeled by Equations (37) and
(38) we define the following

1. The observability matrix

Ok =















CG0

CG1

CG2
...

CGk−1.















(50)

2. The observability Gramian

Wo(0, k) =
k−1

∑
j=0

GT
j CTCGj. (51)

It is easy to show that Wo(0, k) = OT
k Ok.

Theorem 4. The linear discrete-time fractional-order system modeled by Equations (37) and (38)
is observable if and only if there exists a finite time K such that rank(OK) = n or, equivalently,
rank(Wo(0, K)) = n. Furthermore, the initial state x0 at k = 0 is given by

x0 = W−1
o (0, K)OT

K

[

ỸK −MKŨK

]

(52)
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with

ŨK = [uT(0) uT(1) . . . uT(K − 1)]T ,

ỸK = [yT(0) yT(1) . . . yT(K − 1)]T ,

and

MK =



















0 0 0 . . . 0 0
CG0B 0 0 . . . 0 0
CG1B CG0B 0 . . . 0 0
CG2B CG1B CG0B . . . 0 0

...
...

... . . .
...

...
CGK−2B CGK−3B CGK−4B . . . CG0B 0



















. (53)

Remark 5. From the Cayley-Hamilton theorem, it is well known that for integer-order systems the
rank of the observability matrix Ok cannot increase in Step k ≥ n. Here too, it is remarkable that
this is not true in the case of the discrete-time non-commensurate fractional-order system of (37) and
(38). Indeed, rank(Ok) can increase for values k ≥ n. We can state that the observability of this
type of systems can possibly be obtained in a number of steps greater than n. This is due to the same
reasons as those exposed above in Remark 3 for controllability. In [53], the observability condition for
the discrete-time fractional-order system as modeled by (37), with non-commensurate order, is that
the rank of Ok should be equal to n at most in Step k = n. Our result shows that the full rank of
(Ok) can be reached in some Step k = K greater than n. This can be considered as an extension of the
previous result in [53].

Commensurate fractional-order case In this section we address the particular case of
commensurate FOS. The terms Aj are as expressed by Aj = −cj+1In, for all j > 0. It is
clear then that matrices Gk defined by (40) are polynomials in A0, i.e.,

Gk = Ak
0 + β1k

Ak−1
0 + β2k

Ak−2
0 + . . . + βkk

In.

where the real coefficients β jk are calculated from the coefficients cj. In particular, we have

Gn = An
0 + β1n

An−1
0 + β2n

An−2
0 + . . . + βnn In.

From the Cayley-Hamilton theorem, An
0 is a linear combination of An−1

0 , An−2
0 , . . ., In. We

deduce that Gk+n, for all k ≥ 0 are linearly dependent on Gn−1, Gn−2, . . ., In. This implies
the following results

Corollary 1. The linear discrete-time fractional-order system modeled by Equations (37) and (38) in
the commensurate case is reachable if and only if rank(Cn) = n or, equivalently, rank(Wr(0, n)) = n.
On the other hand, this system is controllable if and only if rank(Wc(0, n)) = n.

Corollary 2. The linear discrete-time fractional-order system modeled by (37) and (38) in the
commensurate case is observable if and only if rank(On) = n or, equivalently, rank(Wo(0, n)) = n.

Discrete-Time Fractional-Order Systems: Modeling and Stability Issues
http://dx.doi.org/10.5772/51983

195



Remark 6. We therefore observe that the controllability and observability criteria for the
commensurate fractional-order case are similar to those of the integer-order case, in the sense that
if a state cannot be reached in n steps, then it is not reachable at all and that if an initial state cannot
be deduced from n steps of input-output data, then it is not observable at all. The result put forward in
[53] which states that a necessary and sufficient condition for the discrete-time fractional-order system
as modeled in (37) and (38) to be observable is that the rank of Ok should be equal to n at most in
Step k = n is true only in the case of commensurate FOS.

time (s)

a
m

p
lit

u
d
e

Figure 1. Computed values of the output sequence

4.3. Stability analysis

In this section, we investigate the property of stability of linear discrete-time FOS. We know
that the study of the stability of FOS is limited to the result of the "‘argument principle"’,
applicable to the sole category of commensurate-order systems. As far as non-commensurate
orders are considered in the new models introduced, other adequate tools are required. In
this context, new results concerning asymptotic stability are developed below. Besides, we
introduce the concept of practical stability and we establish some mathematical conditions
to check this property.
Asymptotic stability Let us consider the state-space model given by (37) and (38)

x(k + 1) =
k

∑
j=0

Ajx(k − j) + Bu(k), x(0) = x0,

y(k) = Cx(k),

Its solution, given by (40) is

x(k) = Gkx0 +
k−1

∑
j=0

Gk−1−jBu(j).
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In order to study the asymptotic stability property of this system, we consider its unforced
version, i.e.,

x(k + 1) =
k

∑
j=0

Ajx(k − j), x(0) = x0. (54)

Definition 6. System (54) is asymptotically stable if for each k ≥ 1 and any initial condition x0, the
following equality is verified

lim
k→∞

‖ x(k) ‖ = 0. (55)

We use the 2-norm of the state vector x(k), i.e.,

‖ x(k) ‖=

√

n

∑
i=1

x2
i (k),

where xi(k) are the components of x(k).
The solution to (54) for given initial conditions x0 is

x(k) = Gkx0, k ≥ 1, G0 = In. (56)

It follows that System (54) is asymptotically stable if and only if

‖ Gk ‖≤ 1, k ≥ 1. (57)

The 2-norm of the transition matrix is

‖ Gk ‖= λ

1
2
max(GkGT

k ) = σmax(Gk),

where λmax and σmax refer to the maximal eigenvalue and the maximal singular value of Gk

respectively.
Let us define the backward shift operator S as follows ([55], [56]). We consider an infinite
sequence of samples of vector x, denoted x, starting from k = 0 up to infinity, and with null
values for k < 0, assuming the system to be causal. Thus, we have

x = {. . . , 0, 0, x(0), x(1), x(2), . . . , x(N), . . .}.

S acts on x as follows

Sx = S{. . . , 0, 0, x(0), x(1), x(2) , . . . , x(k), x(k + 1), . . .}

= {. . . , 0, 0, 0, 0, x(0), x(1) , x(2), . . . , x(k − 1), . . .}.
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We then define the column sequence

x̃ =




...
0

x(0)
x(1)

...
x(k)

...




Similarly, we can use this representation to rewrite (37) and its output equation

y(k) = Cx(k)

in the equivalent form

x̃ = S̃Ãx̃ + S̃B̃ũ, (58)

ỹ = C̃x̃. (59)

In this representation, the expressions of the different components are

ũ =




...
0

u(0)
u(1)

...
u(k)

...




, ỹ =




...
0

y(0)
y(1)

...
y(k)

...




, S̃ =




0 0 0 . . . . . .
In 0 . . . . . . . . .
0 In . . . . . . . . .
0 0 In . . . . . .
...

...
...

...
...




and

Ã =




A0 0 0 0 . . .
A1 A0 0 0 . . .
A2 A1 A0 0 . . .
A3 A2 A1 A0 . . .
...

...
...

...
...




, B̃ =




B 0 0 0 . . .
0 B 0 0 . . .
0 0 B 0 . . .
0 0 0 B . . .
...

...
...

...
...




and
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C̃ =




C 0 0 0 . . .
0 C 0 0 . . .
0 0 C 0 . . .
0 0 0 C . . .
...

...
...

...
...




.

Theorem 5. Putting As = S̃Ã, the system

x̃ = S̃Ãx̃ = As x̃ (60)

is asymptotically stable if and only if ρ(As) ≤ 1, where ρ is the spectral radius of operator As, defined
as

ρ(As) = lim
i→∞

‖Ai
s‖∗

1
i , (61)

in which the norm definition is

‖Ai
s‖∗ = sup

[I,J]

‖Ai
s[I,J]‖,

with Ai
s[I,J]

denoting the [I, J]th block matrix of Ai
s.

The proof of this theorem is in [36]. In practice, a finite-time observation of the system is
desirable. For this purpose, we consider the concept of practical stability ([54], [57]) defined
as follows

Definition 7. System (54) is practically stable in a finite-time horizon Lh > 0 if for each 1 ≤ k ≤ Lh

and any initial condition x0 the following inequality is verified

‖ x(k) ‖≤ M ‖ x0 ‖, (62)

where M is a strictly positive finite given number.

From solution (56), System (54) is practically stable if and only if ‖ Gk ‖≤ M for 1 ≤ k ≤ L.
Besides, we can write

AL
s =




G1 0 0 . . . . . . 0
G2 0 0 . . . . . . 0
G3 0 0 . . . . . . 0
...

...
...

...
...

...
GLh

0 0 . . . . . . 0

× ALh+1
0 0 . . . . . . 0

× × ALh+2
0 0 . . . 0

...
...

...
...

...
...

× × × × × ×



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Define the block matrix

ALh

s Lh
=















G1 0 0 . . . . . . 0
G2 0 0 . . . . . . 0
G3 0 0 . . . . . . 0
...

...
...

...
...

...
GLh

0 0 . . . . . . 0















.

From the above, we can state that System (54) is practically stable if and only if ‖ ALh

s Lh
‖∗≤

M. These results are illustrated by a numerical example in [36].

Remark 7. The state-space representations elaborated in the previous sections for the continuous time
and the discrete time were considered for a SISO process. They are easily extended to Multiple Input,
Multiple Output (MIMO) systems, with the use of a vector of inputs u instead of a scalar input, and
a vector of outputs y instead of a scalar output. MIMO systems are treated with a same procedure.
This enables the study of their structural properties and permits to deal with control issues of such
systems either in time domain or frequency domain, such as MIMO H∞ problem for example in[58].

5. Practical example

5.1. Fractional-order modeling of a thermal system

We consider a thermal system consisting in the regulation of the temperature profile of an
aluminium rod with constant thermal conductivity κ and diffusivity ξ, as described in [30,
59]. A possible version is shown in Figure 2. Temperature T(χ, t) is evaluated at abscissa χ

Figure 2. The metallic rod thermal system.

along the rod axis. The rod length is L, and the origin is set at the non heated end. Measuring
points of T(χ, t), by means of probes, are provided at different distances. To build a model
of this system, we use an approximation by considering that the temperature diffusion for
this type of geometry is governed by the following partial differential equation (PDE)

∂T(χ, t)

∂t
= ξ

∂2T(χ, t)

∂χ2
, χ ∈ (0, L), t ≥ 0 (63)
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The Dirichlet boundary condition is stated as follows [59]: we consider the control action
that maintains a temperature u(t) fixed at the end point χ = L and that a temperature
measurement can be taken inside the rod, at a fixed abscissa χ0 (see Figure 2). Therefore, the
boundary conditions are

T(0, t) = 0. T(L, t) = u(t). (64)

As for the temperature measured at a fixed point χ0, this represents the observation, that is

y(t) = T(χ0, t).

5.2. Fractional-order state-space model of the aluminium rod

Let us denote the Laplace transforms of T(χ, t) and u(t) respectively by T(χ, s) and u(s).
The assumption of null initial conditions is made here, i.e., the rod is left to cool down
before experiment. This conducts us to an easier computing process. Indeed non null initial
conditions in the fractional case, as exposed for example in [31], conduct to computations
that are more complicated to handle. Equation (63) and (64) become

d2T(χ, s)

dχ2
=

s

ξ
T(χ, s) = 0, with (65)

T(0, s)) = 0, T(L, s) = u(s). (66)

The corresponding solution leads to the transfer function

H(χ0, s) =
y(s)

u(s)
=

T(χ0, s)

T(L, s)
=

sinh
(

χ0

√

s
ξ

)

sinh
(

L
√

s
ξ

) . (67)

This expression establishes that the described device exhibits the feature of fractional-order
model. It is the case for various other types of diffusion, say chemical diffusion processes,
neutron flux, and also for dielectric relaxation, electrode polarization, transmission lines,
etc.. The four exp(.) terms composing the last part of (67) are expressed by using a Padé
approximation of order 2. Let us recall here that, for instance, for exp(.) with given argument
z, a Padé approximation of order P yields

exp(z) ≈
∑

P
k=0

(2P−k)!
k!(P−k)!

(z)k

∑
P
k=0

(2P−k)!
k!(P−k)!

(−z)k
.

The determination of H(χ0, s) is made for an aluminium rod, with a set of numerical values
most of them used in [30]. These are
• rod length L = 0.4 m.
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• abscissa of the measuring point, set here at χ0 = 2∗L
3 m.

• rod thermal conductivity κ = 237 W/m.K, and diffusivity ξ = 9975.10−8 m2/s.
With this set of practical values, we obtain the following transfer function

H(χ0, s) =
0.6667 + 22.2501s

1
2 + 188.1246s − 1982.7s

3
2 + 5293.9s2

1 + 33.3751s
1
2 + 430.7064s + 1982.7s

3
2 + 3529.3s2

. (68)

Next we apply to (68) the procedure exposed above from (8) to (17), so as to obtain
the corresponding fractional-order state-space model. We find a state-space model with
commensurate fractional orders, of the form (17). In our case, it can be reduced to four states,
by eliminating redundant states through a variable change. In the resulting model, there
exists a direct transmission matrix D, what can be foreseen when considering the monomials
of highest degree in s of numerator and denominator of (68).

The computed set of matrices A, B, C, D of the resulting fractional-order state-space model
for the rod, in continuous time, is therefore

A =









0 1 0 0
0 0 1 0
0 0 0 1

−0.0003 −0.0095 −0.1220 −0.5618









, B =





0
0

0.0002833



 ,

C =
[

−0.8333 −27.8126 −457.9350 −4956.8
]

, D = [1.5].

(69)

5.3. Analysis of the discrete-time state-space model of the rod

We convert the continuous-time state space model described by the set of matrices (69) into
a discrete-time version. This is done by choosing the sampling period h, making h = 1s. The
sampling period value taken in [30] for the same aluminium rod is somewhat smaller, that is
0.5s. We set the input variable u(t) = T(L, t) = 320 oK. In other words, the temperature
at abscissa χ = L is maintained constant. The observed output y(t) = T(χ0, t) is the
temperature diffusing at a measuring point at χ0. The response obtained is shown in Figure
3. It indicates that the output temperature starts increasing from null initial condition set at
T(0, t) = 0 oK, which is an assumption for deriving the model used. In the interval of the
experiment over 3000 steps, it diffuses and tends to a value approaching the input fixed value.
A detailed plot represented in Figure 4 shows at the beginning an increase of y(t), followed
by a brief fall under zero. This type of behaviour at first sight is similar to non-minimum
phase system behaviour. However, its interpretation as a physical phenomenon appears to
be not realistic, considering the underlying process in study.

Besides, as an example of study of the structural properties of the model proposed, we
have led a reachability test, following the theoretical developments of previous Section 4.
Starting from a zero initial state x(0) = [0 0 0 0]′, we set a final state to be reached
as x f = [−0.13 − 0.13 − 0.13 − 0.13]′. The computation achieved yields the result
that x f is exactly reached in four steps, i.e. in a number of steps equal to the rank of
the controllability matrix, as depicted in Figure 5. Nevertheless, from the point of view of
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physical coherence, the result is not satisfactory, since the necessary input sequence yielded is
u(k) = [−278.2396 − 99.607 − 36.5687 − 18.3551], that is, with (all) negative elements.
Related to this feature, the values of the model output matrix C is found to be made of
all negative elements. A further insight should be therefore directed towards the modeling
process, initiated with the representation of the diffusive phenomena by PDE equations.
Next, a more detailed evaluation of the precision when achieving the Padé approximation
would be expectable. It remains that one major improvement to expect is the effective
introduction in the modeling of fractional-order systems of non null initial conditions [31].
Taking them into account in the computations is a way to make the representations closer
to the reality of the phenomena. The case treated here, which aims to describe the diffusion
of a given fixed temperature at one end of the rod, implies to deal with realistic operation
conditions. For example, an interesting case to investigate would be to consider the rod set
initially at ambient temperature, say currently around 300 oK, as a non null initial condition,
and to track the diffusion of a given input temperature with a more elaborated model.

Figure 3. Output temperature evolution over 3000 points (Sampling period: 1s).

Figure 4. Output temperature evolution, starting from zero initial condition (Detail).

Discrete-Time Fractional-Order Systems: Modeling and Stability Issues
http://dx.doi.org/10.5772/51983

203



 

Figure 5. Output temperature evolution during control sequence.

6. Stabilization issue

In this section, we deal with the problem of stabilization. For this purpose, we consider the
system given by (37) and (38), which we aim to stabilize, by handling state equation (37)

x(k + 1) =
k

∑
j=0

Ajx(k − j) + Bu(k), x(0) = x0.

Let us consider the control u as a state-feedback control, in a classical state-feedback control
loop, with a null reference input (r = 0), as illustrated in Figure 6. We assume that

�

�

���� ���������

��

����	
���
�������

�

��

�

��

Figure 6. State-feedback control loop.

u(k) =
k

∑
j=0

Fjx(k − j), (70)

That is

u(k) = F0x(k) + F1x(k − 1) + F2x(k − 2) + . . . + Fkx(0).
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In the closed loop, we have

x(k + 1) =
k

∑
j=0

(Aj + BFj)x(k − j). (71)

Then, putting AFj = Aj + BFj, we can write

x(k + 1) =
k

∑
j=0

AFjx(k − j). (72)

Thus, successively, we build the recurrence beginning with

x(1) = AF0x(0) = (A0 + BF0)x(0),

x(2) = AF0x(1) + AF1x(0) = (A0 + BF0)x(1) + (A1 + BF1)x(0),

x(3) = AF0x(2) + AF1x(1)AF2x(0) = (A0 + BF0)x(2) + (A1 + BF1)x(1) + (A2 + BF2)x(0), . . .

This leads to the following relation between the two column sequences




x(1)
x(2)
x(3)

...
x(k + 1)

...




=




(A0 + BF0) 0 0 0 . . .
(A1 + BF1) (A0 + BF0) 0 0 . . .
(A2 + BF2) (A1 + BF1) (A0 + BF0) 0 . . .

...
...

...
...

...







x(0)
x(1)
x(2)

...
x(k)

...




(73)

Similarly to the notations used in (37), i.e., considering an infinite column sequence x̃, and
using the backward shift S , Equation (58) is rewritten as follows

x̃ = S̃ÃF x̃, (74)

in which

ÃF =




(A0 + BF0) 0 0 0 . . .
(A1 + BF1) (A0 + BF0) 0 0 . . .
(A2 + BF2) (A1 + BF1) (A0 + BF0) 0 . . .

...
...

...
...

...


 (75)

Further, we decompose ÃF as follows
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ÃF =




A0 0 0 0 . . .
A1 A0 0 0 . . .
A2 A1 A0 0 . . .
...

...
...

...
...


+




B 0 0 0 . . .
0 B 0 0 . . .
0 0 B 0 . . .
...

...
...

...
...


+




F0 0 0 0 . . .
F1 F0 0 0 . . .
F2 F1 F0 0 . . .
...

...
...

...
...


 (76)

Equation (58) becomes

x̃ = S̃ÃF x̃ = S̃Ãx̃ + S̃B̃F̃x̃, (77)

where

F̃ =




F0 0 0 0 . . .
F1 F0 0 0 . . .
F2 F1 F0 0 . . .
...

...
...

...
...


 . (78)

The reachability is reformulated here under the operator-theoretic formulation (Equations
(58) and (59)) of the discrete-time fractional-order system.

Definition 8. The pair (Ã, B̃) is K-step reachable if the operator reachability Gramian defined by

W̃
p
r = C̃T

p C̃p, (79)

where

C̃p = [B̃ ÃB̃ . . . Ãp−1Ã],

is invertible.

Similarly to Equation (39), let us now define the transition matrix form Gk such that

GFk =

{
Ind

for k = 0,

∑
k−1
j=0 AFjGF(k−1−j) for k ≥ 1.

(80)

We now consider the problem of choosing the state feedback operator gain F̃ that stabilizes
System (77), i.e., which ensures that

‖ GFk ‖ ≤ 1 for k ≥ 1.

The following statement is derived from Theorem 5 established above, and Lemma 2 in [60].

Corollary 3. Suppose that (Ã, B̃) is K-reachable and let

F̃ = −B̃TÃT(W̃
p
r )

−1Ãp+1,

then the closed-loop system (77) is asymptotically stable, that is ρ(ÃFs) < 1, where ÃFs = S̃ÃF
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Remark 8. The state feedback (70) uses the entire memory of the state variable. In practice, this could
be undesirable and computationally unwieldy. It is preferable to design a controller with short-memory
[45]. Let be Lh the restricted length of the memory (or horizon). The practical state feedback is
formulated as:

u(k) =
Lh

∑
j=0

Fjx(k − j), for k ≥ Lh,

and

u(k) =
k

∑
j=0

Fjx(k − j), for k < Lh

Stability of the short-memory state feedback controller could be investigated with the same development
given in this section.

7. Conclusion

We have reviewed some tools for modeling and analysis of FOS in discrete time, introducing
state-space representation for both commensurate and non commensurate fractional orders.
These latter new approaches of modeling and analysis of such systems have revealed new
properties, not shown in continuous time representations.

Our contribution concerns the analysis of the controllability and the observability of linear
discrete-time FOS. We have introduced a new formalism and established testable sufficient
conditions for guaranteeing the controllability and the observability. Some aspects of
controllability and observability of such systems had not been treated before. Let us recall
the remarkable point that, in the case of the linear discrete-time non-commensurate FOS, the
rank of the controllability matrix can increase for values greater than the dimension of the
system. In other words, it is possible to reach the final state in a number of steps greater
than this dimension number. They are expected to give birth to further investigations and
applications. With the use of a new formalism, an approach to analysis of asymptotic stability
and practical stability of discrete-time FOS has been proposed.

The modeling of a practical system has been treated, which points out theoretical
assumptions to match with real conditions.

Finally, the preliminary results presented in this chapter enabled us to make first steps into
investigation on stabilization and practical stabilization of linear discrete-time FOS.
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